/***************************************************************************** Copyright (c) 1995, 2009, Innobase Oy. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /****************************************************** The interface to the operating system synchronization primitives. Created 9/6/1995 Heikki Tuuri *******************************************************/ #include "os0sync.h" #ifdef UNIV_NONINL #include "os0sync.ic" #endif #ifdef __WIN__ #include <windows.h> #endif #include "ut0mem.h" #include "srv0start.h" /* Type definition for an operating system mutex struct */ struct os_mutex_struct{ os_event_t event; /* Used by sync0arr.c for queing threads */ void* handle; /* OS handle to mutex */ ulint count; /* we use this counter to check that the same thread does not recursively lock the mutex: we do not assume that the OS mutex supports recursive locking, though NT seems to do that */ UT_LIST_NODE_T(os_mutex_str_t) os_mutex_list; /* list of all 'slow' OS mutexes created */ }; /* Mutex protecting counts and the lists of OS mutexes and events */ UNIV_INTERN os_mutex_t os_sync_mutex; static ibool os_sync_mutex_inited = FALSE; static ibool os_sync_free_called = FALSE; /* This is incremented by 1 in os_thread_create and decremented by 1 in os_thread_exit */ UNIV_INTERN ulint os_thread_count = 0; /* The list of all events created */ static UT_LIST_BASE_NODE_T(os_event_struct_t) os_event_list; /* The list of all OS 'slow' mutexes */ static UT_LIST_BASE_NODE_T(os_mutex_str_t) os_mutex_list; UNIV_INTERN ulint os_event_count = 0; UNIV_INTERN ulint os_mutex_count = 0; UNIV_INTERN ulint os_fast_mutex_count = 0; /* Because a mutex is embedded inside an event and there is an event embedded inside a mutex, on free, this generates a recursive call. This version of the free event function doesn't acquire the global lock */ static void os_event_free_internal(os_event_t event); /************************************************************* Initializes global event and OS 'slow' mutex lists. */ UNIV_INTERN void os_sync_init(void) /*==============*/ { UT_LIST_INIT(os_event_list); UT_LIST_INIT(os_mutex_list); os_sync_mutex = os_mutex_create(NULL); os_sync_mutex_inited = TRUE; } /************************************************************* Frees created events and OS 'slow' mutexes. */ UNIV_INTERN void os_sync_free(void) /*==============*/ { os_event_t event; os_mutex_t mutex; os_sync_free_called = TRUE; event = UT_LIST_GET_FIRST(os_event_list); while (event) { os_event_free(event); event = UT_LIST_GET_FIRST(os_event_list); } mutex = UT_LIST_GET_FIRST(os_mutex_list); while (mutex) { if (mutex == os_sync_mutex) { /* Set the flag to FALSE so that we do not try to reserve os_sync_mutex any more in remaining freeing operations in shutdown */ os_sync_mutex_inited = FALSE; } os_mutex_free(mutex); mutex = UT_LIST_GET_FIRST(os_mutex_list); } os_sync_free_called = FALSE; } /************************************************************* Creates an event semaphore, i.e., a semaphore which may just have two states: signaled and nonsignaled. The created event is manual reset: it must be reset explicitly by calling sync_os_reset_event. */ UNIV_INTERN os_event_t os_event_create( /*============*/ /* out: the event handle */ const char* name) /* in: the name of the event, if NULL the event is created without a name */ { #ifdef __WIN__ os_event_t event; event = ut_malloc(sizeof(struct os_event_struct)); event->handle = CreateEvent(NULL, /* No security attributes */ TRUE, /* Manual reset */ FALSE, /* Initial state nonsignaled */ (LPCTSTR) name); if (!event->handle) { fprintf(stderr, "InnoDB: Could not create a Windows event semaphore;" " Windows error %lu\n", (ulong) GetLastError()); } #else /* Unix */ os_event_t event; UT_NOT_USED(name); event = ut_malloc(sizeof(struct os_event_struct)); os_fast_mutex_init(&(event->os_mutex)); ut_a(0 == pthread_cond_init(&(event->cond_var), NULL)); event->is_set = FALSE; /* We return this value in os_event_reset(), which can then be be used to pass to the os_event_wait_low(). The value of zero is reserved in os_event_wait_low() for the case when the caller does not want to pass any signal_count value. To distinguish between the two cases we initialize