Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
M
MariaDB
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
nexedi
MariaDB
Commits
cabb55a6
Commit
cabb55a6
authored
Aug 16, 2006
by
igor@rurik.mysql.com
Browse files
Options
Browse Files
Download
Plain Diff
Merge ibabaev@bk-internal.mysql.com:/home/bk/mysql-5.0-opt
into rurik.mysql.com:/home/igor/mysql-5.0-opt
parents
db17048c
067d6fdf
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
255 additions
and
60 deletions
+255
-60
mysql-test/r/range.result
mysql-test/r/range.result
+36
-0
mysql-test/t/range.test
mysql-test/t/range.test
+30
-0
sql/opt_range.cc
sql/opt_range.cc
+171
-59
sql/sql_select.cc
sql/sql_select.cc
+18
-1
No files found.
mysql-test/r/range.result
View file @
cabb55a6
...
...
@@ -860,3 +860,39 @@ a
13
15
drop table t1, t2;
CREATE TABLE t1 (
id int NOT NULL DEFAULT '0',
b int NOT NULL DEFAULT '0',
c int NOT NULL DEFAULT '0',
INDEX idx1(b,c), INDEX idx2(c));
INSERT INTO t1(id) VALUES (1), (2), (3), (4), (5), (6), (7), (8);
INSERT INTO t1(b,c) VALUES (3,4), (3,4);
SELECT * FROM t1 WHERE b<=3 AND 3<=c;
id b c
0 3 4
0 3 4
SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
id b c
0 3 4
0 3 4
EXPLAIN SELECT * FROM t1 WHERE b<=3 AND 3<=c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 range idx1,idx2 idx2 4 NULL 3 Using where
EXPLAIN SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 range idx1,idx2 idx2 4 NULL 3 Using where
SELECT * FROM t1 WHERE 0 < b OR 0 > c;
id b c
0 3 4
0 3 4
SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
id b c
0 3 4
0 3 4
EXPLAIN SELECT * FROM t1 WHERE 0 < b OR 0 > c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 index_merge idx1,idx2 idx1,idx2 4,4 NULL 4 Using sort_union(idx1,idx2); Using where
EXPLAIN SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 index_merge idx1,idx2 idx1,idx2 4,4 NULL 4 Using sort_union(idx1,idx2); Using where
DROP TABLE t1;
mysql-test/t/range.test
View file @
cabb55a6
...
...
@@ -680,4 +680,34 @@ prepare stmt1 from @a;
execute
stmt1
;
drop
table
t1
,
t2
;
#
# Bug #18165: range access for BETWEEN with a constant for the first argument
#
CREATE
TABLE
t1
(
id
int
NOT
NULL
DEFAULT
'0'
,
b
int
NOT
NULL
DEFAULT
'0'
,
c
int
NOT
NULL
DEFAULT
'0'
,
INDEX
idx1
(
b
,
c
),
INDEX
idx2
(
c
));
INSERT
INTO
t1
(
id
)
VALUES
(
1
),
(
2
),
(
3
),
(
4
),
(
5
),
(
6
),
(
7
),
(
8
);
INSERT
INTO
t1
(
b
,
c
)
VALUES
(
3
,
4
),
(
3
,
4
);
SELECT
*
FROM
t1
WHERE
b
<=
3
AND
3
<=
c
;
SELECT
*
FROM
t1
WHERE
3
BETWEEN
b
AND
c
;
EXPLAIN
SELECT
*
FROM
t1
WHERE
b
<=
3
AND
3
<=
c
;
EXPLAIN
SELECT
*
FROM
t1
WHERE
3
BETWEEN
b
AND
c
;
SELECT
*
FROM
t1
WHERE
0
<
b
OR
0
>
c
;
SELECT
*
FROM
t1
WHERE
0
NOT
BETWEEN
b
AND
c
;
EXPLAIN
SELECT
*
FROM
t1
WHERE
0
<
b
OR
0
>
c
;
EXPLAIN
SELECT
*
FROM
t1
WHERE
0
NOT
BETWEEN
b
AND
c
;
DROP
TABLE
t1
;
# End of 5.0 tests
sql/opt_range.cc
View file @
cabb55a6
...
