/* Innobase relational database engine; Copyright (C) 2001 Innobase Oy This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License 2 as published by the Free Software Foundation in June 1991. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License 2 along with this program (in file COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /****************************************************** The database buffer buf_pool (c) 1995 Innobase Oy Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "buf0buf.h" #ifdef UNIV_NONINL #include "buf0buf.ic" #endif #include "mem0mem.h" #include "btr0btr.h" #include "fil0fil.h" #include "lock0lock.h" #include "btr0sea.h" #include "ibuf0ibuf.h" #include "dict0dict.h" #include "log0recv.h" #include "log0log.h" #include "trx0undo.h" #include "srv0srv.h" /* IMPLEMENTATION OF THE BUFFER POOL ================================= Performance improvement: ------------------------ Thread scheduling in NT may be so slow that the OS wait mechanism should not be used even in waiting for disk reads to complete. Rather, we should put waiting query threads to the queue of waiting jobs, and let the OS thread do something useful while the i/o is processed. In this way we could remove most OS thread switches in an i/o-intensive benchmark like TPC-C. A possibility is to put a user space thread library between the database and NT. User space thread libraries might be very fast. SQL Server 7.0 can be configured to use 'fibers' which are lightweight threads in NT. These should be studied. Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains a single mutex which protects all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. These locks can be locked and unlocked without owning the buf_pool mutex. The OS events in the buf_pool struct can be waited for without owning the buf_pool mutex. The buf_pool mutex is a hot-spot in main memory, causing a lot of memory bus traffic on multiprocessor systems when processors alternately access the mutex. On our Pentium, the mutex is accessed maybe every 10 microseconds. We gave up the solution to have mutexes for each control block, for instance, because it seemed to be complicated. A solution to reduce mutex contention of the buf_pool mutex is to create a separate mutex for the page hash table. On Pentium, accessing the hash table takes 2 microseconds, about half of the total buf_pool mutex hold time. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. We intend to make the buffer buf_pool size on-line reconfigurable, that is, the buf_pool size can be changed without closing the database. Then the database administarator may adjust it to be bigger at night, for example. The control block array must contain enough control blocks for the maximum buffer buf_pool size which is used in the particular database. If the buf_pool size is cut, we exploit the virtual memory mechanism of the OS, and just refrain from using frames at high addresses. Then the OS can swap them to disk. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list contains blocks which are currently not used. The LRU-list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would noramlly be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The chain of modified blocks contains the blocks holding file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix field is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and resets the io_fix field when the io operation completes. A thread may request the above operation using the buf_page_get- function. It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. AWE implementation ------------------ By a 'block' we mean the buffer header of type buf_block_t. By a 'page' we mean the physical 16 kB memory area allocated from RAM for that block. By a 'frame' we mean a 16 kB area in the virtual address space of the process, in the frame_mem of buf_pool. We can map pages to the frames of the buffer pool. 1) A buffer block allocated to use as a non-data page, e.g., to the lock table, is always mapped to a frame. 2) A bufferfixed or io-fixed data page is always mapped to a frame. 3) When we need to map a block to frame, we look from the list awe_LRU_free_mapped and try to unmap its last block, but note that bufferfixed or io-fixed pages cannot be unmapped. 4) For every frame in the buffer pool there is always a block whose page is mapped to it. When we create the buffer pool, we map the first elements in the free list to the frames. 5) When we have AWE enabled, we disable adaptive hash indexes. */ buf_pool_t* buf_pool = NULL; /* The buffer buf_pool of the database */ #ifdef UNIV_DEBUG static ulint buf_dbg_counter = 0; /* This is used to insert validation operations in excution in the debug version */ ibool buf_debug_prints = FALSE; /* If this is set TRUE, the program prints info whenever read-ahead or flush occurs */ #endif /* UNIV_DEBUG */ /************************************************************************ Calculates a page checksum which is stored to the page when it is written to a file. Note that we must be careful to calculate the same value on 32-bit and 64-bit architectures. */ ulint buf_calc_page_new_checksum( /*=======================*/ /* out: checksum */ byte* page) /* in: buffer page */ { ulint checksum; /* Since the field FIL_PAGE_FILE_FLUSH_LSN, and in versions <= 4.1.x ..._ARCH_LOG_NO, are written outside the buffer pool to the first pages of data files, we have to skip them in the page checksum calculation. We must also skip the field FIL_PAGE_SPACE_OR_CHKSUM where the checksum is stored, and also the last 8 bytes of page because there we store the old formula checksum. */ checksum = ut_fold_binary(page + FIL_PAGE_OFFSET, FIL_PAGE_FILE_FLUSH_LSN - FIL_PAGE_OFFSET) + ut_fold_binary(page + FIL_PAGE_DATA, UNIV_PAGE_SIZE - FIL_PAGE_DATA - FIL_PAGE_END_LSN_OLD_CHKSUM); checksum = checksum & 0xFFFFFFFFUL; return(checksum); } /************************************************************************ In versions < 4.0.14 and < 4.1.1 there was a bug that the checksum only looked at the first few bytes of the page. This calculates that old checksum. NOTE: we must first store the new formula checksum to FIL_PAGE_SPACE_OR_CHKSUM before calculating and storing this old checksum because this takes that field as an input! */ ulint buf_calc_page_old_checksum( /*=======================*/ /* out: checksum */ byte* page) /* in: buffer page */ { ulint checksum; checksum = ut_fold_binary(page, FIL_PAGE_FILE_FLUSH_LSN); checksum = checksum & 0xFFFFFFFFUL; return(checksum); } /************************************************************************ Checks if a page is corrupt. */ ibool buf_page_is_corrupted( /*==================*/ /* out: TRUE if corrupted */ byte* read_buf) /* in: a database page */ { ulint checksum; ulint old_checksum; ulint checksum_field; ulint old_checksum_field; #ifndef UNIV_HOTBACKUP dulint current_lsn; #endif if (mach_read_from_4(read_buf + FIL_PAGE_LSN + 4) != mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4)) { /* Stored log sequence numbers at the start and the end of page do not match */ return(TRUE); } #ifndef UNIV_HOTBACKUP if (recv_lsn_checks_on && log_peek_lsn(¤t_lsn)) { if (ut_dulint_cmp(current_lsn, mach_read_from_8(read_buf + FIL_PAGE_LSN)) < 0) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: page %lu log sequence number %lu %lu\n" "InnoDB: is in the future! Current system log sequence number %lu %lu.\n" "InnoDB: Your database may be corrupt.\n", (ulong) mach_read_from_4(read_buf + FIL_PAGE_OFFSET), (ulong) ut_dulint_get_high( mach_read_from_8(read_buf + FIL_PAGE_LSN)), (ulong) ut_dulint_get_low( mach_read_from_8(read_buf + FIL_PAGE_LSN)), (ulong) ut_dulint_get_high(current_lsn), (ulong) ut_dulint_get_low(current_lsn)); } } #endif old_checksum = buf_calc_page_old_checksum(read_buf); old_checksum_field = mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM); /* There are 2 valid formulas for old_checksum_field: 1. Very old versions of InnoDB only stored 8 byte lsn to the start and the end of the page. 2. Newer InnoDB versions store the old formula checksum there. */ if (old_checksum_field != mach_read_from_4(read_buf + FIL_PAGE_LSN) && old_checksum_field != old_checksum) { return(TRUE); } checksum = buf_calc_page_new_checksum(read_buf); checksum_field = mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM); /* InnoDB versions < 4.0.14 and < 4.1.1 stored the space id (always equal to 0), to FIL_PAGE_SPACE_SPACE_OR_CHKSUM */ if (checksum_field != 0 && checksum_field != checksum) { return(TRUE); } return(FALSE); } /************************************************************************ Prints a page to stderr. */ void buf_page_print( /*===========*/ byte* read_buf) /* in: a database page */ { dict_index_t* index; ulint checksum; ulint old_checksum; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Page dump in ascii and hex (%lu bytes):\n", (ulint)UNIV_PAGE_SIZE); ut_print_buf(stderr, read_buf, UNIV_PAGE_SIZE); fputs("InnoDB: End of page dump\n", stderr); checksum = buf_calc_page_new_checksum(read_buf); old_checksum = buf_calc_page_old_checksum(read_buf); ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Page checksum %lu, prior-to-4.0.14-form checksum %lu\n" "InnoDB: stored checksum %lu, prior-to-4.0.14-form stored checksum %lu\n", (ulong) checksum, (ulong) old_checksum, (ulong) mach_read_from_4(read_buf + FIL_PAGE_SPACE_OR_CHKSUM), (ulong) mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM)); fprintf(stderr, "InnoDB: Page lsn %lu %lu, low 4 bytes of lsn at page end %lu\n" "InnoDB: Page number (if stored to page already) %lu,\n" "InnoDB: space id (if created with >= MySQL-4.1.1 and stored already) %lu\n", (ulong) mach_read_from_4(read_buf + FIL_PAGE_LSN), (ulong) mach_read_from_4(read_buf + FIL_PAGE_LSN + 4), (ulong) mach_read_from_4(read_buf + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM + 4), (ulong) mach_read_from_4(read_buf + FIL_PAGE_OFFSET), (ulong) mach_read_from_4(read_buf + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID)); if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_INSERT) { fprintf(stderr, "InnoDB: Page may be an insert undo log page\n"); } else if (mach_read_from_2(read_buf + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE) == TRX_UNDO_UPDATE) { fprintf(stderr, "InnoDB: Page may be an update undo log page\n"); } if (fil_page_get_type(read_buf) == FIL_PAGE_INDEX) { fprintf(stderr, "InnoDB: Page may be an index page where index id is %lu %lu\n", (ulong) ut_dulint_get_high(btr_page_get_index_id(read_buf)), (ulong) ut_dulint_get_low(btr_page_get_index_id(read_buf))); /* If the code is in ibbackup, dict_sys may be uninitialized, i.e., NULL */ if (dict_sys != NULL) { index = dict_index_find_on_id_low( btr_page_get_index_id(read_buf)); if (index) { fputs("InnoDB: (", stderr); dict_index_name_print(stderr, index); fputs(")\n", stderr); } } } else if (fil_page_get_type(read_buf) == FIL_PAGE_INODE) { fputs("InnoDB: Page may be an 'inode' page\n", stderr); } else if (fil_page_get_type(read_buf) == FIL_PAGE_IBUF_FREE_LIST) { fputs("InnoDB: Page may be an insert buffer free list page\n", stderr); } } /************************************************************************ Initializes a buffer control block when the buf_pool is created. */ static void buf_block_init( /*===========*/ buf_block_t* block, /* in: pointer to control block */ byte* frame) /* in: pointer to buffer frame, or NULL if in the case of AWE there is no frame */ { block->state = BUF_BLOCK_NOT_USED; block->frame = frame; block->awe_info = NULL; block->modify_clock = ut_dulint_zero; block->file_page_was_freed = FALSE; block->check_index_page_at_flush = FALSE; block->in_free_list = FALSE; block->in_LRU_list = FALSE; block->n_pointers = 0; rw_lock_create(&(block->lock)); ut_ad(rw_lock_validate(&(block->lock))); #ifdef UNIV_SYNC_DEBUG rw_lock_create(&(block->debug_latch)); rw_lock_set_level(&(block->debug_latch), SYNC_NO_ORDER_CHECK); #endif /* UNIV_SYNC_DEBUG */ } /************************************************************************ Creates the buffer pool. */ buf_pool_t* buf_pool_init( /*==========*/ /* out, own: buf_pool object, NULL if not enough memory or error */ ulint max_size, /* in: maximum size of the buf_pool in blocks */ ulint curr_size, /* in: current size to use, must be <= max_size, currently must be equal to max_size */ ulint n_frames) /* in: number of frames; if AWE is used, this is the size of the address space window where physical memory pages are mapped; if AWE is not used then this must be the same as max_size */ { byte* frame; ulint i; buf_block_t* block; ut_a(max_size == curr_size); ut_a(srv_use_awe || n_frames == max_size); if (n_frames > curr_size) { fprintf(stderr, "InnoDB: AWE: Error: you must specify in my.cnf .._awe_mem_mb larger\n" "InnoDB: than .._buffer_pool_size. Now the former is %lu pages,\n" "InnoDB: the latter %lu pages.\n", (ulong) curr_size, (ulong) n_frames); return(NULL); } buf_pool = mem_alloc(sizeof(buf_pool_t)); /* 1. Initialize general fields ---------------------------- */ mutex_create(&(buf_pool->mutex)); mutex_set_level(&(buf_pool->mutex), SYNC_BUF_POOL); mutex_enter(&(buf_pool->mutex)); if (srv_use_awe) { /*----------------------------------------*/ /* Allocate the virtual address space window, i.e., the buffer pool frames */ buf_pool->frame_mem = os_awe_allocate_virtual_mem_window( UNIV_PAGE_SIZE * (n_frames + 1)); /* Allocate the physical memory for AWE and the AWE info array for buf_pool */ if ((curr_size % ((1024 * 1024) / UNIV_PAGE_SIZE)) != 0) { fprintf(stderr, "InnoDB: AWE: Error: physical memory must be allocated in full megabytes.\n" "InnoDB: Trying to allocate %lu database pages.\n", (ulong) curr_size); return(NULL); } if (!os_awe_allocate_physical_mem(&(buf_pool->awe_info), curr_size / ((1024 * 1024) / UNIV_PAGE_SIZE))) { return(NULL); } /*----------------------------------------*/ } else { buf_pool->frame_mem = ut_malloc( UNIV_PAGE_SIZE * (n_frames + 1)); } if (buf_pool->frame_mem == NULL) { return(NULL); } buf_pool->blocks = ut_malloc(sizeof(buf_block_t) * max_size); if (buf_pool->blocks == NULL) { return(NULL); } buf_pool->max_size = max_size; buf_pool->curr_size = curr_size; buf_pool->n_frames = n_frames; /* Align pointer to the first frame */ frame = ut_align(buf_pool->frame_mem, UNIV_PAGE_SIZE); buf_pool->frame_zero = frame; buf_pool->high_end = frame + UNIV_PAGE_SIZE * n_frames; if (srv_use_awe) { /*----------------------------------------*/ /* Map an initial part of the allocated physical memory to the window */ os_awe_map_physical_mem_to_window(buf_pool->frame_zero, n_frames * (UNIV_PAGE_SIZE / OS_AWE_X86_PAGE_SIZE), buf_pool->awe_info); /*----------------------------------------*/ } buf_pool->blocks_of_frames = ut_malloc(sizeof(void*) * n_frames); if (buf_pool->blocks_of_frames == NULL) { return(NULL); } /* Init block structs and assign frames for them; in the case of AWE there are less frames than blocks. Then we assign the frames to the first blocks (we already mapped the memory above). We also init the awe_info for every block. */ for (i = 0; i < max_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (i < n_frames) { frame = buf_pool->frame_zero + i * UNIV_PAGE_SIZE; *(buf_pool->blocks_of_frames + i) = block; } else { frame = NULL; } buf_block_init(block, frame); if (srv_use_awe) { /*----------------------------------------*/ block->awe_info = buf_pool->awe_info + i * (UNIV_PAGE_SIZE / OS_AWE_X86_PAGE_SIZE); /*----------------------------------------*/ } } buf_pool->page_hash = hash_create(2 * max_size); buf_pool->n_pend_reads = 0; buf_pool->last_printout_time = time(NULL); buf_pool->n_pages_read = 0; buf_pool->n_pages_written = 0; buf_pool->n_pages_created = 0; buf_pool->n_pages_awe_remapped = 0; buf_pool->n_page_gets = 0; buf_pool->n_page_gets_old = 0; buf_pool->n_pages_read_old = 0; buf_pool->n_pages_written_old = 0; buf_pool->n_pages_created_old = 0; buf_pool->n_pages_awe_remapped_old = 0; /* 2. Initialize flushing fields ---------------------------- */ UT_LIST_INIT(buf_pool->flush_list); for (i = BUF_FLUSH_LRU; i <= BUF_FLUSH_LIST; i++) { buf_pool->n_flush[i] = 0; buf_pool->init_flush[i] = FALSE; buf_pool->no_flush[i] = os_event_create(NULL); } buf_pool->LRU_flush_ended = 0; buf_pool->ulint_clock = 1; buf_pool->freed_page_clock = 0; /* 3. Initialize LRU fields ---------------------------- */ UT_LIST_INIT(buf_pool->LRU); buf_pool->LRU_old = NULL; UT_LIST_INIT(buf_pool->awe_LRU_free_mapped); /* Add control blocks to the free list */ UT_LIST_INIT(buf_pool->free); for (i = 0; i < curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (block->frame) { /* Wipe contents of frame to eliminate a Purify warning */ #ifdef HAVE_purify memset(block->frame, '\0', UNIV_PAGE_SIZE); #endif if (srv_use_awe) { /* Add to the list of blocks mapped to frames */ UT_LIST_ADD_LAST(awe_LRU_free_mapped, buf_pool->awe_LRU_free_mapped, block); } } UT_LIST_ADD_LAST(free, buf_pool->free, block); block->in_free_list = TRUE; } mutex_exit(&(buf_pool->mutex)); if (srv_use_adaptive_hash_indexes) { btr_search_sys_create( curr_size * UNIV_PAGE_SIZE / sizeof(void*) / 64); } else { /* Create only a small dummy system */ btr_search_sys_create(1000); } return(buf_pool); } /************************************************************************ Maps the page of block to a frame, if not mapped yet. Unmaps some page from the end of the awe_LRU_free_mapped. */ void buf_awe_map_page_to_frame( /*======================*/ buf_block_t* block, /* in: block whose page should be mapped to a frame */ ibool add_to_mapped_list) /* in: TRUE if we in the case we need to map the page should also add the block to the awe_LRU_free_mapped list */ { buf_block_t* bck; ut_ad(mutex_own(&(buf_pool->mutex))); ut_ad(block); if (block->frame) { return; } /* Scan awe_LRU_free_mapped from the end and try to find a block which is not bufferfixed or io-fixed */ bck = UT_LIST_GET_LAST(buf_pool->awe_LRU_free_mapped); while (bck) { if (bck->state == BUF_BLOCK_FILE_PAGE && (bck->buf_fix_count != 0 || bck->io_fix != 0)) { /* We have to skip this */ bck = UT_LIST_GET_PREV(awe_LRU_free_mapped, bck); } else { /* We can map block to the frame of bck */ os_awe_map_physical_mem_to_window( bck->frame, UNIV_PAGE_SIZE / OS_AWE_X86_PAGE_SIZE, block->awe_info); block->frame = bck->frame; *(buf_pool->blocks_of_frames + (((ulint)(block->frame - buf_pool->frame_zero)) >> UNIV_PAGE_SIZE_SHIFT)) = block; bck->frame = NULL; UT_LIST_REMOVE(awe_LRU_free_mapped, buf_pool->awe_LRU_free_mapped, bck); if (add_to_mapped_list) { UT_LIST_ADD_FIRST(awe_LRU_free_mapped, buf_pool->awe_LRU_free_mapped, block); } buf_pool->n_pages_awe_remapped++; return; } } fprintf(stderr, "InnoDB: AWE: Fatal error: cannot find a page to unmap\n" "InnoDB: awe_LRU_free_mapped list length %lu\n", (ulong) UT_LIST_GET_LEN(buf_pool->awe_LRU_free_mapped)); ut_a(0); } /************************************************************************ Allocates a buffer block. */ UNIV_INLINE buf_block_t* buf_block_alloc(void) /*=================*/ /* out, own: the allocated block; also if AWE is used it is guaranteed that the page is mapped to a frame */ { buf_block_t* block; block = buf_LRU_get_free_block(); return(block); } /************************************************************************ Moves to the block to the start of the LRU list if there is a danger that the block would drift out of the buffer pool. */ UNIV_INLINE void buf_block_make_young( /*=================*/ buf_block_t* block) /* in: block to make younger */ { if (buf_pool->freed_page_clock >= block->freed_page_clock + 1 + (buf_pool->curr_size / 1024)) { /* There has been freeing activity in the LRU list: best to move to the head of the LRU list */ buf_LRU_make_block_young(block); } } /************************************************************************ Moves a page to the start of the buffer pool LRU list. This high-level function can be used to prevent an important page from from slipping out of the buffer pool. */ void buf_page_make_young( /*=================*/ buf_frame_t* frame) /* in: buffer frame of a file page */ { buf_block_t* block; mutex_enter(&(buf_pool->mutex)); block = buf_block_align(frame); ut_a(block->state == BUF_BLOCK_FILE_PAGE); buf_LRU_make_block_young(block); mutex_exit(&(buf_pool->mutex)); } /************************************************************************ Frees a buffer block which does not contain a file page. */ UNIV_INLINE void buf_block_free( /*===========*/ buf_block_t* block) /* in, own: block to be freed */ { ut_a(block->state != BUF_BLOCK_FILE_PAGE); mutex_enter(&(buf_pool->mutex)); buf_LRU_block_free_non_file_page(block); mutex_exit(&(buf_pool->mutex)); } /************************************************************************* Allocates a buffer frame. */ buf_frame_t* buf_frame_alloc(void) /*=================*/ /* out: buffer frame */ { return(buf_block_alloc()->frame); } /************************************************************************* Frees a buffer frame which does not contain a file page. */ void buf_frame_free( /*===========*/ buf_frame_t* frame) /* in: buffer frame */ { buf_block_free(buf_block_align(frame)); } /************************************************************************ Returns the buffer control block if the page can be found in the buffer pool. NOTE that it is possible that the page is not yet read from disk, though. This is a very low-level function: use with care! */ buf_block_t* buf_page_peek_block( /*================*/ /* out: control block if found from page hash table, otherwise NULL; NOTE that the page is not necessarily yet read from disk! */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); mutex_exit(&(buf_pool->mutex)); return(block); } /************************************************************************ Resets the check_index_page_at_flush field of a page if found in the buffer pool. */ void buf_reset_check_index_page_at_flush( /*================================*/ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (block) { block->check_index_page_at_flush = FALSE; } mutex_exit(&(buf_pool->mutex)); } /************************************************************************ Returns the current state of is_hashed of a page. FALSE if the page is not in the pool. NOTE that this operation does not fix the page in the pool if it is found there. */ ibool buf_page_peek_if_search_hashed( /*===========================*/ /* out: TRUE if page hash index is built in search system */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; ibool is_hashed; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (!block) { is_hashed = FALSE; } else { is_hashed = block->is_hashed; } mutex_exit(&(buf_pool->mutex)); return(is_hashed); } /************************************************************************ Returns TRUE if the page can be found in the buffer pool hash table. NOTE that it is possible that the page is not yet read from disk, though. */ ibool buf_page_peek( /*==========*/ /* out: TRUE if found from page hash table, NOTE that the page is not necessarily yet read from disk! */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { if (buf_page_peek_block(space, offset)) { return(TRUE); } return(FALSE); } /************************************************************************ Sets file_page_was_freed TRUE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. */ buf_block_t* buf_page_set_file_page_was_freed( /*=============================*/ /* out: control block if found from page hash table, otherwise NULL */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (block) { block->file_page_was_freed = TRUE; } mutex_exit(&(buf_pool->mutex)); return(block); } /************************************************************************ Sets file_page_was_freed FALSE if the page is found in the buffer pool. This function should be called when we free a file page and want the debug version to check that it is not accessed any more unless reallocated. */ buf_block_t* buf_page_reset_file_page_was_freed( /*===============================*/ /* out: control block if found from page hash table, otherwise NULL */ ulint space, /* in: space id */ ulint offset) /* in: page number */ { buf_block_t* block; mutex_enter_fast(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (block) { block->file_page_was_freed = FALSE; } mutex_exit(&(buf_pool->mutex)); return(block); } /************************************************************************ This is the general function used to get access to a database page. */ buf_frame_t* buf_page_get_gen( /*=============*/ /* out: pointer to the frame or NULL */ ulint space, /* in: space id */ ulint offset, /* in: page number */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH */ buf_frame_t* guess, /* in: guessed frame or NULL */ ulint mode, /* in: BUF_GET, BUF_GET_IF_IN_POOL, BUF_GET_NO_LATCH, BUF_GET_NOWAIT */ const char* file, /* in: file name */ ulint line, /* in: line where called */ mtr_t* mtr) /* in: mini-transaction */ { buf_block_t* block; ibool accessed; ulint fix_type; ibool success; ibool must_read; ut_ad(mtr); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode != BUF_GET_NO_LATCH) || (rw_latch == RW_NO_LATCH)); ut_ad((mode == BUF_GET) || (mode == BUF_GET_IF_IN_POOL) || (mode == BUF_GET_NO_LATCH) || (mode == BUF_GET_NOWAIT)); #ifndef UNIV_LOG_DEBUG ut_ad(!ibuf_inside() || ibuf_page(space, offset)); #endif buf_pool->n_page_gets++; loop: mutex_enter_fast(&(buf_pool->mutex)); block = NULL; if (guess) { block = buf_block_align(guess); if ((offset != block->offset) || (space != block->space) || (block->state != BUF_BLOCK_FILE_PAGE)) { block = NULL; } } if (block == NULL) { block = buf_page_hash_get(space, offset); } if (block == NULL) { /* Page not in buf_pool: needs to be read from file */ mutex_exit(&(buf_pool->mutex)); if (mode == BUF_GET_IF_IN_POOL) { return(NULL); } buf_read_page(space, offset); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 37 == 0) { ut_ad(buf_validate()); } #endif goto loop; } ut_a(block->state == BUF_BLOCK_FILE_PAGE); must_read = FALSE; if (block->io_fix == BUF_IO_READ) { must_read = TRUE; if (mode == BUF_GET_IF_IN_POOL) { /* The page is only being read to buffer */ mutex_exit(&(buf_pool->mutex)); return(NULL); } } /* If AWE is enabled and the page is not mapped to a frame, then map it */ if (block->frame == NULL) { ut_a(srv_use_awe); /* We set second parameter TRUE because the block is in the LRU list and we must put it to awe_LRU_free_mapped list once mapped to a frame */ buf_awe_map_page_to_frame(block, TRUE); } #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif buf_block_make_young(block); /* Check if this is the first access to the page */ accessed = block->accessed; block->accessed = TRUE; #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->file_page_was_freed == FALSE); #endif mutex_exit(&(buf_pool->mutex)); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); if (mode == BUF_GET_NOWAIT) { if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { ut_ad(rw_latch == RW_X_LATCH); success = rw_lock_x_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(NULL); } } else if (rw_latch == RW_NO_LATCH) { if (must_read) { /* Let us wait until the read operation completes */ for (;;) { mutex_enter(&(buf_pool->mutex)); if (block->io_fix == BUF_IO_READ) { mutex_exit(&(buf_pool->mutex)); /* Sleep 20 milliseconds */ os_thread_sleep(20000); } else { mutex_exit(&(buf_pool->mutex)); break; } } } fix_type = MTR_MEMO_BUF_FIX; } else if (rw_latch == RW_S_LATCH) { rw_lock_s_lock_func(&(block->lock), 0, file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { rw_lock_x_lock_func(&(block->lock), 0, file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } mtr_memo_push(mtr, block, fix_type); if (!accessed) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(space, offset); } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif return(block->frame); } /************************************************************************ This is the general function used to get optimistic access to a database page. */ ibool buf_page_optimistic_get_func( /*=========================*/ /* out: TRUE if success */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH */ buf_block_t* block, /* in: guessed buffer block */ buf_frame_t* guess, /* in: guessed frame; note that AWE may move frames */ dulint modify_clock,/* in: modify clock value if mode is ..._GUESS_ON_CLOCK */ const char* file, /* in: file name */ ulint line, /* in: line where called */ mtr_t* mtr) /* in: mini-transaction */ { ibool accessed; ibool success; ulint fix_type; ut_ad(mtr && block); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); mutex_enter(&(buf_pool->mutex)); /* If AWE is used, block may have a different frame now, e.g., NULL */ if (block->state != BUF_BLOCK_FILE_PAGE || block->frame != guess) { mutex_exit(&(buf_pool->mutex)); return(FALSE); } #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif buf_block_make_young(block); /* Check if this is the first access to the page */ accessed = block->accessed; block->accessed = TRUE; mutex_exit(&(buf_pool->mutex)); ut_ad(!ibuf_inside() || ibuf_page(block->space, block->offset)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } if (!UT_DULINT_EQ(modify_clock, block->modify_clock)) { #ifdef UNIV_SYNC_DEBUG buf_page_dbg_add_level(block->frame, SYNC_NO_ORDER_CHECK); #endif /* UNIV_SYNC_DEBUG */ if (rw_latch == RW_S_LATCH) { rw_lock_s_unlock(&(block->lock)); } else { rw_lock_x_unlock(&(block->lock)); } mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->file_page_was_freed == FALSE); #endif if (!accessed) { /* In the case of a first access, try to apply linear read-ahead */ buf_read_ahead_linear(buf_frame_get_space_id(guess), buf_frame_get_page_no(guess)); } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif buf_pool->n_page_gets++; return(TRUE); } /************************************************************************ This is used to get access to a known database page, when no waiting can be done. For example, if a search in an adaptive hash index leads us to this frame. */ ibool buf_page_get_known_nowait( /*======================*/ /* out: TRUE if success */ ulint rw_latch,/* in: RW_S_LATCH, RW_X_LATCH */ buf_frame_t* guess, /* in: the known page frame */ ulint mode, /* in: BUF_MAKE_YOUNG or BUF_KEEP_OLD */ const char* file, /* in: file name */ ulint line, /* in: line where called */ mtr_t* mtr) /* in: mini-transaction */ { buf_block_t* block; ibool success; ulint fix_type; ut_ad(mtr); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH)); mutex_enter(&(buf_pool->mutex)); block = buf_block_align(guess); if (block->state == BUF_BLOCK_REMOVE_HASH) { /* Another thread is just freeing the block from the LRU list of the buffer pool: do not try to access this page; this attempt to access the page can only come through the hash index because when the buffer block state is ..._REMOVE_HASH, we have already removed it from the page address hash table of the buffer pool. */ mutex_exit(&(buf_pool->mutex)); return(FALSE); } ut_a(block->state == BUF_BLOCK_FILE_PAGE); #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, file, line); #else buf_block_buf_fix_inc(block); #endif if (mode == BUF_MAKE_YOUNG) { buf_block_make_young(block); } mutex_exit(&(buf_pool->mutex)); ut_ad(!ibuf_inside() || (mode == BUF_KEEP_OLD)); if (rw_latch == RW_S_LATCH) { success = rw_lock_s_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_S_FIX; } else { success = rw_lock_x_lock_func_nowait(&(block->lock), file, line); fix_type = MTR_MEMO_PAGE_X_FIX; } if (!success) { mutex_enter(&(buf_pool->mutex)); block->buf_fix_count--; #ifdef UNIV_SYNC_DEBUG rw_lock_s_unlock(&(block->debug_latch)); #endif mutex_exit(&(buf_pool->mutex)); return(FALSE); } mtr_memo_push(mtr, block, fix_type); #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 5771 == 0) { ut_ad(buf_validate()); } #endif ut_ad(block->buf_fix_count > 0); ut_ad(block->state == BUF_BLOCK_FILE_PAGE); #ifdef UNIV_DEBUG_FILE_ACCESSES ut_a(block->file_page_was_freed == FALSE); #endif #ifdef UNIV_IBUF_DEBUG ut_a((mode == BUF_KEEP_OLD) || (ibuf_count_get(block->space, block->offset) == 0)); #endif buf_pool->n_page_gets++; return(TRUE); } /************************************************************************ Inits a page to the buffer buf_pool, for use in ibbackup --restore. */ void buf_page_init_for_backup_restore( /*=============================*/ ulint space, /* in: space id */ ulint offset, /* in: offset of the page within space in units of a page */ buf_block_t* block) /* in: block to init */ { /* Set the state of the block */ block->magic_n = BUF_BLOCK_MAGIC_N; block->state = BUF_BLOCK_FILE_PAGE; block->space = space; block->offset = offset; block->lock_hash_val = 0; block->lock_mutex = NULL; block->freed_page_clock = 0; block->newest_modification = ut_dulint_zero; block->oldest_modification = ut_dulint_zero; block->accessed = FALSE; block->buf_fix_count = 0; block->io_fix = 0; block->n_hash_helps = 0; block->is_hashed = FALSE; block->n_fields = 1; block->n_bytes = 0; block->side = BTR_SEARCH_LEFT_SIDE; block->file_page_was_freed = FALSE; } /************************************************************************ Inits a page to the buffer buf_pool. */ static void buf_page_init( /*==========*/ ulint space, /* in: space id */ ulint offset, /* in: offset of the page within space in units of a page */ buf_block_t* block) /* in: block to init */ { #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(buf_pool->mutex))); #endif /* UNIV_SYNC_DEBUG */ ut_a(block->state != BUF_BLOCK_FILE_PAGE); /* Set the state of the block */ block->magic_n = BUF_BLOCK_MAGIC_N; block->state = BUF_BLOCK_FILE_PAGE; block->space = space; block->offset = offset; block->check_index_page_at_flush = FALSE; block->lock_hash_val = lock_rec_hash(space, offset); block->lock_mutex = NULL; /* Insert into the hash table of file pages */ if (buf_page_hash_get(space, offset)) { fprintf(stderr, "InnoDB: Error: page %lu %lu already found from the hash table\n", (ulong) space, (ulong) offset); #ifdef UNIV_DEBUG buf_print(); buf_LRU_print(); buf_validate(); buf_LRU_validate(); #endif /* UNIV_DEBUG */ ut_a(0); } HASH_INSERT(buf_block_t, hash, buf_pool->page_hash, buf_page_address_fold(space, offset), block); block->freed_page_clock = 0; block->newest_modification = ut_dulint_zero; block->oldest_modification = ut_dulint_zero; block->accessed = FALSE; block->buf_fix_count = 0; block->io_fix = 0; block->n_hash_helps = 0; block->is_hashed = FALSE; block->n_fields = 1; block->n_bytes = 0; block->side = BTR_SEARCH_LEFT_SIDE; block->file_page_was_freed = FALSE; } /************************************************************************ Function which inits a page for read to the buffer buf_pool. If the page is (1) already in buf_pool, or (2) if we specify to read only ibuf pages and the page is not an ibuf page, or (3) if the space is deleted or being deleted, then this function does nothing. Sets the io_fix flag to BUF_IO_READ and sets a non-recursive exclusive lock on the buffer frame. The io-handler must take care that the flag is cleared and the lock released later. This is one of the functions which perform the state transition NOT_USED => FILE_PAGE to a block (the other is buf_page_create). */ buf_block_t* buf_page_init_for_read( /*===================*/ /* out: pointer to the block or NULL */ ulint* err, /* out: DB_SUCCESS or DB_TABLESPACE_DELETED */ ulint mode, /* in: BUF_READ_IBUF_PAGES_ONLY, ... */ ulint space, /* in: space id */ ib_longlong tablespace_version,/* in: prevents reading from a wrong version of the tablespace in case we have done DISCARD + IMPORT */ ulint offset) /* in: page number */ { buf_block_t* block; mtr_t mtr; ut_ad(buf_pool); *err = DB_SUCCESS; if (mode == BUF_READ_IBUF_PAGES_ONLY) { /* It is a read-ahead within an ibuf routine */ ut_ad(!ibuf_bitmap_page(offset)); ut_ad(ibuf_inside()); mtr_start(&mtr); if (!ibuf_page_low(space, offset, &mtr)) { mtr_commit(&mtr); return(NULL); } } else { ut_ad(mode == BUF_READ_ANY_PAGE); } block = buf_block_alloc(); ut_a(block); mutex_enter(&(buf_pool->mutex)); if (fil_tablespace_deleted_or_being_deleted_in_mem(space, tablespace_version)) { *err = DB_TABLESPACE_DELETED; } if (*err == DB_TABLESPACE_DELETED || NULL != buf_page_hash_get(space, offset)) { /* The page belongs to a space which has been deleted or is being deleted, or the page is already in buf_pool, return */ mutex_exit(&(buf_pool->mutex)); buf_block_free(block); if (mode == BUF_READ_IBUF_PAGES_ONLY) { mtr_commit(&mtr); } return(NULL); } ut_ad(block); buf_page_init(space, offset, block); /* The block must be put to the LRU list, to the old blocks */ buf_LRU_add_block(block, TRUE); /* TRUE == to old blocks */ block->io_fix = BUF_IO_READ; buf_pool->n_pend_reads++; /* We set a pass-type x-lock on the frame because then the same thread which called for the read operation (and is running now at this point of code) can wait for the read to complete by waiting for the x-lock on the frame; if the x-lock were recursive, the same thread would illegally get the x-lock before the page read is completed. The x-lock is cleared by the io-handler thread. */ rw_lock_x_lock_gen(&(block->lock), BUF_IO_READ); mutex_exit(&(buf_pool->mutex)); if (mode == BUF_READ_IBUF_PAGES_ONLY) { mtr_commit(&mtr); } return(block); } /************************************************************************ Initializes a page to the buffer buf_pool. The page is usually not read from a file even if it cannot be found in the buffer buf_pool. This is one of the functions which perform to a block a state transition NOT_USED => FILE_PAGE (the other is buf_page_init_for_read above). */ buf_frame_t* buf_page_create( /*============*/ /* out: pointer to the frame, page bufferfixed */ ulint space, /* in: space id */ ulint offset, /* in: offset of the page within space in units of a page */ mtr_t* mtr) /* in: mini-transaction handle */ { buf_frame_t* frame; buf_block_t* block; buf_block_t* free_block = NULL; ut_ad(mtr); free_block = buf_LRU_get_free_block(); mutex_enter(&(buf_pool->mutex)); block = buf_page_hash_get(space, offset); if (block != NULL) { #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif block->file_page_was_freed = FALSE; /* Page can be found in buf_pool */ mutex_exit(&(buf_pool->mutex)); buf_block_free(free_block); frame = buf_page_get_with_no_latch(space, offset, mtr); return(frame); } /* If we get here, the page was not in buf_pool: init it there */ #ifdef UNIV_DEBUG if (buf_debug_prints) { fprintf(stderr, "Creating space %lu page %lu to buffer\n", (ulong) space, (ulong) offset); } #endif /* UNIV_DEBUG */ block = free_block; buf_page_init(space, offset, block); /* The block must be put to the LRU list */ buf_LRU_add_block(block, FALSE); #ifdef UNIV_SYNC_DEBUG buf_block_buf_fix_inc_debug(block, __FILE__, __LINE__); #else buf_block_buf_fix_inc(block); #endif mtr_memo_push(mtr, block, MTR_MEMO_BUF_FIX); block->accessed = TRUE; buf_pool->n_pages_created++; mutex_exit(&(buf_pool->mutex)); /* Delete possible entries for the page from the insert buffer: such can exist if the page belonged to an index which was dropped */ ibuf_merge_or_delete_for_page(NULL, space, offset, TRUE); /* Flush pages from the end of the LRU list if necessary */ buf_flush_free_margin(); frame = block->frame; #ifdef UNIV_DEBUG buf_dbg_counter++; if (buf_dbg_counter % 357 == 0) { ut_ad(buf_validate()); } #endif #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif return(frame); } /************************************************************************ Completes an asynchronous read or write request of a file page to or from the buffer pool. */ void buf_page_io_complete( /*=================*/ buf_block_t* block) /* in: pointer to the block in question */ { ulint io_type; ulint read_page_no; ut_ad(block); ut_a(block->state == BUF_BLOCK_FILE_PAGE); io_type = block->io_fix; if (io_type == BUF_IO_READ) { /* If this page is not uninitialized and not in the doublewrite buffer, then the page number should be the same as in block */ read_page_no = mach_read_from_4((block->frame) + FIL_PAGE_OFFSET); if (read_page_no != 0 && !trx_doublewrite_page_inside(read_page_no) && read_page_no != block->offset) { fprintf(stderr, "InnoDB: Error: page n:o stored in the page read in is %lu, should be %lu!\n", (ulong) read_page_no, (ulong) block->offset); } /* From version 3.23.38 up we store the page checksum to the 4 first bytes of the page end lsn field */ if (buf_page_is_corrupted(block->frame)) { fprintf(stderr, "InnoDB: Database page corruption on disk or a failed\n" "InnoDB: file read of page %lu.\n", (ulong) block->offset); fputs( "InnoDB: You may have to recover from a backup.\n", stderr); buf_page_print(block->frame); fprintf(stderr, "InnoDB: Database page corruption on disk or a failed\n" "InnoDB: file read of page %lu.\n", (ulong) block->offset); fputs( "InnoDB: You may have to recover from a backup.\n", stderr); fputs( "InnoDB: It is also possible that your operating\n" "InnoDB: system has corrupted its own file cache\n" "InnoDB: and rebooting your computer removes the\n" "InnoDB: error.\n" "InnoDB: If the corrupt page is an index page\n" "InnoDB: you can also try to fix the corruption\n" "InnoDB: by dumping, dropping, and reimporting\n" "InnoDB: the corrupt table. You can use CHECK\n" "InnoDB: TABLE to scan your table for corruption.\n" "InnoDB: Look also at section 6.1 of\n" "InnoDB: http://www.innodb.com/ibman.php about\n" "InnoDB: forcing recovery.\n", stderr); if (srv_force_recovery < SRV_FORCE_IGNORE_CORRUPT) { fputs( "InnoDB: Ending processing because of a corrupt database page.\n", stderr); exit(1); } } if (recv_recovery_is_on()) { recv_recover_page(FALSE, TRUE, block->frame, block->space, block->offset); } if (!recv_no_ibuf_operations) { ibuf_merge_or_delete_for_page(block->frame, block->space, block->offset, TRUE); } } #ifdef UNIV_IBUF_DEBUG ut_a(ibuf_count_get(block->space, block->offset) == 0); #endif mutex_enter(&(buf_pool->mutex)); /* Because this thread which does the unlocking is not the same that did the locking, we use a pass value != 0 in unlock, which simply removes the newest lock debug record, without checking the thread id. */ block->io_fix = 0; if (io_type == BUF_IO_READ) { /* NOTE that the call to ibuf may have moved the ownership of the x-latch to this OS thread: do not let this confuse you in debugging! */ ut_ad(buf_pool->n_pend_reads > 0); buf_pool->n_pend_reads--; buf_pool->n_pages_read++; rw_lock_x_unlock_gen(&(block->lock), BUF_IO_READ); #ifdef UNIV_DEBUG if (buf_debug_prints) { fputs("Has read ", stderr); } #endif /* UNIV_DEBUG */ } else { ut_ad(io_type == BUF_IO_WRITE); /* Write means a flush operation: call the completion routine in the flush system */ buf_flush_write_complete(block); rw_lock_s_unlock_gen(&(block->lock), BUF_IO_WRITE); buf_pool->n_pages_written++; #ifdef UNIV_DEBUG if (buf_debug_prints) { fputs("Has written ", stderr); } #endif /* UNIV_DEBUG */ } mutex_exit(&(buf_pool->mutex)); #ifdef UNIV_DEBUG if (buf_debug_prints) { fprintf(stderr, "page space %lu page no %lu\n", (ulong) block->space, (ulong) block->offset); } #endif /* UNIV_DEBUG */ } /************************************************************************* Invalidates the file pages in the buffer pool when an archive recovery is completed. All the file pages buffered must be in a replaceable state when this function is called: not latched and not modified. */ void buf_pool_invalidate(void) /*=====================*/ { ibool freed; ut_ad(buf_all_freed()); freed = TRUE; while (freed) { freed = buf_LRU_search_and_free_block(100); } mutex_enter(&(buf_pool->mutex)); ut_ad(UT_LIST_GET_LEN(buf_pool->LRU) == 0); mutex_exit(&(buf_pool->mutex)); } #ifdef UNIV_DEBUG /************************************************************************* Validates the buffer buf_pool data structure. */ ibool buf_validate(void) /*==============*/ { buf_block_t* block; ulint i; ulint n_single_flush = 0; ulint n_lru_flush = 0; ulint n_list_flush = 0; ulint n_lru = 0; ulint n_flush = 0; ulint n_free = 0; ulint n_page = 0; ut_ad(buf_pool); mutex_enter(&(buf_pool->mutex)); for (i = 0; i < buf_pool->curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (block->state == BUF_BLOCK_FILE_PAGE) { ut_a(buf_page_hash_get(block->space, block->offset) == block); n_page++; #ifdef UNIV_IBUF_DEBUG ut_a((block->io_fix == BUF_IO_READ) || ibuf_count_get(block->space, block->offset) == 0); #endif if (block->io_fix == BUF_IO_WRITE) { if (block->flush_type == BUF_FLUSH_LRU) { n_lru_flush++; ut_a(rw_lock_is_locked(&(block->lock), RW_LOCK_SHARED)); } else if (block->flush_type == BUF_FLUSH_LIST) { n_list_flush++; } else if (block->flush_type == BUF_FLUSH_SINGLE_PAGE) { n_single_flush++; } else { ut_error; } } else if (block->io_fix == BUF_IO_READ) { ut_a(rw_lock_is_locked(&(block->lock), RW_LOCK_EX)); } n_lru++; if (ut_dulint_cmp(block->oldest_modification, ut_dulint_zero) > 0) { n_flush++; } } else if (block->state == BUF_BLOCK_NOT_USED) { n_free++; } } if (n_lru + n_free > buf_pool->curr_size) { fprintf(stderr, "n LRU %lu, n free %lu\n", (ulong) n_lru, (ulong) n_free); ut_error; } ut_a(UT_LIST_GET_LEN(buf_pool->LRU) == n_lru); if (UT_LIST_GET_LEN(buf_pool->free) != n_free) { fprintf(stderr, "Free list len %lu, free blocks %lu\n", (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) n_free); ut_error; } ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == n_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE] == n_single_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LIST] == n_list_flush); ut_a(buf_pool->n_flush[BUF_FLUSH_LRU] == n_lru_flush); mutex_exit(&(buf_pool->mutex)); ut_a(buf_LRU_validate()); ut_a(buf_flush_validate()); return(TRUE); } /************************************************************************* Prints info of the buffer buf_pool data structure. */ void buf_print(void) /*===========*/ { dulint* index_ids; ulint* counts; ulint size; ulint i; ulint j; dulint id; ulint n_found; buf_frame_t* frame; dict_index_t* index; ut_ad(buf_pool); size = buf_pool->curr_size; index_ids = mem_alloc(sizeof(dulint) * size); counts = mem_alloc(sizeof(ulint) * size); mutex_enter(&(buf_pool->mutex)); fprintf(stderr, "buf_pool size %lu\n" "database pages %lu\n" "free pages %lu\n" "modified database pages %lu\n" "n pending reads %lu\n" "n pending flush LRU %lu list %lu single page %lu\n" "pages read %lu, created %lu, written %lu\n", (ulong) size, (ulong) UT_LIST_GET_LEN(buf_pool->LRU), (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) UT_LIST_GET_LEN(buf_pool->flush_list), (ulong) buf_pool->n_pend_reads, (ulong) buf_pool->n_flush[BUF_FLUSH_LRU], (ulong) buf_pool->n_flush[BUF_FLUSH_LIST], (ulong) buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE], (ulong) buf_pool->n_pages_read, buf_pool->n_pages_created, (ulong) buf_pool->n_pages_written); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; for (i = 0 ; i < size; i++) { counts[i] = 0; } for (i = 0; i < size; i++) { frame = buf_pool_get_nth_block(buf_pool, i)->frame; if (fil_page_get_type(frame) == FIL_PAGE_INDEX) { id = btr_page_get_index_id(frame); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (ut_dulint_cmp(index_ids[j], id) == 0) { (counts[j])++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } mutex_exit(&(buf_pool->mutex)); for (i = 0; i < n_found; i++) { index = dict_index_get_if_in_cache(index_ids[i]); fprintf(stderr, "Block count for index %lu in buffer is about %lu", (ulong) ut_dulint_get_low(index_ids[i]), (ulong) counts[i]); if (index) { putc(' ', stderr); dict_index_name_print(stderr, index); } putc('\n', stderr); } mem_free(index_ids); mem_free(counts); ut_a(buf_validate()); } #endif /* UNIV_DEBUG */ /************************************************************************* Returns the number of pending buf pool ios. */ ulint buf_get_n_pending_ios(void) /*=======================*/ { return(buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]); } /************************************************************************* Returns the ratio in percents of modified pages in the buffer pool / database pages in the buffer pool. */ ulint buf_get_modified_ratio_pct(void) /*============================*/ { ulint ratio; mutex_enter(&(buf_pool->mutex)); ratio = (100 * UT_LIST_GET_LEN(buf_pool->flush_list)) / (1 + UT_LIST_GET_LEN(buf_pool->LRU) + UT_LIST_GET_LEN(buf_pool->free)); /* 1 + is there to avoid division by zero */ mutex_exit(&(buf_pool->mutex)); return(ratio); } /************************************************************************* Prints info of the buffer i/o. */ void buf_print_io( /*=========*/ FILE* file) /* in/out: buffer where to print */ { time_t current_time; double time_elapsed; ulint size; ut_ad(buf_pool); size = buf_pool->curr_size; mutex_enter(&(buf_pool->mutex)); if (srv_use_awe) { fprintf(stderr, "AWE: Buffer pool memory frames %lu\n", (ulong) buf_pool->n_frames); fprintf(stderr, "AWE: Database pages and free buffers mapped in frames %lu\n", (ulong) UT_LIST_GET_LEN(buf_pool->awe_LRU_free_mapped)); } fprintf(file, "Buffer pool size %lu\n" "Free buffers %lu\n" "Database pages %lu\n" "Modified db pages %lu\n" "Pending reads %lu\n" "Pending writes: LRU %lu, flush list %lu, single page %lu\n", (ulong) size, (ulong) UT_LIST_GET_LEN(buf_pool->free), (ulong) UT_LIST_GET_LEN(buf_pool->LRU), (ulong) UT_LIST_GET_LEN(buf_pool->flush_list), (ulong) buf_pool->n_pend_reads, (ulong) buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->init_flush[BUF_FLUSH_LRU], (ulong) buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->init_flush[BUF_FLUSH_LIST], (ulong) buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]); current_time = time(NULL); time_elapsed = 0.001 + difftime(current_time, buf_pool->last_printout_time); buf_pool->last_printout_time = current_time; fprintf(file, "Pages read %lu, created %lu, written %lu\n" "%.2f reads/s, %.2f creates/s, %.2f writes/s\n", (ulong) buf_pool->n_pages_read, (ulong) buf_pool->n_pages_created, (ulong) buf_pool->n_pages_written, (buf_pool->n_pages_read - buf_pool->n_pages_read_old) / time_elapsed, (buf_pool->n_pages_created - buf_pool->n_pages_created_old) / time_elapsed, (buf_pool->n_pages_written - buf_pool->n_pages_written_old) / time_elapsed); if (srv_use_awe) { fprintf(file, "AWE: %.2f page remaps/s\n", (buf_pool->n_pages_awe_remapped - buf_pool->n_pages_awe_remapped_old) / time_elapsed); } if (buf_pool->n_page_gets > buf_pool->n_page_gets_old) { fprintf(file, "Buffer pool hit rate %lu / 1000\n", (ulong) (1000 - ((1000 * (buf_pool->n_pages_read - buf_pool->n_pages_read_old)) / (buf_pool->n_page_gets - buf_pool->n_page_gets_old)))); } else { fputs("No buffer pool page gets since the last printout\n", file); } buf_pool->n_page_gets_old = buf_pool->n_page_gets; buf_pool->n_pages_read_old = buf_pool->n_pages_read; buf_pool->n_pages_created_old = buf_pool->n_pages_created; buf_pool->n_pages_written_old = buf_pool->n_pages_written; buf_pool->n_pages_awe_remapped_old = buf_pool->n_pages_awe_remapped; mutex_exit(&(buf_pool->mutex)); } /************************************************************************** Refreshes the statistics used to print per-second averages. */ void buf_refresh_io_stats(void) /*======================*/ { buf_pool->last_printout_time = time(NULL); buf_pool->n_page_gets_old = buf_pool->n_page_gets; buf_pool->n_pages_read_old = buf_pool->n_pages_read; buf_pool->n_pages_created_old = buf_pool->n_pages_created; buf_pool->n_pages_written_old = buf_pool->n_pages_written; buf_pool->n_pages_awe_remapped_old = buf_pool->n_pages_awe_remapped; } /************************************************************************* Checks that all file pages in the buffer are in a replaceable state. */ ibool buf_all_freed(void) /*===============*/ { buf_block_t* block; ulint i; ut_ad(buf_pool); mutex_enter(&(buf_pool->mutex)); for (i = 0; i < buf_pool->curr_size; i++) { block = buf_pool_get_nth_block(buf_pool, i); if (block->state == BUF_BLOCK_FILE_PAGE) { if (!buf_flush_ready_for_replace(block)) { fprintf(stderr, "Page %lu %lu still fixed or dirty\n", (ulong) block->space, (ulong) block->offset); ut_error; } } } mutex_exit(&(buf_pool->mutex)); return(TRUE); } /************************************************************************* Checks that there currently are no pending i/o-operations for the buffer pool. */ ibool buf_pool_check_no_pending_io(void) /*==============================*/ /* out: TRUE if there is no pending i/o */ { ibool ret; mutex_enter(&(buf_pool->mutex)); if (buf_pool->n_pend_reads + buf_pool->n_flush[BUF_FLUSH_LRU] + buf_pool->n_flush[BUF_FLUSH_LIST] + buf_pool->n_flush[BUF_FLUSH_SINGLE_PAGE]) { ret = FALSE; } else { ret = TRUE; } mutex_exit(&(buf_pool->mutex)); return(ret); } /************************************************************************* Gets the current length of the free list of buffer blocks. */ ulint buf_get_free_list_len(void) /*=======================*/ { ulint len; mutex_enter(&(buf_pool->mutex)); len = UT_LIST_GET_LEN(buf_pool->free); mutex_exit(&(buf_pool->mutex)); return(len); }