signal_count to 1 here. */ event->signal_count = 1; #endif /* __WIN__ */ /* The os_sync_mutex can be NULL because during startup an event can be created [ because it's embedded in the mutex/rwlock ] before this module has been initialized */ if (os_sync_mutex != NULL) { os_mutex_enter(os_sync_mutex); } /* Put to the list of events */ UT_LIST_ADD_FIRST(os_event_list, os_event_list, event); os_event_count++; if (os_sync_mutex != NULL) { os_mutex_exit(os_sync_mutex); } return(event); } #ifdef __WIN__ /************************************************************* Creates an auto-reset event semaphore, i.e., an event which is automatically reset when a single thread is released. Works only in Windows. */ UNIV_INTERN os_event_t os_event_create_auto( /*=================*/ /* out: the event handle */ const char* name) /* in: the name of the event, if NULL the event is created without a name */ { os_event_t event; event = ut_malloc(sizeof(struct os_event_struct)); event->handle = CreateEvent(NULL, /* No security attributes */ FALSE, /* Auto-reset */ FALSE, /* Initial state nonsignaled */ (LPCTSTR) name); if (!event->handle) { fprintf(stderr, "InnoDB: Could not create a Windows auto" " event semaphore; Windows error %lu\n", (ulong) GetLastError()); } /* Put to the list of events */ os_mutex_enter(os_sync_mutex); UT_LIST_ADD_FIRST(os_event_list, os_event_list, event); os_event_count++; os_mutex_exit(os_sync_mutex); return(event); } #endif /************************************************************** Sets an event semaphore to the signaled state: lets waiting threads proceed. */ UNIV_INTERN void os_event_set( /*=========*/ os_event_t event) /* in: event to set */ { #ifdef __WIN__ ut_a(event); ut_a(SetEvent(event->handle)); #else ut_a(event); os_fast_mutex_lock(&(event->os_mutex)); if (event->is_set) { /* Do nothing */ } else { event->is_set = TRUE; event->signal_count += 1; ut_a(0 == pthread_cond_broadcast(&(event->cond_var))); } os_fast_mutex_unlock(&(event->os_mutex)); #endif } /************************************************************** Resets an event semaphore to the nonsignaled state. Waiting threads will stop to wait for the event. The return value should be passed to os_even_wait_low() if it is desired that this thread should not wait in case of an intervening call to os_event_set() between this os_event_reset() and the os_event_wait_low() call. See comments for os_event_wait_low(). */ UNIV_INTERN ib_int64_t os_event_reset( /*===========*/ /* out: current signal_count. */ os_event_t event) /* in: event to reset */ { ib_int64_t ret = 0; #ifdef __WIN__ ut_a(event); ut_a(ResetEvent(event->handle)); #else ut_a(event); os_fast_mutex_lock(&(event->os_mutex)); if (!event->is_set) { /* Do nothing */ } else { event->is_set = FALSE; } ret = event->signal_count; os_fast_mutex_unlock(&(event->os_mutex)); #endif return(ret); } /************************************************************** Frees an event object, without acquiring the global lock. */ static void os_event_free_internal( /*===================*/ os_event_t event) /* in: event to free */ { #ifdef __WIN__ ut_a(event); ut_a(CloseHandle(event->handle)); #else ut_a(event); /* This is to avoid freeing the mutex twice */ os_fast_mutex_free(&(event->os_mutex)); ut_a(0 == pthread_cond_destroy(&(event->cond_var))); #endif /* Remove from the list of events */ UT_LIST_REMOVE(os_event_list, os_event_list, event); os_event_count--; ut_free(event); } /************************************************************** Frees an event object. */ UNIV_INTERN void os_event_free( /*==========*/ os_event_t event) /* in: event to free */ { #ifdef __WIN__ ut_a(event); ut_a(CloseHandle(event->handle)); #else ut_a(event); os_fast_mutex_free(&(event->os_mutex)); ut_a(0 == pthread_cond_destroy(&(event->cond_var))); #endif /* Remove from the list of events */ os_mutex_enter(os_sync_mutex); UT_LIST_REMOVE(os_event_list, os_event_list, event); os_event_count--; os_mutex_exit(os_sync_mutex); ut_free(event); } /************************************************************** Waits for an event object until it is in the signaled state. If srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS this also exits the waiting thread when the event becomes signaled (or immediately if the event is already in the signaled state). Typically, if the event has been signalled after the os_event_reset() we'll return immediately because event->is_set == TRUE. There are, however, situations (e.g.: sync_array code) where we may lose this information. For example: thread A calls os_event_reset() thread B calls os_event_set() [event->is_set == TRUE] thread C calls os_event_reset() [event->is_set == FALSE] thread A calls os_event_wait() [infinite wait!] thread C calls os_event_wait() [infinite wait!] Where such a scenario is possible, to avoid infinite wait, the value returned by os_event_reset() should be passed in as reset_sig_count. */ UNIV_INTERN void os_event_wait_low( /*==============*/ os_event_t event, /* in: event to wait */ ib_int64_t reset_sig_count)/* in: zero or the value returned by previous call of os_event_reset(). */ { #ifdef __WIN__ DWORD err; ut_a(event); UT_NOT_USED(reset_sig_count); /* Specify an infinite time limit for waiting */ err = WaitForSingleObject(event->handle, INFINITE); ut_a(err == WAIT_OBJECT_0); if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_thread_exit(NULL); } #else ib_int64_t old_signal_count; os_fast_mutex_lock(&(event->os_mutex)); if (reset_sig_count) { old_signal_count = reset_sig_count; } else { old_signal_count = event->signal_count; } for (;;) { if (event->is_set == TRUE || event->signal_count != old_signal_count) { os_fast_mutex_unlock(&(event->os_mutex)); if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_thread_exit(NULL); } /* Ok, we may return */ return; } pthread_cond_wait(&(event->cond_var), &(event->os_mutex)); /* Solaris manual said that spurious wakeups may occur: we have to check if the event really has been signaled after we came here to wait */ } #endif } /************************************************************** Waits for an event object until it is in the signaled state or a timeout is exceeded. In Unix the timeout is always infinite. */ UNIV_INTERN ulint os_event_wait_time( /*===============*/ /* out: 0 if success, OS_SYNC_TIME_EXCEEDED if timeout was exceeded */ os_event_t event, /* in: event to wait */ ulint time) /* in: timeout in microseconds, or OS_SYNC_INFINITE_TIME */ { #ifdef __WIN__ DWORD err; ut_a(event); if (time != OS_SYNC_INFINITE_TIME) { err = WaitForSingleObject(event->handle, (DWORD) time / 1000); } else { err = WaitForSingleObject(event->handle, INFINITE); } if (err == WAIT_OBJECT_0) { return(0); } else if (err == WAIT_TIMEOUT) { return(OS_SYNC_TIME_EXCEEDED); } else { ut_error; return(1000000); /* dummy value to eliminate compiler warn. */ } #else UT_NOT_USED(time); /* In Posix this is just an ordinary, infinite wait */ os_event_wait(event); return(0); #endif } #ifdef __WIN__ /************************************************************** Waits for any event in an OS native event array. Returns if even a single one is signaled or becomes signaled. */ UNIV_INTERN ulint os_event_wait_multiple( /*===================*/ /* out: index of the event which was signaled */ ulint n, /* in: number of events in the array */ os_native_event_t* native_event_array) /* in: pointer to an array of event handles */ { DWORD index; ut_a(native_event_array); ut_a(n > 0); index = WaitForMultipleObjects((DWORD) n, native_event_array, FALSE, /* Wait for any 1 event */ INFINITE); /* Infinite wait time limit */ ut_a(index >= WAIT_OBJECT_0); /* NOTE: Pointless comparision */ ut_a(index < WAIT_OBJECT_0 + n); if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_thread_exit(NULL); } return(index - WAIT_OBJECT_0); } #endif /************************************************************* Creates an operating system mutex semaphore. Because these are slow, the mutex semaphore of InnoDB itself (mutex_t) should be used where possible. */ UNIV_INTERN os_mutex_t os_mutex_create( /*============*/ /* out: the mutex handle */ const char* name) /* in: the name of the mutex, if NULL the mutex is created without a name */ { #ifdef __WIN__ HANDLE mutex; os_mutex_t mutex_str; mutex = CreateMutex(NULL, /* No security attributes */ FALSE, /* Initial state: no owner */ (LPCTSTR) name); ut_a(mutex); #else os_fast_mutex_t* mutex; os_mutex_t mutex_str; UT_NOT_USED(name); mutex = ut_malloc(sizeof(os_fast_mutex_t)); os_fast_mutex_init(mutex); #endif mutex_str = ut_malloc(sizeof(os_mutex_str_t)); mutex_str->handle = mutex; mutex_str->count = 0; mutex_str->event = os_event_create(NULL); if (UNIV_LIKELY(os_sync_mutex_inited)) { /* When creating os_sync_mutex itself we cannot reserve it */ os_mutex_enter(os_sync_mutex); } UT_LIST_ADD_FIRST(os_mutex_list, os_mutex_list, mutex_str); os_mutex_count++; if (UNIV_LIKELY(os_sync_mutex_inited)) { os_mutex_exit(os_sync_mutex); } return(mutex_str); } /************************************************************** Acquires ownership of a mutex semaphore. */ UNIV_INTERN void os_mutex_enter( /*===========*/ os_mutex_t mutex) /* in: mutex to acquire */ { #ifdef __WIN__ DWORD err; ut_a(mutex); /* Specify infinite time limit for waiting */ err = WaitForSingleObject(mutex->handle, INFINITE); ut_a(err == WAIT_OBJECT_0); (mutex->count)++; ut_a(mutex->count == 1); #else os_fast_mutex_lock(mutex->handle); (mutex->count)++; ut_a(mutex->count == 1); #endif } /************************************************************** Releases ownership of a mutex. */ UNIV_INTERN void os_mutex_exit( /*==========*/ os_mutex_t mutex) /* in: mutex to release */ { ut_a(mutex); ut_a(mutex->count == 1); (mutex->count)--; #ifdef __WIN__ ut_a(ReleaseMutex(mutex->handle)); #else os_fast_mutex_unlock(mutex->handle); #endif } /************************************************************** Frees a mutex object. */ UNIV_INTERN void os_mutex_free( /*==========*/ os_mutex_t mutex) /* in: mutex to free */ { ut_a(mutex); if (UNIV_LIKELY(!os_sync_free_called)) { os_event_free_internal(mutex->event); } if (UNIV_LIKELY(os_sync_mutex_inited)) { os_mutex_enter(os_sync_mutex); } UT_LIST_REMOVE(os_mutex_list, os_mutex_list, mutex); os_mutex_count--; if (UNIV_LIKELY(os_sync_mutex_inited)) { os_mutex_exit(os_sync_mutex); } #ifdef __WIN__ ut_a(CloseHandle(mutex->handle)); ut_free(mutex); #else os_fast_mutex_free(mutex->handle); ut_free(mutex->handle); ut_free(mutex); #endif } /************************************************************* Initializes an operating system fast mutex semaphore. */ UNIV_INTERN void os_fast_mutex_init( /*===============*/ os_fast_mutex_t* fast_mutex) /* in: fast mutex */ { #ifdef __WIN__ ut_a(fast_mutex); InitializeCriticalSection((LPCRITICAL_SECTION) fast_mutex); #else ut_a(0 == pthread_mutex_init(fast_mutex, MY_MUTEX_INIT_FAST)); #endif if (UNIV_LIKELY(os_sync_mutex_inited)) { /* When creating os_sync_mutex itself (in Unix) we cannot reserve it */ os_mutex_enter(os_sync_mutex); } os_fast_mutex_count++; if (UNIV_LIKELY(os_sync_mutex_inited)) { os_mutex_exit(os_sync_mutex); } } /************************************************************** Acquires ownership of a fast mutex. */ UNIV_INTERN void os_fast_mutex_lock( /*===============*/ os_fast_mutex_t* fast_mutex) /* in: mutex to acquire */ { #ifdef __WIN__ EnterCriticalSection((LPCRITICAL_SECTION) fast_mutex); #else pthread_mutex_lock(fast_mutex); #endif } /************************************************************** Releases ownership of a fast mutex. */ UNIV_INTERN void os_fast_mutex_unlock( /*=================*/ os_fast_mutex_t* fast_mutex) /* in: mutex to release */ { #ifdef __WIN__ LeaveCriticalSection(fast_mutex); #else pthread_mutex_unlock(fast_mutex); #endif } /************************************************************** Frees a mutex object. */ UNIV_INTERN void os_fast_mutex_free( /*===============*/ os_fast_mutex_t* fast_mutex) /* in: mutex to free */ { #ifdef __WIN__ ut_a(fast_mutex); DeleteCriticalSection((LPCRITICAL_SECTION) fast_mutex); #else int ret; ret = pthread_mutex_destroy(fast_mutex); if (UNIV_UNLIKELY(ret != 0)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: error: return value %lu when calling\n" "InnoDB: pthread_mutex_destroy().\n", (ulint)ret); fprintf(stderr, "InnoDB: Byte contents of the pthread mutex at %p:\n", (void*) fast_mutex); ut_print_buf(stderr, fast_mutex, sizeof(os_fast_mutex_t)); putc('\n', stderr); } #endif if (UNIV_LIKELY(os_sync_mutex_inited)) { /* When freeing the last mutexes, we have already freed os_sync_mutex */ os_mutex_enter(os_sync_mutex); } os_fast_mutex_count--; if (UNIV_LIKELY(os_sync_mutex_inited)) { os_mutex_exit(os_sync_mutex); } }