...
@@ -3580,6 +3580,10 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
break
;
case
Item_func
:
:
BETWEEN
:
{
int
i
=
(
int
)
value
;
if
(
!
i
)
{
if
(
inv
)
{
tree
=
get_ne_mm_tree
(
param
,
cond_func
,
field
,
cond_func
->
arguments
()[
1
],
...
...
@@ -3597,8 +3601,15 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
cmp_type
));
}
}
}
else
tree
=
get_mm_parts
(
param
,
cond_func
,
field
,
(
inv
?
(
i
==
1
?
Item_func
::
GT_FUNC
:
Item_func
::
LT_FUNC
)
:
(
i
==
1
?
Item_func
::
LE_FUNC
:
Item_func
::
GE_FUNC
)),
cond_func
->
arguments
()[
0
],
cmp_type
);
break
;
}
case
Item_func
:
:
IN_FUNC
:
{
Item_func_in
*
func
=
(
Item_func_in
*
)
cond_func
;
...
...
@@ -3768,6 +3779,118 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
DBUG_RETURN
(
tree
);
}
/*
Build conjunction of all SEL_TREEs for a simple predicate applying equalities
SYNOPSIS
get_full_func_mm_tree()
param PARAM from SQL_SELECT::test_quick_select
cond_func item for the predicate
field_item field in the predicate
value constant in the predicate
(for BETWEEN it contains the number of the field argument,
for IN it's always 0)
inv TRUE <> NOT cond_func is considered
(makes sense only when cond_func is BETWEEN or IN)
DESCRIPTION
For a simple SARGable predicate of the form (f op c), where f is a field and
c is a constant, the function builds a conjunction of all SEL_TREES that can
be obtained by the substitution of f for all different fields equal to f.
NOTES
If the WHERE condition contains a predicate (fi op c),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of fi for
each fj belonging to the same multiple equality as fi
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
in a similar way: we build a conjuction of trees for the results
of all substitutions of fi for equal fj.
Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
differently. It is considered as a conjuction of two SARGable
predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
is called for each of them separately producing trees for
AND j (f1j <=c ) and AND j (f2j <= c)
After this these two trees are united in one conjunctive tree.
It's easy to see that the same tree is obtained for
AND j,k (f1j <=c AND f2k<=c)
which is equivalent to
AND j,k (c BETWEEN f1j AND f2k).
The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
trees are united in one OR-tree. The expression
(AND j (f1j > c) OR AND j (f2j < c)
is equivalent to the expression
AND j,k (f1j > c OR f2k < c)
which is just a translation of
AND j,k (c NOT BETWEEN f1j AND f2k)
In the cases when one of the items f1, f2 is a constant c1 we do not create
a tree for it at all. It works for BETWEEN predicates but does not
work for NOT BETWEEN predicates as we have to evaluate the expression
with it. If it is TRUE then the other tree can be completely ignored.
We do not do it now and no trees are built in these cases for
NOT BETWEEN predicates.
As to IN predicates only ones of the form (f IN (c1,...,cn)),
where f1 is a field and c1,...,cn are constant, are considered as
SARGable. We never try to narrow the index scan using predicates of
the form (c IN (c1,...,f,...,cn)).
RETURN
Pointer to the tree representing the built conjunction of SEL_TREEs
*/
static
SEL_TREE
*
get_full_func_mm_tree
(
PARAM
*
param
,
Item_func
*
cond_func
,
Item_field
*
field_item
,
Item
*
value
,
bool
inv
)
{
SEL_TREE
*
tree
=
0
;
SEL_TREE
*
ftree
=
0
;
table_map
ref_tables
=
0
;
table_map
param_comp
=
~
(
param
->
prev_tables
|
param
->
read_tables
|
param
->
current_table
);
DBUG_ENTER
(
"get_full_func_mm_tree"
);
for
(
uint
i
=
0
;
i
<
cond_func
->
arg_count
;
i
++
)
{
Item
*
arg
=
cond_func
->
arguments
()[
i
]
->
real_item
();
if
(
arg
!=
field_item
)
ref_tables
|=
arg
->
used_tables
();
}
Field
*
field
=
field_item
->
field
;
Item_result
cmp_type
=
field
->
cmp_type
();
if
(
!
