/* Copyright (C) 2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef DBTC_H #define DBTC_H #include <ndb_limits.h> #include <pc.hpp> #include <SimulatedBlock.hpp> #include <DLHashTable.hpp> #include <SLList.hpp> #include <DLList.hpp> #include <DLFifoList.hpp> #include <DataBuffer.hpp> #include <Bitmask.hpp> #include <AttributeList.hpp> #include <signaldata/AttrInfo.hpp> #include <signaldata/LqhTransConf.hpp> #include <signaldata/LqhKey.hpp> #include <signaldata/TrigAttrInfo.hpp> #include <signaldata/TcIndx.hpp> #include <signaldata/TransIdAI.hpp> #include <trigger_definitions.h> #include <SignalCounter.hpp> #ifdef DBTC_C /* * 2.2 LOCAL SYMBOLS * ----------------- */ #define Z8NIL 255 #define ZAPI_CONNECT_FILESIZE 20 #define ZATTRBUF_FILESIZE 4000 #define ZCLOSED 2 #define ZCOMMITING 0 /* VALUE FOR TRANSTATUS */ #define ZCOMMIT_SETUP 2 #define ZCONTINUE_ABORT_080 4 #define ZDATABUF_FILESIZE 4000 #define ZGCP_FILESIZE 10 #define ZINBUF_DATA_LEN 24 /* POSITION OF 'DATA LENGHT'-VARIABLE. */ #define ZINBUF_NEXT 27 /* POSITION OF 'NEXT'-VARIABLE. */ #define ZINBUF_PREV 26 /* POSITION OF 'PREVIOUS'-VARIABLE. */ #define ZINTSPH1 1 #define ZINTSPH2 2 #define ZINTSPH3 3 #define ZINTSPH6 6 #define ZLASTPHASE 255 #define ZMAX_DATA_IN_LQHKEYREQ 12 #define ZNODEBUF_FILESIZE 2000 #define ZNR_OF_SEIZE 10 #define ZSCANREC_FILE_SIZE 100 #define ZSCAN_FRAGREC_FILE_SIZE 400 #define ZSCAN_OPREC_FILE_SIZE 400 #define ZSEND_ATTRINFO 0 #define ZSPH1 1 #define ZTABREC_FILESIZE 16 #define ZTAKE_OVER_ACTIVE 1 #define ZTAKE_OVER_IDLE 0 #define ZTC_CONNECT_FILESIZE 200 #define ZTCOPCONF_SIZE 6 // ---------------------------------------- // Error Codes for Scan // ---------------------------------------- #define ZNO_CONCURRENCY_ERROR 242 #define ZTOO_HIGH_CONCURRENCY_ERROR 244 #define ZNO_SCANREC_ERROR 245 #define ZNO_FRAGMENT_ERROR 246 #define ZSCAN_AI_LEN_ERROR 269 #define ZSCAN_LQH_ERROR 270 #define ZSCAN_FRAG_LQH_ERROR 274 #define ZSCANTIME_OUT_ERROR 296 #define ZSCANTIME_OUT_ERROR2 297 // ---------------------------------------- // Error Codes for transactions // ---------------------------------------- #define ZSTATE_ERROR 202 #define ZLENGTH_ERROR 207 // Also Scan #define ZERO_KEYLEN_ERROR 208 #define ZSIGNAL_ERROR 209 #define ZGET_ATTRBUF_ERROR 217 // Also Scan #define ZGET_DATAREC_ERROR 218 #define ZMORE_AI_IN_TCKEYREQ_ERROR 220 #define ZCOMMITINPROGRESS 230 #define ZROLLBACKNOTALLOWED 232 #define ZNO_FREE_TC_CONNECTION 233 // Also Scan #define ZABORTINPROGRESS 237 #define ZPREPAREINPROGRESS 238 #define ZWRONG_SCHEMA_VERSION_ERROR 241 // Also Scan #define ZSCAN_NODE_ERROR 250 #define ZTRANS_STATUS_ERROR 253 #define ZTIME_OUT_ERROR 266 #define ZSIMPLE_READ_WITHOUT_AI 271 #define ZNO_AI_WITH_UPDATE 272 #define ZSEIZE_API_COPY_ERROR 275 #define ZSCANINPROGRESS 276 #define ZABORT_ERROR 277 #define ZCOMMIT_TYPE_ERROR 278 #define ZNO_FREE_TC_MARKER 279 #define ZNODE_SHUTDOWN_IN_PROGRESS 280 #define ZCLUSTER_SHUTDOWN_IN_PROGRESS 281 #define ZWRONG_STATE 282 #define ZCLUSTER_IN_SINGLEUSER_MODE 299 #define ZDROP_TABLE_IN_PROGRESS 283 #define ZNO_SUCH_TABLE 284 #define ZUNKNOWN_TABLE_ERROR 285 #define ZNODEFAIL_BEFORE_COMMIT 286 #define ZINDEX_CORRUPT_ERROR 287 // ---------------------------------------- // Seize error // ---------------------------------------- #define ZNO_FREE_API_CONNECTION 219 #define ZSYSTEM_NOT_STARTED_ERROR 203 // ---------------------------------------- // Release errors // ---------------------------------------- #define ZINVALID_CONNECTION 229 #define ZNOT_FOUND 626 #define ZALREADYEXIST 630 #define ZINCONSISTENTHASHINDEX 892 #endif class Dbtc: public SimulatedBlock { public: enum ConnectionState { CS_CONNECTED = 0, CS_DISCONNECTED = 1, CS_STARTED = 2, CS_RECEIVING = 3, CS_PREPARED = 4, CS_START_PREPARING = 5, CS_REC_PREPARING = 6, CS_RESTART = 7, CS_ABORTING = 8, CS_COMPLETING = 9, CS_COMPLETE_SENT = 10, CS_PREPARE_TO_COMMIT = 11, CS_COMMIT_SENT = 12, CS_START_COMMITTING = 13, CS_COMMITTING = 14, CS_REC_COMMITTING = 15, CS_WAIT_ABORT_CONF = 16, CS_WAIT_COMPLETE_CONF = 17, CS_WAIT_COMMIT_CONF = 18, CS_FAIL_ABORTING = 19, CS_FAIL_ABORTED = 20, CS_FAIL_PREPARED = 21, CS_FAIL_COMMITTING = 22, CS_FAIL_COMMITTED = 23, CS_FAIL_COMPLETED = 24, CS_START_SCAN = 25 }; enum OperationState { OS_CONNECTING_DICT = 0, OS_CONNECTED = 1, OS_OPERATING = 2, OS_PREPARED = 3, OS_COMMITTING = 4, OS_COMMITTED = 5, OS_COMPLETING = 6, OS_COMPLETED = 7, OS_RESTART = 8, OS_ABORTING = 9, OS_ABORT_SENT = 10, OS_TAKE_OVER = 11, OS_WAIT_DIH = 12, OS_WAIT_KEYINFO = 13, OS_WAIT_ATTR = 14, OS_WAIT_COMMIT_CONF = 15, OS_WAIT_ABORT_CONF = 16, OS_WAIT_COMPLETE_CONF = 17 }; enum AbortState { AS_IDLE = 0, AS_ACTIVE = 1 }; enum HostState { HS_ALIVE = 0, HS_DEAD = 1 }; enum LqhTransState { LTS_IDLE = 0, LTS_ACTIVE = 1 }; enum TakeOverState { TOS_NOT_DEFINED = 0, TOS_IDLE = 1, TOS_ACTIVE = 2, TOS_COMPLETED = 3, TOS_NODE_FAILED = 4 }; enum FailState { FS_IDLE = 0, FS_LISTENING = 1, FS_COMPLETING = 2 }; enum SystemStartState { SSS_TRUE = 0, SSS_FALSE = 1 }; enum TimeOutCheckState { TOCS_TRUE = 0, TOCS_FALSE = 1 }; enum ReturnSignal { RS_NO_RETURN = 0, RS_TCKEYCONF = 1, RS_TC_COMMITCONF = 3, RS_TCROLLBACKCONF = 4, RS_TCROLLBACKREP = 5 }; enum IndexOperationState { IOS_NOOP = 0, IOS_INDEX_ACCESS = 1, IOS_INDEX_ACCESS_WAIT_FOR_TCKEYCONF = 2, IOS_INDEX_ACCESS_WAIT_FOR_TRANSID_AI = 3, IOS_INDEX_OPERATION = 4 }; enum IndexState { IS_BUILDING = 0, // build in progress, start state at create IS_ONLINE = 1 // ready to use }; /**-------------------------------------------------------------------------- * LOCAL SYMBOLS PER 'SYMBOL-VALUED' VARIABLE * * * NSYMB ZAPI_CONNECT_FILESIZE = 20 * NSYMB ZTC_CONNECT_FILESIZE = 200 * NSYMB ZHOST_FILESIZE = 16 * NSYMB ZDATABUF_FILESIZE = 4000 * NSYMB ZATTRBUF_FILESIZE = 4000 * NSYMB ZGCP_FILESIZE = 10 * * * ABORTED CODES * TPHASE NSYMB ZSPH1 = 1 * NSYMB ZLASTPHASE = 255 * * * LQH_TRANS * NSYMB ZTRANS_ABORTED = 1 * NSYMB ZTRANS_PREPARED = 2 * NSYMB ZTRANS_COMMITTED = 3 * NSYMB ZCOMPLETED_LQH_TRANS = 4 * NSYMB ZTRANS_COMPLETED = 5 * * * TAKE OVER * NSYMB ZTAKE_OVER_IDLE = 0 * NSYMB ZTAKE_OVER_ACTIVE = 1 * * ATTRBUF (ATTRBUF_RECORD) * NSYMB ZINBUF_DATA_LEN = 24 * NSYMB ZINBUF_NEXTFREE = 25 (NOT USED ) * NSYMB ZINBUF_PREV = 26 * NSYMB ZINBUF_NEXT = 27 -------------------------------------------------------------------------*/ /* 2.3 RECORDS AND FILESIZES ------------------------- */ /* **************************************************************** */ /* ---------------------------------------------------------------- */ /* ------------------- TRIGGER AND INDEX DATA --------------------- */ /* ---------------------------------------------------------------- */ /* **************************************************************** */ /* ********* DEFINED TRIGGER DATA ********* */ /* THIS RECORD FORMS LISTS OF ACTIVE */ /* TRIGGERS FOR EACH TABLE. */ /* THE RECORDS ARE MANAGED BY A TRIGGER */ /* POOL WHERE A TRIGGER RECORD IS SEIZED */ /* WHEN A TRIGGER IS ACTIVATED AND RELEASED */ /* WHEN THE TRIGGER IS DEACTIVATED. */ /* **************************************** */ struct TcDefinedTriggerData { /** * Trigger id, used to identify the trigger */ UintR triggerId; /** * Trigger type, defines what the trigger is used for */ TriggerType::Value triggerType; /** * Trigger type, defines what the trigger is used for */ TriggerEvent::Value triggerEvent; /** * Attribute mask, defines what attributes are to be monitored * Can be seen as a compact representation of SQL column name list */ Bitmask<MAXNROFATTRIBUTESINWORDS> attributeMask; /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; }; /** * Index id, only used by secondary_index triggers. This is same as * index table id in DICT. **/ Uint32 indexId; /** * Prev pointer (used in list) */ Uint32 prevList; inline void print(NdbOut & s) const { s << "[DefinedTriggerData = " << triggerId << "]"; } }; typedef Ptr<TcDefinedTriggerData> DefinedTriggerPtr; /** * Pool of trigger data record */ ArrayPool<TcDefinedTriggerData> c_theDefinedTriggerPool; /** * The list of active triggers */ DLList<TcDefinedTriggerData> c_theDefinedTriggers; typedef DataBuffer<11> AttributeBuffer; AttributeBuffer::DataBufferPool c_theAttributeBufferPool; UintR c_transactionBufferSpace; /* ********** FIRED TRIGGER DATA ********** */ /* THIS RECORD FORMS LISTS OF FIRED */ /* TRIGGERS FOR A TRANSACTION. */ /* THE RECORDS ARE MANAGED BY A TRIGGER */ /* POOL WHERE A TRIGGER RECORD IS SEIZED */ /* WHEN A TRIGGER IS ACTIVATED AND RELEASED */ /* WHEN THE TRIGGER IS DEACTIVATED. */ /* **************************************** */ struct TcFiredTriggerData { TcFiredTriggerData() {} /** * Trigger id, used to identify the trigger **/ Uint32 triggerId; /** * The operation that fired the trigger */ Uint32 fireingOperation; /** * Used for scrapping in case of node failure */ Uint32 nodeId; /** * Trigger attribute info, primary key value(s) */ AttributeBuffer::Head keyValues; /** * Trigger attribute info, attribute value(s) before operation */ AttributeBuffer::Head beforeValues; /** * Trigger attribute info, attribute value(s) after operation */ AttributeBuffer::Head afterValues; /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; Uint32 nextHash; }; /** * Prev pointer (used in list) */ union { Uint32 prevList; Uint32 prevHash; }; inline void print(NdbOut & s) const { s << "[FiredTriggerData = " << triggerId << "]"; } inline Uint32 hashValue() const { return fireingOperation ^ nodeId; } inline bool equal(const TcFiredTriggerData & rec) const { return fireingOperation == rec.fireingOperation && nodeId == rec.nodeId; } }; typedef Ptr<TcFiredTriggerData> FiredTriggerPtr; /** * Pool of trigger data record */ ArrayPool<TcFiredTriggerData> c_theFiredTriggerPool; DLHashTable<TcFiredTriggerData> c_firedTriggerHash; AttributeBuffer::DataBufferPool c_theTriggerAttrInfoPool; Uint32 c_maxNumberOfDefinedTriggers; Uint32 c_maxNumberOfFiredTriggers; struct AttrInfoRecord { /** * Pre-allocated AttrInfo signal */ AttrInfo attrInfo; /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; }; /** * Prev pointer (used in list) */ Uint32 prevList; }; /* ************* INDEX DATA *************** */ /* THIS RECORD FORMS LISTS OF ACTIVE */ /* INDEX FOR EACH TABLE. */ /* THE RECORDS ARE MANAGED BY A INDEX */ /* POOL WHERE AN INDEX RECORD IS SEIZED */ /* WHEN AN INDEX IS CREATED AND RELEASED */ /* WHEN THE INDEX IS DROPPED. */ /* **************************************** */ struct TcIndexData { /** * IndexState */ IndexState indexState; /** * Index id, same as index table id in DICT */ Uint32 indexId; /** * Index attribute list. Only the length is used in v21x. */ AttributeList attributeList; /** * Primary table id, the primary table to be indexed */ Uint32 primaryTableId; /** * Primary key position in secondary table */ Uint32 primaryKeyPos; /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; }; /** * Prev pointer (used in list) */ Uint32 prevList; }; typedef Ptr<TcIndexData> TcIndexDataPtr; /** * Pool of index data record */ ArrayPool<TcIndexData> c_theIndexPool; /** * The list of defined indexes */ ArrayList<TcIndexData> c_theIndexes; UintR c_maxNumberOfIndexes; struct TcIndexOperation { TcIndexOperation(AttributeBuffer::DataBufferPool & abp) : indexOpState(IOS_NOOP), expectedKeyInfo(0), keyInfo(abp), expectedAttrInfo(0), attrInfo(abp), expectedTransIdAI(0), transIdAI(abp), tcIndxReq(new TcIndxReq()), indexReadTcConnect(RNIL) {} ~TcIndexOperation() { delete tcIndxReq; } // Index data Uint32 indexOpId; IndexOperationState indexOpState; // Used to mark on-going TcKeyReq Uint32 expectedKeyInfo; AttributeBuffer keyInfo; // For accumulating IndxKeyInfo Uint32 expectedAttrInfo; AttributeBuffer attrInfo; // For accumulating IndxAttrInfo Uint32 expectedTransIdAI; AttributeBuffer transIdAI; // For accumulating TransId_AI TcIndxReq* tcIndxReq; UintR connectionIndex; UintR indexReadTcConnect; // /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; }; /** * Prev pointer (used in list) */ Uint32 prevList; }; typedef Ptr<TcIndexOperation> TcIndexOperationPtr; /** * Pool of index data record */ ArrayPool<TcIndexOperation> c_theIndexOperationPool; /** * The list of index operations */ ArrayList<TcIndexOperation> c_theIndexOperations; UintR c_maxNumberOfIndexOperations; struct TcSeizedIndexOperation { /** * Next ptr (used in pool/list) */ union { Uint32 nextPool; Uint32 nextList; }; /** * Prev pointer (used in list) */ Uint32 prevList; }; /** * Pool of seized index operations */ ArrayPool<TcSeizedIndexOperation> c_theSeizedIndexOperationPool; typedef Ptr<TcSeizedIndexOperation> TcSeizedIndexOperationPtr; /************************** API CONNECT RECORD *********************** * The API connect record contains the connection record to which the * application connects. * * The application can send one operation at a time. It can send a * new operation immediately after sending the previous operation. * Thereby several operations can be active in one transaction within TC. * This is achieved by using the API connect record. * Each active operation is handled by the TC connect record. * As soon as the TC connect record has sent the * request to the LQH it is ready to receive new operations. * The LQH connect record takes care of waiting for an operation to * complete. * When an operation has completed on the LQH connect record, * a new operation can be started on this LQH connect record. ******************************************************************* * * API CONNECT RECORD ALIGNED TO BE 256 BYTES ********************************************************************/ /*******************************************************************>*/ // We break out the API Timer for optimisation on scanning rather than // on fast access. /*******************************************************************>*/ inline void setApiConTimer(Uint32 apiConPtrI, Uint32 value, Uint32 line){ c_apiConTimer[apiConPtrI] = value; c_apiConTimer_line[apiConPtrI] = line; } inline Uint32 getApiConTimer(Uint32 apiConPtrI) const { return c_apiConTimer[apiConPtrI]; } UintR* c_apiConTimer; UintR* c_apiConTimer_line; struct ApiConnectRecord { ApiConnectRecord(ArrayPool<TcFiredTriggerData> & firedTriggerPool, ArrayPool<TcSeizedIndexOperation> & seizedIndexOpPool): theFiredTriggers(firedTriggerPool), isIndexOp(false), theSeizedIndexOperations(seizedIndexOpPool) {} //--------------------------------------------------- // First 16 byte cache line. Hot variables. //--------------------------------------------------- ConnectionState apiConnectstate; UintR transid[2]; UintR firstTcConnect; //--------------------------------------------------- // Second 16 byte cache line. Hot variables. //--------------------------------------------------- UintR lqhkeyconfrec; UintR cachePtr; UintR currSavePointId; UintR counter; //--------------------------------------------------- // Third 16 byte cache line. First and second cache // line plus this will be enough for copy API records. // Variables used in late phases. //--------------------------------------------------- UintR nextGcpConnect; UintR prevGcpConnect; UintR gcpPointer; UintR ndbapiConnect; //--------------------------------------------------- // Fourth 16 byte cache line. Only used in late phases. // Plus 4 bytes of error handling. //--------------------------------------------------- UintR nextApiConnect; BlockReference ndbapiBlockref; UintR apiCopyRecord; UintR globalcheckpointid; //--------------------------------------------------- // Second 64 byte cache line starts. First 16 byte // cache line in this one. Variables primarily used // in early phase. //--------------------------------------------------- UintR lastTcConnect; UintR lqhkeyreqrec; AbortState abortState; Uint32 buddyPtr; Uint8 m_exec_flag; Uint8 unused2; Uint8 takeOverRec; Uint8 currentReplicaNo; //--------------------------------------------------- // Error Handling variables. If cache line 32 bytes // ensures that cache line is still only read in // early phases. //--------------------------------------------------- union { UintR apiScanRec; UintR commitAckMarker; }; UintR currentTcConnect; BlockReference tcBlockref; Uint16 returncode; Uint16 takeOverInd; //--------------------------------------------------- // Second 64 byte cache line. Third 16 byte cache line // in this one. Variables primarily used in early phase // and checked in late phase. // Fourth cache line is the tcSendArray that is used // when two and three operations are responded to in // parallel. The first two entries in tcSendArray is // part of the third cache line. //--------------------------------------------------- //--------------------------------------------------- // timeOutCounter is used waiting for ABORTCONF, COMMITCONF // and COMPLETECONF //--------------------------------------------------- UintR failureNr; Uint8 tckeyrec; // �ndrad fr�n R Uint8 tcindxrec; Uint8 apiFailState; // �ndrad fr�n R ReturnSignal returnsignal; Uint8 timeOutCounter; UintR tcSendArray[6]; // Trigger data /** * The list of fired triggers */ DLFifoList<TcFiredTriggerData> theFiredTriggers; bool triggerPending; // Used to mark waiting for a CONTINUEB // Index data bool isIndexOp; // Used to mark on-going TcKeyReq as indx table access bool indexOpReturn; UintR noIndexOp; // No outstanding index ops // Index op return context UintR indexOp; UintR clientData; UintR attrInfoLen; UintR accumulatingIndexOp; UintR executingIndexOp; UintR tcIndxSendArray[6]; ArrayList<TcSeizedIndexOperation> theSeizedIndexOperations; }; typedef Ptr<ApiConnectRecord> ApiConnectRecordPtr; /************************** TC CONNECT RECORD ************************/ /* *******************************************************************/ /* TC CONNECT RECORD KEEPS ALL INFORMATION TO CARRY OUT A TRANSACTION*/ /* THE TRANSACTION CONTROLLER ESTABLISHES CONNECTIONS TO DIFFERENT */ /* BLOCKS TO CARRY OUT THE TRANSACTION. THERE CAN BE SEVERAL RECORDS */ /* PER ACTIVE TRANSACTION. THE TC CONNECT RECORD COOPERATES WITH THE */ /* API CONNECT RECORD FOR COMMUNICATION WITH THE API AND WITH THE */ /* LQH CONNECT RECORD FOR COMMUNICATION WITH THE LQH'S INVOLVED IN */ /* THE TRANSACTION. TC CONNECT RECORD IS PERMANENTLY CONNECTED TO A */ /* RECORD IN DICT AND ONE IN DIH. IT CONTAINS A LIST OF ACTIVE LQH */ /* CONNECT RECORDS AND A LIST OF STARTED BUT NOT ACTIVE LQH CONNECT */ /* RECORDS. IT DOES ALSO CONTAIN A LIST OF ALL OPERATIONS THAT ARE */ /* EXECUTED WITH THE TC CONNECT RECORD. */ /*******************************************************************>*/ /* TC_CONNECT RECORD ALIGNED TO BE 128 BYTES */ /*******************************************************************>*/ struct TcConnectRecord { //--------------------------------------------------- // First 16 byte cache line. Those variables are only // used in error cases. //--------------------------------------------------- UintR tcOprec; /* TC OPREC of operation being taken over */ Uint16 failData[4]; /* Failed nodes when taking over an operation */ UintR nextTcFailHash; //--------------------------------------------------- // Second 16 byte cache line. Those variables are used // from LQHKEYCONF to sending COMMIT and COMPLETED. //--------------------------------------------------- UintR lastLqhCon; /* Connect record in last replicas Lqh record */ Uint16 lastLqhNodeId; /* Node id of last replicas Lqh */ Uint16 m_execAbortOption;/* TcKeyReq::ExecuteAbortOption */ UintR commitAckMarker; /* CommitMarker I value */ //--------------------------------------------------- // Third 16 byte cache line. The hottest variables. //--------------------------------------------------- OperationState tcConnectstate; /* THE STATE OF THE CONNECT*/ UintR apiConnect; /* POINTER TO API CONNECT RECORD */ UintR nextTcConnect; /* NEXT TC RECORD*/ Uint8 dirtyOp; Uint8 lastReplicaNo; /* NUMBER OF THE LAST REPLICA IN THE OPERATION */ Uint8 noOfNodes; /* TOTAL NUMBER OF NODES IN OPERATION */ Uint8 operation; /* OPERATION TYPE */ /* 0 = READ REQUEST */ /* 1 = UPDATE REQUEST */ /* 2 = INSERT REQUEST */ /* 3 = DELETE REQUEST */ //--------------------------------------------------- // Fourth 16 byte cache line. The mildly hot variables. // tcNodedata expands 4 Bytes into the next cache line // with indexes almost never used. //--------------------------------------------------- UintR clientData; /* SENDERS OPERATION POINTER */ UintR dihConnectptr; /* CONNECTION TO DIH BLOCK ON THIS NODE */ UintR prevTcConnect; /* DOUBLY LINKED LIST OF TC CONNECT RECORDS*/ UintR savePointId; Uint16 tcNodedata[4]; // Trigger data FiredTriggerPtr accumulatingTriggerData; UintR noFiredTriggers; UintR noReceivedTriggers; UintR triggerExecutionCount; UintR triggeringOperation; UintR savedState[LqhKeyConf::SignalLength]; // Index data bool isIndexOp; // Used to mark on-going TcKeyReq as index table access UintR indexOp; UintR currentIndexId; UintR attrInfoLen; }; friend struct TcConnectRecord; typedef Ptr<TcConnectRecord> TcConnectRecordPtr; // ********************** CACHE RECORD ************************************** //--------------------------------------------------------------------------- // This record is used between reception of TCKEYREQ and sending of LQHKEYREQ // It is separatedso as to improve the cache hit rate and also to minimise // the