((
ref_tables
|
field
->
table
->
map
)
&
param_comp
))
ftree
=
get_func_mm_tree
(
param
,
cond_func
,
field
,
value
,
cmp_type
,
inv
);
Item_equal
*
item_equal
=
field_item
->
item_equal
;
if
(
item_equal
)
{
Item_equal_iterator
it
(
*
item_equal
);
Item_field
*
item
;
while
((
item
=
it
++
))
{
Field
*
f
=
item
->
field
;
if
(
field
->
eq
(
f
))
continue
;
if
(
!
((
ref_tables
|
f
->
table
->
map
)
&
param_comp
))
{
tree
=
get_func_mm_tree
(
param
,
cond_func
,
f
,
value
,
cmp_type
,
inv
);
ftree
=
!
ftree
?
tree
:
tree_and
(
param
,
ftree
,
tree
);
}
}
}
DBUG_RETURN
(
ftree
);
}
/* make a select tree of all keys in condition */
static
SEL_TREE
*
get_mm_tree
(
PARAM
*
param
,
COND
*
cond
)
...
...
@@ -3776,7 +3899,7 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
SEL_TREE
*
ftree
=
0
;
Item_field
*
field_item
=
0
;
bool
inv
=
FALSE
;
Item
*
value
;
Item
*
value
=
0
;
DBUG_ENTER
(
"get_mm_tree"
);
if
(
cond
->
type
()
==
Item
::
COND_ITEM
)
...
...
@@ -3856,10 +3979,37 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
switch
(
cond_func
->
functype
())
{
case
Item_func
:
:
BETWEEN
:
if
(
cond_func
->
arguments
()[
0
]
->
real_item
()
->
type
()
!
=
Item
::
FIELD_ITEM
)
DBUG_RETURN
(
0
);
if
(
cond_func
->
arguments
()[
0
]
->
real_item
()
->
type
()
=
=
Item
::
FIELD_ITEM
)
{
field_item
=
(
Item_field
*
)
(
cond_func
->
arguments
()[
0
]
->
real_item
());
value
=
NULL
;
ftree
=
get_full_func_mm_tree
(
param
,
cond_func
,
field_item
,
NULL
,
inv
);
}
/*
Concerning the code below see the NOTES section in
the comments for the function get_full_func_mm_tree()
*/
for
(
uint
i
=
1
;
i
<
cond_func
->
arg_count
;
i
++
)
{
if
(
cond_func
->
arguments
()[
i
]
->
real_item
()
->
type
()
==
Item
::
FIELD_ITEM
)
{
field_item
=
(
Item_field
*
)
(
cond_func
->
arguments
()[
i
]
->
real_item
());
SEL_TREE
*
tmp
=
get_full_func_mm_tree
(
param
,
cond_func
,
field_item
,
(
Item
*
)
i
,
inv
);
if
(
inv
)
tree
=
!
tree
?
tmp
:
tree_or
(
param
,
tree
,
tmp
);
else
tree
=
tree_and
(
param
,
tree
,
tmp
);
}
else
if
(
inv
)
{
tree
=
0
;
break
;
}
}
ftree
=
tree_and
(
param
,
ftree
,
tree
);
break
;
case
Item_func
:
:
IN_FUNC
:
{
...
...
@@ -3867,7 +4017,7 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
if
(
func
->
key_item
()
->
real_item
()
->
type
()
!=
Item
::
FIELD_ITEM
)
DBUG_RETURN
(
0
);
field_item
=
(
Item_field
*
)
(
func
->
key_item
()
->
real_item
());
value
=
NULL
;
ftree
=
get_full_func_mm_tree
(
param
,
cond_func
,
field_item
,
NULL
,
inv
)
;
break
;
}
case
Item_func
:
:
MULT_EQUAL_FUNC
:
...