necessary memory storage in NDB Cluster. //--------------------------------------------------------------------------- struct CacheRecord { //--------------------------------------------------- // First 16 byte cache line. Variables used by // ATTRINFO processing. //--------------------------------------------------- UintR firstAttrbuf; /* POINTER TO LINKED LIST OF ATTRIBUTE BUFFERS */ UintR lastAttrbuf; /* POINTER TO LINKED LIST OF ATTRIBUTE BUFFERS */ UintR currReclenAi; Uint16 attrlength; /* ATTRIBUTE INFORMATION LENGTH */ Uint16 save1; //--------------------------------------------------- // Second 16 byte cache line. Variables initiated by // TCKEYREQ and used in LQHKEYREQ. //--------------------------------------------------- UintR attrinfo15[4]; //--------------------------------------------------- // Third 16 byte cache line. Variables initiated by // TCKEYREQ and used in LQHKEYREQ. //--------------------------------------------------- UintR attrinfo0; UintR schemaVersion;/* SCHEMA VERSION USED IN TRANSACTION */ UintR tableref; /* POINTER TO THE TABLE IN WHICH THE FRAGMENT EXISTS*/ Uint16 apiVersionNo; Uint16 keylen; /* KEY LENGTH SENT BY REQUEST SIGNAL */ //--------------------------------------------------- // Fourth 16 byte cache line. Variables initiated by // TCKEYREQ and used in LQHKEYREQ. //--------------------------------------------------- UintR keydata[4]; /* RECEIVES FIRST 16 BYTES OF TUPLE KEY */ //--------------------------------------------------- // First 16 byte cache line in second 64 byte cache // line. Diverse use. //--------------------------------------------------- UintR fragmentid; /* THE COMPUTED FRAGMENT ID */ UintR hashValue; /* THE HASH VALUE USED TO LOCATE FRAGMENT */ Uint8 distributionKeyIndicator; Uint8 distributionGroupIndicator; Uint8 distributionGroupType; Uint8 lenAiInTckeyreq; /* LENGTH OF ATTRIBUTE INFORMATION IN TCKEYREQ */ Uint8 distributionKey; /** * EXECUTION MODE OF OPERATION * 0 = NORMAL EXECUTION, 1 = INTERPRETED EXECUTION */ Uint8 opExec; /** * LOCK TYPE OF OPERATION IF READ OPERATION * 0 = READ LOCK, 1 = WRITE LOCK */ Uint8 opLock; /** * IS THE OPERATION A SIMPLE TRANSACTION * 0 = NO, 1 = YES */ Uint8 opSimple; //--------------------------------------------------- // Second 16 byte cache line in second 64 byte cache // line. Diverse use. //--------------------------------------------------- UintR distributionGroup; UintR nextCacheRec; UintR distributionKeySize; Uint16 scanNode; unsigned scanTakeOverInd : 1; unsigned scanInfo : 15; // 12 bits used currently //--------------------------------------------------- // Third and fourth 16 byte cache line in second 64 // byte cache line. Not used currently. //--------------------------------------------------- UintR firstKeybuf; /* POINTER THE LINKED LIST OF KEY BUFFERS */ UintR lastKeybuf; /* VARIABLE POINTING TO THE LAST KEY BUFFER */ UintR packedCacheVar[6]; }; typedef Ptr<CacheRecord> CacheRecordPtr; /* ************************ HOST RECORD ********************************** */ /********************************************************/ /* THIS RECORD CONTAINS ALIVE-STATUS ON ALL NODES IN THE*/ /* SYSTEM */ /********************************************************/ /* THIS RECORD IS ALIGNED TO BE 128 BYTES. */ /********************************************************/ struct HostRecord { HostState hostStatus; LqhTransState lqhTransStatus; TakeOverState takeOverStatus; bool inPackedList; UintR noOfPackedWordsLqh; UintR packedWordsLqh[26]; UintR noOfWordsTCKEYCONF; UintR packedWordsTCKEYCONF[30]; UintR noOfWordsTCINDXCONF; UintR packedWordsTCINDXCONF[30]; BlockReference hostLqhBlockRef; }; /* p2c: size = 128 bytes */ typedef Ptr<HostRecord> HostRecordPtr; /* *********** TABLE RECORD ********************************************* */ /********************************************************/ /* THIS RECORD CONTAINS THE CURRENT SCHEMA VERSION OF */ /* ALL TABLES IN THE SYSTEM. */ /********************************************************/ struct TableRecord { Uint32 currentSchemaVersion; Uint8 enabled; Uint8 dropping; Uint8 tableType; Uint8 storedTable; bool checkTable(Uint32 schemaVersion) const { return enabled && !dropping && (schemaVersion == currentSchemaVersion); } Uint32 getErrorCode(Uint32 schemaVersion) const; struct DropTable { Uint32 senderRef; Uint32 senderData; SignalCounter waitDropTabCount; } dropTable; }; typedef Ptr<TableRecord> TableRecordPtr; /** * There is max 16 ScanFragRec's for * each scan started in TC. Each ScanFragRec is used by * a scan fragment "process" that scans one fragment at a time. * It will receive max 16 tuples in each request */ struct ScanFragRec { ScanFragRec(){} /** * ScanFragState * WAIT_GET_PRIMCONF : Waiting for DIGETPRIMCONF when starting a new * fragment scan * LQH_ACTIVE : The scan process has sent a command to LQH and is * waiting for the response * LQH_ACTIVE_CLOSE : The scan process has sent close to LQH and is * waiting for the response * DELIVERED : The result have been delivered, this scan frag process * are waiting for a SCAN_NEXTREQ to tell us to continue scanning * RETURNING_FROM_DELIVERY : SCAN_NEXTREQ received and continuing scan * soon * QUEUED_FOR_DELIVERY : Result queued in TC and waiting for delivery * to API * COMPLETED : The fragment scan processes has completed and finally * sent a SCAN_PROCCONF */ enum ScanFragState { IDLE = 0, WAIT_GET_PRIMCONF = 1, LQH_ACTIVE = 2, DELIVERED = 4, QUEUED_FOR_DELIVERY = 6, COMPLETED = 7 }; // Timer for checking timeout of this fragment scan Uint32 scanFragTimer; // Id of the current scanned fragment Uint32 scanFragId; // Blockreference of LQH BlockReference lqhBlockref; // getNodeInfo.m_connectCount, set at seize used so that // I don't accidently kill a starting node Uint32 m_connectCount; // State of this fragment scan ScanFragState scanFragState; // Id of the ScanRecord this fragment scan belongs to Uint32 scanRec; // The maximum number of operations that can be scanned before // returning to TC Uint16 scanFragConcurrency; inline void startFragTimer(Uint32 timeVal){ scanFragTimer = timeVal; } inline void stopFragTimer(void){ scanFragTimer = 0; } Uint32 m_ops; Uint32 m_chksum; Uint32 m_apiPtr; Uint32 m_totalLen; union { Uint32 nextPool; Uint32 nextList; }; Uint32 prevList; }; typedef Ptr<ScanFragRec> ScanFragRecPtr; typedef LocalDLList<ScanFragRec> ScanFragList; /** * Each scan allocates one ScanRecord to store information * about the current scan * */ struct ScanRecord { ScanRecord() {} /** NOTE! This is the old comment for ScanState. - MASV * STATE TRANSITIONS OF SCAN_STATE. SCAN_STATE IS THE STATE * VARIABLE OF THE RECEIVE AND DELIVERY PROCESS. * THE PROCESS HAS THREE STEPS IT GOES THROUGH. * 1) THE INITIAL STATES WHEN RECEIVING DATA FOR THE SCAN. * - WAIT_SCAN_TAB_INFO * - WAIT_AI * - WAIT_FRAGMENT_COUNT * 2) THE EXECUTION STATES WHEN THE SCAN IS PERFORMED. * - SCAN_NEXT_ORDERED * - DELIVERED * - QUEUED_DELIVERED * 3) THE CLOSING STATE WHEN THE SCAN PROCESS IS CLOSING UP * EVERYTHING. * - CLOSING_SCAN * INITIAL START WHEN SCAN_TABREQ RECEIVED * -> WAIT_SCAN_TAB_INFO (IF ANY SCAN_TABINFO TO BE RECEIVED) * -> WAIT_AI (IF NO SCAN_TAB_INFO BUT ATTRINFO IS RECEIVED) * -> WAIT_FRAGMENT_COUNT (IF NEITHER SCAN_TABINFO OR ATTRINFO * RECEIVED) * * WAIT_SCAN_TAB_INFO TRANSITIONS: * -> WAIT_SCAN_TABINFO (WHEN MORE SCAN_TABINFO RECEIVED) * -> WAIT_AI (WHEN ATTRINFO RECEIVED AFTER RECEIVING ALL * SCAN_TABINFO) * -> WAIT_FRAGMENT_COUNT (WHEN NO ATTRINFO RECEIVED AFTER * RECEIVING ALL SCAN_TABINFO ) * WAIT_AI TRANSITIONS: * -> WAIT_AI (WHEN MORE ATTRINFO RECEIVED) * -> WAIT_FRAGMENT_COUNT (WHEN ALL ATTRINFO RECEIVED) * * WAIT_FRAGMENT_COUNT TRANSITIONS: * -> SCAN_NEXT_ORDERED * * SCAN_NEXT_ORDERED TRANSITIONS: * -> DELIVERED (WHEN FIRST SCAN_FRAGCONF ARRIVES WITH OPERATIONS * TO REPORT IN IT) * -> CLOSING_SCAN (WHEN SCAN IS CLOSED BY SCAN_NEXTREQ OR BY SOME * ERROR) * * DELIVERED TRANSITIONS: * -> SCAN_NEXT_ORDERED (IF SCAN_NEXTREQ ARRIVES BEFORE ANY NEW * OPERATIONS TO REPORT ARRIVES) * -> QUEUED_DELIVERED (IF NEW OPERATION TO REPORT ARRIVES BEFORE * SCAN_NEXTREQ) * -> CLOSING_SCAN (WHEN SCAN IS CLOSED BY SCAN_NEXTREQ OR BY SOME * ERROR) * * QUEUED_DELIVERED TRANSITIONS: * -> DELIVERED (WHEN SCAN_NEXTREQ ARRIVES AND QUEUED OPERATIONS * TO REPORT ARE SENT TO THE APPLICATION) * -> CLOSING_SCAN (WHEN SCAN IS CLOSED BY SCAN_NEXTREQ OR BY * SOME ERROR) */ enum ScanState { IDLE = 0, WAIT_SCAN_TAB_INFO = 1, WAIT_AI = 2, WAIT_FRAGMENT_COUNT = 3, RUNNING = 4, CLOSING_SCAN = 5 }; // State of this scan ScanState scanState; DLList<ScanFragRec>::Head m_running_scan_frags; // Currently in LQH union { Uint32 m_queued_count; Uint32 scanReceivedOperations; }; DLList<ScanFragRec>::Head m_queued_scan_frags; // In TC !sent to API DLList<ScanFragRec>::Head m_delivered_scan_frags;// Delivered to API DLList<ScanFragRec>::Head m_completed_scan_frags;// Completed // Id of the next fragment to be scanned. Used by scan fragment // processes when they are ready for the next fragment Uint32 scanNextFragId; // Total number of fragments in the table we are scanning Uint32 scanNoFrag; // Index of next ScanRecords when in free list Uint32 nextScan; // Length of expected attribute information Uint32 scanAiLength; // Reference to ApiConnectRecord Uint32 scanApiRec; // Reference to TcConnectRecord Uint32 scanTcrec; // Number of scan frag processes that belong to this scan Uint32 scanParallel; // Schema version used by this scan Uint32 scanSchemaVersion; // Index of stored procedure belonging to this scan Uint32 scanStoredProcId; // The index of table that is scanned Uint32 scanTableref; // Number of operation records per scanned fragment Uint16 noOprecPerFrag; // Shall the locks be held until the application have read the // records Uint8 scanLockHold; // Shall the locks be read or write locks Uint8 scanLockMode; // Skip locks by other transactions and read latest committed Uint8 readCommitted; // Scan is on ordered index Uint8 rangeScan; // Close is ordered bool m_close_scan_req; }; typedef Ptr<ScanRecord> ScanRecordPtr; /* **********************************************************************$ */ /* ******$ DATA BUFFER ******$ */ /* */ /* THIS BUFFER IS USED AS A GENERAL DATA STORAGE. */ /* **********************************************************************$ */ struct DatabufRecord { UintR data[4]; /* 4 * 1 WORD = 4 WORD */ UintR nextDatabuf; }; /* p2c: size = 20 bytes */ typedef Ptr<DatabufRecord> DatabufRecordPtr; /* **********************************************************************$ */ /* ******$ ATTRIBUTE INFORMATION RECORD ******$ */ /* * CAN CONTAIN ONE (1) ATTRINFO SIGNAL. ONE SIGNAL CONTAINS 24 ATTR. * INFO WORDS. BUT 32 ELEMENTS ARE USED TO MAKE PLEX HAPPY. * SOME OF THE ELEMENTS ARE USED TO THE FOLLOWING THINGS: * DATA LENGHT IN THIS RECORD IS STORED IN THE ELEMENT INDEXED BY * ZINBUF_DATA_LEN. * NEXT FREE ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY * PREVIOUS ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY ZINBUF_PREV * (NOT USED YET). * NEXT ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY ZINBUF_NEXT. */ /* ******************************************************************** */ struct AttrbufRecord { UintR attrbuf[32]; }; /* p2c: size = 128 bytes */ typedef Ptr<AttrbufRecord> AttrbufRecordPtr; /*************************************************************************>*/ /* GLOBAL CHECKPOINT INFORMATION RECORD */ /* */ /* THIS RECORD IS USED TO STORE THE GLOBALCHECKPOINT NUMBER AND A * COUNTER DURING THE COMPLETION PHASE OF THE TRANSACTION */ /*************************************************************************>*/ /* */ /* GCP RECORD ALIGNED TO BE 32 BYTES */ /*************************************************************************>*/ struct GcpRecord { UintR gcpUnused1[2]; /* p2c: Not used */ UintR firstApiConnect; UintR lastApiConnect; UintR gcpId; UintR nextGcp; UintR gcpUnused2; /* p2c: Not used */ Uint16 gcpNomoretransRec; }; /* p2c: size = 32 bytes */ typedef Ptr<GcpRecord> GcpRecordPtr; /*************************************************************************>*/ /* TC_FAIL_RECORD */ /* THIS RECORD IS USED WHEN HANDLING TAKE OVER OF ANOTHER FAILED * TC NODE. */ /*************************************************************************>*/ struct TcFailRecord { Uint16 queueList[MAX_NDB_NODES]; Uint8 takeOverProcState[MAX_NDB_NODES]; UintR completedTakeOver; UintR currentHashIndexTakeOver; FailState failStatus; Uint16 queueIndex; Uint16 takeOverNode; }; /* p2c: size = 64 bytes */ typedef Ptr<TcFailRecord> TcFailRecordPtr; public: Dbtc(const class Configuration &); virtual ~Dbtc(); private: BLOCK_DEFINES(Dbtc); // Transit signals void execPACKED_SIGNAL(Signal* signal); void execABORTED(Signal* signal); void execATTRINFO(Signal* signal); void execCONTINUEB(Signal* signal); void execKEYINFO(Signal* signal); void execSCAN_NEXTREQ(Signal* signal); void execSCAN_PROCREQ(Signal* signal); void execSCAN_PROCCONF(Signal* signal); void execTAKE_OVERTCREQ(Signal* signal); void execTAKE_OVERTCCONF(Signal* signal); void execLQHKEYREF(Signal* signal); void execTRANSID_AI_R(Signal* signal); void execKEYINFO20_R(Signal* signal); // Received signals void execDUMP_STATE_ORD(Signal* signal); void execSEND_PACKED(Signal* signal); void execCOMPLETED(Signal* signal); void execCOMMITTED(Signal* signal); void execDIGETNODESREF(Signal* signal); void execDIGETPRIMCONF(Signal* signal); void execDIGETPRIMREF(Signal* signal); void execDISEIZECONF(Signal* signal); void execDIVERIFYCONF(Signal* signal); void execDI_FCOUNTCONF(Signal* signal); void execDI_FCOUNTREF(Signal* signal); void execGCP_NOMORETRANS(Signal* signal); void execLQHKEYCONF(Signal* signal); void execNDB_STTOR(Signal* signal); void execREAD_NODESCONF(Signal* signal); void execREAD_NODESREF(Signal* signal); void execSTTOR(Signal* signal); void execTC_COMMITREQ(Signal* signal); void execTC_CLOPSIZEREQ(Signal* signal); void execTCGETOPSIZEREQ(Signal* signal); void execTCKEYREQ(Signal* signal); void execTCRELEASEREQ(Signal* signal); void execTCSEIZEREQ(Signal* signal); void execTCROLLBACKREQ(Signal* signal); void execTC_HBREP(Signal* signal); void execTC_SCHVERREQ(Signal* signal); void execSCAN_TABREQ(Signal* signal); void execSCAN_TABINFO(Signal* signal); void execSCAN_FRAGCONF(Signal* signal); void execSCAN_FRAGREF(Signal* signal); void execREAD_CONFIG_REQ(Signal* signal); void execLQH_TRANSCONF(Signal* signal); void execCOMPLETECONF(Signal* signal); void execCOMMITCONF(Signal* signal); void execABORTCONF(Signal* signal); void execNODE_FAILREP(Signal* signal); void execINCL_NODEREQ(Signal* signal); void execTIME_SIGNAL(Signal* signal); void execAPI_FAILREQ(Signal* signal); void execSCAN_HBREP(Signal* signal); void execSET_VAR_REQ(Signal* signal); void execABORT_ALL_REQ(Signal* signal); void execCREATE_TRIG_REQ(Signal* signal); void execDROP_TRIG_REQ(Signal* signal); void execFIRE_TRIG_ORD(Signal* signal); void execTRIG_ATTRINFO(Signal* signal); void execCREATE_INDX_REQ(Signal* signal); void execDROP_INDX_REQ(Signal* signal); void execTCINDXREQ(Signal* signal); void execINDXKEYINFO(Signal* signal); void execINDXATTRINFO(Signal* signal); void execALTER_INDX_REQ(Signal* signal); // Index table lookup void execTCKEYCONF(Signal* signal); void execTCKEYREF(Signal* signal); void execTRANSID_AI(Signal* signal); void execTCROLLBACKREP(Signal* signal); void execCREATE_TAB_REQ(Signal* signal); void execPREP_DROP_TAB_REQ(Signal* signal); void execDROP_TAB_REQ(Signal* signal); void execWAIT_DROP_TAB_REF(Signal* signal); void execWAIT_DROP_TAB_CONF(Signal* signal); void checkWaitDropTabFailedLqh(Signal*, Uint32 nodeId, Uint32 tableId); void execALTER_TAB_REQ(Signal* signal); void set_timeout_value(Uint32 timeOut); void set_appl_timeout_value(Uint32 timeOut); void set_no_parallel_takeover(Uint32); void updateBuddyTimer(ApiConnectRecordPtr); // Statement blocks void updatePackedList(Signal* signal, HostRecord* ahostptr, Uint16 ahostIndex); void clearTcNodeData(Signal* signal, UintR TLastLqhIndicator, UintR Tstart); void errorReport(Signal* signal, int place); void warningReport(Signal* signal, int place); void printState(Signal* signal, int place); int seizeTcRecord(Signal* signal); int seizeCacheRecord(Signal* signal); void TCKEY_abort(Signal* signal, int place); void copyFromToLen(UintR* sourceBuffer, UintR* destBuffer, UintR copyLen); void reportNodeFailed(Signal* signal, Uint32 nodeId); void sendPackedTCKEYCONF(Signal* signal, HostRecord * ahostptr, UintR hostId); void sendPackedTCINDXCONF(Signal* signal, HostRecord * ahostptr, UintR hostId); void sendPackedSignalLqh(Signal* signal, HostRecord * ahostptr); void sendCommitLqh(Signal* signal, TcConnectRecord * const regTcPtr); void sendCompleteLqh(Signal* signal, TcConnectRecord * const regTcPtr); void sendTCKEY_FAILREF(Signal* signal, const ApiConnectRecord *); void sendTCKEY_FAILCONF(Signal* signal, const ApiConnectRecord *); void checkStartTimeout(Signal* signal); void checkStartFragTimeout(Signal* signal); void timeOutFoundFragLab(Signal* signal, Uint32 TscanConPtr); void timeOutLoopStartFragLab(Signal* signal, Uint32 TscanConPtr); int releaseAndAbort(Signal* signal); void findApiConnectFail(Signal* signal); void findTcConnectFail(Signal* signal); void initApiConnectFail(Signal* signal); void initTcConnectFail(Signal* signal); void initTcFail(Signal* signal); void releaseTakeOver(Signal* signal); void setupFailData(Signal* signal); void updateApiStateFail(Signal* signal); void updateTcStateFail(Signal* signal); void handleApiFailState(Signal* signal, UintR anApiConnectptr); void handleFailedApiNode(Signal* signal, UintR aFailedNode, UintR anApiConnectPtr); void handleScanStop(Signal* signal, UintR aFailedNode); void initScanTcrec(Signal* signal); void initScanApirec(Signal* signal, Uint32 buddyPtr, UintR transid1, UintR transid2); void initScanrec(ScanRecordPtr, const class ScanTabReq*, const UintR scanParallel, const UintR noOprecPerFrag); void initScanfragrec(Signal* signal); void releaseScanResources(ScanRecordPtr); ScanRecordPtr seizeScanrec(Signal* signal); void sendScanFragReq(Signal* signal, ScanRecord*, ScanFragRec*); void sendScanTabConf(Signal* signal, ScanRecord*); void close_scan_req(Signal*, ScanRecordPtr, bool received_req); void close_scan_req_send_conf(Signal*, ScanRecordPtr); void checkGcp(Signal* signal); void commitGciHandling(Signal* signal, UintR Tgci); void copyApi(Signal* signal); void DIVER_node_fail_handling(Signal* signal, UintR Tgci); void gcpTcfinished(Signal* signal); void handleGcp(Signal* signal); void hash(Signal* signal); void initApiConnect(Signal* signal); void initApiConnectRec(Signal* signal, ApiConnectRecord * const regApiPtr, bool releaseIndexOperations = false); void initattrbuf(Signal* signal); void initdatabuf(Signal* signal); void initgcp(Signal* signal); void inithost(Signal* signal); void initialiseScanrec(Signal* signal); void initialiseScanFragrec(Signal* signal); void initialiseScanOprec(Signal* signal); void initTable(Signal* signal); void initialiseTcConnect(Signal* signal); void linkApiToGcp(Signal* signal); void linkGciInGcilist(Signal* signal); void linkKeybuf(Signal* signal); void linkTcInConnectionlist(Signal* signal); void releaseAbortResources(Signal* signal); void releaseApiCon(Signal* signal, UintR aApiConnectPtr); void releaseApiConCopy(Signal* signal); void releaseApiConnectFail(Signal* signal); void releaseAttrinfo(); void releaseGcp(Signal* signal); void releaseKeys(); void releaseSimpleRead(Signal* signal); void releaseDirtyWrite(Signal* signal); void releaseTcCon(); void releaseTcConnectFail(Signal* signal); void releaseTransResources(Signal* signal); void saveAttrbuf(Signal* signal); void seizeApiConnect(Signal* signal); void seizeApiConnectCopy(Signal* signal); void seizeApiConnectFail(Signal* signal); void seizeDatabuf(Signal* signal); void seizeGcp(Signal* signal); void seizeTcConnect(Signal* signal); void seizeTcConnectFail(Signal* signal); void sendApiCommit(Signal* signal); void sendAttrinfo(Signal* signal, UintR TattrinfoPtr, AttrbufRecord * const regAttrPtr, UintR TBref); void sendContinueTimeOutControl(Signal* signal, Uint32 TapiConPtr); void sendKeyinfo(Signal* signal, BlockReference TBRef, Uint32 len); void sendlqhkeyreq(Signal* signal, BlockReference TBRef); void sendSystemError(Signal* signal); void sendtckeyconf(Signal* signal, UintR TcommitFlag); void sendTcIndxConf(Signal* signal, UintR TcommitFlag); void unlinkApiConnect(Signal* signal); void unlinkGcp(Signal* signal); void unlinkReadyTcCon(Signal* signal); void handleFailedOperation(Signal* signal, const LqhKeyRef * const lqhKeyRef, bool gotLqhKeyRef); void markOperationAborted(ApiConnectRecord * const regApiPtr, TcConnectRecord * const regTcPtr); void clearCommitAckMarker(ApiConnectRecord * const regApiPtr, TcConnectRecord * const regTcPtr); // Trigger and index handling bool saveINDXKEYINFO(Signal* signal, TcIndexOperation* indexOp, const Uint32 *src, Uint32 len); bool receivedAllINDXKEYINFO(TcIndexOperation* indexOp); bool saveINDXATTRINFO(Signal* signal, TcIndexOperation* indexOp, const Uint32 *src, Uint32 len); bool receivedAllINDXATTRINFO(TcIndexOperation* indexOp); bool saveTRANSID_AI(Signal* signal, TcIndexOperation* indexOp, const Uint32 *src, Uint32 len); bool receivedAllTRANSID_AI(TcIndexOperation* indexOp); void readIndexTable(Signal* signal, ApiConnectRecord* regApiPtr, TcIndexOperation* indexOp); void executeIndexOperation(Signal* signal, ApiConnectRecord* regApiPtr, TcIndexOperation* indexOp); bool seizeIndexOperation(ApiConnectRecord* regApiPtr, TcIndexOperationPtr& indexOpPtr); void releaseIndexOperation(ApiConnectRecord* regApiPtr, TcIndexOperation* indexOp); void releaseAllSeizedIndexOperations(ApiConnectRecord* regApiPtr); void setupIndexOpReturn(ApiConnectRecord* regApiPtr, TcConnectRecord* regTcPtr); void saveTriggeringOpState(Signal* signal, TcConnectRecord* trigOp); void restoreTriggeringOpState(Signal* signal, TcConnectRecord* trigOp); void continueTriggeringOp(Signal* signal, TcConnectRecord* trigOp); void scheduleFiredTrigger(ApiConnectRecordPtr* transPtr, TcConnectRecordPtr* opPtr); void executeTriggers(Signal* signal, ApiConnectRecordPtr* transPtr); void executeTrigger(Signal* signal, TcFiredTriggerData* firedTriggerData, ApiConnectRecordPtr* transPtr, TcConnectRecordPtr* opPtr); void executeIndexTrigger(Signal* signal, TcDefinedTriggerData* definedTriggerData, TcFiredTriggerData* firedTriggerData, ApiConnectRecordPtr* transPtr, TcConnectRecordPtr* opPtr); void insertIntoIndexTable(Signal* signal, TcFiredTriggerData* firedTriggerData, ApiConnectRecordPtr* transPtr, TcConnectRecordPtr* opPtr, TcIndexData* indexData, bool holdOperation = false); void deleteFromIndexTable(Signal* signal, TcFiredTriggerData* firedTriggerData, ApiConnectRecordPtr* transPtr, TcConnectRecordPtr* opPtr, TcIndexData* indexData, bool holdOperation = false); void releaseFiredTriggerData(DLFifoList<TcFiredTriggerData>* triggers); // Generated statement blocks void warningHandlerLab(Signal* signal); void systemErrorLab(Signal* signal); void sendSignalErrorRefuseLab(Signal* signal); void scanTabRefLab(Signal* signal, Uint32 errCode); void diFcountReqLab(Signal* signal, ScanRecordPtr); void signalErrorRefuseLab(Signal* signal); void abort080Lab(Signal* signal); void packKeyData000Lab(Signal* signal, BlockReference TBRef); void abortScanLab(Signal* signal, ScanRecordPtr, Uint32 errCode); void sendAbortedAfterTimeout(Signal* signal, int Tcheck); void abort010Lab(Signal* signal); void abort015Lab(Signal* signal); void packLqhkeyreq(Signal* signal, BlockReference TBRef); void packLqhkeyreq040Lab(Signal* signal, UintR anAttrBufIndex, BlockReference TBRef); void packLqhkeyreq040Lab(Signal* signal); void returnFromQueuedDeliveryLab(Signal* signal); void startTakeOverLab(Signal* signal); void toCompleteHandlingLab(Signal* signal); void toCommitHandlingLab(Signal* signal); void toAbortHandlingLab(Signal* signal); void abortErrorLab(Signal* signal); void nodeTakeOverCompletedLab(Signal* signal); void ndbsttorry010Lab(Signal* signal); void commit020Lab(Signal* signal); void complete010Lab(Signal* signal); void releaseAtErrorLab(Signal* signal); void seizeDatabuferrorLab(Signal* signal); void scanAttrinfoLab(Signal* signal, UintR Tlen); void seizeAttrbuferrorLab(Signal* signal); void attrinfoDihReceivedLab(Signal* signal); void aiErrorLab(Signal* signal); void attrinfo020Lab(Signal* signal); void scanReleaseResourcesLab(Signal* signal); void scanCompletedLab(Signal* signal); void scanError(Signal* signal, ScanRecordPtr, Uint32 errorCode); void diverify010Lab(Signal* signal); void intstartphase2x010Lab(Signal* signal); void intstartphase3x010Lab(Signal* signal); void sttorryLab(Signal* signal); void abortBeginErrorLab(Signal* signal); void tabStateErrorLab(Signal* signal); void wrongSchemaVersionErrorLab(Signal* signal); void noFreeConnectionErrorLab(Signal* signal); void tckeyreq050Lab(Signal* signal); void timeOutFoundLab(Signal* signal, UintR anAdd); void completeTransAtTakeOverLab(Signal* signal, UintR TtakeOverInd); void completeTransAtTakeOverDoLast(Signal* signal, UintR TtakeOverInd); void completeTransAtTakeOverDoOne(Signal* signal, UintR TtakeOverInd); void timeOutLoopStartLab(Signal* signal, Uint32 apiConnectPtr); void initialiseRecordsLab(Signal* signal, UintR Tdata0, Uint32, Uint32); void tckeyreq020Lab(Signal* signal); void intstartphase2x020Lab(Signal* signal); void intstartphase1x010Lab(Signal* signal); void startphase1x010Lab(Signal* signal); void lqhKeyConf_checkTransactionState(Signal * signal, ApiConnectRecord * const regApiPtr); void checkDropTab(Signal* signal); void checkScanActiveInFailedLqh(Signal* signal, Uint32 scanPtrI, Uint32 failedNodeId); void checkScanFragList(Signal*, Uint32 failedNodeId, ScanRecord * scanP, LocalDLList<ScanFragRec>::Head&); // Initialisation void initData(); void initRecords(); // Transit signals ApiConnectRecord *apiConnectRecord; ApiConnectRecordPtr apiConnectptr; UintR capiConnectFilesize; TcConnectRecord *tcConnectRecord; TcConnectRecordPtr tcConnectptr; UintR ctcConnectFilesize; CacheRecord *cacheRecord; CacheRecordPtr cachePtr; UintR ccacheFilesize; AttrbufRecord *attrbufRecord; AttrbufRecordPtr attrbufptr; UintR cattrbufFilesize; HostRecord *hostRecord; HostRecordPtr hostptr; UintR chostFilesize; GcpRecord *gcpRecord; GcpRecordPtr gcpPtr; UintR cgcpFilesize; TableRecord *tableRecord; UintR ctabrecFilesize; UintR thashValue; UintR tdistrHashValue; UintR ttransid_ptr; UintR cfailure_nr; UintR coperationsize; UintR ctcTimer; ApiConnectRecordPtr tmpApiConnectptr; UintR tcheckGcpId; UintR cconcurrentOp; UintR cattrinfoCount; UintR ctransCount; UintR ccommitCount; UintR creadCount; UintR csimpleReadCount; UintR cwriteCount; UintR cabortCount; Uint16 cownNodeid; Uint16 terrorCode; UintR cfirstfreeAttrbuf; UintR cfirstfreeTcConnect; UintR cfirstfreeApiConnectCopy; UintR cfirstfreeCacheRec; UintR cfirstgcp; UintR clastgcp; UintR cfirstfreeGcp; UintR cfirstfreeScanrec; TableRecordPtr tabptr; UintR cfirstfreeApiConnectFail; UintR cfirstfreeApiConnect; UintR cfirstfreeDatabuf; BlockReference cdihblockref; BlockReference cownref; /* OWN BLOCK REFERENCE */ ApiConnectRecordPtr timeOutptr; ScanRecord *scanRecord; UintR cscanrecFileSize; UnsafeArrayPool<ScanFragRec> c_scan_frag_pool; ScanFragRecPtr scanFragptr; UintR cscanFragrecFileSize; UintR cdatabufFilesize; BlockReference cdictblockref; BlockReference cerrorBlockref; BlockReference clqhblockref; BlockReference cndbcntrblockref; Uint16 csignalKey; Uint16 csystemnodes; Uint16 cnodes[4]; NodeId cmasterNodeId; UintR cnoParallelTakeOver; TimeOutCheckState ctimeOutCheckFragActive; UintR ctimeOutCheckFragCounter; UintR ctimeOutCheckCounter; UintR ctimeOutValue; UintR ctimeOutCheckDelay; Uint32 ctimeOutCheckHeartbeat; Uint32 ctimeOutCheckLastHeartbeat; Uint32 ctimeOutMissedHeartbeats; Uint32 c_appl_timeout_value; SystemStartState csystemStart; TimeOutCheckState ctimeOutCheckActive; BlockReference capiFailRef; UintR cpackedListIndex; Uint16 cpackedList[MAX_NODES]; UintR capiConnectClosing[MAX_NODES]; UintR con_lineNodes; DatabufRecord *databufRecord; DatabufRecordPtr databufptr; DatabufRecordPtr tmpDatabufptr; UintR treqinfo; UintR ttransid1; UintR ttransid2; UintR tabortInd; NodeId tnodeid; BlockReference tblockref; LqhTransConf::OperationStatus ttransStatus; UintR ttcOprec; NodeId tfailedNodeId; Uint8 tcurrentReplicaNo; Uint8 tpad1; UintR tgci; UintR tapplRef; UintR tapplOprec; UintR tindex; UintR tmaxData; UintR tmp; UintR tnodes; BlockReference tusersblkref; UintR tuserpointer; UintR tloadCode; UintR tconfig1; UintR tconfig2; UintR cdata[32]; UintR ctransidFailHash[512]; UintR ctcConnectFailHash[1024]; /** * Commit Ack handling */ public: struct CommitAckMarker { Uint32 transid1; Uint32 transid2; union { Uint32 nextPool; Uint32 nextHash; }; Uint32 prevHash; Uint32 apiConnectPtr; Uint16 apiNodeId; Uint16 noOfLqhs; Uint16 lqhNodeId[MAX_REPLICAS]; inline bool equal(const CommitAckMarker & p) const { return ((p.transid1 == transid1) && (p.transid2 == transid2)); } inline Uint32 hashValue() const { return transid1; } }; private: typedef Ptr<CommitAckMarker> CommitAckMarkerPtr; typedef DLHashTable<CommitAckMarker>::Iterator CommitAckMarkerIterator; ArrayPool<CommitAckMarker> m_commitAckMarkerPool; DLHashTable<CommitAckMarker> m_commitAckMarkerHash; void execTC_COMMIT_ACK(Signal* signal); void sendRemoveMarkers(Signal*, const CommitAckMarker *); void sendRemoveMarker(Signal* signal, NodeId nodeId, Uint32 transid1, Uint32 transid2); void removeMarkerForFailedAPI(Signal* signal, Uint32 nodeId, Uint32 bucket); bool getAllowStartTransaction() const { if(getNodeState().getSingleUserMode()) return true; return getNodeState().startLevel < NodeState::SL_STOPPING_2; } void checkAbortAllTimeout(Signal* signal, Uint32 sleepTime); struct AbortAllRecord { AbortAllRecord(){ clientRef = 0; } Uint32 clientData; BlockReference clientRef; Uint32 oldTimeOutValue; }; AbortAllRecord c_abortRec; /************************** API CONNECT RECORD ***********************/ /* *******************************************************************/ /* THE API CONNECT RECORD CONTAINS THE CONNECTION RECORD TO WHICH THE*/ /* APPLICATION CONNECTS. THE APPLICATION CAN SEND ONE OPERATION AT A */ /* TIME. IT CAN SEND A NEW OPERATION IMMEDIATELY AFTER SENDING THE */ /* PREVIOUS OPERATION. THEREBY SEVERAL OPERATIONS CAN BE ACTIVE IN */ /* ONE TRANSACTION WITHIN TC. THIS IS ACHIEVED BY USING THE API */ /* CONNECT RECORD. EACH ACTIVE OPERATION IS HANDLED BY THE TC */ /* CONNECT RECORD. AS SOON AS THE TC CONNECT RECORD HAS SENT THE */ /* REQUEST TO THE LQH IT IS READY TO RECEIVE NEW OPERATIONS. THE */ /* LQH CONNECT RECORD TAKES CARE OF WAITING FOR AN OPERATION TO */ /* COMPLETE. WHEN AN OPERATION HAS COMPLETED ON THE LQH CONNECT */ /* RECORD A NEW OPERATION CAN BE STARTED ON THIS LQH CONNECT RECORD. */ /*******************************************************************>*/ /* */ /* API CONNECT RECORD ALIGNED TO BE 256 BYTES */ /*******************************************************************>*/ /************************** TC CONNECT RECORD ************************/ /* *******************************************************************/ /* TC CONNECT RECORD KEEPS ALL INFORMATION TO CARRY OUT A TRANSACTION*/ /* THE TRANSACTION CONTROLLER ESTABLISHES CONNECTIONS TO DIFFERENT */ /* BLOCKS TO CARRY OUT THE TRANSACTION. THERE CAN BE SEVERAL RECORDS */ /* PER ACTIVE TRANSACTION. THE TC CONNECT RECORD COOPERATES WITH THE */ /* API CONNECT RECORD FOR COMMUNICATION WITH THE API AND WITH THE */ /* LQH CONNECT RECORD FOR COMMUNICATION WITH THE LQH'S INVOLVED IN */ /* THE TRANSACTION. TC CONNECT RECORD IS PERMANENTLY CONNECTED TO A */ /* RECORD IN DICT AND ONE IN DIH. IT CONTAINS A LIST OF ACTIVE LQH */ /* CONNECT RECORDS AND A LIST OF STARTED BUT NOT ACTIVE LQH CONNECT */ /* RECORDS. IT DOES ALSO CONTAIN A LIST OF ALL OPERATIONS THAT ARE */ /* EXECUTED WITH THE TC CONNECT RECORD. */ /*******************************************************************>*/ /* TC_CONNECT RECORD ALIGNED TO BE 128 BYTES */ /*******************************************************************>*/ UintR cfirstfreeTcConnectFail; /* POINTER FOR THE LQH RECORD*/ /* ************************ HOST RECORD ********************************* */ /********************************************************/ /* THIS RECORD CONTAINS ALIVE-STATUS ON ALL NODES IN THE*/ /* SYSTEM */ /********************************************************/ /* THIS RECORD IS ALIGNED TO BE 8 BYTES. */ /********************************************************/ /* ************************ TABLE RECORD ******************************** */ /********************************************************/ /* THIS RECORD CONTAINS THE CURRENT SCHEMA VERSION OF */ /* ALL TABLES IN THE SYSTEM. */ /********************************************************/ /*-------------------------------------------------------------------------*/ /* THE TC CONNECTION USED BY THIS SCAN. */ /*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/ /* LENGTH READ FOR A PARTICULAR SCANNED OPERATION. */ /*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/ /* REFERENCE TO THE SCAN RECORD FOR THIS SCAN PROCESS. */ /*-------------------------------------------------------------------------*/ /* *********************************************************************** */ /* ******$ DATA BUFFER ******$ */ /* */ /* THIS BUFFER IS USED AS A GENERAL DATA STORAGE. */ /* *********************************************************************** */ /* *********************************************************************** */ /* ******$ ATTRIBUTE INFORMATION RECORD ******$ */ /* CAN CONTAIN ONE (1) ATTRINFO SIGNAL. ONE SIGNAL CONTAINS 24 ATTR. INFO WORDS. BUT 32 ELEMENTS ARE USED TO MAKE PLEX HAPPY. SOME OF THE ELEMENTS ARE USED TO THE FOLLOWING THINGS: DATA LENGHT IN THIS RECORD IS STORED IN THE ELEMENT INDEXED BY ZINBUF_DATA_LEN. NEXT FREE ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY PREVIOUS ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY ZINBUF_PREV (NOT USED YET). NEXT ATTRBUF IS POINTED OUT BY THE ELEMENT INDEXED BY ZINBUF_NEXT. */ /* ********************************************************************** */ /**************************************************************************/ /* GLOBAL CHECKPOINT INFORMATION RECORD */ /* */ /* THIS RECORD IS USED TO STORE THE GCP NUMBER AND A COUNTER */ /* DURING THE COMPLETION PHASE OF THE TRANSACTION */ /**************************************************************************/ /* */ /* GCP RECORD ALIGNED TO BE 32 BYTES */ /**************************************************************************/ /**************************************************************************/ /* TC_FAIL_RECORD */ /* THIS RECORD IS USED WHEN HANDLING TAKE OVER OF ANOTHER FAILED TC NODE.*/ /**************************************************************************/ TcFailRecord *tcFailRecord; TcFailRecordPtr tcNodeFailptr; /**************************************************************************/ // Temporary variables that are not allowed to use for storage between // signals. They // can only be used in a signal to transfer values between subroutines. // In the long run // those variables should be removed and exchanged for stack // variable communication. /**************************************************************************/ }; #endif