...
@@ -3906,47 +4056,9 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
}
else
DBUG_RETURN
(
0
);
ftree
=
get_full_func_mm_tree
(
param
,
cond_func
,
field_item
,
value
,
inv
);
}
/*
If the where condition contains a predicate (ti.field op const),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of ti.field for
each tj.field belonging to the same multiple equality as ti.field
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
*/
for
(
uint
i
=
0
;
i
<
cond_func
->
arg_count
;
i
++
)
{
Item
*
arg
=
cond_func
->
arguments
()[
i
]
->
real_item
();
if
(
arg
!=
field_item
)
ref_tables
|=
arg
->
used_tables
();
}
Field
*
field
=
field_item
->
field
;
Item_result
cmp_type
=
field
->
cmp_type
();
if
(
!
((
ref_tables
|
field
->
table
->
map
)
&
param_comp
))
ftree
=
get_func_mm_tree
(
param
,
cond_func
,
field
,
value
,
cmp_type
,
inv
);
Item_equal
*
item_equal
=
field_item
->
item_equal
;
if
(
item_equal
)
{
Item_equal_iterator
it
(
*
item_equal
);
Item_field
*
item
;
while
((
item
=
it
++
))
{
Field
*
f
=
item
->
field
;
if
(
field
->
eq
(
f
))
continue
;
if
(
!
((
ref_tables
|
f
->
table
->
map
)
&
param_comp
))
{
tree
=
get_func_mm_tree
(
param
,
cond_func
,
f
,
value
,
cmp_type
,
inv
);
ftree
=
!
ftree
?
tree
:
tree_and
(
param
,
ftree
,
tree
);
}
}
}
DBUG_RETURN
(
ftree
);
}
...
...
sql/sql_select.cc
View file @
cabb55a6
...
...
@@ -2796,11 +2796,12 @@ add_key_fields(KEY_FIELD **key_fields,uint *and_level,
break
;
case
Item_func
:
:
OPTIMIZE_KEY
:
{
Item
**
values
;
// BETWEEN, IN, NE
if
(
cond_func
->
key_item
()
->
real_item
()
->
type
()
==
Item
::
FIELD_ITEM
&&
!
(
cond_func
->
used_tables
()
&
OUTER_REF_TABLE_BIT
))
{
Item
**
values
=
cond_func
->
arguments
()
+
1
;
values
=
cond_func
->
arguments
()
+
1
;
if
(
cond_func
->
functype
()
==
Item_func
::
NE_FUNC
&&
cond_func
->
arguments
()[
1
]
->
real_item
()
->
type
()
==
Item
::
FIELD_ITEM
&&
!
(
cond_func
->
arguments
()[
0
]
->
used_tables
()
&
OUTER_REF_TABLE_BIT
))
...
...
@@ -2813,6 +2814,22 @@ add_key_fields(KEY_FIELD **key_fields,uint *and_level,
cond_func
->
argument_count
()
-
1
,
usable_tables
);
}
if
(
cond_func
->
functype
()
==
Item_func
::
BETWEEN
)
{
values
=
cond_func
->
arguments
();
for
(
uint
i
=
1
;
i
<
cond_func
->
argument_count
()
;
i
++
)
{
Item_field
*
field_item
;
if
(
cond_func
->
arguments
()[
i
]
->
real_item
()
->
type
()
==
Item
::
FIELD_ITEM
&&
!
(
cond_func
->
arguments
()[
i
]
->
used_tables
()
&
OUTER_REF_TABLE_BIT
))
{
field_item
=
(
Item_field
*
)
(
cond_func
->
arguments
()[
i
]
->
real_item
());
add_key_equal_fields
(
key_fields
,
*
and_level
,
cond_func
,
field_item
,
0
,
values
,
1
,
usable_tables
);
}
}
}
break
;
}
case
Item_func
:
:
OPTIMIZE_OP
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment