/* Copyright (C) 2000-2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This file defines the NDB Cluster handler: the interface between MySQL and NDB Cluster */ #ifdef USE_PRAGMA_IMPLEMENTATION #pragma implementation // gcc: Class implementation #endif #include "mysql_priv.h" #include <my_dir.h> #include "ha_ndbcluster.h" #include <ndbapi/NdbApi.hpp> #include <ndbapi/NdbScanFilter.hpp> #include <../util/Bitmask.hpp> #include <ndbapi/NdbIndexStat.hpp> #include "ha_ndbcluster_binlog.h" #ifdef ndb_dynamite #undef assert #define assert(x) do { if(x) break; ::printf("%s %d: assert failed: %s\n", __FILE__, __LINE__, #x); ::fflush(stdout); ::signal(SIGABRT,SIG_DFL); ::abort(); ::kill(::getpid(),6); ::kill(::getpid(),9); } while (0) #endif // options from from mysqld.cc extern my_bool opt_ndb_optimized_node_selection; extern const char *opt_ndbcluster_connectstring; const char *ndb_distribution_names[]= {"KEYHASH", "LINHASH", NullS}; TYPELIB ndb_distribution_typelib= { array_elements(ndb_distribution_names)-1, "", ndb_distribution_names, NULL }; const char *opt_ndb_distribution= ndb_distribution_names[ND_KEYHASH]; enum ndb_distribution opt_ndb_distribution_id= ND_KEYHASH; // Default value for parallelism static const int parallelism= 0; // Default value for max number of transactions // createable against NDB from this handler static const int max_transactions= 3; // should really be 2 but there is a transaction to much allocated when loch table is used static uint ndbcluster_partition_flags(); static uint ndbcluster_alter_table_flags(uint flags); static bool ndbcluster_init(void); static int ndbcluster_end(ha_panic_function flag); static bool ndbcluster_show_status(THD*,stat_print_fn *,enum ha_stat_type); static int ndbcluster_alter_tablespace(THD* thd, st_alter_tablespace *info); handlerton ndbcluster_hton = { MYSQL_HANDLERTON_INTERFACE_VERSION, "ndbcluster", SHOW_OPTION_YES, "Clustered, fault-tolerant, memory-based tables", DB_TYPE_NDBCLUSTER, ndbcluster_init, ~(uint)0, /* slot */ }; static handler *ndbcluster_create_handler(TABLE_SHARE *table) { return new ha_ndbcluster(table); } static uint ndbcluster_partition_flags() { return (HA_CAN_PARTITION | HA_CAN_UPDATE_PARTITION_KEY | HA_CAN_PARTITION_UNIQUE | HA_USE_AUTO_PARTITION); } static uint ndbcluster_alter_table_flags(uint flags) { if (flags & ALTER_DROP_PARTITION) return 0; else return (HA_ONLINE_ADD_INDEX | HA_ONLINE_DROP_INDEX | HA_ONLINE_ADD_UNIQUE_INDEX | HA_ONLINE_DROP_UNIQUE_INDEX | HA_PARTITION_FUNCTION_SUPPORTED); } #define NDB_HIDDEN_PRIMARY_KEY_LENGTH 8 #define NDB_FAILED_AUTO_INCREMENT ~(Uint64)0 #define NDB_AUTO_INCREMENT_RETRIES 10 #define NDB_INVALID_SCHEMA_OBJECT 241 #define ERR_PRINT(err) \ DBUG_PRINT("error", ("%d message: %s", err.code, err.message)) #define ERR_RETURN(err) \ { \ const NdbError& tmp= err; \ ERR_PRINT(tmp); \ DBUG_RETURN(ndb_to_mysql_error(&tmp)); \ } #define ERR_BREAK(err, code) \ { \ const NdbError& tmp= err; \ ERR_PRINT(tmp); \ code= ndb_to_mysql_error(&tmp); \ break; \ } static int ndbcluster_inited= 0; int ndbcluster_util_inited= 0; static Ndb* g_ndb= NULL; Ndb_cluster_connection* g_ndb_cluster_connection= NULL; unsigned char g_node_id_map[max_ndb_nodes]; // Handler synchronization pthread_mutex_t ndbcluster_mutex; // Table lock handling HASH ndbcluster_open_tables; static byte *ndbcluster_get_key(NDB_SHARE *share,uint *length, my_bool not_used __attribute__((unused))); #ifdef HAVE_NDB_BINLOG static int rename_share(NDB_SHARE *share, const char *new_key); #endif static void ndb_set_fragmentation(NDBTAB &tab, TABLE *table, uint pk_len); static int ndb_get_table_statistics(Ndb*, const char *, struct Ndb_statistics *); // Util thread variables pthread_t ndb_util_thread; pthread_mutex_t LOCK_ndb_util_thread; pthread_cond_t COND_ndb_util_thread; pthread_handler_t ndb_util_thread_func(void *arg); ulong ndb_cache_check_time; /* Dummy buffer to read zero pack_length fields which are mapped to 1 char */ static uint32 dummy_buf; /* Stats that can be retrieved from ndb */ struct Ndb_statistics { Uint64 row_count; Uint64 commit_count; Uint64 row_size; Uint64 fragment_memory; }; /* Status variables shown with 'show status like 'Ndb%' */ static long ndb_cluster_node_id= 0; static const char * ndb_connected_host= 0; static long ndb_connected_port= 0; static long ndb_number_of_replicas= 0; long ndb_number_of_storage_nodes= 0; static int update_status_variables(Ndb_cluster_connection *c) { ndb_cluster_node_id= c->node_id(); ndb_connected_port= c->get_connected_port(); ndb_connected_host= c->get_connected_host(); ndb_number_of_replicas= 0; ndb_number_of_storage_nodes= c->no_db_nodes(); return 0; } SHOW_VAR ndb_status_variables[]= { {"cluster_node_id", (char*) &ndb_cluster_node_id, SHOW_LONG}, {"connected_host", (char*) &ndb_connected_host, SHOW_CHAR_PTR}, {"connected_port", (char*) &ndb_connected_port, SHOW_LONG}, // {"number_of_replicas", (char*) &ndb_number_of_replicas, SHOW_LONG}, {"number_of_storage_nodes",(char*) &ndb_number_of_storage_nodes, SHOW_LONG}, {NullS, NullS, SHOW_LONG} }; /* Error handling functions */ /* Note for merge: old mapping table, moved to storage/ndb/ndberror.c */ static int ndb_to_mysql_error(const NdbError *ndberr) { /* read the mysql mapped error code */ int error= ndberr->mysql_code; switch (error) { /* errors for which we do not add warnings, just return mapped error code */ case HA_ERR_NO_SUCH_TABLE: case HA_ERR_KEY_NOT_FOUND: case HA_ERR_FOUND_DUPP_KEY: return error; /* Mapping missing, go with the ndb error code*/ case -1: error= ndberr->code; break; /* Mapping exists, go with the mapped code */ default: break; } /* Push the NDB error message as warning - Used to be able to use SHOW WARNINGS toget more info on what the error is - Used by replication to see if the error was temporary */ if (ndberr->status == NdbError::TemporaryError) push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR, ER_GET_TEMPORARY_ERRMSG, ER(ER_GET_TEMPORARY_ERRMSG), ndberr->code, ndberr->message, "NDB"); else push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR, ER_GET_ERRMSG, ER(ER_GET_ERRMSG), ndberr->code, ndberr->message, "NDB"); return error; } int execute_no_commit_ignore_no_key(ha_ndbcluster *h, NdbTransaction *trans) { int res= trans->execute(NdbTransaction::NoCommit, NdbTransaction::AO_IgnoreError, h->m_force_send); if (res == 0) return 0; const NdbError &err= trans->getNdbError(); if (err.classification != NdbError::ConstraintViolation && err.classification != NdbError::NoDataFound) return res; return 0; } inline int execute_no_commit(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return h->m_ignore_no_key ? execute_no_commit_ignore_no_key(h,trans) : trans->execute(NdbTransaction::NoCommit, NdbTransaction::AbortOnError, h->m_force_send); } inline int execute_commit(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::Commit, NdbTransaction::AbortOnError, h->m_force_send); } inline int execute_commit(THD *thd, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::Commit, NdbTransaction::AbortOnError, thd->variables.ndb_force_send); } inline int execute_no_commit_ie(ha_ndbcluster *h, NdbTransaction *trans) { #ifdef NOT_USED int m_batch_execute= 0; if (m_batch_execute) return 0; #endif return trans->execute(NdbTransaction::NoCommit, NdbTransaction::AO_IgnoreError, h->m_force_send); } /* Place holder for ha_ndbcluster thread specific data */ Thd_ndb::Thd_ndb() { ndb= new Ndb(g_ndb_cluster_connection, ""); lock_count= 0; count= 0; all= NULL; stmt= NULL; error= 0; options= 0; } Thd_ndb::~Thd_ndb() { if (ndb) { #ifndef DBUG_OFF Ndb::Free_list_usage tmp; tmp.m_name= 0; while (ndb->get_free_list_usage(&tmp)) { uint leaked= (uint) tmp.m_created - tmp.m_free; if (leaked) fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n", leaked, tmp.m_name, (leaked == 1)?"":"'s", (leaked == 1)?"has":"have"); } #endif delete ndb; ndb= NULL; } changed_tables.empty(); } inline Ndb *ha_ndbcluster::get_ndb() { return get_thd_ndb(current_thd)->ndb; } /* * manage uncommitted insert/deletes during transactio to get records correct */ struct Ndb_local_table_statistics { int no_uncommitted_rows_count; ulong last_count; ha_rows records; }; void ha_ndbcluster::set_rec_per_key() { DBUG_ENTER("ha_ndbcluster::get_status_const"); for (uint i=0 ; i < table_share->keys ; i++) { table->key_info[i].rec_per_key[table->key_info[i].key_parts-1]= 1; } DBUG_VOID_RETURN; } void ha_ndbcluster::records_update() { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::records_update"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); // if (info->records == ~(ha_rows)0) { Ndb *ndb= get_ndb(); struct Ndb_statistics stat; if (ndb_get_table_statistics(ndb, m_tabname, &stat) == 0){ mean_rec_length= stat.row_size; data_file_length= stat.fragment_memory; info->records= stat.row_count; } } { THD *thd= current_thd; if (get_thd_ndb(thd)->error) info->no_uncommitted_rows_count= 0; } records= info->records+ info->no_uncommitted_rows_count; DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_execute_failure() { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_execute_failure"); get_thd_ndb(current_thd)->error= 1; DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_init(THD *thd) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_init"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; Thd_ndb *thd_ndb= get_thd_ndb(thd); if (info->last_count != thd_ndb->count) { info->last_count= thd_ndb->count; info->no_uncommitted_rows_count= 0; info->records= ~(ha_rows)0; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); } DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_update(int c) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_update"); struct Ndb_local_table_statistics *info= (struct Ndb_local_table_statistics *)m_table_info; info->no_uncommitted_rows_count+= c; DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d", ((const NDBTAB *)m_table)->getTableId(), info->no_uncommitted_rows_count)); DBUG_VOID_RETURN; } void ha_ndbcluster::no_uncommitted_rows_reset(THD *thd) { if (m_ha_not_exact_count) return; DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_reset"); Thd_ndb *thd_ndb= get_thd_ndb(thd); thd_ndb->count++; thd_ndb->error= 0; DBUG_VOID_RETURN; } /* Take care of the error that occured in NDB RETURN 0 No error # The mapped error code */ void ha_ndbcluster::invalidate_dictionary_cache(TABLE_SHARE *share, Ndb *ndb, const char *tabname, bool global) { NDBDICT *dict= ndb->getDictionary(); DBUG_ENTER("invalidate_dictionary_cache"); DBUG_PRINT("info", ("invalidating %s", tabname)); if (global) { const NDBTAB *tab= dict->getTable(tabname); if (!tab) DBUG_VOID_RETURN; if (tab->getObjectStatus() == NdbDictionary::Object::Invalid) { // Global cache has already been invalidated dict->removeCachedTable(tabname); global= FALSE; } else dict->invalidateTable(tabname); } else dict->removeCachedTable(tabname); share->version=0L; /* Free when thread is ready */ DBUG_VOID_RETURN; } void ha_ndbcluster::invalidate_dictionary_cache(bool global) { NDBDICT *dict= get_ndb()->getDictionary(); invalidate_dictionary_cache(table_share, get_ndb(), m_tabname, global); /* Invalidate indexes */ for (uint i= 0; i < table_share->keys; i++) { NDBINDEX *index = (NDBINDEX *) m_index[i].index; NDBINDEX *unique_index = (NDBINDEX *) m_index[i].unique_index; NDB_INDEX_TYPE idx_type= m_index[i].type; switch (idx_type) { case PRIMARY_KEY_ORDERED_INDEX: case ORDERED_INDEX: if (global) dict->invalidateIndex(index->getName(), m_tabname); else dict->removeCachedIndex(index->getName(), m_tabname); break; case UNIQUE_ORDERED_INDEX: if (global) dict->invalidateIndex(index->getName(), m_tabname); else dict->removeCachedIndex(index->getName(), m_tabname); case UNIQUE_INDEX: if (global) dict->invalidateIndex(unique_index->getName(), m_tabname); else dict->removeCachedIndex(unique_index->getName(), m_tabname); break; case PRIMARY_KEY_INDEX: case UNDEFINED_INDEX: break; } } } int ha_ndbcluster::ndb_err(NdbTransaction *trans) { int res; NdbError err= trans->getNdbError(); DBUG_ENTER("ndb_err"); ERR_PRINT(err); switch (err.classification) { case NdbError::SchemaError: invalidate_dictionary_cache(TRUE); if (err.code==284) { /* Check if the table is _really_ gone or if the table has been alterend and thus changed table id */ NDBDICT *dict= get_ndb()->getDictionary(); DBUG_PRINT("info", ("Check if table %s is really gone", m_tabname)); if (!(dict->getTable(m_tabname))) { err= dict->getNdbError(); DBUG_PRINT("info", ("Table not found, error: %d", err.code)); if (err.code != 709 && err.code != 723) DBUG_RETURN(1); } DBUG_PRINT("info", ("Table exists but must have changed")); } break; default: break; } res= ndb_to_mysql_error(&err); DBUG_PRINT("info", ("transformed ndbcluster error %d to mysql error %d", err.code, res)); if (res == HA_ERR_FOUND_DUPP_KEY) { if (m_rows_to_insert == 1) m_dupkey= table_share->primary_key; else { /* We are batching inserts, offending key is not available */ m_dupkey= (uint) -1; } } DBUG_RETURN(res); } /* Override the default get_error_message in order to add the error message of NDB */ bool ha_ndbcluster::get_error_message(int error, String *buf) { DBUG_ENTER("ha_ndbcluster::get_error_message"); DBUG_PRINT("enter", ("error: %d", error)); Ndb *ndb= get_ndb(); if (!ndb) DBUG_RETURN(FALSE); const NdbError err= ndb->getNdbError(error); bool temporary= err.status==NdbError::TemporaryError; buf->set(err.message, strlen(err.message), &my_charset_bin); DBUG_PRINT("exit", ("message: %s, temporary: %d", buf->ptr(), temporary)); DBUG_RETURN(temporary); } #ifndef DBUG_OFF /* Check if type is supported by NDB. */ static bool ndb_supported_type(enum_field_types type) { switch (type) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_INT24: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_NEWDECIMAL: case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_DATE: case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_TIME: case MYSQL_TYPE_YEAR: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VAR_STRING: case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_TINY_BLOB: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: case MYSQL_TYPE_BIT: case MYSQL_TYPE_GEOMETRY: return TRUE; case MYSQL_TYPE_NULL: break; } return FALSE; } #endif /* !DBUG_OFF */ /* Instruct NDB to set the value of the hidden primary key */ bool ha_ndbcluster::set_hidden_key(NdbOperation *ndb_op, uint fieldnr, const byte *field_ptr) { DBUG_ENTER("set_hidden_key"); DBUG_RETURN(ndb_op->equal(fieldnr, (char*)field_ptr) != 0); } /* Instruct NDB to set the value of one primary key attribute */ int ha_ndbcluster::set_ndb_key(NdbOperation *ndb_op, Field *field, uint fieldnr, const byte *field_ptr) { uint32 pack_len= field->pack_length(); DBUG_ENTER("set_ndb_key"); DBUG_PRINT("enter", ("%d: %s, ndb_type: %u, len=%d", fieldnr, field->field_name, field->type(), pack_len)); DBUG_DUMP("key", (char*)field_ptr, pack_len); DBUG_ASSERT(ndb_supported_type(field->type())); DBUG_ASSERT(! (field->flags & BLOB_FLAG)); // Common implementation for most field types DBUG_RETURN(ndb_op->equal(fieldnr, (char*) field_ptr, pack_len) != 0); } /* Instruct NDB to set the value of one attribute */ int ha_ndbcluster::set_ndb_value(NdbOperation *ndb_op, Field *field, uint fieldnr, int row_offset, bool *set_blob_value) { const byte* field_ptr= field->ptr + row_offset; uint32 pack_len= field->pack_length(); DBUG_ENTER("set_ndb_value"); DBUG_PRINT("enter", ("%d: %s type: %u len=%d is_null=%s", fieldnr, field->field_name, field->type(), pack_len, field->is_null(row_offset) ? "Y" : "N")); DBUG_DUMP("value", (char*) field_ptr, pack_len); DBUG_ASSERT(ndb_supported_type(field->type())); { // ndb currently does not support size 0 uint32 empty_field; if (pack_len == 0) { pack_len= sizeof(empty_field); field_ptr= (byte *)&empty_field; if (field->is_null(row_offset)) empty_field= 0; else empty_field= 1; } if (! (field->flags & BLOB_FLAG)) { if (field->type() != MYSQL_TYPE_BIT) { if (field->is_null(row_offset)) { DBUG_PRINT("info", ("field is NULL")); // Set value to NULL DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0)); } // Common implementation for most field types DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)field_ptr) != 0); } else // if (field->type() == MYSQL_TYPE_BIT) { longlong bits= field->val_int(); // Round up bit field length to nearest word boundry pack_len= ((pack_len + 3) >> 2) << 2; DBUG_ASSERT(pack_len <= 8); if (field->is_null(row_offset)) // Set value to NULL DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0)); DBUG_PRINT("info", ("bit field")); DBUG_DUMP("value", (char*)&bits, pack_len); #ifdef WORDS_BIGENDIAN if (pack_len < 5) { DBUG_RETURN(ndb_op->setValue(fieldnr, ((char*)&bits)+4) != 0); } #endif DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)&bits) != 0); } } // Blob type NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr); if (ndb_blob != NULL) { if (field->is_null(row_offset)) DBUG_RETURN(ndb_blob->setNull() != 0); Field_blob *field_blob= (Field_blob*)field; // Get length and pointer to data uint32 blob_len= field_blob->get_length(field_ptr); char* blob_ptr= NULL; field_blob->get_ptr(&blob_ptr); // Looks like NULL ptr signals length 0 blob if (blob_ptr == NULL) { DBUG_ASSERT(blob_len == 0); blob_ptr= (char*)""; } DBUG_PRINT("value", ("set blob ptr=%p len=%u", blob_ptr, blob_len)); DBUG_DUMP("value", (char*)blob_ptr, min(blob_len, 26)); if (set_blob_value) *set_blob_value= TRUE; // No callback needed to write value DBUG_RETURN(ndb_blob->setValue(blob_ptr, blob_len) != 0); } DBUG_RETURN(1); } } /* Callback to read all blob values. - not done in unpack_record because unpack_record is valid after execute(Commit) but reading blobs is not - may only generate read operations; they have to be executed somewhere before the data is available - due to single buffer for all blobs, we let the last blob process all blobs (last so that all are active) - null bit is still set in unpack_record - TODO allocate blob part aligned buffers */ NdbBlob::ActiveHook g_get_ndb_blobs_value; int g_get_ndb_blobs_value(NdbBlob *ndb_blob, void *arg) { DBUG_ENTER("g_get_ndb_blobs_value"); if (ndb_blob->blobsNextBlob() != NULL) DBUG_RETURN(0); ha_ndbcluster *ha= (ha_ndbcluster *)arg; int ret= get_ndb_blobs_value(ha->table, ha->m_value, ha->m_blobs_buffer, ha->m_blobs_buffer_size, 0); DBUG_RETURN(ret); } /* This routine is shared by injector. There is no common blobs buffer so the buffer and length are passed by reference. Injector also passes a record pointer diff. */ int get_ndb_blobs_value(TABLE* table, NdbValue* value_array, byte*& buffer, uint& buffer_size, my_ptrdiff_t ptrdiff) { DBUG_ENTER("get_ndb_blobs_value"); // Field has no field number so cannot use TABLE blob_field // Loop twice, first only counting total buffer size for (int loop= 0; loop <= 1; loop++) { uint32 offset= 0; for (uint i= 0; i < table->s->fields; i++) { Field *field= table->field[i]; NdbValue value= value_array[i]; if (value.ptr != NULL && (field->flags & BLOB_FLAG)) { Field_blob *field_blob= (Field_blob *)field; NdbBlob *ndb_blob= value.blob; int isNull; ndb_blob->getDefined(isNull); if (isNull == 0) { // XXX -1 should be allowed only for events Uint64 blob_len= 0; if (ndb_blob->getLength(blob_len) != 0) DBUG_RETURN(-1); // Align to Uint64 uint32 blob_size= blob_len; if (blob_size % 8 != 0) blob_size+= 8 - blob_size % 8; if (loop == 1) { char *buf= buffer + offset; uint32 len= 0xffffffff; // Max uint32 DBUG_PRINT("info", ("read blob ptr=%p len=%u", buf, (uint) blob_len)); if (ndb_blob->readData(buf, len) != 0) DBUG_RETURN(-1); DBUG_PRINT("info", ("blob field %d offset=%u len=%u [ptrdiff=%d]", i, offset, len, (int)ptrdiff)); DBUG_ASSERT(len == blob_len); // Ugly hack assumes only ptr needs to be changed field_blob->ptr+= ptrdiff; field_blob->set_ptr(len, buf); field_blob->ptr-= ptrdiff; } offset+= blob_size; } else { if (loop == 1) { // have to set length even in this case char *buf= buffer + offset; uint32 len= 0; field_blob->ptr+= ptrdiff; field_blob->set_ptr(len, buf); field_blob->ptr-= ptrdiff; DBUG_PRINT("info", ("blob field %d isNull=%d", i, isNull)); } } } } if (loop == 0 && offset > buffer_size) { my_free(buffer, MYF(MY_ALLOW_ZERO_PTR)); buffer_size= 0; DBUG_PRINT("info", ("allocate blobs buffer size %u", offset)); buffer= my_malloc(offset, MYF(MY_WME)); if (buffer == NULL) DBUG_RETURN(-1); buffer_size= offset; } } DBUG_RETURN(0); } /* Instruct NDB to fetch one field - data is read directly into buffer provided by field if field is NULL, data is read into memory provided by NDBAPI */ int ha_ndbcluster::get_ndb_value(NdbOperation *ndb_op, Field *field, uint fieldnr, byte* buf) { DBUG_ENTER("get_ndb_value"); DBUG_PRINT("enter", ("fieldnr: %d flags: %o", fieldnr, (int)(field != NULL ? field->flags : 0))); if (field != NULL) { DBUG_ASSERT(buf); DBUG_ASSERT(ndb_supported_type(field->type())); DBUG_ASSERT(field->ptr != NULL); if (! (field->flags & BLOB_FLAG)) { if (field->type() != MYSQL_TYPE_BIT) { byte *field_buf; if (field->pack_length() != 0) field_buf= buf + (field->ptr - table->record[0]); else field_buf= (byte *)&dummy_buf; m_value[fieldnr].rec= ndb_op->getValue(fieldnr, field_buf); } else // if (field->type() == MYSQL_TYPE_BIT) { m_value[fieldnr].rec= ndb_op->getValue(fieldnr); } DBUG_RETURN(m_value[fieldnr].rec == NULL); } // Blob type NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr); m_value[fieldnr].blob= ndb_blob; if (ndb_blob != NULL) { // Set callback void *arg= (void *)this; DBUG_RETURN(ndb_blob->setActiveHook(g_get_ndb_blobs_value, arg) != 0); } DBUG_RETURN(1); } // Used for hidden key only m_value[fieldnr].rec= ndb_op->getValue(fieldnr, NULL); DBUG_RETURN(m_value[fieldnr].rec == NULL); } /* Check if any set or get of blob value in current query. */ bool ha_ndbcluster::uses_blob_value() { if (table_share->blob_fields == 0) return FALSE; { uint no_fields= table_share->fields; int i; // They always put blobs at the end.. for (i= no_fields - 1; i >= 0; i--) { if ((m_write_op && ha_get_bit_in_write_set(i+1)) || (!m_write_op && ha_get_bit_in_read_set(i+1))) { return TRUE; } } } return FALSE; } /* Get metadata for this table from NDB IMPLEMENTATION - check that frm-file on disk is equal to frm-file of table accessed in NDB RETURN 0 ok -2 Meta data has changed; Re-read data and try again */ static int cmp_frm(const NDBTAB *ndbtab, const void *pack_data, uint pack_length) { DBUG_ENTER("cmp_frm"); /* Compare FrmData in NDB with frm file from disk. */ if ((pack_length != ndbtab->getFrmLength()) || (memcmp(pack_data, ndbtab->getFrmData(), pack_length))) DBUG_RETURN(1); DBUG_RETURN(0); } int ha_ndbcluster::get_metadata(const char *path) { Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); const NDBTAB *tab; int error; bool invalidating_ndb_table= FALSE; DBUG_ENTER("get_metadata"); DBUG_PRINT("enter", ("m_tabname: %s, path: %s", m_tabname, path)); do { const void *data, *pack_data; uint length, pack_length; if (!(tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); // Check if thread has stale local cache if (tab->getObjectStatus() == NdbDictionary::Object::Invalid) { invalidate_dictionary_cache(FALSE); if (!(tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); } /* Compare FrmData in NDB with frm file from disk. */ error= 0; if (readfrm(path, &data, &length) || packfrm(data, length, &pack_data, &pack_length)) { my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(1); } if (m_share->state != NSS_ALTERED && cmp_frm(tab, pack_data, pack_length)) { if (!invalidating_ndb_table) { DBUG_PRINT("info", ("Invalidating table")); invalidate_dictionary_cache(TRUE); invalidating_ndb_table= TRUE; } else { DBUG_PRINT("error", ("metadata, pack_length: %d getFrmLength: %d memcmp: %d", pack_length, tab->getFrmLength(), memcmp(pack_data, tab->getFrmData(), pack_length))); DBUG_DUMP("pack_data", (char*)pack_data, pack_length); DBUG_DUMP("frm", (char*)tab->getFrmData(), tab->getFrmLength()); error= HA_ERR_TABLE_DEF_CHANGED; invalidating_ndb_table= FALSE; } } else { invalidating_ndb_table= FALSE; } my_free((char*)data, MYF(0)); my_free((char*)pack_data, MYF(0)); } while (invalidating_ndb_table); if (error) DBUG_RETURN(error); m_table_version= tab->getObjectVersion(); m_table= (void *)tab; m_table_info= NULL; // Set in external lock DBUG_RETURN(open_indexes(ndb, table)); } static int fix_unique_index_attr_order(NDB_INDEX_DATA &data, const NDBINDEX *index, KEY *key_info) { DBUG_ENTER("fix_unique_index_attr_order"); unsigned sz= index->getNoOfIndexColumns(); if (data.unique_index_attrid_map) my_free((char*)data.unique_index_attrid_map, MYF(0)); data.unique_index_attrid_map= (unsigned char*)my_malloc(sz,MYF(MY_WME)); KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ASSERT(key_info->key_parts == sz); for (unsigned i= 0; key_part != end; key_part++, i++) { const char *field_name= key_part->field->field_name; #ifndef DBUG_OFF data.unique_index_attrid_map[i]= 255; #endif for (unsigned j= 0; j < sz; j++) { const NDBCOL *c= index->getColumn(j); if (strcmp(field_name, c->getName()) == 0) { data.unique_index_attrid_map[i]= j; break; } } DBUG_ASSERT(data.unique_index_attrid_map[i] != 255); } DBUG_RETURN(0); } int ha_ndbcluster::table_changed(const void *pack_frm_data, uint pack_frm_len) { Ndb *ndb; NDBDICT *dict; const NDBTAB *orig_tab; NdbDictionary::Table new_tab; int result; DBUG_ENTER("ha_ndbcluster::table_changed"); DBUG_PRINT("info", ("Modifying frm for table %s", m_tabname)); if (check_ndb_connection()) DBUG_RETURN(my_errno= HA_ERR_NO_CONNECTION); ndb= get_ndb(); dict= ndb->getDictionary(); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); // Check if thread has stale local cache if (orig_tab->getObjectStatus() == NdbDictionary::Object::Invalid) { dict->removeCachedTable(m_tabname); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); } new_tab= *orig_tab; new_tab.setFrm(pack_frm_data, pack_frm_len); if (dict->alterTable(new_tab) != 0) ERR_RETURN(dict->getNdbError()); DBUG_RETURN(0); } /* Create all the indexes for a table. If any index should fail to be created, the error is returned immediately */ int ha_ndbcluster::create_indexes(Ndb *ndb, TABLE *tab) { uint i; int error= 0; const char *index_name; KEY* key_info= tab->key_info; const char **key_name= tab->s->keynames.type_names; NDBDICT *dict= ndb->getDictionary(); DBUG_ENTER("ha_ndbcluster::create_indexes"); for (i= 0; i < tab->s->keys; i++, key_info++, key_name++) { index_name= *key_name; NDB_INDEX_TYPE idx_type= get_index_type_from_table(i); error= create_index(index_name, key_info, idx_type, i); if (error) { DBUG_PRINT("error", ("Failed to create index %u", i)); break; } } DBUG_RETURN(error); } void ha_ndbcluster::clear_index(int i) { m_index[i].type= UNDEFINED_INDEX; m_index[i].status= UNDEFINED; m_index[i].unique_index= NULL; m_index[i].index= NULL; m_index[i].unique_index_attrid_map= NULL; m_index[i].index_stat=NULL; m_index[i].index_stat_cache_entries=0; m_index[i].index_stat_update_freq=0; m_index[i].index_stat_query_count=0; } void ha_ndbcluster::clear_indexes() { for (int i= 0; i < MAX_KEY; i++) clear_index(i); } /* Associate a direct reference to an index handle with an index (for faster access) */ int ha_ndbcluster::add_index_handle(THD *thd, NDBDICT *dict, KEY *key_info, const char *index_name, uint index_no) { int error= 0; NDB_INDEX_TYPE idx_type= get_index_type_from_table(index_no); m_index[index_no].type= idx_type; DBUG_ENTER("ha_ndbcluster::get_index_handle"); if (idx_type != PRIMARY_KEY_INDEX && idx_type != UNIQUE_INDEX) { DBUG_PRINT("info", ("Get handle to index %s", index_name)); const NDBINDEX *index= dict->getIndex(index_name, m_tabname); if (!index) ERR_RETURN(dict->getNdbError()); m_index[index_no].index= (void *) index; // ordered index - add stats NDB_INDEX_DATA& d=m_index[index_no]; delete d.index_stat; d.index_stat=NULL; if (thd->variables.ndb_index_stat_enable) { d.index_stat=new NdbIndexStat(index); d.index_stat_cache_entries=thd->variables.ndb_index_stat_cache_entries; d.index_stat_update_freq=thd->variables.ndb_index_stat_update_freq; d.index_stat_query_count=0; d.index_stat->alloc_cache(d.index_stat_cache_entries); DBUG_PRINT("info", ("index %s stat=on cache_entries=%u update_freq=%u", index->getName(), d.index_stat_cache_entries, d.index_stat_update_freq)); } else { DBUG_PRINT("info", ("index %s stat=off", index->getName())); } } if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX) { char unique_index_name[FN_LEN]; static const char* unique_suffix= "$unique"; strxnmov(unique_index_name, FN_LEN, index_name, unique_suffix, NullS); DBUG_PRINT("info", ("Get handle to unique_index %s", unique_index_name)); const NDBINDEX *index= dict->getIndex(unique_index_name, m_tabname); if (!index) ERR_RETURN(dict->getNdbError()); m_index[index_no].unique_index= (void *) index; error= fix_unique_index_attr_order(m_index[index_no], index, key_info); } if (!error) m_index[index_no].status= ACTIVE; DBUG_RETURN(error); } /* Associate index handles for each index of a table */ int ha_ndbcluster::open_indexes(Ndb *ndb, TABLE *tab) { uint i; int error= 0; THD *thd=current_thd; NDBDICT *dict= ndb->getDictionary(); const char *index_name; KEY* key_info= tab->key_info; const char **key_name= tab->s->keynames.type_names; DBUG_ENTER("ha_ndbcluster::open_indexes"); for (i= 0; i < tab->s->keys; i++, key_info++, key_name++) { if ((error= add_index_handle(thd, dict, key_info, *key_name, i))) break; } DBUG_RETURN(error); } /* Renumber indexes in index list by shifting out indexes that are to be dropped */ int ha_ndbcluster::renumber_indexes(Ndb *ndb, TABLE *tab) { uint i; int error= 0; const char *index_name; KEY* key_info= tab->key_info; const char **key_name= tab->s->keynames.type_names; NDBDICT *dict= ndb->getDictionary(); DBUG_ENTER("ha_ndbcluster::renumber_indexes"); for (i= 0; i < tab->s->keys; i++, key_info++, key_name++) { index_name= *key_name; NDB_INDEX_TYPE idx_type= get_index_type_from_table(i); m_index[i].type= idx_type; if (m_index[i].status == TO_BE_DROPPED) { DBUG_PRINT("info", ("Shifting index %s(%i) out of the list", index_name, i)); NDB_INDEX_DATA tmp; uint j= i + 1; // Shift index out of list while(j != MAX_KEY && m_index[j].status != UNDEFINED) { tmp= m_index[j - 1]; m_index[j - 1]= m_index[j]; m_index[j]= tmp; j++; } } } DBUG_RETURN(error); } /* Drop all indexes that are marked for deletion */ int ha_ndbcluster::drop_indexes(Ndb *ndb, TABLE *tab) { uint i; int error= 0; const char *index_name; KEY* key_info= tab->key_info; const char **key_name= tab->s->keynames.type_names; NDBDICT *dict= ndb->getDictionary(); DBUG_ENTER("ha_ndbcluster::drop_indexes"); for (i= 0; i < tab->s->keys; i++, key_info++, key_name++) { index_name= *key_name; NDB_INDEX_TYPE idx_type= get_index_type_from_table(i); m_index[i].type= idx_type; if (m_index[i].status == TO_BE_DROPPED) { NdbDictionary::Index *index= (NdbDictionary::Index *) m_index[i].index; NdbDictionary::Index *unique_index= (NdbDictionary::Index *) m_index[i].unique_index; if (index) { index_name= index->getName(); DBUG_PRINT("info", ("Dropping index %u: %s", i, index_name)); // Drop ordered index from ndb error= drop_ndb_index(index_name); } if (!error) m_index[i].index= NULL; if (!error && unique_index) { index_name= index->getName(); DBUG_PRINT("info", ("Dropping index %u: %s", i, index_name)); // Drop unique index from ndb error= drop_ndb_index(index_name); } if (error) DBUG_RETURN(error); clear_index(i); continue; } } DBUG_RETURN(error); } /* Decode the type of an index from information provided in table object */ NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_table(uint inx) const { return get_index_type_from_key(inx, table_share->key_info); } NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_key(uint inx, KEY *key_info) const { bool is_hash_index= (key_info[inx].algorithm == HA_KEY_ALG_HASH); if (inx == table_share->primary_key) return is_hash_index ? PRIMARY_KEY_INDEX : PRIMARY_KEY_ORDERED_INDEX; return ((key_info[inx].flags & HA_NOSAME) ? (is_hash_index ? UNIQUE_INDEX : UNIQUE_ORDERED_INDEX) : ORDERED_INDEX); } int ha_ndbcluster::check_index_fields_not_null(uint inx) { KEY* key_info= table->key_info + inx; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("ha_ndbcluster::check_index_fields_not_null"); for (; key_part != end; key_part++) { Field* field= key_part->field; if (field->maybe_null()) { my_printf_error(ER_NULL_COLUMN_IN_INDEX,ER(ER_NULL_COLUMN_IN_INDEX), MYF(0),field->field_name); DBUG_RETURN(ER_NULL_COLUMN_IN_INDEX); } } DBUG_RETURN(0); } void ha_ndbcluster::release_metadata() { uint i; DBUG_ENTER("release_metadata"); DBUG_PRINT("enter", ("m_tabname: %s", m_tabname)); m_table= NULL; m_table_info= NULL; // Release index list for (i= 0; i < MAX_KEY; i++) { m_index[i].unique_index= NULL; m_index[i].index= NULL; if (m_index[i].unique_index_attrid_map) { my_free((char *)m_index[i].unique_index_attrid_map, MYF(0)); m_index[i].unique_index_attrid_map= NULL; } delete m_index[i].index_stat; m_index[i].index_stat=NULL; } DBUG_VOID_RETURN; } int ha_ndbcluster::get_ndb_lock_type(enum thr_lock_type type) { if (type >= TL_WRITE_ALLOW_WRITE) return NdbOperation::LM_Exclusive; else if (uses_blob_value()) return NdbOperation::LM_Read; else return NdbOperation::LM_CommittedRead; } static const ulong index_type_flags[]= { /* UNDEFINED_INDEX */ 0, /* PRIMARY_KEY_INDEX */ HA_ONLY_WHOLE_INDEX, /* PRIMARY_KEY_ORDERED_INDEX */ /* Enable HA_KEYREAD_ONLY when "sorted" indexes are supported, thus ORDERD BY clauses can be optimized by reading directly through the index. */ // HA_KEYREAD_ONLY | HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER, /* UNIQUE_INDEX */ HA_ONLY_WHOLE_INDEX, /* UNIQUE_ORDERED_INDEX */ HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER, /* ORDERED_INDEX */ HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE | HA_READ_ORDER }; static const int index_flags_size= sizeof(index_type_flags)/sizeof(ulong); inline NDB_INDEX_TYPE ha_ndbcluster::get_index_type(uint idx_no) const { DBUG_ASSERT(idx_no < MAX_KEY); return m_index[idx_no].type; } /* Get the flags for an index RETURN flags depending on the type of the index. */ inline ulong ha_ndbcluster::index_flags(uint idx_no, uint part, bool all_parts) const { DBUG_ENTER("ha_ndbcluster::index_flags"); DBUG_PRINT("enter", ("idx_no: %u", idx_no)); DBUG_ASSERT(get_index_type_from_table(idx_no) < index_flags_size); DBUG_RETURN(index_type_flags[get_index_type_from_table(idx_no)] | HA_KEY_SCAN_NOT_ROR); } static void shrink_varchar(Field* field, const byte* & ptr, char* buf) { if (field->type() == MYSQL_TYPE_VARCHAR && ptr != NULL) { Field_varstring* f= (Field_varstring*)field; if (f->length_bytes == 1) { uint pack_len= field->pack_length(); DBUG_ASSERT(1 <= pack_len && pack_len <= 256); if (ptr[1] == 0) { buf[0]= ptr[0]; } else { DBUG_ASSERT(FALSE); buf[0]= 255; } memmove(buf + 1, ptr + 2, pack_len - 1); ptr= buf; } } } int ha_ndbcluster::set_primary_key(NdbOperation *op, const byte *key) { KEY* key_info= table->key_info + table_share->primary_key; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("set_primary_key"); for (; key_part != end; key_part++) { Field* field= key_part->field; const byte* ptr= key; char buf[256]; shrink_varchar(field, ptr, buf); if (set_ndb_key(op, field, key_part->fieldnr-1, ptr)) ERR_RETURN(op->getNdbError()); key += key_part->store_length; } DBUG_RETURN(0); } int ha_ndbcluster::set_primary_key_from_record(NdbOperation *op, const byte *record) { KEY* key_info= table->key_info + table_share->primary_key; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; DBUG_ENTER("set_primary_key_from_record"); for (; key_part != end; key_part++) { Field* field= key_part->field; if (set_ndb_key(op, field, key_part->fieldnr-1, record+key_part->offset)) ERR_RETURN(op->getNdbError()); } DBUG_RETURN(0); } int ha_ndbcluster::set_index_key(NdbOperation *op, const KEY *key_info, const byte * key_ptr) { DBUG_ENTER("ha_ndbcluster::set_index_key"); uint i; KEY_PART_INFO* key_part= key_info->key_part; KEY_PART_INFO* end= key_part+key_info->key_parts; for (i= 0; key_part != end; key_part++, i++) { Field* field= key_part->field; const byte* ptr= key_part->null_bit ? key_ptr + 1 : key_ptr; char buf[256]; shrink_varchar(field, ptr, buf); if (set_ndb_key(op, field, m_index[active_index].unique_index_attrid_map[i], ptr)) ERR_RETURN(m_active_trans->getNdbError()); key_ptr+= key_part->store_length; } DBUG_RETURN(0); } inline int ha_ndbcluster::define_read_attrs(byte* buf, NdbOperation* op) { uint i; DBUG_ENTER("define_read_attrs"); // Define attributes to read for (i= 0; i < table_share->fields; i++) { Field *field= table->field[i]; if (ha_get_bit_in_read_set(i+1) || ((field->flags & PRI_KEY_FLAG))) { if (get_ndb_value(op, field, i, buf)) ERR_RETURN(op->getNdbError()); } else { m_value[i].ptr= NULL; } } if (table_share->primary_key == MAX_KEY) { DBUG_PRINT("info", ("Getting hidden key")); // Scanning table with no primary key int hidden_no= table_share->fields; #ifndef DBUG_OFF const NDBTAB *tab= (const NDBTAB *) m_table; if (!tab->getColumn(hidden_no)) DBUG_RETURN(1); #endif if (get_ndb_value(op, NULL, hidden_no, NULL)) ERR_RETURN(op->getNdbError()); } DBUG_RETURN(0); } /* Read one record from NDB using primary key */ int ha_ndbcluster::pk_read(const byte *key, uint key_len, byte *buf, uint32 part_id) { uint no_fields= table_share->fields; NdbConnection *trans= m_active_trans; NdbOperation *op; int res; DBUG_ENTER("pk_read"); DBUG_PRINT("enter", ("key_len: %u", key_len)); DBUG_DUMP("key", (char*)key, key_len); m_write_op= FALSE; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) op->setPartitionId(part_id); if (table_share->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); DBUG_DUMP("key", (char*)key, 8); if (set_hidden_key(op, no_fields, key)) ERR_RETURN(trans->getNdbError()); // Read key at the same time, for future reference if (get_ndb_value(op, NULL, no_fields, NULL)) ERR_RETURN(trans->getNdbError()); } else { if ((res= set_primary_key(op, key))) return res; } if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(buf); table->status= 0; DBUG_RETURN(0); } /* Read one complementing record from NDB using primary key from old_data */ int ha_ndbcluster::complemented_pk_read(const byte *old_data, byte *new_data, uint32 old_part_id) { uint no_fields= table_share->fields, i; NdbTransaction *trans= m_active_trans; NdbOperation *op; DBUG_ENTER("complemented_pk_read"); m_write_op= FALSE; if (ha_get_all_bit_in_read_set()) { // We have allready retrieved all fields, nothing to complement DBUG_RETURN(0); } NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); int res; if ((res= set_primary_key_from_record(op, old_data))) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) op->setPartitionId(old_part_id); // Read all unreferenced non-key field(s) for (i= 0; i < no_fields; i++) { Field *field= table->field[i]; if (!((field->flags & PRI_KEY_FLAG) || (ha_get_bit_in_read_set(i+1)))) { if (get_ndb_value(op, field, i, new_data)) ERR_RETURN(trans->getNdbError()); } } if (execute_no_commit(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(new_data); table->status= 0; /** * restore m_value */ for (i= 0; i < no_fields; i++) { Field *field= table->field[i]; if (!((field->flags & PRI_KEY_FLAG) || (ha_get_bit_in_read_set(i+1)))) { m_value[i].ptr= NULL; } } DBUG_RETURN(0); } /* Peek to check if a particular row already exists */ int ha_ndbcluster::peek_row(const byte *record) { NdbTransaction *trans= m_active_trans; NdbOperation *op; DBUG_ENTER("peek_row"); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); int res; if ((res= set_primary_key_from_record(op, record))) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) { uint32 part_id; int error; longlong func_value; if ((error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value))) { DBUG_RETURN(error); } op->setPartitionId(part_id); } if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Read one record from NDB using unique secondary index */ int ha_ndbcluster::unique_index_read(const byte *key, uint key_len, byte *buf) { int res; NdbTransaction *trans= m_active_trans; NdbIndexOperation *op; DBUG_ENTER("ha_ndbcluster::unique_index_read"); DBUG_PRINT("enter", ("key_len: %u, index: %u", key_len, active_index)); DBUG_DUMP("key", (char*)key, key_len); NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbIndexOperation((NDBINDEX *) m_index[active_index].unique_index, (const NDBTAB *) m_table)) || op->readTuple(lm) != 0) ERR_RETURN(trans->getNdbError()); // Set secondary index key(s) if ((res= set_index_key(op, table->key_info + active_index, key))) DBUG_RETURN(res); if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit_ie(this,trans) != 0) { table->status= STATUS_NOT_FOUND; DBUG_RETURN(ndb_err(trans)); } // The value have now been fetched from NDB unpack_record(buf); table->status= 0; DBUG_RETURN(0); } inline int ha_ndbcluster::fetch_next(NdbScanOperation* cursor) { DBUG_ENTER("fetch_next"); int check; NdbTransaction *trans= m_active_trans; bool contact_ndb= m_lock.type < TL_WRITE_ALLOW_WRITE; do { DBUG_PRINT("info", ("Call nextResult, contact_ndb: %d", contact_ndb)); /* We can only handle one tuple with blobs at a time. */ if (m_ops_pending && m_blobs_pending) { if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); m_ops_pending= 0; m_blobs_pending= FALSE; } if ((check= cursor->nextResult(contact_ndb, m_force_send)) == 0) { DBUG_RETURN(0); } else if (check == 1 || check == 2) { // 1: No more records // 2: No more cached records /* Before fetching more rows and releasing lock(s), all pending update or delete operations should be sent to NDB */ DBUG_PRINT("info", ("ops_pending: %d", m_ops_pending)); if (m_ops_pending) { if (m_transaction_on) { if (execute_no_commit(this,trans) != 0) DBUG_RETURN(-1); } else { if (execute_commit(this,trans) != 0) DBUG_RETURN(-1); if (trans->restart() != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } m_ops_pending= 0; } contact_ndb= (check == 2); } else { DBUG_RETURN(-1); } } while (check == 2); DBUG_RETURN(1); } /* Get the next record of a started scan. Try to fetch it locally from NdbApi cached records if possible, otherwise ask NDB for more. NOTE If this is a update/delete make sure to not contact NDB before any pending ops have been sent to NDB. */ inline int ha_ndbcluster::next_result(byte *buf) { int res; DBUG_ENTER("next_result"); if (!m_active_cursor) DBUG_RETURN(HA_ERR_END_OF_FILE); if ((res= fetch_next(m_active_cursor)) == 0) { DBUG_PRINT("info", ("One more record found")); unpack_record(buf); table->status= 0; DBUG_RETURN(0); } else if (res == 1) { // No more records table->status= STATUS_NOT_FOUND; DBUG_PRINT("info", ("No more records")); DBUG_RETURN(HA_ERR_END_OF_FILE); } else { DBUG_RETURN(ndb_err(m_active_trans)); } } /* Set bounds for ordered index scan. */ int ha_ndbcluster::set_bounds(NdbIndexScanOperation *op, uint inx, bool rir, const key_range *keys[2], uint range_no) { const KEY *const key_info= table->key_info + inx; const uint key_parts= key_info->key_parts; uint key_tot_len[2]; uint tot_len; uint i, j; DBUG_ENTER("set_bounds"); DBUG_PRINT("info", ("key_parts=%d", key_parts)); for (j= 0; j <= 1; j++) { const key_range *key= keys[j]; if (key != NULL) { // for key->flag see ha_rkey_function DBUG_PRINT("info", ("key %d length=%d flag=%d", j, key->length, key->flag)); key_tot_len[j]= key->length; } else { DBUG_PRINT("info", ("key %d not present", j)); key_tot_len[j]= 0; } } tot_len= 0; for (i= 0; i < key_parts; i++) { KEY_PART_INFO *key_part= &key_info->key_part[i]; Field *field= key_part->field; #ifndef DBUG_OFF uint part_len= key_part->length; #endif uint part_store_len= key_part->store_length; // Info about each key part struct part_st { bool part_last; const key_range *key; const byte *part_ptr; bool part_null; int bound_type; const char* bound_ptr; }; struct part_st part[2]; for (j= 0; j <= 1; j++) { struct part_st &p= part[j]; p.key= NULL; p.bound_type= -1; if (tot_len < key_tot_len[j]) { p.part_last= (tot_len + part_store_len >= key_tot_len[j]); p.key= keys[j]; p.part_ptr= &p.key->key[tot_len]; p.part_null= key_part->null_bit && *p.part_ptr; p.bound_ptr= (const char *) p.part_null ? 0 : key_part->null_bit ? p.part_ptr + 1 : p.part_ptr; if (j == 0) { switch (p.key->flag) { case HA_READ_KEY_EXACT: if (! rir) p.bound_type= NdbIndexScanOperation::BoundEQ; else // differs for records_in_range p.bound_type= NdbIndexScanOperation::BoundLE; break; // ascending case HA_READ_KEY_OR_NEXT: p.bound_type= NdbIndexScanOperation::BoundLE; break; case HA_READ_AFTER_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundLE; else p.bound_type= NdbIndexScanOperation::BoundLT; break; // descending case HA_READ_PREFIX_LAST: // weird p.bound_type= NdbIndexScanOperation::BoundEQ; break; case HA_READ_PREFIX_LAST_OR_PREV: // weird p.bound_type= NdbIndexScanOperation::BoundGE; break; case HA_READ_BEFORE_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundGE; else p.bound_type= NdbIndexScanOperation::BoundGT; break; default: break; } } if (j == 1) { switch (p.key->flag) { // ascending case HA_READ_BEFORE_KEY: if (! p.part_last) p.bound_type= NdbIndexScanOperation::BoundGE; else p.bound_type= NdbIndexScanOperation::BoundGT; break; case HA_READ_AFTER_KEY: // weird p.bound_type= NdbIndexScanOperation::BoundGE; break; default: break; // descending strangely sets no end key } } if (p.bound_type == -1) { DBUG_PRINT("error", ("key %d unknown flag %d", j, p.key->flag)); DBUG_ASSERT(FALSE); // Stop setting bounds but continue with what we have op->end_of_bound(range_no); DBUG_RETURN(0); } } } // Seen with e.g. b = 1 and c > 1 if (part[0].bound_type == NdbIndexScanOperation::BoundLE && part[1].bound_type == NdbIndexScanOperation::BoundGE && memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0) { DBUG_PRINT("info", ("replace LE/GE pair by EQ")); part[0].bound_type= NdbIndexScanOperation::BoundEQ; part[1].bound_type= -1; } // Not seen but was in previous version if (part[0].bound_type == NdbIndexScanOperation::BoundEQ && part[1].bound_type == NdbIndexScanOperation::BoundGE && memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0) { DBUG_PRINT("info", ("remove GE from EQ/GE pair")); part[1].bound_type= -1; } for (j= 0; j <= 1; j++) { struct part_st &p= part[j]; // Set bound if not done with this key if (p.key != NULL) { DBUG_PRINT("info", ("key %d:%d offset=%d length=%d last=%d bound=%d", j, i, tot_len, part_len, p.part_last, p.bound_type)); DBUG_DUMP("info", (const char*)p.part_ptr, part_store_len); // Set bound if not cancelled via type -1 if (p.bound_type != -1) { const char* ptr= p.bound_ptr; char buf[256]; shrink_varchar(field, ptr, buf); if (op->setBound(i, p.bound_type, ptr)) ERR_RETURN(op->getNdbError()); } } } tot_len+= part_store_len; } op->end_of_bound(range_no); DBUG_RETURN(0); } /* Start ordered index scan in NDB */ int ha_ndbcluster::ordered_index_scan(const key_range *start_key, const key_range *end_key, bool sorted, bool descending, byte* buf, part_id_range *part_spec) { int res; bool restart; NdbTransaction *trans= m_active_trans; NdbIndexScanOperation *op; DBUG_ENTER("ha_ndbcluster::ordered_index_scan"); DBUG_PRINT("enter", ("index: %u, sorted: %d, descending: %d", active_index, sorted, descending)); DBUG_PRINT("enter", ("Starting new ordered scan on %s", m_tabname)); m_write_op= FALSE; // Check that sorted seems to be initialised DBUG_ASSERT(sorted == 0 || sorted == 1); if (m_active_cursor == 0) { restart= FALSE; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op= trans->getNdbIndexScanOperation((NDBINDEX *) m_index[active_index].index, (const NDBTAB *) m_table)) || op->readTuples(lm, 0, parallelism, sorted, descending)) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function && part_spec != NULL && part_spec->start_part == part_spec->end_part) op->setPartitionId(part_spec->start_part); m_active_cursor= op; } else { restart= TRUE; op= (NdbIndexScanOperation*)m_active_cursor; if (m_use_partition_function && part_spec != NULL && part_spec->start_part == part_spec->end_part) op->setPartitionId(part_spec->start_part); DBUG_ASSERT(op->getSorted() == sorted); DBUG_ASSERT(op->getLockMode() == (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type)); if (op->reset_bounds(m_force_send)) DBUG_RETURN(ndb_err(m_active_trans)); } { const key_range *keys[2]= { start_key, end_key }; res= set_bounds(op, active_index, false, keys); if (res) DBUG_RETURN(res); } if (!restart && generate_scan_filter(m_cond_stack, op)) DBUG_RETURN(ndb_err(trans)); if (!restart && (res= define_read_attrs(buf, op))) { DBUG_RETURN(res); } if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); DBUG_RETURN(next_result(buf)); } /* Start full table scan in NDB */ int ha_ndbcluster::full_table_scan(byte *buf) { int res; NdbScanOperation *op; NdbTransaction *trans= m_active_trans; DBUG_ENTER("full_table_scan"); DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname)); m_write_op= FALSE; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); if (!(op=trans->getNdbScanOperation((const NDBTAB *) m_table)) || op->readTuples(lm, 0, parallelism)) ERR_RETURN(trans->getNdbError()); m_active_cursor= op; if (generate_scan_filter(m_cond_stack, op)) DBUG_RETURN(ndb_err(trans)); if ((res= define_read_attrs(buf, op))) DBUG_RETURN(res); if (execute_no_commit(this,trans) != 0) DBUG_RETURN(ndb_err(trans)); DBUG_PRINT("exit", ("Scan started successfully")); DBUG_RETURN(next_result(buf)); } /* Insert one record into NDB */ int ha_ndbcluster::write_row(byte *record) { bool has_auto_increment; uint i; NdbTransaction *trans= m_active_trans; NdbOperation *op; int res; THD *thd= current_thd; longlong func_value= 0; DBUG_ENTER("ha_ndbcluster::write_row"); m_write_op= TRUE; if (!m_use_write && m_ignore_dup_key && table_share->primary_key != MAX_KEY) { int peek_res= peek_row(record); if (!peek_res) { m_dupkey= table_share->primary_key; DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY); } if (peek_res != HA_ERR_KEY_NOT_FOUND) DBUG_RETURN(peek_res); } statistic_increment(thd->status_var.ha_write_count, &LOCK_status); if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT) table->timestamp_field->set_time(); has_auto_increment= (table->next_number_field && record == table->record[0]); if (!(op= trans->getNdbOperation((const NDBTAB *) m_table))) ERR_RETURN(trans->getNdbError()); res= (m_use_write) ? op->writeTuple() :op->insertTuple(); if (res != 0) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) { uint32 part_id; int error; if ((error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value))) { DBUG_RETURN(error); } op->setPartitionId(part_id); } if (table_share->primary_key == MAX_KEY) { // Table has hidden primary key Ndb *ndb= get_ndb(); Uint64 auto_value= NDB_FAILED_AUTO_INCREMENT; uint retries= NDB_AUTO_INCREMENT_RETRIES; do { auto_value= ndb->getAutoIncrementValue((const NDBTAB *) m_table); } while (auto_value == NDB_FAILED_AUTO_INCREMENT && --retries && ndb->getNdbError().status == NdbError::TemporaryError); if (auto_value == NDB_FAILED_AUTO_INCREMENT) ERR_RETURN(ndb->getNdbError()); if (set_hidden_key(op, table_share->fields, (const byte*)&auto_value)) ERR_RETURN(op->getNdbError()); } else { int res; if (has_auto_increment) { THD *thd= table->in_use; m_skip_auto_increment= FALSE; update_auto_increment(); /* Ensure that handler is always called for auto_increment values */ thd->next_insert_id= 0; m_skip_auto_increment= !auto_increment_column_changed; } if ((res= set_primary_key_from_record(op, record))) return res; } // Set non-key attribute(s) bool set_blob_value= FALSE; for (i= 0; i < table_share->fields; i++) { Field *field= table->field[i]; if (!(field->flags & PRI_KEY_FLAG) && (ha_get_bit_in_write_set(i + 1) || !m_use_write) && set_ndb_value(op, field, i, record-table->record[0], &set_blob_value)) { m_skip_auto_increment= TRUE; ERR_RETURN(op->getNdbError()); } } if (m_use_partition_function) { /* We need to set the value of the partition function value in NDB since the NDB kernel doesn't have easy access to the function to calculate the value. */ if (func_value >= INT_MAX32) func_value= INT_MAX32; uint32 part_func_value= (uint32)func_value; uint no_fields= table_share->fields; if (table_share->primary_key == MAX_KEY) no_fields++; op->setValue(no_fields, part_func_value); } m_rows_changed++; /* Execute write operation NOTE When doing inserts with many values in each INSERT statement it should not be necessary to NoCommit the transaction between each row. Find out how this is detected! */ m_rows_inserted++; no_uncommitted_rows_update(1); m_bulk_insert_not_flushed= TRUE; if ((m_rows_to_insert == (ha_rows) 1) || ((m_rows_inserted % m_bulk_insert_rows) == 0) || m_primary_key_update || set_blob_value) { // Send rows to NDB DBUG_PRINT("info", ("Sending inserts to NDB, "\ "rows_inserted:%d, bulk_insert_rows: %d", (int)m_rows_inserted, (int)m_bulk_insert_rows)); m_bulk_insert_not_flushed= FALSE; if (m_transaction_on) { if (execute_no_commit(this,trans) != 0) { m_skip_auto_increment= TRUE; no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } } else { if (execute_commit(this,trans) != 0) { m_skip_auto_increment= TRUE; no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } if (trans->restart() != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } } if ((has_auto_increment) && (m_skip_auto_increment)) { Ndb *ndb= get_ndb(); Uint64 next_val= (Uint64) table->next_number_field->val_int() + 1; DBUG_PRINT("info", ("Trying to set next auto increment value to %lu", (ulong) next_val)); if (ndb->setAutoIncrementValue((const NDBTAB *) m_table, next_val, TRUE)) DBUG_PRINT("info", ("Setting next auto increment value to %u", next_val)); } m_skip_auto_increment= TRUE; DBUG_RETURN(0); } /* Compare if a key in a row has changed */ int ha_ndbcluster::key_cmp(uint keynr, const byte * old_row, const byte * new_row) { KEY_PART_INFO *key_part=table->key_info[keynr].key_part; KEY_PART_INFO *end=key_part+table->key_info[keynr].key_parts; for (; key_part != end ; key_part++) { if (key_part->null_bit) { if ((old_row[key_part->null_offset] & key_part->null_bit) != (new_row[key_part->null_offset] & key_part->null_bit)) return 1; } if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART)) { if (key_part->field->cmp_binary((char*) (old_row + key_part->offset), (char*) (new_row + key_part->offset), (ulong) key_part->length)) return 1; } else { if (memcmp(old_row+key_part->offset, new_row+key_part->offset, key_part->length)) return 1; } } return 0; } /* Update one record in NDB using primary key */ int ha_ndbcluster::update_row(const byte *old_data, byte *new_data) { THD *thd= current_thd; NdbTransaction *trans= m_active_trans; NdbScanOperation* cursor= m_active_cursor; NdbOperation *op; uint i; uint32 old_part_id= 0, new_part_id= 0; int error; longlong func_value; DBUG_ENTER("update_row"); m_write_op= TRUE; statistic_increment(thd->status_var.ha_update_count, &LOCK_status); if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE) { table->timestamp_field->set_time(); ha_set_bit_in_write_set(table->timestamp_field->fieldnr); } if (m_use_partition_function && (error= get_parts_for_update(old_data, new_data, table->record[0], m_part_info, &old_part_id, &new_part_id, &func_value))) { DBUG_RETURN(error); } /* Check for update of primary key for special handling */ if ((table_share->primary_key != MAX_KEY) && (key_cmp(table_share->primary_key, old_data, new_data)) || (old_part_id != new_part_id)) { int read_res, insert_res, delete_res, undo_res; DBUG_PRINT("info", ("primary key update, doing pk read+delete+insert")); // Get all old fields, since we optimize away fields not in query read_res= complemented_pk_read(old_data, new_data, old_part_id); if (read_res) { DBUG_PRINT("info", ("pk read failed")); DBUG_RETURN(read_res); } // Delete old row m_primary_key_update= TRUE; delete_res= delete_row(old_data); m_primary_key_update= FALSE; if (delete_res) { DBUG_PRINT("info", ("delete failed")); DBUG_RETURN(delete_res); } // Insert new row DBUG_PRINT("info", ("delete succeded")); m_primary_key_update= TRUE; insert_res= write_row(new_data); m_primary_key_update= FALSE; if (insert_res) { DBUG_PRINT("info", ("insert failed")); if (trans->commitStatus() == NdbConnection::Started) { // Undo delete_row(old_data) m_primary_key_update= TRUE; undo_res= write_row((byte *)old_data); if (undo_res) push_warning(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN, undo_res, "NDB failed undoing delete at primary key update"); m_primary_key_update= FALSE; } DBUG_RETURN(insert_res); } DBUG_PRINT("info", ("delete+insert succeeded")); DBUG_RETURN(0); } if (cursor) { /* We are scanning records and want to update the record that was just found, call updateTuple on the cursor to take over the lock to a new update operation And thus setting the primary key of the record from the active record in cursor */ DBUG_PRINT("info", ("Calling updateTuple on cursor")); if (!(op= cursor->updateCurrentTuple())) ERR_RETURN(trans->getNdbError()); m_ops_pending++; if (uses_blob_value()) m_blobs_pending= TRUE; if (m_use_partition_function) cursor->setPartitionId(new_part_id); } else { if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) || op->updateTuple() != 0) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) op->setPartitionId(new_part_id); if (table_share->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); // Require that the PK for this record has previously been // read into m_value uint no_fields= table_share->fields; const NdbRecAttr* rec= m_value[no_fields].rec; DBUG_ASSERT(rec); DBUG_DUMP("key", (char*)rec->aRef(), NDB_HIDDEN_PRIMARY_KEY_LENGTH); if (set_hidden_key(op, no_fields, rec->aRef())) ERR_RETURN(op->getNdbError()); } else { int res; if ((res= set_primary_key_from_record(op, old_data))) DBUG_RETURN(res); } } m_rows_changed++; // Set non-key attribute(s) for (i= 0; i < table_share->fields; i++) { Field *field= table->field[i]; if (ha_get_bit_in_write_set(i+1) && (!(field->flags & PRI_KEY_FLAG)) && set_ndb_value(op, field, i, new_data - table->record[0])) ERR_RETURN(op->getNdbError()); } if (m_use_partition_function) { if (func_value >= INT_MAX32) func_value= INT_MAX32; uint32 part_func_value= (uint32)func_value; uint no_fields= table_share->fields; if (table_share->primary_key == MAX_KEY) no_fields++; op->setValue(no_fields, part_func_value); } // Execute update operation if (!cursor && execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Delete one record from NDB, using primary key */ int ha_ndbcluster::delete_row(const byte *record) { THD *thd= current_thd; NdbTransaction *trans= m_active_trans; NdbScanOperation* cursor= m_active_cursor; NdbOperation *op; uint32 part_id; int error; DBUG_ENTER("delete_row"); m_write_op= TRUE; statistic_increment(thd->status_var.ha_delete_count,&LOCK_status); m_rows_changed++; if (m_use_partition_function && (error= get_part_for_delete(record, table->record[0], m_part_info, &part_id))) { DBUG_RETURN(error); } if (cursor) { /* We are scanning records and want to delete the record that was just found, call deleteTuple on the cursor to take over the lock to a new delete operation And thus setting the primary key of the record from the active record in cursor */ DBUG_PRINT("info", ("Calling deleteTuple on cursor")); if (cursor->deleteCurrentTuple() != 0) ERR_RETURN(trans->getNdbError()); m_ops_pending++; if (m_use_partition_function) cursor->setPartitionId(part_id); no_uncommitted_rows_update(-1); if (!m_primary_key_update) // If deleting from cursor, NoCommit will be handled in next_result DBUG_RETURN(0); } else { if (!(op=trans->getNdbOperation((const NDBTAB *) m_table)) || op->deleteTuple() != 0) ERR_RETURN(trans->getNdbError()); if (m_use_partition_function) op->setPartitionId(part_id); no_uncommitted_rows_update(-1); if (table_share->primary_key == MAX_KEY) { // This table has no primary key, use "hidden" primary key DBUG_PRINT("info", ("Using hidden key")); uint no_fields= table_share->fields; const NdbRecAttr* rec= m_value[no_fields].rec; DBUG_ASSERT(rec != NULL); if (set_hidden_key(op, no_fields, rec->aRef())) ERR_RETURN(op->getNdbError()); } else { int res; if ((res= set_primary_key_from_record(op, record))) return res; } } // Execute delete operation if (execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } DBUG_RETURN(0); } /* Unpack a record read from NDB SYNOPSIS unpack_record() buf Buffer to store read row NOTE The data for each row is read directly into the destination buffer. This function is primarily called in order to check if any fields should be set to null. */ void ndb_unpack_record(TABLE *table, NdbValue *value, MY_BITMAP *defined, byte *buf) { Field **p_field= table->field, *field= *p_field; uint row_offset= (uint) (buf - table->record[0]); DBUG_ENTER("ndb_unpack_record"); // Set null flag(s) bzero(buf, table->s->null_bytes); for ( ; field; p_field++, value++, field= *p_field) { if ((*value).ptr) { if (!(field->flags & BLOB_FLAG)) { int is_null= (*value).rec->isNULL(); if (is_null) { if (is_null > 0) { DBUG_PRINT("info",("[%u] NULL", (*value).rec->getColumn()->getColumnNo())); field->set_null(row_offset); } else { DBUG_PRINT("info",("[%u] UNDEFINED", (*value).rec->getColumn()->getColumnNo())); bitmap_clear_bit(defined, (*value).rec->getColumn()->getColumnNo()); } } else if (field->type() == MYSQL_TYPE_BIT) { byte *save_field_ptr= field->ptr; field->ptr= save_field_ptr + row_offset; if (field->pack_length() < 5) { DBUG_PRINT("info", ("bit field H'%.8X", (*value).rec->u_32_value())); ((Field_bit*) field)->store((longlong) (*value).rec->u_32_value(), FALSE); } else { DBUG_PRINT("info", ("bit field H'%.8X%.8X", *(Uint32*) (*value).rec->aRef(), *((Uint32*) (*value).rec->aRef()+1))); ((Field_bit*) field)->store((longlong) (*value).rec->u_64_value(),TRUE); } field->ptr= save_field_ptr; DBUG_PRINT("info",("[%u] SET", (*value).rec->getColumn()->getColumnNo())); DBUG_DUMP("info", (const char*) field->ptr, field->field_length); } else { DBUG_PRINT("info",("[%u] SET", (*value).rec->getColumn()->getColumnNo())); DBUG_DUMP("info", (const char*) field->ptr, field->field_length); } } else { NdbBlob *ndb_blob= (*value).blob; uint col_no = ndb_blob->getColumn()->getColumnNo(); int isNull; ndb_blob->getDefined(isNull); if (isNull == 1) { DBUG_PRINT("info",("[%u] NULL", col_no)) field->set_null(row_offset); } else if (isNull == -1) { DBUG_PRINT("info",("[%u] UNDEFINED", col_no)); bitmap_clear_bit(defined, col_no); } else { #ifndef DBUG_OFF // pointer vas set in get_ndb_blobs_value Field_blob *field_blob= (Field_blob*)field; char* ptr; field_blob->get_ptr(&ptr, row_offset); uint32 len= field_blob->get_length(row_offset); DBUG_PRINT("info",("[%u] SET ptr=%p len=%u", col_no, ptr, len)); #endif } } } } DBUG_VOID_RETURN; } void ha_ndbcluster::unpack_record(byte *buf) { ndb_unpack_record(table, m_value, 0, buf); #ifndef DBUG_OFF // Read and print all values that was fetched if (table_share->primary_key == MAX_KEY) { // Table with hidden primary key int hidden_no= table_share->fields; const NDBTAB *tab= (const NDBTAB *) m_table; const NDBCOL *hidden_col= tab->getColumn(hidden_no); const NdbRecAttr* rec= m_value[hidden_no].rec; DBUG_ASSERT(rec); DBUG_PRINT("hidden", ("%d: %s \"%llu\"", hidden_no, hidden_col->getName(), rec->u_64_value())); } //print_results(); #endif } /* Utility function to print/dump the fetched field */ void ha_ndbcluster::print_results() { DBUG_ENTER("print_results"); #ifndef DBUG_OFF if (!_db_on_) DBUG_VOID_RETURN; char buf_type[MAX_FIELD_WIDTH], buf_val[MAX_FIELD_WIDTH]; String type(buf_type, sizeof(buf_type), &my_charset_bin); String val(buf_val, sizeof(buf_val), &my_charset_bin); for (uint f= 0; f < table_share->fields; f++) { /* Use DBUG_PRINT since DBUG_FILE cannot be filtered out */ char buf[2000]; Field *field; void* ptr; NdbValue value; buf[0]= 0; field= table->field[f]; if (!(value= m_value[f]).ptr) { strmov(buf, "not read"); goto print_value; } ptr= field->ptr; if (! (field->flags & BLOB_FLAG)) { if (value.rec->isNULL()) { strmov(buf, "NULL"); goto print_value; } type.length(0); val.length(0); field->sql_type(type); field->val_str(&val); my_snprintf(buf, sizeof(buf), "%s %s", type.c_ptr(), val.c_ptr()); } else { NdbBlob *ndb_blob= value.blob; bool isNull= TRUE; ndb_blob->getNull(isNull); if (isNull) strmov(buf, "NULL"); } print_value: DBUG_PRINT("value", ("%u,%s: %s", f, field->field_name, buf)); } #endif DBUG_VOID_RETURN; } int ha_ndbcluster::index_init(uint index, bool sorted) { DBUG_ENTER("ha_ndbcluster::index_init"); DBUG_PRINT("enter", ("index: %u sorted: %d", index, sorted)); active_index= index; m_sorted= sorted; DBUG_RETURN(0); } int ha_ndbcluster::index_end() { DBUG_ENTER("ha_ndbcluster::index_end"); DBUG_RETURN(close_scan()); } /** * Check if key contains null */ static int check_null_in_key(const KEY* key_info, const byte *key, uint key_len) { KEY_PART_INFO *curr_part, *end_part; const byte* end_ptr= key + key_len; curr_part= key_info->key_part; end_part= curr_part + key_info->key_parts; for (; curr_part != end_part && key < end_ptr; curr_part++) { if (curr_part->null_bit && *key) return 1; key += curr_part->store_length; } return 0; } int ha_ndbcluster::index_read(byte *buf, const byte *key, uint key_len, enum ha_rkey_function find_flag) { key_range start_key; bool descending= FALSE; DBUG_ENTER("ha_ndbcluster::index_read"); DBUG_PRINT("enter", ("active_index: %u, key_len: %u, find_flag: %d", active_index, key_len, find_flag)); start_key.key= key; start_key.length= key_len; start_key.flag= find_flag; descending= FALSE; switch (find_flag) { case HA_READ_KEY_OR_PREV: case HA_READ_BEFORE_KEY: case HA_READ_PREFIX_LAST: case HA_READ_PREFIX_LAST_OR_PREV: descending= TRUE; break; default: break; } DBUG_RETURN(read_range_first_to_buf(&start_key, 0, descending, m_sorted, buf)); } int ha_ndbcluster::index_read_idx(byte *buf, uint index_no, const byte *key, uint key_len, enum ha_rkey_function find_flag) { statistic_increment(current_thd->status_var.ha_read_key_count, &LOCK_status); DBUG_ENTER("ha_ndbcluster::index_read_idx"); DBUG_PRINT("enter", ("index_no: %u, key_len: %u", index_no, key_len)); close_scan(); index_init(index_no, 0); DBUG_RETURN(index_read(buf, key, key_len, find_flag)); } int ha_ndbcluster::index_next(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_next"); statistic_increment(current_thd->status_var.ha_read_next_count, &LOCK_status); DBUG_RETURN(next_result(buf)); } int ha_ndbcluster::index_prev(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_prev"); statistic_increment(current_thd->status_var.ha_read_prev_count, &LOCK_status); DBUG_RETURN(next_result(buf)); } int ha_ndbcluster::index_first(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_first"); statistic_increment(current_thd->status_var.ha_read_first_count, &LOCK_status); // Start the ordered index scan and fetch the first row // Only HA_READ_ORDER indexes get called by index_first DBUG_RETURN(ordered_index_scan(0, 0, TRUE, FALSE, buf, NULL)); } int ha_ndbcluster::index_last(byte *buf) { DBUG_ENTER("ha_ndbcluster::index_last"); statistic_increment(current_thd->status_var.ha_read_last_count,&LOCK_status); DBUG_RETURN(ordered_index_scan(0, 0, TRUE, TRUE, buf, NULL)); } int ha_ndbcluster::index_read_last(byte * buf, const byte * key, uint key_len) { DBUG_ENTER("ha_ndbcluster::index_read_last"); DBUG_RETURN(index_read(buf, key, key_len, HA_READ_PREFIX_LAST)); } int ha_ndbcluster::read_range_first_to_buf(const key_range *start_key, const key_range *end_key, bool desc, bool sorted, byte* buf) { part_id_range part_spec; ndb_index_type type= get_index_type(active_index); const KEY* key_info= table->key_info+active_index; int error; DBUG_ENTER("ha_ndbcluster::read_range_first_to_buf"); DBUG_PRINT("info", ("desc: %d, sorted: %d", desc, sorted)); if (m_use_partition_function) { get_partition_set(table, buf, active_index, start_key, &part_spec); if (part_spec.start_part > part_spec.end_part) { DBUG_RETURN(HA_ERR_END_OF_FILE); } else if (part_spec.start_part == part_spec.end_part) { /* Only one partition is required to scan, if sorted is required we don't need it any more since output from one ordered partitioned index is always sorted. */ sorted= FALSE; } } m_write_op= FALSE; switch (type){ case PRIMARY_KEY_ORDERED_INDEX: case PRIMARY_KEY_INDEX: if (start_key && start_key->length == key_info->key_length && start_key->flag == HA_READ_KEY_EXACT) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); DBUG_RETURN(pk_read(start_key->key, start_key->length, buf, part_spec.start_part)); } break; case UNIQUE_ORDERED_INDEX: case UNIQUE_INDEX: if (start_key && start_key->length == key_info->key_length && start_key->flag == HA_READ_KEY_EXACT && !check_null_in_key(key_info, start_key->key, start_key->length)) { if (m_active_cursor && (error= close_scan())) DBUG_RETURN(error); DBUG_RETURN(unique_index_read(start_key->key, start_key->length, buf)); } break; default: break; } // Start the ordered index scan and fetch the first row DBUG_RETURN(ordered_index_scan(start_key, end_key, sorted, desc, buf, &part_spec)); } int ha_ndbcluster::read_range_first(const key_range *start_key, const key_range *end_key, bool eq_r, bool sorted) { byte* buf= table->record[0]; DBUG_ENTER("ha_ndbcluster::read_range_first"); DBUG_RETURN(read_range_first_to_buf(start_key, end_key, FALSE, sorted, buf)); } int ha_ndbcluster::read_range_next() { DBUG_ENTER("ha_ndbcluster::read_range_next"); DBUG_RETURN(next_result(table->record[0])); } int ha_ndbcluster::rnd_init(bool scan) { NdbScanOperation *cursor= m_active_cursor; DBUG_ENTER("rnd_init"); DBUG_PRINT("enter", ("scan: %d", scan)); // Check if scan is to be restarted if (cursor) { if (!scan) DBUG_RETURN(1); if (cursor->restart(m_force_send) != 0) { DBUG_ASSERT(0); DBUG_RETURN(-1); } } index_init(table_share->primary_key, 0); DBUG_RETURN(0); } int ha_ndbcluster::close_scan() { NdbTransaction *trans= m_active_trans; DBUG_ENTER("close_scan"); m_multi_cursor= 0; if (!m_active_cursor && !m_multi_cursor) DBUG_RETURN(1); NdbScanOperation *cursor= m_active_cursor ? m_active_cursor : m_multi_cursor; if (m_ops_pending) { /* Take over any pending transactions to the deleteing/updating transaction before closing the scan */ DBUG_PRINT("info", ("ops_pending: %d", m_ops_pending)); if (execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); DBUG_RETURN(ndb_err(trans)); } m_ops_pending= 0; } cursor->close(m_force_send, TRUE); m_active_cursor= m_multi_cursor= NULL; DBUG_RETURN(0); } int ha_ndbcluster::rnd_end() { DBUG_ENTER("rnd_end"); DBUG_RETURN(close_scan()); } int ha_ndbcluster::rnd_next(byte *buf) { DBUG_ENTER("rnd_next"); statistic_increment(current_thd->status_var.ha_read_rnd_next_count, &LOCK_status); if (!m_active_cursor) DBUG_RETURN(full_table_scan(buf)); DBUG_RETURN(next_result(buf)); } /* An "interesting" record has been found and it's pk retrieved by calling position Now it's time to read the record from db once again */ int ha_ndbcluster::rnd_pos(byte *buf, byte *pos) { DBUG_ENTER("rnd_pos"); statistic_increment(current_thd->status_var.ha_read_rnd_count, &LOCK_status); // The primary key for the record is stored in pos // Perform a pk_read using primary key "index" { part_id_range part_spec; if (m_use_partition_function) { key_range key_spec; KEY *key_info= table->key_info + active_index; key_spec.key= pos; key_spec.length= ref_length; key_spec.flag= HA_READ_KEY_EXACT; get_full_part_id_from_key(table, buf, key_info, &key_spec, &part_spec); DBUG_ASSERT(part_spec.start_part == part_spec.end_part); } DBUG_RETURN(pk_read(pos, ref_length, buf, part_spec.start_part)); } } /* Store the primary key of this record in ref variable, so that the row can be retrieved again later using "reference" in rnd_pos */ void ha_ndbcluster::position(const byte *record) { KEY *key_info; KEY_PART_INFO *key_part; KEY_PART_INFO *end; byte *buff; DBUG_ENTER("position"); if (table_share->primary_key != MAX_KEY) { key_info= table->key_info + table_share->primary_key; key_part= key_info->key_part; end= key_part + key_info->key_parts; buff= ref; for (; key_part != end; key_part++) { if (key_part->null_bit) { /* Store 0 if the key part is a NULL part */ if (record[key_part->null_offset] & key_part->null_bit) { *buff++= 1; continue; } *buff++= 0; } size_t len = key_part->length; const byte * ptr = record + key_part->offset; Field *field = key_part->field; if ((field->type() == MYSQL_TYPE_VARCHAR) && ((Field_varstring*)field)->length_bytes == 1) { /** * Keys always use 2 bytes length */ buff[0] = ptr[0]; buff[1] = 0; memcpy(buff+2, ptr + 1, len); len += 2; } else { memcpy(buff, ptr, len); } buff += len; } } else { // No primary key, get hidden key DBUG_PRINT("info", ("Getting hidden key")); int hidden_no= table_share->fields; const NdbRecAttr* rec= m_value[hidden_no].rec; memcpy(ref, (const void*)rec->aRef(), ref_length); #ifndef DBUG_OFF const NDBTAB *tab= (const NDBTAB *) m_table; const NDBCOL *hidden_col= tab->getColumn(hidden_no); DBUG_ASSERT(hidden_col->getPrimaryKey() && hidden_col->getAutoIncrement() && rec != NULL && ref_length == NDB_HIDDEN_PRIMARY_KEY_LENGTH); #endif } DBUG_DUMP("ref", (char*)ref, ref_length); DBUG_VOID_RETURN; } void ha_ndbcluster::info(uint flag) { DBUG_ENTER("info"); DBUG_PRINT("enter", ("flag: %d", flag)); if (flag & HA_STATUS_POS) DBUG_PRINT("info", ("HA_STATUS_POS")); if (flag & HA_STATUS_NO_LOCK) DBUG_PRINT("info", ("HA_STATUS_NO_LOCK")); if (flag & HA_STATUS_TIME) DBUG_PRINT("info", ("HA_STATUS_TIME")); if (flag & HA_STATUS_VARIABLE) { DBUG_PRINT("info", ("HA_STATUS_VARIABLE")); if (m_table_info) { if (m_ha_not_exact_count) records= 100; else records_update(); } else { if ((my_errno= check_ndb_connection())) DBUG_VOID_RETURN; Ndb *ndb= get_ndb(); struct Ndb_statistics stat; if (current_thd->variables.ndb_use_exact_count && ndb_get_table_statistics(ndb, m_tabname, &stat) == 0) { mean_rec_length= stat.row_size; data_file_length= stat.fragment_memory; records= stat.row_count; } else { mean_rec_length= 0; records= 100; } } } if (flag & HA_STATUS_CONST) { DBUG_PRINT("info", ("HA_STATUS_CONST")); set_rec_per_key(); } if (flag & HA_STATUS_ERRKEY) { DBUG_PRINT("info", ("HA_STATUS_ERRKEY")); errkey= m_dupkey; } if (flag & HA_STATUS_AUTO) { DBUG_PRINT("info", ("HA_STATUS_AUTO")); if (m_table) { Ndb *ndb= get_ndb(); auto_increment_value= ndb->readAutoIncrementValue((const NDBTAB *) m_table); } } DBUG_VOID_RETURN; } void ha_ndbcluster::get_dynamic_partition_info(PARTITION_INFO *stat_info, uint part_id) { /* This functions should be fixed. Suggested fix: to implement ndb function which retrives the statistics about ndb partitions. */ bzero((char*) stat_info, sizeof(PARTITION_INFO)); return; } int ha_ndbcluster::extra(enum ha_extra_function operation) { DBUG_ENTER("extra"); switch (operation) { case HA_EXTRA_RESET: /* Reset database to after open */ DBUG_PRINT("info", ("HA_EXTRA_RESET")); DBUG_PRINT("info", ("Clearing condition stack")); cond_clear(); if (m_part_info) bitmap_clear_all(&m_part_info->used_partitions); break; case HA_EXTRA_IGNORE_DUP_KEY: /* Dup keys don't rollback everything*/ DBUG_PRINT("info", ("HA_EXTRA_IGNORE_DUP_KEY")); if (current_thd->lex->sql_command == SQLCOM_REPLACE) { DBUG_PRINT("info", ("Turning ON use of write instead of insert")); m_use_write= TRUE; } else { DBUG_PRINT("info", ("Ignoring duplicate key")); m_ignore_dup_key= TRUE; } break; case HA_EXTRA_NO_IGNORE_DUP_KEY: DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_DUP_KEY")); DBUG_PRINT("info", ("Turning OFF use of write instead of insert")); m_use_write= FALSE; m_ignore_dup_key= FALSE; break; case HA_EXTRA_IGNORE_NO_KEY: DBUG_PRINT("info", ("HA_EXTRA_IGNORE_NO_KEY")); DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit")); m_ignore_no_key= TRUE; break; case HA_EXTRA_NO_IGNORE_NO_KEY: DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_NO_KEY")); DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit")); m_ignore_no_key= FALSE; break; default: break; } DBUG_RETURN(0); } /* Start of an insert, remember number of rows to be inserted, it will be used in write_row and get_autoincrement to send an optimal number of rows in each roundtrip to the server SYNOPSIS rows number of rows to insert, 0 if unknown */ void ha_ndbcluster::start_bulk_insert(ha_rows rows) { int bytes, batch; const NDBTAB *tab= (const NDBTAB *) m_table; DBUG_ENTER("start_bulk_insert"); DBUG_PRINT("enter", ("rows: %d", (int)rows)); m_rows_inserted= (ha_rows) 0; if (rows == (ha_rows) 0) { /* We don't know how many will be inserted, guess */ m_rows_to_insert= m_autoincrement_prefetch; } else m_rows_to_insert= rows; /* Calculate how many rows that should be inserted per roundtrip to NDB. This is done in order to minimize the number of roundtrips as much as possible. However performance will degrade if too many bytes are inserted, thus it's limited by this calculation. */ const int bytesperbatch= 8192; bytes= 12 + tab->getRowSizeInBytes() + 4 * tab->getNoOfColumns(); batch= bytesperbatch/bytes; batch= batch == 0 ? 1 : batch; DBUG_PRINT("info", ("batch: %d, bytes: %d", batch, bytes)); m_bulk_insert_rows= batch; DBUG_VOID_RETURN; } /* End of an insert */ int ha_ndbcluster::end_bulk_insert() { int error= 0; DBUG_ENTER("end_bulk_insert"); // Check if last inserts need to be flushed if (m_bulk_insert_not_flushed) { NdbTransaction *trans= m_active_trans; // Send rows to NDB DBUG_PRINT("info", ("Sending inserts to NDB, "\ "rows_inserted:%d, bulk_insert_rows: %d", (int) m_rows_inserted, (int) m_bulk_insert_rows)); m_bulk_insert_not_flushed= FALSE; if (execute_no_commit(this,trans) != 0) { no_uncommitted_rows_execute_failure(); my_errno= error= ndb_err(trans); } } m_rows_inserted= (ha_rows) 0; m_rows_to_insert= (ha_rows) 1; DBUG_RETURN(error); } int ha_ndbcluster::extra_opt(enum ha_extra_function operation, ulong cache_size) { DBUG_ENTER("extra_opt"); DBUG_PRINT("enter", ("cache_size: %lu", cache_size)); DBUG_RETURN(extra(operation)); } static const char *ha_ndbcluster_exts[] = { ha_ndb_ext, NullS }; const char** ha_ndbcluster::bas_ext() const { return ha_ndbcluster_exts; } /* How many seeks it will take to read through the table This is to be comparable to the number returned by records_in_range so that we can decide if we should scan the table or use keys. */ double ha_ndbcluster::scan_time() { DBUG_ENTER("ha_ndbcluster::scan_time()"); double res= rows2double(records*1000); DBUG_PRINT("exit", ("table: %s value: %f", m_tabname, res)); DBUG_RETURN(res); } /* Convert MySQL table locks into locks supported by Ndb Cluster. Note that MySQL Cluster does currently not support distributed table locks, so to be safe one should set cluster in Single User Mode, before relying on table locks when updating tables from several MySQL servers */ THR_LOCK_DATA **ha_ndbcluster::store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type) { DBUG_ENTER("store_lock"); if (lock_type != TL_IGNORE && m_lock.type == TL_UNLOCK) { /* If we are not doing a LOCK TABLE, then allow multiple writers */ /* Since NDB does not currently have table locks this is treated as a ordinary lock */ if ((lock_type >= TL_WRITE_CONCURRENT_INSERT && lock_type <= TL_WRITE) && !thd->in_lock_tables) lock_type= TL_WRITE_ALLOW_WRITE; /* In queries of type INSERT INTO t1 SELECT ... FROM t2 ... MySQL would use the lock TL_READ_NO_INSERT on t2, and that would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts to t2. Convert the lock to a normal read lock to allow concurrent inserts to t2. */ if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables) lock_type= TL_READ; m_lock.type=lock_type; } *to++= &m_lock; DBUG_PRINT("exit", ("lock_type: %d", lock_type)); DBUG_RETURN(to); } #ifndef DBUG_OFF #define PRINT_OPTION_FLAGS(t) { \ if (t->options & OPTION_NOT_AUTOCOMMIT) \ DBUG_PRINT("thd->options", ("OPTION_NOT_AUTOCOMMIT")); \ if (t->options & OPTION_BEGIN) \ DBUG_PRINT("thd->options", ("OPTION_BEGIN")); \ if (t->options & OPTION_TABLE_LOCK) \ DBUG_PRINT("thd->options", ("OPTION_TABLE_LOCK")); \ } #else #define PRINT_OPTION_FLAGS(t) #endif /* As MySQL will execute an external lock for every new table it uses we can use this to start the transactions. If we are in auto_commit mode we just need to start a transaction for the statement, this will be stored in thd_ndb.stmt. If not, we have to start a master transaction if there doesn't exist one from before, this will be stored in thd_ndb.all When a table lock is held one transaction will be started which holds the table lock and for each statement a hupp transaction will be started If we are locking the table then: - save the NdbDictionary::Table for easy access - save reference to table statistics - refresh list of the indexes for the table if needed (if altered) */ int ha_ndbcluster::external_lock(THD *thd, int lock_type) { int error=0; NdbTransaction* trans= NULL; DBUG_ENTER("external_lock"); /* Check that this handler instance has a connection set up to the Ndb object of thd */ if (check_ndb_connection(thd)) DBUG_RETURN(1); Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; DBUG_PRINT("enter", ("this: %x thd: %lx thd_ndb: %lx " "thd_ndb->lock_count: %d", this, thd, thd_ndb, thd_ndb->lock_count)); if (lock_type != F_UNLCK) { DBUG_PRINT("info", ("lock_type != F_UNLCK")); if (!thd->transaction.on) m_transaction_on= FALSE; else m_transaction_on= thd->variables.ndb_use_transactions; if (!thd_ndb->lock_count++) { PRINT_OPTION_FLAGS(thd); if (!(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))) { // Autocommit transaction DBUG_ASSERT(!thd_ndb->stmt); DBUG_PRINT("trans",("Starting transaction stmt")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->stmt= trans; if (m_transaction_on) trans_register_ha(thd, FALSE, &ndbcluster_hton); } else { if (!thd_ndb->all) { // Not autocommit transaction // A "master" transaction ha not been started yet DBUG_PRINT("trans",("starting transaction, all")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->all= trans; if (m_transaction_on) trans_register_ha(thd, TRUE, &ndbcluster_hton); /* If this is the start of a LOCK TABLE, a table look should be taken on the table in NDB Check if it should be read or write lock */ if (thd->options & (OPTION_TABLE_LOCK)) { //lockThisTable(); DBUG_PRINT("info", ("Locking the table..." )); } } } } /* This is the place to make sure this handler instance has a started transaction. The transaction is started by the first handler on which MySQL Server calls external lock Other handlers in the same stmt or transaction should use the same NDB transaction. This is done by setting up the m_active_trans pointer to point to the NDB transaction. */ // store thread specific data first to set the right context m_force_send= thd->variables.ndb_force_send; m_ha_not_exact_count= !thd->variables.ndb_use_exact_count; m_autoincrement_prefetch= (ha_rows) thd->variables.ndb_autoincrement_prefetch_sz; m_active_trans= thd_ndb->all ? thd_ndb->all : thd_ndb->stmt; DBUG_ASSERT(m_active_trans); // Start of transaction m_rows_changed= 0; m_ops_pending= 0; { NDBDICT *dict= ndb->getDictionary(); const NDBTAB *tab; void *tab_info; if (!(tab= dict->getTable(m_tabname, &tab_info))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); // Check if thread has stale local cache // New transaction must not use old tables... (trans != 0) // Running might... if ((trans && tab->getObjectStatus() != NdbDictionary::Object::Retrieved) || tab->getObjectStatus() == NdbDictionary::Object::Invalid) { invalidate_dictionary_cache(FALSE); if (!(tab= dict->getTable(m_tabname, &tab_info))) ERR_RETURN(dict->getNdbError()); DBUG_PRINT("info", ("Table schema version: %d", tab->getObjectVersion())); } if (m_table_version < tab->getObjectVersion()) { /* The table has been altered, caller has to retry */ NdbError err= ndb->getNdbError(NDB_INVALID_SCHEMA_OBJECT); DBUG_RETURN(ndb_to_mysql_error(&err)); } if (m_table != (void *)tab) { m_table= (void *)tab; m_table_version = tab->getObjectVersion(); if (!(my_errno= open_indexes(ndb, table))) DBUG_RETURN(my_errno); } m_table_info= tab_info; } no_uncommitted_rows_init(thd); } else { DBUG_PRINT("info", ("lock_type == F_UNLCK")); if (ndb_cache_check_time && m_rows_changed) { DBUG_PRINT("info", ("Rows has changed and util thread is running")); if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)) { DBUG_PRINT("info", ("Add share to list of tables to be invalidated")); /* NOTE push_back allocates memory using transactions mem_root! */ thd_ndb->changed_tables.push_back(m_share, &thd->transaction.mem_root); } pthread_mutex_lock(&m_share->mutex); DBUG_PRINT("info", ("Invalidating commit_count")); m_share->commit_count= 0; m_share->commit_count_lock++; pthread_mutex_unlock(&m_share->mutex); } if (!--thd_ndb->lock_count) { DBUG_PRINT("trans", ("Last external_lock")); PRINT_OPTION_FLAGS(thd); if (thd_ndb->stmt) { /* Unlock is done without a transaction commit / rollback. This happens if the thread didn't update any rows We must in this case close the transaction to release resources */ DBUG_PRINT("trans",("ending non-updating transaction")); ndb->closeTransaction(m_active_trans); thd_ndb->stmt= NULL; } } m_table_info= NULL; /* This is the place to make sure this handler instance no longer are connected to the active transaction. And since the handler is no longer part of the transaction it can't have open cursors, ops or blobs pending. */ m_active_trans= NULL; if (m_active_cursor) DBUG_PRINT("warning", ("m_active_cursor != NULL")); m_active_cursor= NULL; if (m_multi_cursor) DBUG_PRINT("warning", ("m_multi_cursor != NULL")); m_multi_cursor= NULL; if (m_blobs_pending) DBUG_PRINT("warning", ("blobs_pending != 0")); m_blobs_pending= 0; if (m_ops_pending) DBUG_PRINT("warning", ("ops_pending != 0L")); m_ops_pending= 0; } DBUG_RETURN(error); } /* Start a transaction for running a statement if one is not already running in a transaction. This will be the case in a BEGIN; COMMIT; block When using LOCK TABLE's external_lock will start a transaction since ndb does not currently does not support table locking */ int ha_ndbcluster::start_stmt(THD *thd, thr_lock_type lock_type) { int error=0; DBUG_ENTER("start_stmt"); PRINT_OPTION_FLAGS(thd); Thd_ndb *thd_ndb= get_thd_ndb(thd); NdbTransaction *trans= (thd_ndb->stmt)?thd_ndb->stmt:thd_ndb->all; if (!trans){ Ndb *ndb= thd_ndb->ndb; DBUG_PRINT("trans",("Starting transaction stmt")); trans= ndb->startTransaction(); if (trans == NULL) ERR_RETURN(ndb->getNdbError()); no_uncommitted_rows_reset(thd); thd_ndb->stmt= trans; trans_register_ha(thd, FALSE, &ndbcluster_hton); } m_active_trans= trans; // Start of statement m_ops_pending= 0; DBUG_RETURN(error); } /* Commit a transaction started in NDB */ static int ndbcluster_commit(THD *thd, bool all) { int res= 0; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt; DBUG_ENTER("ndbcluster_commit"); DBUG_PRINT("transaction",("%s", trans == thd_ndb->stmt ? "stmt" : "all")); DBUG_ASSERT(ndb && trans); if (execute_commit(thd,trans) != 0) { const NdbError err= trans->getNdbError(); const NdbOperation *error_op= trans->getNdbErrorOperation(); ERR_PRINT(err); res= ndb_to_mysql_error(&err); if (res != -1) ndbcluster_print_error(res, error_op); } ndb->closeTransaction(trans); if (all) thd_ndb->all= NULL; else thd_ndb->stmt= NULL; /* Clear commit_count for tables changed by transaction */ NDB_SHARE* share; List_iterator_fast<NDB_SHARE> it(thd_ndb->changed_tables); while ((share= it++)) { pthread_mutex_lock(&share->mutex); DBUG_PRINT("info", ("Invalidate commit_count for %s, share->commit_count: %d ", share->key, share->commit_count)); share->commit_count= 0; share->commit_count_lock++; pthread_mutex_unlock(&share->mutex); } thd_ndb->changed_tables.empty(); DBUG_RETURN(res); } /* Rollback a transaction started in NDB */ static int ndbcluster_rollback(THD *thd, bool all) { int res= 0; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt; DBUG_ENTER("ndbcluster_rollback"); DBUG_PRINT("transaction",("%s", trans == thd_ndb->stmt ? "stmt" : "all")); DBUG_ASSERT(ndb && trans); if (trans->execute(NdbTransaction::Rollback) != 0) { const NdbError err= trans->getNdbError(); const NdbOperation *error_op= trans->getNdbErrorOperation(); ERR_PRINT(err); res= ndb_to_mysql_error(&err); if (res != -1) ndbcluster_print_error(res, error_op); } ndb->closeTransaction(trans); if (all) thd_ndb->all= NULL; else thd_ndb->stmt= NULL; /* Clear list of tables changed by transaction */ thd_ndb->changed_tables.empty(); DBUG_RETURN(res); } /* Define NDB column based on Field. Returns 0 or mysql error code. Not member of ha_ndbcluster because NDBCOL cannot be declared. MySQL text types with character set "binary" are mapped to true NDB binary types without a character set. This may change. */ static int create_ndb_column(NDBCOL &col, Field *field, HA_CREATE_INFO *info) { // Set name col.setName(field->field_name); // Get char set CHARSET_INFO *cs= field->charset(); // Set type and sizes const enum enum_field_types mysql_type= field->real_type(); switch (mysql_type) { // Numeric types case MYSQL_TYPE_TINY: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Tinyunsigned); else col.setType(NDBCOL::Tinyint); col.setLength(1); break; case MYSQL_TYPE_SHORT: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Smallunsigned); else col.setType(NDBCOL::Smallint); col.setLength(1); break; case MYSQL_TYPE_LONG: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Unsigned); else col.setType(NDBCOL::Int); col.setLength(1); break; case MYSQL_TYPE_INT24: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Mediumunsigned); else col.setType(NDBCOL::Mediumint); col.setLength(1); break; case MYSQL_TYPE_LONGLONG: if (field->flags & UNSIGNED_FLAG) col.setType(NDBCOL::Bigunsigned); else col.setType(NDBCOL::Bigint); col.setLength(1); break; case MYSQL_TYPE_FLOAT: col.setType(NDBCOL::Float); col.setLength(1); break; case MYSQL_TYPE_DOUBLE: col.setType(NDBCOL::Double); col.setLength(1); break; case MYSQL_TYPE_DECIMAL: { Field_decimal *f= (Field_decimal*)field; uint precision= f->pack_length(); uint scale= f->decimals(); if (field->flags & UNSIGNED_FLAG) { col.setType(NDBCOL::Olddecimalunsigned); precision-= (scale > 0); } else { col.setType(NDBCOL::Olddecimal); precision-= 1 + (scale > 0); } col.setPrecision(precision); col.setScale(scale); col.setLength(1); } break; case MYSQL_TYPE_NEWDECIMAL: { Field_new_decimal *f= (Field_new_decimal*)field; uint precision= f->precision; uint scale= f->decimals(); if (field->flags & UNSIGNED_FLAG) { col.setType(NDBCOL::Decimalunsigned); } else { col.setType(NDBCOL::Decimal); } col.setPrecision(precision); col.setScale(scale); col.setLength(1); } break; // Date types case MYSQL_TYPE_DATETIME: col.setType(NDBCOL::Datetime); col.setLength(1); break; case MYSQL_TYPE_DATE: // ? col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_NEWDATE: col.setType(NDBCOL::Date); col.setLength(1); break; case MYSQL_TYPE_TIME: col.setType(NDBCOL::Time); col.setLength(1); break; case MYSQL_TYPE_YEAR: col.setType(NDBCOL::Year); col.setLength(1); break; case MYSQL_TYPE_TIMESTAMP: col.setType(NDBCOL::Timestamp); col.setLength(1); break; // Char types case MYSQL_TYPE_STRING: if (field->pack_length() == 0) { col.setType(NDBCOL::Bit); col.setLength(1); } else if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) { col.setType(NDBCOL::Binary); col.setLength(field->pack_length()); } else { col.setType(NDBCOL::Char); col.setCharset(cs); col.setLength(field->pack_length()); } break; case MYSQL_TYPE_VAR_STRING: // ? case MYSQL_TYPE_VARCHAR: { Field_varstring* f= (Field_varstring*)field; if (f->length_bytes == 1) { if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Varbinary); else { col.setType(NDBCOL::Varchar); col.setCharset(cs); } } else if (f->length_bytes == 2) { if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Longvarbinary); else { col.setType(NDBCOL::Longvarchar); col.setCharset(cs); } } else { return HA_ERR_UNSUPPORTED; } col.setLength(field->field_length); } break; // Blob types (all come in as MYSQL_TYPE_BLOB) mysql_type_tiny_blob: case MYSQL_TYPE_TINY_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); // No parts col.setPartSize(0); col.setStripeSize(0); break; //mysql_type_blob: case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } // Use "<=" even if "<" is the exact condition if (field->max_length() <= (1 << 8)) goto mysql_type_tiny_blob; else if (field->max_length() <= (1 << 16)) { col.setInlineSize(256); col.setPartSize(2000); col.setStripeSize(16); } else if (field->max_length() <= (1 << 24)) goto mysql_type_medium_blob; else goto mysql_type_long_blob; break; mysql_type_medium_blob: case MYSQL_TYPE_MEDIUM_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); col.setPartSize(4000); col.setStripeSize(8); break; mysql_type_long_blob: case MYSQL_TYPE_LONG_BLOB: if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin) col.setType(NDBCOL::Blob); else { col.setType(NDBCOL::Text); col.setCharset(cs); } col.setInlineSize(256); col.setPartSize(8000); col.setStripeSize(4); break; // Other types case MYSQL_TYPE_ENUM: col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_SET: col.setType(NDBCOL::Char); col.setLength(field->pack_length()); break; case MYSQL_TYPE_BIT: { int no_of_bits= field->field_length*8 + ((Field_bit *) field)->bit_len; col.setType(NDBCOL::Bit); if (!no_of_bits) col.setLength(1); else col.setLength(no_of_bits); break; } case MYSQL_TYPE_NULL: goto mysql_type_unsupported; mysql_type_unsupported: default: return HA_ERR_UNSUPPORTED; } // Set nullable and pk col.setNullable(field->maybe_null()); col.setPrimaryKey(field->flags & PRI_KEY_FLAG); // Set autoincrement if (field->flags & AUTO_INCREMENT_FLAG) { col.setAutoIncrement(TRUE); ulonglong value= info->auto_increment_value ? info->auto_increment_value : (ulonglong) 1; DBUG_PRINT("info", ("Autoincrement key, initial: %llu", value)); col.setAutoIncrementInitialValue(value); } else col.setAutoIncrement(FALSE); return 0; } /* Create a table in NDB Cluster */ int ha_ndbcluster::create(const char *name, TABLE *form, HA_CREATE_INFO *info) { NDBTAB tab; NDBCOL col; uint pack_length, length, i, pk_length= 0; const void *data, *pack_data; char name2[FN_HEADLEN]; bool create_from_engine= (info->table_options & HA_OPTION_CREATE_FROM_ENGINE); DBUG_ENTER("ha_ndbcluster::create"); DBUG_PRINT("enter", ("name: %s", name)); strcpy(name2, name); DBUG_ASSERT(*fn_rext((char*)name2) == 0); set_dbname(name2); set_tabname(name2); table= form; if (create_from_engine) { /* Table already exists in NDB and frm file has been created by caller. Do Ndb specific stuff, such as create a .ndb file */ if ((my_errno= write_ndb_file(name))) DBUG_RETURN(my_errno); #ifdef HAVE_NDB_BINLOG ndbcluster_create_binlog_setup(get_ndb(), name2, strlen(name2), m_dbname, m_tabname, FALSE); #endif /* HAVE_NDB_BINLOG */ DBUG_RETURN(my_errno); } DBUG_PRINT("table", ("name: %s", m_tabname)); tab.setName(m_tabname); tab.setLogging(!(info->options & HA_LEX_CREATE_TMP_TABLE)); // Save frm data for this table if (readfrm(name, &data, &length)) DBUG_RETURN(1); if (packfrm(data, length, &pack_data, &pack_length)) DBUG_RETURN(2); DBUG_PRINT("info", ("setFrm data=%lx len=%d", pack_data, pack_length)); tab.setFrm(pack_data, pack_length); my_free((char*)data, MYF(0)); my_free((char*)pack_data, MYF(0)); for (i= 0; i < form->s->fields; i++) { Field *field= form->field[i]; DBUG_PRINT("info", ("name: %s, type: %u, pack_length: %d", field->field_name, field->real_type(), field->pack_length())); if ((my_errno= create_ndb_column(col, field, info))) DBUG_RETURN(my_errno); if (info->store_on_disk || getenv("NDB_DEFAULT_DISK")) col.setStorageType(NdbDictionary::Column::StorageTypeDisk); else col.setStorageType(NdbDictionary::Column::StorageTypeMemory); tab.addColumn(col); if (col.getPrimaryKey()) pk_length += (field->pack_length() + 3) / 4; } KEY* key_info; for (i= 0, key_info= form->key_info; i < form->s->keys; i++, key_info++) { KEY_PART_INFO *key_part= key_info->key_part; KEY_PART_INFO *end= key_part + key_info->key_parts; for (; key_part != end; key_part++) tab.getColumn(key_part->fieldnr-1)->setStorageType( NdbDictionary::Column::StorageTypeMemory); } if (info->store_on_disk) if (info->tablespace) tab.setTablespace(info->tablespace); else tab.setTablespace("DEFAULT-TS"); // No primary key, create shadow key as 64 bit, auto increment if (form->s->primary_key == MAX_KEY) { DBUG_PRINT("info", ("Generating shadow key")); col.setName("$PK"); col.setType(NdbDictionary::Column::Bigunsigned); col.setLength(1); col.setNullable(FALSE); col.setPrimaryKey(TRUE); col.setAutoIncrement(TRUE); tab.addColumn(col); pk_length += 2; } // Make sure that blob tables don't have to big part size for (i= 0; i < form->s->fields; i++) { /** * The extra +7 concists * 2 - words from pk in blob table * 5 - from extra words added by tup/dict?? */ switch (form->field[i]->real_type()) { case MYSQL_TYPE_GEOMETRY: case MYSQL_TYPE_BLOB: case MYSQL_TYPE_MEDIUM_BLOB: case MYSQL_TYPE_LONG_BLOB: { NdbDictionary::Column * col= tab.getColumn(i); int size= pk_length + (col->getPartSize()+3)/4 + 7; if (size > NDB_MAX_TUPLE_SIZE_IN_WORDS && (pk_length+7) < NDB_MAX_TUPLE_SIZE_IN_WORDS) { size= NDB_MAX_TUPLE_SIZE_IN_WORDS - pk_length - 7; col->setPartSize(4*size); } /** * If size > NDB_MAX and pk_length+7 >= NDB_MAX * then the table can't be created anyway, so skip * changing part size, and have error later */ } default: break; } } // Check partition info partition_info *part_info= form->part_info; if ((my_errno= set_up_partition_info(part_info, form, (void*)&tab))) { DBUG_RETURN(my_errno); } if ((my_errno= check_ndb_connection())) DBUG_RETURN(my_errno); // Create the table in NDB Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); if (dict->createTable(tab) != 0) { const NdbError err= dict->getNdbError(); ERR_PRINT(err); my_errno= ndb_to_mysql_error(&err); DBUG_RETURN(my_errno); } DBUG_PRINT("info", ("Table %s/%s created successfully", m_dbname, m_tabname)); // Create secondary indexes my_errno= create_indexes(ndb, form); if (!my_errno) my_errno= write_ndb_file(name); else { /* Failed to create an index, drop the table (and all it's indexes) */ drop_ndb_table(); } #ifdef HAVE_NDB_BINLOG if (!my_errno) { NDB_SHARE *share= 0; pthread_mutex_lock(&ndbcluster_mutex); /* First make sure we get a "fresh" share here, not an old trailing one... */ { const char *key= name2; uint length= (uint) strlen(key); if ((share= (NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) key, length))) handle_trailing_share(share); } /* get a new share */ if (!(share= get_share(name2, form, true, true))) { sql_print_error("NDB: allocating table share for %s failed", name2); /* my_errno is set */ } pthread_mutex_unlock(&ndbcluster_mutex); while (!IS_TMP_PREFIX(m_tabname)) { const NDBTAB *t= dict->getTable(m_tabname); String event_name(INJECTOR_EVENT_LEN); ndb_rep_event_name(&event_name,m_dbname,m_tabname); /* Always create an event for the table, as other mysql servers expect it to be there. */ if (ndbcluster_create_event(ndb, t, event_name.c_ptr(), share) < 0) { /* this is only a serious error if the binlog is on */ if (share && ndb_binlog_thread_running > 0) { push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR, ER_GET_ERRMSG, ER(ER_GET_ERRMSG), "Creating event for logging table failed. " "See error log for details."); } break; } if (ndb_extra_logging) sql_print_information("NDB Binlog: CREATE TABLE Event: %s", event_name.c_ptr()); if (share && ndb_binlog_thread_running > 0 && ndbcluster_create_event_ops(share, t, event_name.c_ptr()) < 0) { sql_print_error("NDB Binlog: FAILED CREATE TABLE event operations." " Event: %s", name2); /* a warning has been issued to the client */ } if (share && ndb_binlog_thread_running <= 0) share->flags|= NSF_NO_BINLOG; ndbcluster_log_schema_op(current_thd, share, current_thd->query, current_thd->query_length, share->db, share->table_name, 0, 0, SOT_CREATE_TABLE); break; } } #endif /* HAVE_NDB_BINLOG */ DBUG_RETURN(my_errno); } int ha_ndbcluster::create_handler_files(const char *file) { const char *name; Ndb* ndb; const NDBTAB *tab; const void *data, *pack_data; uint length, pack_length; int error= 0; DBUG_ENTER("create_handler_files"); if (!(ndb= get_ndb())) DBUG_RETURN(HA_ERR_NO_CONNECTION); NDBDICT *dict= ndb->getDictionary(); if (!(tab= dict->getTable(m_tabname))) DBUG_RETURN(0); // Must be a create, ignore since frm is saved in create name= table->s->normalized_path.str; DBUG_PRINT("enter", ("m_tabname: %s, path: %s", m_tabname, name)); if (readfrm(name, &data, &length) || packfrm(data, length, &pack_data, &pack_length)) { DBUG_PRINT("info", ("Missing frm for %s", m_tabname)); my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(1); } if (cmp_frm(tab, pack_data, pack_length)) { DBUG_PRINT("info", ("Table %s has changed, altering frm in ndb", m_tabname)); error= table_changed(pack_data, pack_length); m_share->state= NSS_INITIAL; } my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR)); DBUG_RETURN(error); } int ha_ndbcluster::create_index(const char *name, KEY *key_info, NDB_INDEX_TYPE idx_type, uint idx_no) { int error= 0; char unique_name[FN_LEN]; static const char* unique_suffix= "$unique"; DBUG_ENTER("ha_ndbcluster::create_ordered_index"); DBUG_PRINT("info", ("Creating index %u: %s", idx_no, name)); if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX) { strxnmov(unique_name, FN_LEN, name, unique_suffix, NullS); DBUG_PRINT("info", ("Created unique index name \'%s\' for index %d", unique_name, idx_no)); } switch (idx_type){ case PRIMARY_KEY_INDEX: // Do nothing, already created break; case PRIMARY_KEY_ORDERED_INDEX: error= create_ordered_index(name, key_info); break; case UNIQUE_ORDERED_INDEX: if (!(error= create_ordered_index(name, key_info))) error= create_unique_index(unique_name, key_info); break; case UNIQUE_INDEX: if (!(error= check_index_fields_not_null(idx_no))) error= create_unique_index(unique_name, key_info); break; case ORDERED_INDEX: error= create_ordered_index(name, key_info); break; default: DBUG_ASSERT(FALSE); break; } DBUG_RETURN(error); } int ha_ndbcluster::create_ordered_index(const char *name, KEY *key_info) { DBUG_ENTER("ha_ndbcluster::create_ordered_index"); DBUG_RETURN(create_ndb_index(name, key_info, FALSE)); } int ha_ndbcluster::create_unique_index(const char *name, KEY *key_info) { DBUG_ENTER("ha_ndbcluster::create_unique_index"); DBUG_RETURN(create_ndb_index(name, key_info, TRUE)); } /* Create an index in NDB Cluster */ int ha_ndbcluster::create_ndb_index(const char *name, KEY *key_info, bool unique) { Ndb *ndb= get_ndb(); NdbDictionary::Dictionary *dict= ndb->getDictionary(); KEY_PART_INFO *key_part= key_info->key_part; KEY_PART_INFO *end= key_part + key_info->key_parts; DBUG_ENTER("ha_ndbcluster::create_index"); DBUG_PRINT("enter", ("name: %s ", name)); NdbDictionary::Index ndb_index(name); if (unique) ndb_index.setType(NdbDictionary::Index::UniqueHashIndex); else { ndb_index.setType(NdbDictionary::Index::OrderedIndex); // TODO Only temporary ordered indexes supported ndb_index.setLogging(FALSE); } ndb_index.setTable(m_tabname); for (; key_part != end; key_part++) { Field *field= key_part->field; DBUG_PRINT("info", ("attr: %s", field->field_name)); ndb_index.addColumnName(field->field_name); } if (dict->createIndex(ndb_index)) ERR_RETURN(dict->getNdbError()); // Success DBUG_PRINT("info", ("Created index %s", name)); DBUG_RETURN(0); } /* Add an index on-line to a table */ int ha_ndbcluster::add_index(TABLE *table_arg, KEY *key_info, uint num_of_keys) { DBUG_ENTER("ha_ndbcluster::add_index"); DBUG_PRINT("info", ("ha_ndbcluster::add_index to table %s", table_arg->s->table_name)); int error= 0; uint idx; for (idx= 0; idx < num_of_keys; idx++) { KEY *key= key_info + idx; KEY_PART_INFO *key_part= key->key_part; KEY_PART_INFO *end= key_part + key->key_parts; NDB_INDEX_TYPE idx_type= get_index_type_from_key(idx, key); DBUG_PRINT("info", ("Adding index: '%s'", key_info[idx].name)); // Add fields to key_part struct for (; key_part != end; key_part++) key_part->field= table->field[key_part->fieldnr]; // Check index type // Create index in ndb if((error= create_index(key_info[idx].name, key, idx_type, idx))) break; } m_share->state= NSS_ALTERED; DBUG_RETURN(error); } /* Drop an index in ndb */ int ha_ndbcluster::drop_ndb_index(const char *name) { DBUG_ENTER("ha_ndbcluster::drop_index"); DBUG_PRINT("enter", ("name: %s ", name)); Ndb *ndb= get_ndb(); NdbDictionary::Dictionary *dict= ndb->getDictionary(); DBUG_RETURN(dict->dropIndex(name, m_tabname)); } /* Mark one or several indexes for deletion. and renumber the remaining indexes */ int ha_ndbcluster::prepare_drop_index(TABLE *table_arg, uint *key_num, uint num_of_keys) { DBUG_ENTER("ha_ndbcluster::prepare_drop_index"); // Mark indexes for deletion uint idx; for (idx= 0; idx < num_of_keys; idx++) { DBUG_PRINT("info", ("ha_ndbcluster::prepare_drop_index %u", *key_num)); m_index[*key_num++].status= TO_BE_DROPPED; } // Renumber indexes THD *thd= current_thd; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; m_share->state= NSS_ALTERED; DBUG_RETURN(renumber_indexes(ndb, table_arg)); } /* Really drop all indexes marked for deletion */ int ha_ndbcluster::final_drop_index(TABLE *table_arg) { DBUG_ENTER("ha_ndbcluster::final_drop_index"); DBUG_PRINT("info", ("ha_ndbcluster::final_drop_index")); // Really drop indexes THD *thd= current_thd; Thd_ndb *thd_ndb= get_thd_ndb(thd); Ndb *ndb= thd_ndb->ndb; DBUG_RETURN(drop_indexes(ndb, table_arg)); } /* Rename a table in NDB Cluster */ int ha_ndbcluster::rename_table(const char *from, const char *to) { NDBDICT *dict; char new_tabname[FN_HEADLEN]; const NDBTAB *orig_tab; int result; DBUG_ENTER("ha_ndbcluster::rename_table"); DBUG_PRINT("info", ("Renaming %s to %s", from, to)); set_dbname(from); set_tabname(from); set_tabname(to, new_tabname); if (check_ndb_connection()) DBUG_RETURN(my_errno= HA_ERR_NO_CONNECTION); Ndb *ndb= get_ndb(); dict= ndb->getDictionary(); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); // Check if thread has stale local cache if (orig_tab->getObjectStatus() == NdbDictionary::Object::Invalid) { dict->removeCachedTable(m_tabname); if (!(orig_tab= dict->getTable(m_tabname))) ERR_RETURN(dict->getNdbError()); } #ifdef HAVE_NDB_BINLOG NDB_SHARE *share= 0; if (ndb_binlog_thread_running > 0 && (share= get_share(from, 0, false))) { int r= rename_share(share, to); DBUG_ASSERT(r == 0); } #endif m_table= (void *)orig_tab; // Change current database to that of target table set_dbname(to); ndb->setDatabaseName(m_dbname); if ((result= alter_table_name(new_tabname))) { #ifdef HAVE_NDB_BINLOG if (share) { int r= rename_share(share, from); DBUG_ASSERT(r == 0); free_share(&share); } #endif DBUG_RETURN(result); } // Rename .ndb file if ((result= handler::rename_table(from, to))) { // ToDo in 4.1 should rollback alter table... #ifdef HAVE_NDB_BINLOG if (share) free_share(&share); #endif DBUG_RETURN(result); } #ifdef HAVE_NDB_BINLOG int is_old_table_tmpfile= 1; if (share && share->op) dict->forceGCPWait(); /* handle old table */ if (!IS_TMP_PREFIX(m_tabname)) { is_old_table_tmpfile= 0; String event_name(INJECTOR_EVENT_LEN); ndb_rep_event_name(&event_name, from + sizeof(share_prefix) - 1, 0); ndbcluster_handle_drop_table(ndb, event_name.c_ptr(), share); } if (!result && !IS_TMP_PREFIX(new_tabname)) { /* always create an event for the table */ String event_name(INJECTOR_EVENT_LEN); ndb_rep_event_name(&event_name, to + sizeof(share_prefix) - 1, 0); const NDBTAB *ndbtab= dict->getTable(new_tabname); if (ndbcluster_create_event(ndb, ndbtab, event_name.c_ptr(), share) >= 0) { if (ndb_extra_logging) sql_print_information("NDB Binlog: RENAME Event: %s", event_name.c_ptr()); if (share) { if (ndbcluster_create_event_ops(share, ndbtab, event_name.c_ptr()) < 0) { sql_print_error("NDB Binlog: FAILED create event operations " "during RENAME. Event %s", event_name.c_ptr()); /* a warning has been issued to the client */ } } } else { sql_print_error("NDB Binlog: FAILED create event during RENAME. " "Event: %s", event_name.c_ptr()); push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR, ER_GET_ERRMSG, ER(ER_GET_ERRMSG), "Creating event for logging table failed. " "See error log for details."); } if (is_old_table_tmpfile) ndbcluster_log_schema_op(current_thd, share, current_thd->query, current_thd->query_length, m_dbname, new_tabname, 0, 0, SOT_ALTER_TABLE); else ndbcluster_log_schema_op(current_thd, share, current_thd->query, current_thd->query_length, m_dbname, new_tabname, 0, 0, SOT_RENAME_TABLE); } if (share) free_share(&share); #endif DBUG_RETURN(result); } /* Rename a table in NDB Cluster using alter table */ int ha_ndbcluster::alter_table_name(const char *to) { Ndb *ndb= get_ndb(); NDBDICT *dict= ndb->getDictionary(); const NDBTAB *orig_tab= (const NDBTAB *) m_table; DBUG_ENTER("alter_table_name"); DBUG_PRINT("info", ("from: %s to: %s", orig_tab->getName(), to)); NdbDictionary::Table new_tab= *orig_tab; new_tab.setName(to); if (dict->alterTable(new_tab) != 0) ERR_RETURN(dict->getNdbError()); m_table= NULL; m_table_info= NULL; DBUG_RETURN(0); } /* Delete table from NDB Cluster */ /* static version which does not need a handler */ int ha_ndbcluster::delete_table(ha_ndbcluster *h, Ndb *ndb, const char *path, const char *db, const char *table_name) { DBUG_ENTER("ha_ndbcluster::ndbcluster_delete_table"); NDBDICT *dict= ndb->getDictionary(); #ifdef HAVE_NDB_BINLOG NDB_SHARE *share= get_share(path, 0, false); #endif /* Drop the table from NDB */ int res; if (h) { res= h->drop_ndb_table(); } else { ndb->setDatabaseName(db); res= dict->dropTable(table_name); } if (res) { #ifdef HAVE_NDB_BINLOG /* the drop table failed for some reason, drop the share anyways */ if (share) { pthread_mutex_lock(&ndbcluster_mutex); if (share->state != NSS_DROPPED) { /* The share kept by the server has not been freed, free it */ share->state= NSS_DROPPED; free_share(&share, TRUE); } /* free the share taken above */ free_share(&share, TRUE); pthread_mutex_unlock(&ndbcluster_mutex); } #endif DBUG_RETURN(res); } #ifdef HAVE_NDB_BINLOG /* stop the logging of the dropped table, and cleanup */ /* drop table is successful even if table does not exist in ndb and in case table was actually not dropped, there is no need to force a gcp, and setting the event_name to null will indicate that there is no event to be dropped */ int table_dropped= dict->getNdbError().code != 709; if (!IS_TMP_PREFIX(table_name) && share) { ndbcluster_log_schema_op(current_thd, share, current_thd->query, current_thd->query_length, share->db, share->table_name, 0, 0, SOT_DROP_TABLE); } else if (table_dropped && share && share->op) /* ndbcluster_log_schema_op will do a force GCP */ dict->forceGCPWait(); if (!IS_TMP_PREFIX(table_name)) { String event_name(INJECTOR_EVENT_LEN); ndb_rep_event_name(&event_name, path + sizeof(share_prefix) - 1, 0); ndbcluster_handle_drop_table(ndb, table_dropped ? event_name.c_ptr() : 0, share); } if (share) { pthread_mutex_lock(&ndbcluster_mutex); if (share->state != NSS_DROPPED) { /* The share kept by the server has not been freed, free it */ share->state= NSS_DROPPED; free_share(&share, TRUE); } /* free the share taken above */ free_share(&share, TRUE); pthread_mutex_unlock(&ndbcluster_mutex); } #endif DBUG_RETURN(0); } int ha_ndbcluster::delete_table(const char *name) { DBUG_ENTER("ha_ndbcluster::delete_table"); DBUG_PRINT("enter", ("name: %s", name)); set_dbname(name); set_tabname(name); if (check_ndb_connection()) DBUG_RETURN(HA_ERR_NO_CONNECTION); /* Call ancestor function to delete .ndb file */ handler::delete_table(name); DBUG_RETURN(delete_table(this, get_ndb(),name, m_dbname, m_tabname)); } /* Drop table in NDB Cluster */ int ha_ndbcluster::drop_ndb_table() { Ndb *ndb= get_ndb(); NdbDictionary::Dictionary *dict= ndb->getDictionary(); DBUG_ENTER("intern_drop_table"); DBUG_PRINT("enter", ("Deleting %s", m_tabname)); release_metadata(); if (dict->dropTable(m_tabname)) ERR_RETURN(dict->getNdbError()); DBUG_RETURN(0); } ulonglong ha_ndbcluster::get_auto_increment() { int cache_size; Uint64 auto_value; DBUG_ENTER("get_auto_increment"); DBUG_PRINT("enter", ("m_tabname: %s", m_tabname)); Ndb *ndb= get_ndb(); if (m_rows_inserted > m_rows_to_insert) { /* We guessed too low */ m_rows_to_insert+= m_autoincrement_prefetch; } cache_size= (int) ((m_rows_to_insert - m_rows_inserted < m_autoincrement_prefetch) ? m_rows_to_insert - m_rows_inserted : ((m_rows_to_insert > m_autoincrement_prefetch) ? m_rows_to_insert : m_autoincrement_prefetch)); auto_value= NDB_FAILED_AUTO_INCREMENT; uint retries= NDB_AUTO_INCREMENT_RETRIES; do { auto_value= (m_skip_auto_increment) ? ndb->readAutoIncrementValue((const NDBTAB *) m_table) : ndb->getAutoIncrementValue((const NDBTAB *) m_table, cache_size); } while (auto_value == NDB_FAILED_AUTO_INCREMENT && --retries && ndb->getNdbError().status == NdbError::TemporaryError); if (auto_value == NDB_FAILED_AUTO_INCREMENT) { const NdbError err= ndb->getNdbError(); sql_print_error("Error %lu in ::get_auto_increment(): %s", (ulong) err.code, err.message); DBUG_RETURN(~(ulonglong) 0); } DBUG_RETURN((longlong)auto_value); } /* Constructor for the NDB Cluster table handler */ #define HA_NDBCLUSTER_TABLE_FLAGS \ HA_REC_NOT_IN_SEQ | \ HA_NULL_IN_KEY | \ HA_AUTO_PART_KEY | \ HA_NO_PREFIX_CHAR_KEYS | \ HA_NEED_READ_RANGE_BUFFER | \ HA_CAN_GEOMETRY | \ HA_CAN_BIT_FIELD | \ HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS ha_ndbcluster::ha_ndbcluster(TABLE_SHARE *table_arg): handler(&ndbcluster_hton, table_arg), m_active_trans(NULL), m_active_cursor(NULL), m_table(NULL), m_table_version(-1), m_table_info(NULL), m_table_flags(HA_NDBCLUSTER_TABLE_FLAGS), m_share(0), m_part_info(NULL), m_use_partition_function(FALSE), m_sorted(FALSE), m_use_write(FALSE), m_ignore_dup_key(FALSE), m_primary_key_update(FALSE), m_ignore_no_key(FALSE), m_rows_to_insert((ha_rows) 1), m_rows_inserted((ha_rows) 0), m_bulk_insert_rows((ha_rows) 1024), m_rows_changed((ha_rows) 0), m_bulk_insert_not_flushed(FALSE), m_ops_pending(0), m_skip_auto_increment(TRUE), m_blobs_pending(0), m_blobs_buffer(0), m_blobs_buffer_size(0), m_dupkey((uint) -1), m_ha_not_exact_count(FALSE), m_force_send(TRUE), m_autoincrement_prefetch((ha_rows) 32), m_transaction_on(TRUE), m_cond_stack(NULL), m_multi_cursor(NULL) { int i; DBUG_ENTER("ha_ndbcluster"); m_tabname[0]= '\0'; m_dbname[0]= '\0'; records= ~(ha_rows)0; // uninitialized block_size= 1024; clear_indexes(); DBUG_VOID_RETURN; } /* Destructor for NDB Cluster table handler */ ha_ndbcluster::~ha_ndbcluster() { DBUG_ENTER("~ha_ndbcluster"); if (m_share) { free_share(&m_share); } release_metadata(); my_free(m_blobs_buffer, MYF(MY_ALLOW_ZERO_PTR)); m_blobs_buffer= 0; // Check for open cursor/transaction if (m_active_cursor) { } DBUG_ASSERT(m_active_cursor == NULL); if (m_active_trans) { } DBUG_ASSERT(m_active_trans == NULL); // Discard the condition stack DBUG_PRINT("info", ("Clearing condition stack")); cond_clear(); DBUG_VOID_RETURN; } /* Open a table for further use - fetch metadata for this table from NDB - check that table exists RETURN 0 ok < 0 Table has changed */ int ha_ndbcluster::open(const char *name, int mode, uint test_if_locked) { int res; KEY *key; DBUG_ENTER("ha_ndbcluster::open"); DBUG_PRINT("enter", ("name: %s mode: %d test_if_locked: %d", name, mode, test_if_locked)); /* Setup ref_length to make room for the whole primary key to be written in the ref variable */ if (table_share->primary_key != MAX_KEY) { key= table->key_info+table_share->primary_key; ref_length= key->key_length; DBUG_PRINT("info", (" ref_length: %d", ref_length)); } // Init table lock structure if (!(m_share=get_share(name, table))) DBUG_RETURN(1); thr_lock_data_init(&m_share->lock,&m_lock,(void*) 0); set_dbname(name); set_tabname(name); if (check_ndb_connection()) { free_share(&m_share); m_share= 0; DBUG_RETURN(HA_ERR_NO_CONNECTION); } res= get_metadata(name); if (!res) info(HA_STATUS_VARIABLE | HA_STATUS_CONST); DBUG_RETURN(res); } /* Set partition info SYNOPSIS set_part_info() part_info RETURN VALUE NONE DESCRIPTION Set up partition info when handler object created */ void ha_ndbcluster::set_part_info(partition_info *part_info) { m_part_info= part_info; if (!(m_part_info->part_type == HASH_PARTITION && m_part_info->list_of_part_fields && !is_sub_partitioned(m_part_info))) m_use_partition_function= TRUE; } /* Close the table - release resources setup by open() */ int ha_ndbcluster::close(void) { DBUG_ENTER("close"); free_share(&m_share); m_share= 0; release_metadata(); DBUG_RETURN(0); } Thd_ndb* ha_ndbcluster::seize_thd_ndb() { Thd_ndb *thd_ndb; DBUG_ENTER("seize_thd_ndb"); thd_ndb= new Thd_ndb(); thd_ndb->ndb->getDictionary()->set_local_table_data_size( sizeof(Ndb_local_table_statistics) ); if (thd_ndb->ndb->init(max_transactions) != 0) { ERR_PRINT(thd_ndb->ndb->getNdbError()); /* TODO Alt.1 If init fails because to many allocated Ndb wait on condition for a Ndb object to be released. Alt.2 Seize/release from pool, wait until next release */ delete thd_ndb; thd_ndb= NULL; } DBUG_RETURN(thd_ndb); } void ha_ndbcluster::release_thd_ndb(Thd_ndb* thd_ndb) { DBUG_ENTER("release_thd_ndb"); delete thd_ndb; DBUG_VOID_RETURN; } /* If this thread already has a Thd_ndb object allocated in current THD, reuse it. Otherwise seize a Thd_ndb object, assign it to current THD and use it. */ Ndb* check_ndb_in_thd(THD* thd) { Thd_ndb *thd_ndb= get_thd_ndb(thd); if (!thd_ndb) { if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb())) return NULL; set_thd_ndb(thd, thd_ndb); } return thd_ndb->ndb; } int ha_ndbcluster::check_ndb_connection(THD* thd) { Ndb *ndb; DBUG_ENTER("check_ndb_connection"); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(m_dbname); DBUG_RETURN(0); } static int ndbcluster_close_connection(THD *thd) { Thd_ndb *thd_ndb= get_thd_ndb(thd); DBUG_ENTER("ndbcluster_close_connection"); if (thd_ndb) { ha_ndbcluster::release_thd_ndb(thd_ndb); set_thd_ndb(thd, NULL); // not strictly required but does not hurt either } DBUG_RETURN(0); } /* Try to discover one table from NDB */ int ndbcluster_discover(THD* thd, const char *db, const char *name, const void** frmblob, uint* frmlen) { uint len; const void* data; const NDBTAB* tab; Ndb* ndb; DBUG_ENTER("ndbcluster_discover"); DBUG_PRINT("enter", ("db: %s, name: %s", db, name)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(db); NDBDICT* dict= ndb->getDictionary(); dict->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); dict->invalidateTable(name); if (!(tab= dict->getTable(name))) { const NdbError err= dict->getNdbError(); if (err.code == 709 || err.code == 723) DBUG_RETURN(-1); ERR_RETURN(err); } DBUG_PRINT("info", ("Found table %s", tab->getName())); len= tab->getFrmLength(); if (len == 0 || tab->getFrmData() == NULL) { DBUG_PRINT("error", ("No frm data found.")); DBUG_RETURN(1); } if (unpackfrm(&data, &len, tab->getFrmData())) { DBUG_PRINT("error", ("Could not unpack table")); DBUG_RETURN(1); } *frmlen= len; *frmblob= data; DBUG_RETURN(0); } /* Check if a table exists in NDB */ int ndbcluster_table_exists_in_engine(THD* thd, const char *db, const char *name) { const NDBTAB* tab; Ndb* ndb; DBUG_ENTER("ndbcluster_table_exists_in_engine"); DBUG_PRINT("enter", ("db: %s, name: %s", db, name)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); ndb->setDatabaseName(db); NDBDICT* dict= ndb->getDictionary(); dict->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); dict->invalidateTable(name); if (!(tab= dict->getTable(name))) { const NdbError err= dict->getNdbError(); if (err.code == 709 || err.code == 723) DBUG_RETURN(0); ERR_RETURN(err); } DBUG_PRINT("info", ("Found table %s", tab->getName())); DBUG_RETURN(1); } extern "C" byte* tables_get_key(const char *entry, uint *length, my_bool not_used __attribute__((unused))) { *length= strlen(entry); return (byte*) entry; } /* Drop a database in NDB Cluster NOTE add a dummy void function, since stupid handlerton is returning void instead of int... */ int ndbcluster_drop_database_impl(const char *path) { DBUG_ENTER("ndbcluster_drop_database"); THD *thd= current_thd; char dbname[FN_HEADLEN]; Ndb* ndb; NdbDictionary::Dictionary::List list; uint i; char *tabname; List<char> drop_list; int ret= 0; ha_ndbcluster::set_dbname(path, (char *)&dbname); DBUG_PRINT("enter", ("db: %s", dbname)); if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(-1); // List tables in NDB NDBDICT *dict= ndb->getDictionary(); if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0) DBUG_RETURN(-1); for (i= 0 ; i < list.count ; i++) { NdbDictionary::Dictionary::List::Element& elmt= list.elements[i]; DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name)); // Add only tables that belongs to db if (my_strcasecmp(system_charset_info, elmt.database, dbname)) continue; DBUG_PRINT("info", ("%s must be dropped", elmt.name)); drop_list.push_back(thd->strdup(elmt.name)); } // Drop any tables belonging to database char full_path[FN_REFLEN]; char *tmp= strxnmov(full_path, FN_REFLEN-1, share_prefix, dbname, "/", NullS); ndb->setDatabaseName(dbname); List_iterator_fast<char> it(drop_list); while ((tabname=it++)) { strxnmov(tmp, FN_REFLEN - (tmp - full_path)-1, tabname, NullS); if (ha_ndbcluster::delete_table(0, ndb, full_path, dbname, tabname)) { const NdbError err= dict->getNdbError(); if (err.code != 709 && err.code != 723) { ERR_PRINT(err); ret= ndb_to_mysql_error(&err); } } } DBUG_RETURN(ret); } static void ndbcluster_drop_database(char *path) { ndbcluster_drop_database_impl(path); #ifdef HAVE_NDB_BINLOG char db[FN_REFLEN]; ha_ndbcluster::set_dbname(path, db); ndbcluster_log_schema_op(current_thd, 0, current_thd->query, current_thd->query_length, db, "", 0, 0, SOT_DROP_DB); #endif } /* find all tables in ndb and discover those needed */ int ndb_create_table_from_engine(THD *thd, const char *db, const char *table_name) { LEX *old_lex= thd->lex, newlex; thd->lex= &newlex; newlex.current_select= NULL; lex_start(thd, (const uchar*) "", 0); int res= ha_create_table_from_engine(thd, db, table_name); thd->lex= old_lex; return res; } int ndbcluster_find_all_files(THD *thd) { DBUG_ENTER("ndbcluster_find_all_files"); Ndb* ndb; char key[FN_REFLEN]; NdbDictionary::Dictionary::List list; if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); NDBDICT *dict= ndb->getDictionary(); int unhandled, retries= 5; do { if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0) ERR_RETURN(dict->getNdbError()); unhandled= 0; for (uint i= 0 ; i < list.count ; i++) { NDBDICT::List::Element& elmt= list.elements[i]; if (IS_TMP_PREFIX(elmt.name)) { DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name)); continue; } DBUG_PRINT("info", ("Found %s.%s in NDB", elmt.database, elmt.name)); if (!(elmt.state == NDBOBJ::StateBuilding || elmt.state == NDBOBJ::StateOnline)) { sql_print_information("NDB: skipping setup table %s.%s, in state %d", elmt.database, elmt.name, elmt.state); continue; } ndb->setDatabaseName(elmt.database); const NDBTAB *ndbtab; if (!(ndbtab= dict->getTable(elmt.name))) { if (elmt.state == NDBOBJ::StateOnline) sql_print_error("NDB: failed to setup table %s.%s, error: %d, %s", elmt.database, elmt.name, dict->getNdbError().code, dict->getNdbError().message); unhandled++; continue; } if (ndbtab->getFrmLength() == 0) continue; /* check if database exists */ char *end= strxnmov(key, FN_LEN-1, mysql_data_home, "/", elmt.database, NullS); if (my_access(key, F_OK)) { /* no such database defined, skip table */ continue; } end= strxnmov(end, FN_LEN-1-(end-key), "/", elmt.name, NullS); const void *data= 0, *pack_data= 0; uint length, pack_length; int discover= 0; if (readfrm(key, &data, &length) || packfrm(data, length, &pack_data, &pack_length)) { discover= 1; sql_print_information("NDB: missing frm for %s.%s, discovering...", elmt.database, elmt.name); } else if (cmp_frm(ndbtab, pack_data, pack_length)) { NDB_SHARE *share= get_share(key, 0, false); if (!share || share->state != NSS_ALTERED) { discover= 1; sql_print_information("NDB: mismatch in frm for %s.%s, discovering...", elmt.database, elmt.name); } if (share) free_share(&share); } my_free((char*) data, MYF(MY_ALLOW_ZERO_PTR)); my_free((char*) pack_data, MYF(MY_ALLOW_ZERO_PTR)); pthread_mutex_lock(&LOCK_open); if (discover) { /* ToDo 4.1 database needs to be created if missing */ if (ndb_create_table_from_engine(thd, elmt.database, elmt.name)) { /* ToDo 4.1 handle error */ } } #ifdef HAVE_NDB_BINLOG else { /* set up replication for this table */ ndbcluster_create_binlog_setup(ndb, key, end-key, elmt.database, elmt.name, TRUE); } #endif pthread_mutex_unlock(&LOCK_open); } } while (unhandled && retries--); DBUG_RETURN(0); } int ndbcluster_find_files(THD *thd,const char *db,const char *path, const char *wild, bool dir, List<char> *files) { DBUG_ENTER("ndbcluster_find_files"); DBUG_PRINT("enter", ("db: %s", db)); { // extra bracket to avoid gcc 2.95.3 warning uint i; Ndb* ndb; char name[FN_REFLEN]; HASH ndb_tables, ok_tables; NDBDICT::List list; if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(HA_ERR_NO_CONNECTION); if (dir) DBUG_RETURN(0); // Discover of databases not yet supported // List tables in NDB NDBDICT *dict= ndb->getDictionary(); if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0) ERR_RETURN(dict->getNdbError()); if (hash_init(&ndb_tables, system_charset_info,list.count,0,0, (hash_get_key)tables_get_key,0,0)) { DBUG_PRINT("error", ("Failed to init HASH ndb_tables")); DBUG_RETURN(-1); } if (hash_init(&ok_tables, system_charset_info,32,0,0, (hash_get_key)tables_get_key,0,0)) { DBUG_PRINT("error", ("Failed to init HASH ok_tables")); hash_free(&ndb_tables); DBUG_RETURN(-1); } for (i= 0 ; i < list.count ; i++) { NDBDICT::List::Element& elmt= list.elements[i]; if (IS_TMP_PREFIX(elmt.name)) { DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name)); continue; } DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name)); // Add only tables that belongs to db if (my_strcasecmp(system_charset_info, elmt.database, db)) continue; // Apply wildcard to list of tables in NDB if (wild) { if (lower_case_table_names) { if (wild_case_compare(files_charset_info, elmt.name, wild)) continue; } else if (wild_compare(elmt.name,wild,0)) continue; } DBUG_PRINT("info", ("Inserting %s into ndb_tables hash", elmt.name)); my_hash_insert(&ndb_tables, (byte*)thd->strdup(elmt.name)); } char *file_name; List_iterator<char> it(*files); List<char> delete_list; while ((file_name=it++)) { DBUG_PRINT("info", ("%s", file_name)); if (hash_search(&ndb_tables, file_name, strlen(file_name))) { DBUG_PRINT("info", ("%s existed in NDB _and_ on disk ", file_name)); // File existed in NDB and as frm file, put in ok_tables list my_hash_insert(&ok_tables, (byte*)file_name); continue; } // File is not in NDB, check for .ndb file with this name (void)strxnmov(name, FN_REFLEN-1, mysql_data_home,"/",db,"/",file_name,ha_ndb_ext,NullS); DBUG_PRINT("info", ("Check access for %s", name)); if (access(name, F_OK)) { DBUG_PRINT("info", ("%s did not exist on disk", name)); // .ndb file did not exist on disk, another table type continue; } DBUG_PRINT("info", ("%s existed on disk", name)); // The .ndb file exists on disk, but it's not in list of tables in ndb // Verify that handler agrees table is gone. if (ndbcluster_table_exists_in_engine(thd, db, file_name) == 0) { DBUG_PRINT("info", ("NDB says %s does not exists", file_name)); it.remove(); // Put in list of tables to remove from disk delete_list.push_back(thd->strdup(file_name)); } } #ifdef HAVE_NDB_BINLOG /* setup logging to binlog for all discovered tables */ { char *end, *end1= strxnmov(name, sizeof(name), mysql_data_home, "/", db, "/", NullS); for (i= 0; i < ok_tables.records; i++) { file_name= (char*)hash_element(&ok_tables, i); end= strxnmov(end1, sizeof(name) - (end1 - name), file_name, NullS); pthread_mutex_lock(&LOCK_open); ndbcluster_create_binlog_setup(ndb, name, end-name, db, file_name, TRUE); pthread_mutex_unlock(&LOCK_open); } } #endif // Check for new files to discover DBUG_PRINT("info", ("Checking for new files to discover")); List<char> create_list; for (i= 0 ; i < ndb_tables.records ; i++) { file_name= hash_element(&ndb_tables, i); if (!hash_search(&ok_tables, file_name, strlen(file_name))) { strxnmov(name, sizeof(name)-1, mysql_data_home, "/", db, "/", file_name, reg_ext, NullS); if (access(name, F_OK)) { DBUG_PRINT("info", ("%s must be discovered", file_name)); // File is in list of ndb tables and not in ok_tables // This table need to be created create_list.push_back(thd->strdup(file_name)); } } } // Lock mutex before deleting and creating frm files pthread_mutex_lock(&LOCK_open); if (!global_read_lock) { // Delete old files List_iterator_fast<char> it3(delete_list); while ((file_name=it3++)) { DBUG_PRINT("info", ("Remove table %s/%s", db, file_name)); // Delete the table and all related files TABLE_LIST table_list; bzero((char*) &table_list,sizeof(table_list)); table_list.db= (char*) db; table_list.alias= table_list.table_name= (char*)file_name; (void)mysql_rm_table_part2(thd, &table_list, /* if_exists */ FALSE, /* drop_temporary */ FALSE, /* drop_view */ FALSE, /* dont_log_query*/ TRUE); /* Clear error message that is returned when table is deleted */ thd->clear_error(); } } // Create new files List_iterator_fast<char> it2(create_list); while ((file_name=it2++)) { DBUG_PRINT("info", ("Table %s need discovery", file_name)); if (ndb_create_table_from_engine(thd, db, file_name) == 0) files->push_back(thd->strdup(file_name)); } pthread_mutex_unlock(&LOCK_open); hash_free(&ok_tables); hash_free(&ndb_tables); } // extra bracket to avoid gcc 2.95.3 warning DBUG_RETURN(0); } /* Initialise all gloal variables before creating a NDB Cluster table handler */ /* Call back after cluster connect */ static int connect_callback() { update_status_variables(g_ndb_cluster_connection); uint node_id, i= 0; Ndb_cluster_connection_node_iter node_iter; memset((void *)g_node_id_map, 0xFFFF, sizeof(g_node_id_map)); while ((node_id= g_ndb_cluster_connection->get_next_node(node_iter))) g_node_id_map[node_id]= i++; pthread_cond_signal(&COND_ndb_util_thread); return 0; } static bool ndbcluster_init() { int res; DBUG_ENTER("ndbcluster_init"); if (have_ndbcluster != SHOW_OPTION_YES) goto ndbcluster_init_error; { handlerton &h= ndbcluster_hton; h.close_connection= ndbcluster_close_connection; h.commit= ndbcluster_commit; h.rollback= ndbcluster_rollback; h.create= ndbcluster_create_handler; /* Create a new handler */ h.drop_database= ndbcluster_drop_database; /* Drop a database */ h.panic= ndbcluster_end; /* Panic call */ h.show_status= ndbcluster_show_status; /* Show status */ h.alter_tablespace= ndbcluster_alter_tablespace; /* Show status */ h.partition_flags= ndbcluster_partition_flags; /* Partition flags */ h.alter_table_flags=ndbcluster_alter_table_flags; /* Alter table flags */ #ifdef HAVE_NDB_BINLOG ndbcluster_binlog_init_handlerton(); #endif h.flags= HTON_NO_FLAGS; } // Set connectstring if specified if (opt_ndbcluster_connectstring != 0) DBUG_PRINT("connectstring", ("%s", opt_ndbcluster_connectstring)); if ((g_ndb_cluster_connection= new Ndb_cluster_connection(opt_ndbcluster_connectstring)) == 0) { DBUG_PRINT("error",("Ndb_cluster_connection(%s)", opt_ndbcluster_connectstring)); goto ndbcluster_init_error; } g_ndb_cluster_connection->set_optimized_node_selection (opt_ndb_optimized_node_selection); // Create a Ndb object to open the connection to NDB if ( (g_ndb= new Ndb(g_ndb_cluster_connection, "sys")) == 0 ) { DBUG_PRINT("error", ("failed to create global ndb object")); goto ndbcluster_init_error; } g_ndb->getDictionary()->set_local_table_data_size(sizeof(Ndb_local_table_statistics)); if (g_ndb->init() != 0) { ERR_PRINT (g_ndb->getNdbError()); goto ndbcluster_init_error; } if ((res= g_ndb_cluster_connection->connect(0,0,0)) == 0) { connect_callback(); DBUG_PRINT("info",("NDBCLUSTER storage engine at %s on port %d", g_ndb_cluster_connection->get_connected_host(), g_ndb_cluster_connection->get_connected_port())); g_ndb_cluster_connection->wait_until_ready(10,3); } else if (res == 1) { if (g_ndb_cluster_connection->start_connect_thread(connect_callback)) { DBUG_PRINT("error", ("g_ndb_cluster_connection->start_connect_thread()")); goto ndbcluster_init_error; } #ifndef DBUG_OFF { char buf[1024]; DBUG_PRINT("info", ("NDBCLUSTER storage engine not started, " "will connect using %s", g_ndb_cluster_connection-> get_connectstring(buf,sizeof(buf)))); } #endif } else { DBUG_ASSERT(res == -1); DBUG_PRINT("error", ("permanent error")); goto ndbcluster_init_error; } (void) hash_init(&ndbcluster_open_tables,system_charset_info,32,0,0, (hash_get_key) ndbcluster_get_key,0,0); pthread_mutex_init(&ndbcluster_mutex,MY_MUTEX_INIT_FAST); #ifdef HAVE_NDB_BINLOG /* start the ndb injector thread */ if (opt_bin_log) { if (binlog_row_based) { if (ndbcluster_binlog_start()) goto ndbcluster_init_error; } else { sql_print_error("NDB: only row based binary logging is supported"); } } #endif /* HAVE_NDB_BINLOG */ pthread_mutex_init(&LOCK_ndb_util_thread, MY_MUTEX_INIT_FAST); pthread_cond_init(&COND_ndb_util_thread, NULL); // Create utility thread pthread_t tmp; if (pthread_create(&tmp, &connection_attrib, ndb_util_thread_func, 0)) { DBUG_PRINT("error", ("Could not create ndb utility thread")); hash_free(&ndbcluster_open_tables); pthread_mutex_destroy(&ndbcluster_mutex); pthread_mutex_destroy(&LOCK_ndb_util_thread); pthread_cond_destroy(&COND_ndb_util_thread); goto ndbcluster_init_error; } ndbcluster_inited= 1; DBUG_RETURN(FALSE); ndbcluster_init_error: if (g_ndb) delete g_ndb; g_ndb= NULL; if (g_ndb_cluster_connection) delete g_ndb_cluster_connection; g_ndb_cluster_connection= NULL; have_ndbcluster= SHOW_OPTION_DISABLED; // If we couldn't use handler DBUG_RETURN(TRUE); } static int ndbcluster_end(ha_panic_function type) { DBUG_ENTER("ndbcluster_end"); if (!ndbcluster_inited) DBUG_RETURN(0); if (g_ndb) { #ifndef DBUG_OFF Ndb::Free_list_usage tmp; tmp.m_name= 0; while (g_ndb->get_free_list_usage(&tmp)) { uint leaked= (uint) tmp.m_created - tmp.m_free; if (leaked) fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n", leaked, tmp.m_name, (leaked == 1)?"":"'s", (leaked == 1)?"has":"have"); } #endif delete g_ndb; g_ndb= NULL; } delete g_ndb_cluster_connection; g_ndb_cluster_connection= NULL; hash_free(&ndbcluster_open_tables); pthread_mutex_destroy(&ndbcluster_mutex); pthread_mutex_destroy(&LOCK_ndb_util_thread); pthread_cond_destroy(&COND_ndb_util_thread); ndbcluster_inited= 0; DBUG_RETURN(0); } void ha_ndbcluster::print_error(int error, myf errflag) { DBUG_ENTER("ha_ndbcluster::print_error"); DBUG_PRINT("enter", ("error = %d", error)); if (error == HA_ERR_NO_PARTITION_FOUND) my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, MYF(0), (int)m_part_info->part_expr->val_int()); else handler::print_error(error, errflag); DBUG_VOID_RETURN; } /* Static error print function called from static handler method ndbcluster_commit and ndbcluster_rollback */ void ndbcluster_print_error(int error, const NdbOperation *error_op) { DBUG_ENTER("ndbcluster_print_error"); TABLE_SHARE share; const char *tab_name= (error_op) ? error_op->getTableName() : ""; share.db.str= (char*) ""; share.db.length= 0; share.table_name.str= (char *) tab_name; share.table_name.length= strlen(tab_name); ha_ndbcluster error_handler(&share); error_handler.print_error(error, MYF(0)); DBUG_VOID_RETURN; } /** * Set a given location from full pathname to database name * */ void ha_ndbcluster::set_dbname(const char *path_name, char *dbname) { char *end, *ptr, *tmp_name; char tmp_buff[FN_REFLEN]; tmp_name= tmp_buff; /* Scan name from the end */ ptr= strend(path_name)-1; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } ptr--; end= ptr; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } uint name_len= end - ptr; memcpy(tmp_name, ptr + 1, name_len); tmp_name[name_len]= '\0'; #ifdef __WIN__ /* Put to lower case */ ptr= tmp_name; while (*ptr != '\0') { *ptr= tolower(*ptr); ptr++; } #endif filename_to_tablename(tmp_name, dbname, FN_REFLEN); } /* Set m_dbname from full pathname to table file */ void ha_ndbcluster::set_dbname(const char *path_name) { set_dbname(path_name, m_dbname); } /** * Set a given location from full pathname to table file * */ void ha_ndbcluster::set_tabname(const char *path_name, char * tabname) { char *end, *ptr, *tmp_name; char tmp_buff[FN_REFLEN]; tmp_name= tmp_buff; /* Scan name from the end */ end= strend(path_name)-1; ptr= end; while (ptr >= path_name && *ptr != '\\' && *ptr != '/') { ptr--; } uint name_len= end - ptr; memcpy(tmp_name, ptr + 1, end - ptr); tmp_name[name_len]= '\0'; #ifdef __WIN__ /* Put to lower case */ ptr= tmp_name; while (*ptr != '\0') { *ptr= tolower(*ptr); ptr++; } #endif filename_to_tablename(tmp_name, tabname, FN_REFLEN); } /* Set m_tabname from full pathname to table file */ void ha_ndbcluster::set_tabname(const char *path_name) { set_tabname(path_name, m_tabname); } ha_rows ha_ndbcluster::records_in_range(uint inx, key_range *min_key, key_range *max_key) { KEY *key_info= table->key_info + inx; uint key_length= key_info->key_length; NDB_INDEX_TYPE idx_type= get_index_type(inx); DBUG_ENTER("records_in_range"); // Prevent partial read of hash indexes by returning HA_POS_ERROR if ((idx_type == UNIQUE_INDEX || idx_type == PRIMARY_KEY_INDEX) && ((min_key && min_key->length < key_length) || (max_key && max_key->length < key_length))) DBUG_RETURN(HA_POS_ERROR); // Read from hash index with full key // This is a "const" table which returns only one record! if ((idx_type != ORDERED_INDEX) && ((min_key && min_key->length == key_length) || (max_key && max_key->length == key_length))) DBUG_RETURN(1); if ((idx_type == PRIMARY_KEY_ORDERED_INDEX || idx_type == UNIQUE_ORDERED_INDEX || idx_type == ORDERED_INDEX) && m_index[inx].index_stat != NULL) { NDB_INDEX_DATA& d=m_index[inx]; NDBINDEX* index=(NDBINDEX*)d.index; Ndb* ndb=get_ndb(); NdbTransaction* trans=NULL; NdbIndexScanOperation* op=NULL; int res=0; Uint64 rows; do { // We must provide approx table rows Uint64 table_rows=0; Ndb_local_table_statistics *info= (Ndb_local_table_statistics *)m_table_info; if (info->records != ~(ha_rows)0 && info->records != 0) { table_rows = info->records; DBUG_PRINT("info", ("use info->records: %llu", table_rows)); } else { Ndb_statistics stat; if ((res=ndb_get_table_statistics(ndb, m_tabname, &stat)) != 0) break; table_rows=stat.row_count; DBUG_PRINT("info", ("use db row_count: %llu", table_rows)); if (table_rows == 0) { // Problem if autocommit=0 #ifdef ndb_get_table_statistics_uses_active_trans rows=0; break; #endif } } // Define scan op for the range if ((trans=m_active_trans) == NULL) { DBUG_PRINT("info", ("no active trans")); if (! (trans=ndb->startTransaction())) ERR_BREAK(ndb->getNdbError(), res); } if (! (op=trans->getNdbIndexScanOperation(index, (NDBTAB*)m_table))) ERR_BREAK(trans->getNdbError(), res); if ((op->readTuples(NdbOperation::LM_CommittedRead)) == -1) ERR_BREAK(op->getNdbError(), res); const key_range *keys[2]={ min_key, max_key }; if ((res=set_bounds(op, inx, true, keys)) != 0) break; // Decide if db should be contacted int flags=0; if (d.index_stat_query_count < d.index_stat_cache_entries || (d.index_stat_update_freq != 0 && d.index_stat_query_count % d.index_stat_update_freq == 0)) { DBUG_PRINT("info", ("force stat from db")); flags|=NdbIndexStat::RR_UseDb; } if (d.index_stat->records_in_range(index, op, table_rows, &rows, flags) == -1) ERR_BREAK(d.index_stat->getNdbError(), res); d.index_stat_query_count++; } while (0); if (trans != m_active_trans && rows == 0) rows = 1; if (trans != m_active_trans && trans != NULL) ndb->closeTransaction(trans); if (res != 0) DBUG_RETURN(HA_POS_ERROR); DBUG_RETURN(rows); } DBUG_RETURN(10); /* Good guess when you don't know anything */ } ulong ha_ndbcluster::table_flags(void) const { if (m_ha_not_exact_count) return m_table_flags | HA_NOT_EXACT_COUNT; else return m_table_flags; } const char * ha_ndbcluster::table_type() const { return("NDBCLUSTER"); } uint ha_ndbcluster::max_supported_record_length() const { return NDB_MAX_TUPLE_SIZE; } uint ha_ndbcluster::max_supported_keys() const { return MAX_KEY; } uint ha_ndbcluster::max_supported_key_parts() const { return NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY; } uint ha_ndbcluster::max_supported_key_length() const { return NDB_MAX_KEY_SIZE; } bool ha_ndbcluster::low_byte_first() const { #ifdef WORDS_BIGENDIAN return FALSE; #else return TRUE; #endif } bool ha_ndbcluster::has_transactions() { return m_transaction_on; } const char* ha_ndbcluster::index_type(uint key_number) { switch (get_index_type(key_number)) { case ORDERED_INDEX: case UNIQUE_ORDERED_INDEX: case PRIMARY_KEY_ORDERED_INDEX: return "BTREE"; case UNIQUE_INDEX: case PRIMARY_KEY_INDEX: default: return "HASH"; } } uint8 ha_ndbcluster::table_cache_type() { DBUG_ENTER("ha_ndbcluster::table_cache_type=HA_CACHE_TBL_ASKTRANSACT"); DBUG_RETURN(HA_CACHE_TBL_ASKTRANSACT); } uint ndb_get_commitcount(THD *thd, char *dbname, char *tabname, Uint64 *commit_count) { char name[FN_REFLEN]; NDB_SHARE *share; DBUG_ENTER("ndb_get_commitcount"); (void)strxnmov(name, FN_REFLEN-1, share_prefix, dbname, "/", tabname, NullS); DBUG_PRINT("enter", ("name: %s", name)); pthread_mutex_lock(&ndbcluster_mutex); if (!(share=(NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) name, strlen(name)))) { pthread_mutex_unlock(&ndbcluster_mutex); DBUG_PRINT("info", ("Table %s not found in ndbcluster_open_tables", name)); DBUG_RETURN(1); } share->use_count++; pthread_mutex_unlock(&ndbcluster_mutex); pthread_mutex_lock(&share->mutex); if (ndb_cache_check_time > 0) { if (share->commit_count != 0) { *commit_count= share->commit_count; DBUG_PRINT("info", ("Getting commit_count: %llu from share", share->commit_count)); pthread_mutex_unlock(&share->mutex); free_share(&share); DBUG_RETURN(0); } } DBUG_PRINT("info", ("Get commit_count from NDB")); Ndb *ndb; if (!(ndb= check_ndb_in_thd(thd))) DBUG_RETURN(1); ndb->setDatabaseName(dbname); uint lock= share->commit_count_lock; pthread_mutex_unlock(&share->mutex); struct Ndb_statistics stat; if (ndb_get_table_statistics(ndb, tabname, &stat)) { free_share(&share); DBUG_RETURN(1); } pthread_mutex_lock(&share->mutex); if (share->commit_count_lock == lock) { DBUG_PRINT("info", ("Setting commit_count to %llu", stat.commit_count)); share->commit_count= stat.commit_count; *commit_count= stat.commit_count; } else { DBUG_PRINT("info", ("Discarding commit_count, comit_count_lock changed")); *commit_count= 0; } pthread_mutex_unlock(&share->mutex); free_share(&share); DBUG_RETURN(0); } /* Check if a cached query can be used. This is done by comparing the supplied engine_data to commit_count of the table. The commit_count is either retrieved from the share for the table, where it has been cached by the util thread. If the util thread is not started, NDB has to be contacetd to retrieve the commit_count, this will introduce a small delay while waiting for NDB to answer. SYNOPSIS ndbcluster_cache_retrieval_allowed thd thread handle full_name concatenation of database name, the null character '\0', and the table name full_name_len length of the full name, i.e. len(dbname) + len(tablename) + 1 engine_data parameter retrieved when query was first inserted into the cache. If the value of engine_data is changed, all queries for this table should be invalidated. RETURN VALUE TRUE Yes, use the query from cache FALSE No, don't use the cached query, and if engine_data has changed, all queries for this table should be invalidated */ static my_bool ndbcluster_cache_retrieval_allowed(THD *thd, char *full_name, uint full_name_len, ulonglong *engine_data) { DBUG_ENTER("ndbcluster_cache_retrieval_allowed"); Uint64 commit_count; bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)); char *dbname= full_name; char *tabname= dbname+strlen(dbname)+1; DBUG_PRINT("enter", ("dbname: %s, tabname: %s, is_autocommit: %d", dbname, tabname, is_autocommit)); if (!is_autocommit) { DBUG_PRINT("exit", ("No, don't use cache in transaction")); DBUG_RETURN(FALSE); } if (ndb_get_commitcount(thd, dbname, tabname, &commit_count)) { *engine_data= 0; /* invalidate */ DBUG_PRINT("exit", ("No, could not retrieve commit_count")); DBUG_RETURN(FALSE); } DBUG_PRINT("info", ("*engine_data: %llu, commit_count: %llu", *engine_data, commit_count)); if (commit_count == 0) { *engine_data= 0; /* invalidate */ DBUG_PRINT("exit", ("No, local commit has been performed")); DBUG_RETURN(FALSE); } else if (*engine_data != commit_count) { *engine_data= commit_count; /* invalidate */ DBUG_PRINT("exit", ("No, commit_count has changed")); DBUG_RETURN(FALSE); } DBUG_PRINT("exit", ("OK to use cache, engine_data: %llu", *engine_data)); DBUG_RETURN(TRUE); } /** Register a table for use in the query cache. Fetch the commit_count for the table and return it in engine_data, this will later be used to check if the table has changed, before the cached query is reused. SYNOPSIS ha_ndbcluster::can_query_cache_table thd thread handle full_name concatenation of database name, the null character '\0', and the table name full_name_len length of the full name, i.e. len(dbname) + len(tablename) + 1 qc_engine_callback function to be called before using cache on this table engine_data out, commit_count for this table RETURN VALUE TRUE Yes, it's ok to cahce this query FALSE No, don't cach the query */ my_bool ha_ndbcluster::register_query_cache_table(THD *thd, char *full_name, uint full_name_len, qc_engine_callback *engine_callback, ulonglong *engine_data) { DBUG_ENTER("ha_ndbcluster::register_query_cache_table"); bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)); DBUG_PRINT("enter",("dbname: %s, tabname: %s, is_autocommit: %d", m_dbname, m_tabname, is_autocommit)); if (!is_autocommit) { DBUG_PRINT("exit", ("Can't register table during transaction")) DBUG_RETURN(FALSE); } Uint64 commit_count; if (ndb_get_commitcount(thd, m_dbname, m_tabname, &commit_count)) { *engine_data= 0; DBUG_PRINT("exit", ("Error, could not get commitcount")) DBUG_RETURN(FALSE); } *engine_data= commit_count; *engine_callback= ndbcluster_cache_retrieval_allowed; DBUG_PRINT("exit", ("commit_count: %llu", commit_count)); DBUG_RETURN(commit_count > 0); } /* Handling the shared NDB_SHARE structure that is needed to provide table locking. It's also used for sharing data with other NDB handlers in the same MySQL Server. There is currently not much data we want to or can share. */ static byte *ndbcluster_get_key(NDB_SHARE *share,uint *length, my_bool not_used __attribute__((unused))) { *length= share->key_length; return (byte*) share->key; } #ifndef DBUG_OFF static void dbug_print_open_tables() { DBUG_ENTER("dbug_print_open_tables"); for (uint i= 0; i < ndbcluster_open_tables.records; i++) { NDB_SHARE *share= (NDB_SHARE*) hash_element(&ndbcluster_open_tables, i); DBUG_PRINT("share", ("[%d] 0x%lx key: %s key_length: %d", i, share, share->key, share->key_length)); DBUG_PRINT("share", ("db.tablename: %s.%s use_count: %d commit_count: %d", share->db, share->table_name, share->use_count, share->commit_count)); #ifdef HAVE_NDB_BINLOG if (share->table) DBUG_PRINT("share", ("table->s->db.table_name: %s.%s", share->table->s->db.str, share->table->s->table_name.str)); #endif } DBUG_VOID_RETURN; } #else #define dbug_print_open_tables() #endif #ifdef HAVE_NDB_BINLOG /* For some reason a share is still around, try to salvage the situation by closing all cached tables. If the share still exists, there is an error somewhere but only report this to the error log. Keep this "trailing share" but rename it since there are still references to it to avoid segmentation faults. There is a risk that the memory for this trailing share leaks. Must be called with previous pthread_mutex_lock(&ndbcluster_mutex) */ int handle_trailing_share(NDB_SHARE *share) { static ulong trailing_share_id= 0; DBUG_ENTER("handle_trailing_share"); ++share->use_count; pthread_mutex_unlock(&ndbcluster_mutex); close_cached_tables((THD*) 0, 0, (TABLE_LIST*) 0, TRUE); pthread_mutex_lock(&ndbcluster_mutex); if (!--share->use_count) { DBUG_PRINT("info", ("NDB_SHARE: close_cashed_tables %s freed share.", share->key)); real_free_share(&share); DBUG_RETURN(0); } /* share still exists, if share has not been dropped by server release that share */ if (share->state != NSS_DROPPED && !--share->use_count) { DBUG_PRINT("info", ("NDB_SHARE: %s already exists, " "use_count=%d state != NSS_DROPPED.", share->key, share->use_count)); real_free_share(&share); DBUG_RETURN(0); } DBUG_PRINT("error", ("NDB_SHARE: %s already exists use_count=%d.", share->key, share->use_count)); sql_print_error("NDB_SHARE: %s already exists use_count=%d." " Moving away for safety, but possible memleak.", share->key, share->use_count); dbug_print_open_tables(); /* Ndb share has not been released as it should */ DBUG_ASSERT(FALSE); /* This is probably an error. We can however save the situation at the cost of a possible mem leak, by "renaming" the share - First remove from hash */ hash_delete(&ndbcluster_open_tables, (byte*) share); /* now give it a new name, just a running number if space is not enough allocate some more */ { const uint min_key_length= 10; if (share->key_length < min_key_length) { share->key= alloc_root(&share->mem_root, min_key_length + 1); share->key_length= min_key_length; } share->key_length= my_snprintf(share->key, min_key_length + 1, "#leak%d", trailing_share_id++); } /* Keep it for possible the future trailing free */ my_hash_insert(&ndbcluster_open_tables, (byte*) share); DBUG_RETURN(0); } /* Rename share is used during rename table. */ static int rename_share(NDB_SHARE *share, const char *new_key) { NDB_SHARE *tmp; pthread_mutex_lock(&ndbcluster_mutex); uint new_length= (uint) strlen(new_key); DBUG_PRINT("rename_share", ("old_key: %s old__length: %d", share->key, share->key_length)); if ((tmp= (NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) new_key, new_length))) handle_trailing_share(tmp); /* remove the share from hash */ hash_delete(&ndbcluster_open_tables, (byte*) share); dbug_print_open_tables(); /* save old stuff if insert should fail */ uint old_length= share->key_length; char *old_key= share->key; /* now allocate and set the new key, db etc enough space for key, db, and table_name */ share->key= alloc_root(&share->mem_root, 2 * (new_length + 1)); strmov(share->key, new_key); share->key_length= new_length; if (my_hash_insert(&ndbcluster_open_tables, (byte*) share)) { // ToDo free the allocated stuff above? DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed", share->key)); share->key= old_key; share->key_length= old_length; if (my_hash_insert(&ndbcluster_open_tables, (byte*) share)) { sql_print_error("rename_share: failed to recover %s", share->key); DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed", share->key)); } dbug_print_open_tables(); pthread_mutex_unlock(&ndbcluster_mutex); return -1; } dbug_print_open_tables(); share->db= share->key + new_length + 1; ha_ndbcluster::set_dbname(new_key, share->db); share->table_name= share->db + strlen(share->db) + 1; ha_ndbcluster::set_tabname(new_key, share->table_name); DBUG_PRINT("rename_share", ("0x%lx key: %s key_length: %d", share, share->key, share->key_length)); DBUG_PRINT("rename_share", ("db.tablename: %s.%s use_count: %d commit_count: %d", share->db, share->table_name, share->use_count, share->commit_count)); DBUG_PRINT("rename_share", ("table->s->db.table_name: %s.%s", share->table->s->db.str, share->table->s->table_name.str)); if (share->op == 0) { share->table->s->db.str= share->db; share->table->s->db.length= strlen(share->db); share->table->s->table_name.str= share->table_name; share->table->s->table_name.length= strlen(share->table_name); } /* else rename will be handled when the ALTER event comes */ share->old_names= old_key; // ToDo free old_names after ALTER EVENT pthread_mutex_unlock(&ndbcluster_mutex); return 0; } #endif /* Increase refcount on existing share. Always returns share and cannot fail. */ NDB_SHARE *ndbcluster_get_share(NDB_SHARE *share) { pthread_mutex_lock(&ndbcluster_mutex); share->use_count++; dbug_print_open_tables(); DBUG_PRINT("get_share", ("0x%lx key: %s key_length: %d", share, share->key, share->key_length)); DBUG_PRINT("get_share", ("db.tablename: %s.%s use_count: %d commit_count: %d", share->db, share->table_name, share->use_count, share->commit_count)); pthread_mutex_unlock(&ndbcluster_mutex); return share; } /* Get a share object for key Returns share for key, and increases the refcount on the share. create_if_not_exists == TRUE: creates share if it does not alreade exist returns 0 only due to out of memory, and then sets my_error create_if_not_exists == FALSE: returns 0 if share does not exist have_lock == TRUE, pthread_mutex_lock(&ndbcluster_mutex) already taken */ NDB_SHARE *ndbcluster_get_share(const char *key, TABLE *table, bool create_if_not_exists, bool have_lock) { DBUG_ENTER("get_share"); DBUG_PRINT("info", ("get_share: key %s", key)); THD *thd= current_thd; NDB_SHARE *share; if (!have_lock) pthread_mutex_lock(&ndbcluster_mutex); uint length= (uint) strlen(key); if (!(share= (NDB_SHARE*) hash_search(&ndbcluster_open_tables, (byte*) key, length))) { if (!create_if_not_exists) { DBUG_PRINT("error", ("get_share: %s does not exist", key)); if (!have_lock) pthread_mutex_unlock(&ndbcluster_mutex); DBUG_RETURN(0); } if ((share= (NDB_SHARE*) my_malloc(sizeof(*share), MYF(MY_WME | MY_ZEROFILL)))) { MEM_ROOT **root_ptr= my_pthread_getspecific_ptr(MEM_ROOT**, THR_MALLOC); MEM_ROOT *old_root= *root_ptr; init_sql_alloc(&share->mem_root, 1024, 0); *root_ptr= &share->mem_root; // remember to reset before return share->state= NSS_INITIAL; /* enough space for key, db, and table_name */ share->key= alloc_root(*root_ptr, 2 * (length + 1)); share->key_length= length; strmov(share->key, key); if (my_hash_insert(&ndbcluster_open_tables, (byte*) share)) { free_root(&share->mem_root, MYF(0)); my_free((gptr) share, 0); *root_ptr= old_root; if (!have_lock) pthread_mutex_unlock(&ndbcluster_mutex); DBUG_RETURN(0); } thr_lock_init(&share->lock); pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST); share->commit_count= 0; share->commit_count_lock= 0; share->db= share->key + length + 1; ha_ndbcluster::set_dbname(key, share->db); share->table_name= share->db + strlen(share->db) + 1; ha_ndbcluster::set_tabname(key, share->table_name); #ifdef HAVE_NDB_BINLOG ndbcluster_binlog_init_share(share, table); #endif *root_ptr= old_root; } else { DBUG_PRINT("error", ("get_share: failed to alloc share")); if (!have_lock) pthread_mutex_unlock(&ndbcluster_mutex); my_error(ER_OUTOFMEMORY, MYF(0), sizeof(*share)); DBUG_RETURN(0); } } share->use_count++; dbug_print_open_tables(); DBUG_PRINT("get_share", ("0x%lx key: %s key_length: %d key: %s", share, share->key, share->key_length, key)); DBUG_PRINT("get_share", ("db.tablename: %s.%s use_count: %d commit_count: %d", share->db, share->table_name, share->use_count, share->commit_count)); if (!have_lock) pthread_mutex_unlock(&ndbcluster_mutex); DBUG_RETURN(share); } void ndbcluster_real_free_share(NDB_SHARE **share) { DBUG_PRINT("real_free_share", ("0x%lx key: %s key_length: %d", (*share), (*share)->key, (*share)->key_length)); DBUG_PRINT("real_free_share", ("db.tablename: %s.%s use_count: %d commit_count: %d", (*share)->db, (*share)->table_name, (*share)->use_count, (*share)->commit_count)); hash_delete(&ndbcluster_open_tables, (byte*) *share); thr_lock_delete(&(*share)->lock); pthread_mutex_destroy(&(*share)->mutex); free_root(&(*share)->mem_root, MYF(0)); #ifdef HAVE_NDB_BINLOG if ((*share)->table) { closefrm((*share)->table, 0); #if 0 // todo ? free_root(&(*share)->table->mem_root, MYF(0)); #endif #ifndef DBUG_OFF bzero((gptr)(*share)->table_share, sizeof(*(*share)->table_share)); bzero((gptr)(*share)->table, sizeof(*(*share)->table)); #endif my_free((gptr) (*share)->table_share, MYF(0)); my_free((gptr) (*share)->table, MYF(0)); #ifndef DBUG_OFF (*share)->table_share= 0; (*share)->table= 0; #endif } #endif my_free((gptr) *share, MYF(0)); *share= 0; dbug_print_open_tables(); } /* decrease refcount of share calls real_free_share when refcount reaches 0 have_lock == TRUE, pthread_mutex_lock(&ndbcluster_mutex) already taken */ void ndbcluster_free_share(NDB_SHARE **share, bool have_lock) { if (!have_lock) pthread_mutex_lock(&ndbcluster_mutex); if ((*share)->util_lock == current_thd) (*share)->util_lock= 0; if (!--(*share)->use_count) { real_free_share(share); } else { dbug_print_open_tables(); DBUG_PRINT("free_share", ("0x%lx key: %s key_length: %d", *share, (*share)->key, (*share)->key_length)); DBUG_PRINT("free_share", ("db.tablename: %s.%s use_count: %d commit_count: %d", (*share)->db, (*share)->table_name, (*share)->use_count, (*share)->commit_count)); } if (!have_lock) pthread_mutex_unlock(&ndbcluster_mutex); } static int ndb_get_table_statistics(Ndb* ndb, const char * table, struct Ndb_statistics * ndbstat) { DBUG_ENTER("ndb_get_table_statistics"); DBUG_PRINT("enter", ("table: %s", table)); NdbTransaction* pTrans= ndb->startTransaction(); if (pTrans == NULL) ERR_RETURN(ndb->getNdbError()); do { NdbScanOperation* pOp= pTrans->getNdbScanOperation(table); if (pOp == NULL) break; if (pOp->readTuples(NdbOperation::LM_CommittedRead)) break; int check= pOp->interpret_exit_last_row(); if (check == -1) break; Uint64 rows, commits, mem; Uint32 size; pOp->getValue(NdbDictionary::Column::ROW_COUNT, (char*)&rows); pOp->getValue(NdbDictionary::Column::COMMIT_COUNT, (char*)&commits); pOp->getValue(NdbDictionary::Column::ROW_SIZE, (char*)&size); pOp->getValue(NdbDictionary::Column::FRAGMENT_MEMORY, (char*)&mem); check= pTrans->execute(NdbTransaction::NoCommit, NdbTransaction::AbortOnError, TRUE); if (check == -1) break; Uint32 count= 0; Uint64 sum_rows= 0; Uint64 sum_commits= 0; Uint64 sum_row_size= 0; Uint64 sum_mem= 0; while ((check= pOp->nextResult(TRUE, TRUE)) == 0) { sum_rows+= rows; sum_commits+= commits; if (sum_row_size < size) sum_row_size= size; sum_mem+= mem; count++; } if (check == -1) break; pOp->close(TRUE); ndb->closeTransaction(pTrans); ndbstat->row_count= sum_rows; ndbstat->commit_count= sum_commits; ndbstat->row_size= sum_row_size; ndbstat->fragment_memory= sum_mem; DBUG_PRINT("exit", ("records: %llu commits: %llu " "row_size: %llu mem: %llu count: %u", sum_rows, sum_commits, sum_row_size, sum_mem, count)); DBUG_RETURN(0); } while (0); if (pTrans) ndb->closeTransaction(pTrans); DBUG_PRINT("exit", ("failed")); DBUG_RETURN(-1); } /* Create a .ndb file to serve as a placeholder indicating that the table with this name is a ndb table */ int ha_ndbcluster::write_ndb_file(const char *name) { File file; bool error=1; char path[FN_REFLEN]; DBUG_ENTER("write_ndb_file"); DBUG_PRINT("enter", ("name: %s", name)); (void)strxnmov(path, FN_REFLEN-1, mysql_data_home,"/",name,ha_ndb_ext,NullS); if ((file=my_create(path, CREATE_MODE,O_RDWR | O_TRUNC,MYF(MY_WME))) >= 0) { // It's an empty file error=0; my_close(file,MYF(0)); } DBUG_RETURN(error); } int ha_ndbcluster::read_multi_range_first(KEY_MULTI_RANGE **found_range_p, KEY_MULTI_RANGE *ranges, uint range_count, bool sorted, HANDLER_BUFFER *buffer) { DBUG_ENTER("ha_ndbcluster::read_multi_range_first"); m_write_op= FALSE; int res; KEY* key_info= table->key_info + active_index; NDB_INDEX_TYPE index_type= get_index_type(active_index); ulong reclength= table_share->reclength; NdbOperation* op; if (uses_blob_value()) { /** * blobs can't be batched currently */ m_disable_multi_read= TRUE; DBUG_RETURN(handler::read_multi_range_first(found_range_p, ranges, range_count, sorted, buffer)); } m_disable_multi_read= FALSE; /** * Copy arguments into member variables */ m_multi_ranges= ranges; multi_range_curr= ranges; multi_range_end= ranges+range_count; multi_range_sorted= sorted; multi_range_buffer= buffer; /** * read multi range will read ranges as follows (if not ordered) * * input read order * ====== ========== * pk-op 1 pk-op 1 * pk-op 2 pk-op 2 * range 3 range (3,5) NOTE result rows will be intermixed * pk-op 4 pk-op 4 * range 5 * pk-op 6 pk-ok 6 */ /** * Variables for loop */ byte *curr= (byte*)buffer->buffer; byte *end_of_buffer= (byte*)buffer->buffer_end; NdbOperation::LockMode lm= (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type); const NDBTAB *tab= (const NDBTAB *) m_table; const NDBINDEX *unique_idx= (NDBINDEX *) m_index[active_index].unique_index; const NDBINDEX *idx= (NDBINDEX *) m_index[active_index].index; const NdbOperation* lastOp= m_active_trans->getLastDefinedOperation(); NdbIndexScanOperation* scanOp= 0; for (; multi_range_curr<multi_range_end && curr+reclength <= end_of_buffer; multi_range_curr++) { part_id_range part_spec; if (m_use_partition_function) { get_partition_set(table, curr, active_index, &multi_range_curr->start_key, &part_spec); if (part_spec.start_part > part_spec.end_part) { /* We can skip this partition since the key won't fit into any partition */ curr += reclength; multi_range_curr->range_flag |= SKIP_RANGE; continue; } } switch(index_type){ case PRIMARY_KEY_ORDERED_INDEX: if (!(multi_range_curr->start_key.length == key_info->key_length && multi_range_curr->start_key.flag == HA_READ_KEY_EXACT)) goto range; // else fall through case PRIMARY_KEY_INDEX: { multi_range_curr->range_flag |= UNIQUE_RANGE; if ((op= m_active_trans->getNdbOperation(tab)) && !op->readTuple(lm) && !set_primary_key(op, multi_range_curr->start_key.key) && !define_read_attrs(curr, op) && (op->setAbortOption(AO_IgnoreError), TRUE) && (!m_use_partition_function || (op->setPartitionId(part_spec.start_part), true))) curr += reclength; else ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError()); break; } break; case UNIQUE_ORDERED_INDEX: if (!(multi_range_curr->start_key.length == key_info->key_length && multi_range_curr->start_key.flag == HA_READ_KEY_EXACT && !check_null_in_key(key_info, multi_range_curr->start_key.key, multi_range_curr->start_key.length))) goto range; // else fall through case UNIQUE_INDEX: { multi_range_curr->range_flag |= UNIQUE_RANGE; if ((op= m_active_trans->getNdbIndexOperation(unique_idx, tab)) && !op->readTuple(lm) && !set_index_key(op, key_info, multi_range_curr->start_key.key) && !define_read_attrs(curr, op) && (op->setAbortOption(AO_IgnoreError), TRUE)) curr += reclength; else ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError()); break; } case ORDERED_INDEX: { range: multi_range_curr->range_flag &= ~(uint)UNIQUE_RANGE; if (scanOp == 0) { if (m_multi_cursor) { scanOp= m_multi_cursor; DBUG_ASSERT(scanOp->getSorted() == sorted); DBUG_ASSERT(scanOp->getLockMode() == (NdbOperation::LockMode)get_ndb_lock_type(m_lock.type)); if (scanOp->reset_bounds(m_force_send)) DBUG_RETURN(ndb_err(m_active_trans)); end_of_buffer -= reclength; } else if ((scanOp= m_active_trans->getNdbIndexScanOperation(idx, tab)) &&!scanOp->readTuples(lm, 0, parallelism, sorted, FALSE, TRUE) &&!generate_scan_filter(m_cond_stack, scanOp) &&!define_read_attrs(end_of_buffer-reclength, scanOp)) { m_multi_cursor= scanOp; m_multi_range_cursor_result_ptr= end_of_buffer-reclength; } else { ERR_RETURN(scanOp ? scanOp->getNdbError() : m_active_trans->getNdbError()); } } const key_range *keys[2]= { &multi_range_curr->start_key, &multi_range_curr->end_key }; if ((res= set_bounds(scanOp, active_index, false, keys, multi_range_curr-ranges))) DBUG_RETURN(res); break; } case UNDEFINED_INDEX: DBUG_ASSERT(FALSE); DBUG_RETURN(1); break; } } if (multi_range_curr != multi_range_end) { /** * Mark that we're using entire buffer (even if might not) as * we haven't read all ranges for some reason * This as we don't want mysqld to reuse the buffer when we read * the remaining ranges */ buffer->end_of_used_area= (byte*)buffer->buffer_end; } else { buffer->end_of_used_area= curr; } /** * Set first operation in multi range */ m_current_multi_operation= lastOp ? lastOp->next() : m_active_trans->getFirstDefinedOperation(); if (!(res= execute_no_commit_ie(this, m_active_trans))) { m_multi_range_defined= multi_range_curr; multi_range_curr= ranges; m_multi_range_result_ptr= (byte*)buffer->buffer; DBUG_RETURN(read_multi_range_next(found_range_p)); } ERR_RETURN(m_active_trans->getNdbError()); } #if 0 #define DBUG_MULTI_RANGE(x) DBUG_PRINT("info", ("read_multi_range_next: case %d\n", x)); #else #define DBUG_MULTI_RANGE(x) #endif int ha_ndbcluster::read_multi_range_next(KEY_MULTI_RANGE ** multi_range_found_p) { DBUG_ENTER("ha_ndbcluster::read_multi_range_next"); if (m_disable_multi_read) { DBUG_MULTI_RANGE(11); DBUG_RETURN(handler::read_multi_range_next(multi_range_found_p)); } int res; int range_no; ulong reclength= table_share->reclength; const NdbOperation* op= m_current_multi_operation; for (;multi_range_curr < m_multi_range_defined; multi_range_curr++) { DBUG_MULTI_RANGE(12); if (multi_range_curr->range_flag & SKIP_RANGE) continue; if (multi_range_curr->range_flag & UNIQUE_RANGE) { if (op->getNdbError().code == 0) { DBUG_MULTI_RANGE(13); goto found_next; } op= m_active_trans->getNextCompletedOperation(op); m_multi_range_result_ptr += reclength; continue; } else if (m_multi_cursor && !multi_range_sorted) { DBUG_MULTI_RANGE(1); if ((res= fetch_next(m_multi_cursor)) == 0) { DBUG_MULTI_RANGE(2); range_no= m_multi_cursor->get_range_no(); goto found; } else { DBUG_MULTI_RANGE(14); goto close_scan; } } else if (m_multi_cursor && multi_range_sorted) { if (m_active_cursor && (res= fetch_next(m_multi_cursor))) { DBUG_MULTI_RANGE(3); goto close_scan; } range_no= m_multi_cursor->get_range_no(); uint current_range_no= multi_range_curr - m_multi_ranges; if ((uint) range_no == current_range_no) { DBUG_MULTI_RANGE(4); // return current row goto found; } else if (range_no > (int)current_range_no) { DBUG_MULTI_RANGE(5); // wait with current row m_active_cursor= 0; continue; } else { DBUG_MULTI_RANGE(6); // First fetch from cursor DBUG_ASSERT(range_no == -1); if ((res= m_multi_cursor->nextResult(true))) { DBUG_MULTI_RANGE(15); goto close_scan; } multi_range_curr--; // Will be increased in for-loop continue; } } else /** m_multi_cursor == 0 */ { DBUG_MULTI_RANGE(7); /** * Corresponds to range 5 in example in read_multi_range_first */ (void)1; continue; } DBUG_ASSERT(FALSE); // Should only get here via goto's close_scan: if (res == 1) { m_multi_cursor->close(FALSE, TRUE); m_active_cursor= m_multi_cursor= 0; DBUG_MULTI_RANGE(8); continue; } else { DBUG_MULTI_RANGE(9); DBUG_RETURN(ndb_err(m_active_trans)); } } if (multi_range_curr == multi_range_end) { DBUG_MULTI_RANGE(16); DBUG_RETURN(HA_ERR_END_OF_FILE); } /** * Read remaining ranges */ DBUG_RETURN(read_multi_range_first(multi_range_found_p, multi_range_curr, multi_range_end - multi_range_curr, multi_range_sorted, multi_range_buffer)); found: /** * Found a record belonging to a scan */ m_active_cursor= m_multi_cursor; * multi_range_found_p= m_multi_ranges + range_no; memcpy(table->record[0], m_multi_range_cursor_result_ptr, reclength); setup_recattr(m_active_cursor->getFirstRecAttr()); unpack_record(table->record[0]); table->status= 0; DBUG_RETURN(0); found_next: /** * Found a record belonging to a pk/index op, * copy result and move to next to prepare for next call */ * multi_range_found_p= multi_range_curr; memcpy(table->record[0], m_multi_range_result_ptr, reclength); setup_recattr(op->getFirstRecAttr()); unpack_record(table->record[0]); table->status= 0; multi_range_curr++; m_current_multi_operation= m_active_trans->getNextCompletedOperation(op); m_multi_range_result_ptr += reclength; DBUG_RETURN(0); } int ha_ndbcluster::setup_recattr(const NdbRecAttr* curr) { DBUG_ENTER("setup_recattr"); Field **field, **end; NdbValue *value= m_value; end= table->field + table_share->fields; for (field= table->field; field < end; field++, value++) { if ((* value).ptr) { DBUG_ASSERT(curr != 0); (* value).rec= curr; curr= curr->next(); } } DBUG_RETURN(0); } char* ha_ndbcluster::update_table_comment( /* out: table comment + additional */ const char* comment)/* in: table comment defined by user */ { uint length= strlen(comment); if (length > 64000 - 3) { return((char*)comment); /* string too long */ } Ndb* ndb; if (!(ndb= get_ndb())) { return((char*)comment); } ndb->setDatabaseName(m_dbname); NDBDICT* dict= ndb->getDictionary(); const NDBTAB* tab; if (!(tab= dict->getTable(m_tabname))) { return((char*)comment); } char *str; const char *fmt="%s%snumber_of_replicas: %d"; const unsigned fmt_len_plus_extra= length + strlen(fmt); if ((str= my_malloc(fmt_len_plus_extra, MYF(0))) == NULL) { return (char*)comment; } my_snprintf(str,fmt_len_plus_extra,fmt,comment, length > 0 ? " ":"", tab->getReplicaCount()); return str; } // Utility thread main loop pthread_handler_t ndb_util_thread_func(void *arg __attribute__((unused))) { THD *thd; /* needs to be first for thread_stack */ Ndb* ndb; struct timespec abstime; List<NDB_SHARE> util_open_tables; my_thread_init(); DBUG_ENTER("ndb_util_thread"); DBUG_PRINT("enter", ("ndb_cache_check_time: %d", ndb_cache_check_time)); thd= new THD; /* note that contructor of THD uses DBUG_ */ THD_CHECK_SENTRY(thd); ndb= new Ndb(g_ndb_cluster_connection, ""); pthread_detach_this_thread(); ndb_util_thread= pthread_self(); thd->thread_stack= (char*)&thd; /* remember where our stack is */ if (thd->store_globals() && (ndb->init() != -1)) { thd->cleanup(); delete thd; delete ndb; DBUG_RETURN(NULL); } thd->init_for_queries(); thd->version=refresh_version; thd->set_time(); thd->main_security_ctx.host_or_ip= ""; thd->client_capabilities = 0; my_net_init(&thd->net, 0); thd->main_security_ctx.master_access= ~0; thd->main_security_ctx.priv_user = 0; /* wait for mysql server to start */ pthread_mutex_lock(&LOCK_server_started); while (!mysqld_server_started) pthread_cond_wait(&COND_server_started, &LOCK_server_started); pthread_mutex_unlock(&LOCK_server_started); /* Wait for cluster to start */ pthread_mutex_lock(&LOCK_ndb_util_thread); while (!ndb_cluster_node_id && (ndbcluster_hton.slot != ~(uint)0)) { /* ndb not connected yet */ set_timespec(abstime, 1); pthread_cond_timedwait(&COND_ndb_util_thread, &LOCK_ndb_util_thread, &abstime); if (abort_loop) { pthread_mutex_unlock(&LOCK_ndb_util_thread); goto ndb_util_thread_end; } } pthread_mutex_unlock(&LOCK_ndb_util_thread); { Thd_ndb *thd_ndb; if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb())) { sql_print_error("Could not allocate Thd_ndb object"); goto ndb_util_thread_end; } set_thd_ndb(thd, thd_ndb); thd_ndb->options|= TNO_NO_LOG_SCHEMA_OP; } #ifdef HAVE_NDB_BINLOG /* create tables needed by the replication */ ndbcluster_setup_binlog_table_shares(thd); #else /* Get all table definitions from the storage node */ ndbcluster_find_all_files(thd); #endif ndbcluster_util_inited= 1; #ifdef HAVE_NDB_BINLOG /* If running, signal injector thread that all is setup */ if (ndb_binlog_thread_running > 0) pthread_cond_signal(&injector_cond); #endif set_timespec(abstime, 0); for (;!abort_loop;) { pthread_mutex_lock(&LOCK_ndb_util_thread); pthread_cond_timedwait(&COND_ndb_util_thread, &LOCK_ndb_util_thread, &abstime); pthread_mutex_unlock(&LOCK_ndb_util_thread); #ifdef NDB_EXTRA_DEBUG_UTIL_THREAD DBUG_PRINT("ndb_util_thread", ("Started, ndb_cache_check_time: %d", ndb_cache_check_time)); #endif if (abort_loop) break; /* Shutting down server */ #ifdef HAVE_NDB_BINLOG /* Check that the apply_status_share and schema_share has been created. If not try to create it */ if (!apply_status_share || !schema_share) ndbcluster_setup_binlog_table_shares(thd); #endif if (ndb_cache_check_time == 0) { /* Wake up in 1 second to check if value has changed */ set_timespec(abstime, 1); continue; } /* Lock mutex and fill list with pointers to all open tables */ NDB_SHARE *share; pthread_mutex_lock(&ndbcluster_mutex); for (uint i= 0; i < ndbcluster_open_tables.records; i++) { share= (NDB_SHARE *)hash_element(&ndbcluster_open_tables, i); #ifdef HAVE_NDB_BINLOG if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0)) <= 0) continue; // injector thread is the only user, skip statistics share->util_lock= current_thd; // Mark that util thread has lock #endif /* HAVE_NDB_BINLOG */ share->use_count++; /* Make sure the table can't be closed */ DBUG_PRINT("ndb_util_thread", ("Found open table[%d]: %s, use_count: %d", i, share->table_name, share->use_count)); /* Store pointer to table */ util_open_tables.push_back(share); } pthread_mutex_unlock(&ndbcluster_mutex); /* Iterate through the open files list */ List_iterator_fast<NDB_SHARE> it(util_open_tables); while ((share= it++)) { #ifdef HAVE_NDB_BINLOG if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0)) <= 1) { /* Util thread and injector thread is the only user, skip statistics */ free_share(&share); continue; } #endif /* HAVE_NDB_BINLOG */ DBUG_PRINT("ndb_util_thread", ("Fetching commit count for: %s", share->key)); /* Contact NDB to get commit count for table */ ndb->setDatabaseName(share->db); struct Ndb_statistics stat; uint lock; pthread_mutex_lock(&share->mutex); lock= share->commit_count_lock; pthread_mutex_unlock(&share->mutex); if (ndb_get_table_statistics(ndb, share->table_name, &stat) == 0) { DBUG_PRINT("ndb_util_thread", ("Table: %s, commit_count: %llu, rows: %llu", share->key, stat.commit_count, stat.row_count)); } else { DBUG_PRINT("ndb_util_thread", ("Error: Could not get commit count for table %s", share->key)); stat.commit_count= 0; } pthread_mutex_lock(&share->mutex); if (share->commit_count_lock == lock) share->commit_count= stat.commit_count; pthread_mutex_unlock(&share->mutex); /* Decrease the use count and possibly free share */ free_share(&share); } /* Clear the list of open tables */ util_open_tables.empty(); /* Calculate new time to wake up */ int secs= 0; int msecs= ndb_cache_check_time; struct timeval tick_time; gettimeofday(&tick_time, 0); abstime.tv_sec= tick_time.tv_sec; abstime.tv_nsec= tick_time.tv_usec * 1000; if (msecs >= 1000){ secs= msecs / 1000; msecs= msecs % 1000; } abstime.tv_sec+= secs; abstime.tv_nsec+= msecs * 1000000; if (abstime.tv_nsec >= 1000000000) { abstime.tv_sec+= 1; abstime.tv_nsec-= 1000000000; } } ndb_util_thread_end: sql_print_information("Stopping Cluster Utility thread"); net_end(&thd->net); thd->cleanup(); delete thd; delete ndb; DBUG_PRINT("exit", ("ndb_util_thread")); my_thread_end(); pthread_exit(0); DBUG_RETURN(NULL); } /* Condition pushdown */ /* Push a condition to ndbcluster storage engine for evaluation during table and index scans. The conditions will be stored on a stack for possibly storing several conditions. The stack can be popped by calling cond_pop, handler::extra(HA_EXTRA_RESET) (handler::reset()) will clear the stack. The current implementation supports arbitrary AND/OR nested conditions with comparisons between columns and constants (including constant expressions and function calls) and the following comparison operators: =, !=, >, >=, <, <=, "is null", and "is not null". RETURN NULL The condition was supported and will be evaluated for each row found during the scan cond The condition was not supported and all rows will be returned from the scan for evaluation (and thus not saved on stack) */ const COND* ha_ndbcluster::cond_push(const COND *cond) { DBUG_ENTER("cond_push"); Ndb_cond_stack *ndb_cond = new Ndb_cond_stack(); DBUG_EXECUTE("where",print_where((COND *)cond, m_tabname);); if (m_cond_stack) ndb_cond->next= m_cond_stack; else ndb_cond->next= NULL; m_cond_stack= ndb_cond; if (serialize_cond(cond, ndb_cond)) { DBUG_RETURN(NULL); } else { cond_pop(); } DBUG_RETURN(cond); } /* Pop the top condition from the condition stack of the handler instance. */ void ha_ndbcluster::cond_pop() { Ndb_cond_stack *ndb_cond_stack= m_cond_stack; if (ndb_cond_stack) { m_cond_stack= ndb_cond_stack->next; delete ndb_cond_stack; } } /* Clear the condition stack */ void ha_ndbcluster::cond_clear() { DBUG_ENTER("cond_clear"); while (m_cond_stack) cond_pop(); DBUG_VOID_RETURN; } /* Serialize the item tree into a linked list represented by Ndb_cond for fast generation of NbdScanFilter. Adds information such as position of fields that is not directly available in the Item tree. Also checks if condition is supported. */ void ndb_serialize_cond(const Item *item, void *arg) { Ndb_cond_traverse_context *context= (Ndb_cond_traverse_context *) arg; DBUG_ENTER("ndb_serialize_cond"); // Check if we are skipping arguments to a function to be evaluated if (context->skip) { DBUG_PRINT("info", ("Skiping argument %d", context->skip)); context->skip--; switch (item->type()) { case Item::FUNC_ITEM: { Item_func *func_item= (Item_func *) item; context->skip+= func_item->argument_count(); break; } case Item::INT_ITEM: case Item::REAL_ITEM: case Item::STRING_ITEM: case Item::VARBIN_ITEM: case Item::DECIMAL_ITEM: break; default: context->supported= FALSE; break; } DBUG_VOID_RETURN; } if (context->supported) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; const Item_func *func_item; // Check if we are rewriting some unsupported function call if (rewrite_context && (func_item= rewrite_context->func_item) && rewrite_context->count++ == 0) { switch (func_item->functype()) { case Item_func::BETWEEN: /* Rewrite <field>|<const> BETWEEN <const1>|<field1> AND <const2>|<field2> to <field>|<const> > <const1>|<field1> AND <field>|<const> < <const2>|<field2> or actually in prefix format BEGIN(AND) GT(<field>|<const>, <const1>|<field1>), LT(<field>|<const>, <const2>|<field2>), END() */ case Item_func::IN_FUNC: { /* Rewrite <field>|<const> IN(<const1>|<field1>, <const2>|<field2>,..) to <field>|<const> = <const1>|<field1> OR <field> = <const2>|<field2> ... or actually in prefix format BEGIN(OR) EQ(<field>|<const>, <const1><field1>), EQ(<field>|<const>, <const2>|<field2>), ... END() Each part of the disjunction is added for each call to ndb_serialize_cond and end of rewrite statement is wrapped in end of ndb_serialize_cond */ if (context->expecting(item->type())) { // This is the <field>|<const> item, save it in the rewrite context rewrite_context->left_hand_item= item; if (item->type() == Item::FUNC_ITEM) { Item_func *func_item= (Item_func *) item; if (func_item->functype() == Item_func::UNKNOWN_FUNC && func_item->const_item()) { // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); } else { DBUG_PRINT("info", ("Found unsupported functional expression in BETWEEN|IN")); context->supported= FALSE; DBUG_VOID_RETURN; } } } else { // Non-supported BETWEEN|IN expression DBUG_PRINT("info", ("Found unexpected item of type %u in BETWEEN|IN", item->type())); context->supported= FALSE; DBUG_VOID_RETURN; } break; } default: context->supported= FALSE; break; } DBUG_VOID_RETURN; } else { Ndb_cond_stack *ndb_stack= context->stack_ptr; Ndb_cond *prev_cond= context->cond_ptr; Ndb_cond *curr_cond= context->cond_ptr= new Ndb_cond(); if (!ndb_stack->ndb_cond) ndb_stack->ndb_cond= curr_cond; curr_cond->prev= prev_cond; if (prev_cond) prev_cond->next= curr_cond; // Check if we are rewriting some unsupported function call if (context->rewrite_stack) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; const Item_func *func_item= rewrite_context->func_item; switch (func_item->functype()) { case Item_func::BETWEEN: { /* Rewrite <field>|<const> BETWEEN <const1>|<field1> AND <const2>|<field2> to <field>|<const> > <const1>|<field1> AND <field>|<const> < <const2>|<field2> or actually in prefix format BEGIN(AND) GT(<field>|<const>, <const1>|<field1>), LT(<field>|<const>, <const2>|<field2>), END() */ if (rewrite_context->count == 2) { // Lower limit of BETWEEN DBUG_PRINT("info", ("GE_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::GE_FUNC, 2); } else if (rewrite_context->count == 3) { // Upper limit of BETWEEN DBUG_PRINT("info", ("LE_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::LE_FUNC, 2); } else { // Illegal BETWEEN expression DBUG_PRINT("info", ("Illegal BETWEEN expression")); context->supported= FALSE; DBUG_VOID_RETURN; } break; } case Item_func::IN_FUNC: { /* Rewrite <field>|<const> IN(<const1>|<field1>, <const2>|<field2>,..) to <field>|<const> = <const1>|<field1> OR <field> = <const2>|<field2> ... or actually in prefix format BEGIN(OR) EQ(<field>|<const>, <const1><field1>), EQ(<field>|<const>, <const2>|<field2>), ... END() Each part of the disjunction is added for each call to ndb_serialize_cond and end of rewrite statement is wrapped in end of ndb_serialize_cond */ DBUG_PRINT("info", ("EQ_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::EQ_FUNC, 2); break; } default: context->supported= FALSE; } // Handle left hand <field>|<const> context->rewrite_stack= NULL; // Disable rewrite mode context->expect_only(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); ndb_serialize_cond(rewrite_context->left_hand_item, arg); context->skip= 0; // Any FUNC_ITEM expression has already been parsed context->rewrite_stack= rewrite_context; // Enable rewrite mode if (!context->supported) DBUG_VOID_RETURN; prev_cond= context->cond_ptr; curr_cond= context->cond_ptr= new Ndb_cond(); prev_cond->next= curr_cond; } // Check for end of AND/OR expression if (!item) { // End marker for condition group DBUG_PRINT("info", ("End of condition group")); curr_cond->ndb_item= new Ndb_item(NDB_END_COND); } else { switch (item->type()) { case Item::FIELD_ITEM: { Item_field *field_item= (Item_field *) item; Field *field= field_item->field; enum_field_types type= field->type(); /* Check that the field is part of the table of the handler instance and that we expect a field with of this result type. */ if (context->table == field->table) { const NDBTAB *tab= (const NDBTAB *) context->ndb_table; DBUG_PRINT("info", ("FIELD_ITEM")); DBUG_PRINT("info", ("table %s", tab->getName())); DBUG_PRINT("info", ("column %s", field->field_name)); DBUG_PRINT("info", ("result type %d", field->result_type())); // Check that we are expecting a field and with the correct // result type if (context->expecting(Item::FIELD_ITEM) && (context->expecting_field_result(field->result_type()) || // Date and year can be written as string or int ((type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE || type == MYSQL_TYPE_YEAR || type == MYSQL_TYPE_DATETIME) ? (context->expecting_field_result(STRING_RESULT) || context->expecting_field_result(INT_RESULT)) : true)) && // Bit fields no yet supported in scan filter type != MYSQL_TYPE_BIT) { const NDBCOL *col= tab->getColumn(field->field_name); DBUG_ASSERT(col); curr_cond->ndb_item= new Ndb_item(field, col->getColumnNo()); context->dont_expect(Item::FIELD_ITEM); context->expect_no_field_result(); if (context->expect_mask) { // We have not seen second argument yet if (type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE || type == MYSQL_TYPE_YEAR || type == MYSQL_TYPE_DATETIME) { context->expect_only(Item::STRING_ITEM); context->expect(Item::INT_ITEM); } else switch (field->result_type()) { case STRING_RESULT: // Expect char string or binary string context->expect_only(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect_collation(field_item->collation.collation); break; case REAL_RESULT: context->expect_only(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::INT_ITEM); break; case INT_RESULT: context->expect_only(Item::INT_ITEM); context->expect(Item::VARBIN_ITEM); break; case DECIMAL_RESULT: context->expect_only(Item::DECIMAL_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::INT_ITEM); break; default: break; } } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that field and string constant collations are the same if ((field->result_type() == STRING_RESULT) && !context->expecting_collation(item->collation.collation) && type != MYSQL_TYPE_TIME && type != MYSQL_TYPE_DATE && type != MYSQL_TYPE_YEAR && type != MYSQL_TYPE_DATETIME) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } break; } else { DBUG_PRINT("info", ("Was not expecting field of type %u(%u)", field->result_type(), type)); context->supported= FALSE; } } else { DBUG_PRINT("info", ("Was not expecting field from table %s (%s)", context->table->s->table_name.str, field->table->s->table_name.str)); context->supported= FALSE; } break; } case Item::FUNC_ITEM: { Item_func *func_item= (Item_func *) item; // Check that we expect a function or functional expression here if (context->expecting(Item::FUNC_ITEM) || func_item->functype() == Item_func::UNKNOWN_FUNC) context->expect_nothing(); else { // Did not expect function here context->supported= FALSE; break; } switch (func_item->functype()) { case Item_func::EQ_FUNC: { DBUG_PRINT("info", ("EQ_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::NE_FUNC: { DBUG_PRINT("info", ("NE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LT_FUNC: { DBUG_PRINT("info", ("LT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LE_FUNC: { DBUG_PRINT("info", ("LE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::GE_FUNC: { DBUG_PRINT("info", ("GE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::GT_FUNC: { DBUG_PRINT("info", ("GT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::REAL_ITEM); context->expect(Item::DECIMAL_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::LIKE_FUNC: { DBUG_PRINT("info", ("LIKE_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::STRING_ITEM); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect(Item::FUNC_ITEM); break; } case Item_func::ISNULL_FUNC: { DBUG_PRINT("info", ("ISNULL_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::ISNOTNULL_FUNC: { DBUG_PRINT("info", ("ISNOTNULL_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FIELD_ITEM); context->expect_field_result(STRING_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(INT_RESULT); context->expect_field_result(DECIMAL_RESULT); break; } case Item_func::NOT_FUNC: { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(func_item->functype(), func_item); context->expect(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); break; } case Item_func::BETWEEN: { DBUG_PRINT("info", ("BETWEEN, rewriting using AND")); Item_func_between *between_func= (Item_func_between *) func_item; Ndb_rewrite_context *rewrite_context= new Ndb_rewrite_context(func_item); rewrite_context->next= context->rewrite_stack; context->rewrite_stack= rewrite_context; if (between_func->negated) { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::NOT_FUNC, 1); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; } DBUG_PRINT("info", ("COND_AND_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::COND_AND_FUNC, func_item->argument_count() - 1); context->expect_only(Item::FIELD_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); break; } case Item_func::IN_FUNC: { DBUG_PRINT("info", ("IN_FUNC, rewriting using OR")); Item_func_in *in_func= (Item_func_in *) func_item; Ndb_rewrite_context *rewrite_context= new Ndb_rewrite_context(func_item); rewrite_context->next= context->rewrite_stack; context->rewrite_stack= rewrite_context; if (in_func->negated) { DBUG_PRINT("info", ("NOT_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::NOT_FUNC, 1); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; } DBUG_PRINT("info", ("COND_OR_FUNC")); curr_cond->ndb_item= new Ndb_item(Item_func::COND_OR_FUNC, func_item->argument_count() - 1); context->expect_only(Item::FIELD_ITEM); context->expect(Item::INT_ITEM); context->expect(Item::STRING_ITEM); context->expect(Item::VARBIN_ITEM); context->expect(Item::FUNC_ITEM); break; } case Item_func::UNKNOWN_FUNC: { DBUG_PRINT("info", ("UNKNOWN_FUNC %s", func_item->const_item()?"const":"")); DBUG_PRINT("info", ("result type %d", func_item->result_type())); if (func_item->const_item()) { switch (func_item->result_type()) { case STRING_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::STRING_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); context->expect_collation(func_item->collation.collation); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that string result have correct collation if (!context->expecting_collation(item->collation.collation)) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case REAL_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::REAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case INT_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::INT_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(INT_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } case DECIMAL_RESULT: { NDB_ITEM_QUALIFICATION q; q.value_type= Item::DECIMAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } // Skip any arguments since we will evaluate function instead DBUG_PRINT("info", ("Skip until end of arguments marker")); context->skip= func_item->argument_count(); break; } default: break; } } else // Function does not return constant expression context->supported= FALSE; break; } default: { DBUG_PRINT("info", ("Found func_item of type %d", func_item->functype())); context->supported= FALSE; } } break; } case Item::STRING_ITEM: DBUG_PRINT("info", ("STRING_ITEM")); if (context->expecting(Item::STRING_ITEM)) { #ifndef DBUG_OFF char buff[256]; String str(buff,(uint32) sizeof(buff), system_charset_info); str.length(0); Item_string *string_item= (Item_string *) item; DBUG_PRINT("info", ("value \"%s\"", string_item->val_str(&str)->ptr())); #endif NDB_ITEM_QUALIFICATION q; q.value_type= Item::STRING_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); context->expect_collation(item->collation.collation); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); // Check that we are comparing with a field with same collation if (!context->expecting_collation(item->collation.collation)) { DBUG_PRINT("info", ("Found non-matching collation %s", item->collation.collation->name)); context->supported= FALSE; } } } else context->supported= FALSE; break; case Item::INT_ITEM: DBUG_PRINT("info", ("INT_ITEM")); if (context->expecting(Item::INT_ITEM)) { Item_int *int_item= (Item_int *) item; DBUG_PRINT("info", ("value %d", int_item->value)); NDB_ITEM_QUALIFICATION q; q.value_type= Item::INT_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(INT_RESULT); context->expect_field_result(REAL_RESULT); context->expect_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::REAL_ITEM: DBUG_PRINT("info", ("REAL_ITEM %s")); if (context->expecting(Item::REAL_ITEM)) { Item_float *float_item= (Item_float *) item; DBUG_PRINT("info", ("value %f", float_item->value)); NDB_ITEM_QUALIFICATION q; q.value_type= Item::REAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::VARBIN_ITEM: DBUG_PRINT("info", ("VARBIN_ITEM")); if (context->expecting(Item::VARBIN_ITEM)) { NDB_ITEM_QUALIFICATION q; q.value_type= Item::VARBIN_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(STRING_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::DECIMAL_ITEM: DBUG_PRINT("info", ("DECIMAL_ITEM %s")); if (context->expecting(Item::DECIMAL_ITEM)) { Item_decimal *decimal_item= (Item_decimal *) item; DBUG_PRINT("info", ("value %f", decimal_item->val_real())); NDB_ITEM_QUALIFICATION q; q.value_type= Item::DECIMAL_ITEM; curr_cond->ndb_item= new Ndb_item(NDB_VALUE, q, item); if (context->expect_field_result_mask) { // We have not seen the field argument yet context->expect_only(Item::FIELD_ITEM); context->expect_only_field_result(REAL_RESULT); context->expect_field_result(DECIMAL_RESULT); } else { // Expect another logical expression context->expect_only(Item::FUNC_ITEM); context->expect(Item::COND_ITEM); } } else context->supported= FALSE; break; case Item::COND_ITEM: { Item_cond *cond_item= (Item_cond *) item; if (context->expecting(Item::COND_ITEM)) { switch (cond_item->functype()) { case Item_func::COND_AND_FUNC: DBUG_PRINT("info", ("COND_AND_FUNC")); curr_cond->ndb_item= new Ndb_item(cond_item->functype(), cond_item); break; case Item_func::COND_OR_FUNC: DBUG_PRINT("info", ("COND_OR_FUNC")); curr_cond->ndb_item= new Ndb_item(cond_item->functype(), cond_item); break; default: DBUG_PRINT("info", ("COND_ITEM %d", cond_item->functype())); context->supported= FALSE; break; } } else { /* Did not expect condition */ context->supported= FALSE; } break; } default: { DBUG_PRINT("info", ("Found item of type %d", item->type())); context->supported= FALSE; } } } if (context->supported && context->rewrite_stack) { Ndb_rewrite_context *rewrite_context= context->rewrite_stack; if (rewrite_context->count == rewrite_context->func_item->argument_count()) { // Rewrite is done, wrap an END() at the en DBUG_PRINT("info", ("End of condition group")); prev_cond= curr_cond; curr_cond= context->cond_ptr= new Ndb_cond(); curr_cond->prev= prev_cond; prev_cond->next= curr_cond; curr_cond->ndb_item= new Ndb_item(NDB_END_COND); // Pop rewrite stack context->rewrite_stack= context->rewrite_stack->next; } } } } DBUG_VOID_RETURN; } bool ha_ndbcluster::serialize_cond(const COND *cond, Ndb_cond_stack *ndb_cond) { DBUG_ENTER("serialize_cond"); Item *item= (Item *) cond; Ndb_cond_traverse_context context(table, (void *)m_table, ndb_cond); // Expect a logical expression context.expect(Item::FUNC_ITEM); context.expect(Item::COND_ITEM); item->traverse_cond(&ndb_serialize_cond, (void *) &context, Item::PREFIX); DBUG_PRINT("info", ("The pushed condition is %ssupported", (context.supported)?"":"not ")); DBUG_RETURN(context.supported); } int ha_ndbcluster::build_scan_filter_predicate(Ndb_cond * &cond, NdbScanFilter *filter, bool negated) { DBUG_ENTER("build_scan_filter_predicate"); switch (cond->ndb_item->type) { case NDB_FUNCTION: { if (!cond->next) break; Ndb_item *a= cond->next->ndb_item; Ndb_item *b, *field, *value= NULL; LINT_INIT(field); switch (cond->ndb_item->argument_count()) { case 1: field= (a->type == NDB_FIELD)? a : NULL; break; case 2: if (!cond->next->next) break; b= cond->next->next->ndb_item; value= (a->type == NDB_VALUE)? a : (b->type == NDB_VALUE)? b : NULL; field= (a->type == NDB_FIELD)? a : (b->type == NDB_FIELD)? b : NULL; break; default: field= NULL; //Keep compiler happy DBUG_ASSERT(0); break; } switch ((negated) ? Ndb_item::negate(cond->ndb_item->qualification.function_type) : cond->ndb_item->qualification.function_type) { case NDB_EQ_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating EQ filter")); if (filter->cmp(NdbScanFilter::COND_EQ, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_NE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating NE filter")); if (filter->cmp(NdbScanFilter::COND_NE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LT_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating LT filter")); if (filter->cmp(NdbScanFilter::COND_LT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating GT filter")); if (filter->cmp(NdbScanFilter::COND_GT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating LE filter")); if (filter->cmp(NdbScanFilter::COND_LE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating GE filter")); if (filter->cmp(NdbScanFilter::COND_GE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_GE_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating GE filter")); if (filter->cmp(NdbScanFilter::COND_GE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating LE filter")); if (filter->cmp(NdbScanFilter::COND_LE, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_GT_FUNC: { if (!value || !field) break; // Save value in right format for the field type value->save_in_field(field); if (a == field) { DBUG_PRINT("info", ("Generating GT filter")); if (filter->cmp(NdbScanFilter::COND_GT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Generating LT filter")); if (filter->cmp(NdbScanFilter::COND_LT, field->get_field_no(), field->get_val(), field->pack_length()) == -1) DBUG_RETURN(1); } cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_LIKE_FUNC: { if (!value || !field) break; if ((value->qualification.value_type != Item::STRING_ITEM) && (value->qualification.value_type != Item::VARBIN_ITEM)) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating LIKE filter: like(%d,%s,%d)", field->get_field_no(), value->get_val(), value->pack_length())); if (filter->cmp(NdbScanFilter::COND_LIKE, field->get_field_no(), value->get_val(), value->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_NOTLIKE_FUNC: { if (!value || !field) break; if ((value->qualification.value_type != Item::STRING_ITEM) && (value->qualification.value_type != Item::VARBIN_ITEM)) break; // Save value in right format for the field type value->save_in_field(field); DBUG_PRINT("info", ("Generating NOTLIKE filter: notlike(%d,%s,%d)", field->get_field_no(), value->get_val(), value->pack_length())); if (filter->cmp(NdbScanFilter::COND_NOT_LIKE, field->get_field_no(), value->get_val(), value->pack_length()) == -1) DBUG_RETURN(1); cond= cond->next->next->next; DBUG_RETURN(0); } case NDB_ISNULL_FUNC: if (!field) break; DBUG_PRINT("info", ("Generating ISNULL filter")); if (filter->isnull(field->get_field_no()) == -1) DBUG_RETURN(1); cond= cond->next->next; DBUG_RETURN(0); case NDB_ISNOTNULL_FUNC: { if (!field) break; DBUG_PRINT("info", ("Generating ISNOTNULL filter")); if (filter->isnotnull(field->get_field_no()) == -1) DBUG_RETURN(1); cond= cond->next->next; DBUG_RETURN(0); } default: break; } break; } default: break; } DBUG_PRINT("info", ("Found illegal condition")); DBUG_RETURN(1); } int ha_ndbcluster::build_scan_filter_group(Ndb_cond* &cond, NdbScanFilter *filter) { uint level=0; bool negated= FALSE; DBUG_ENTER("build_scan_filter_group"); do { if (!cond) DBUG_RETURN(1); switch (cond->ndb_item->type) { case NDB_FUNCTION: { switch (cond->ndb_item->qualification.function_type) { case NDB_COND_AND_FUNC: { level++; DBUG_PRINT("info", ("Generating %s group %u", (negated)?"NAND":"AND", level)); if ((negated) ? filter->begin(NdbScanFilter::NAND) : filter->begin(NdbScanFilter::AND) == -1) DBUG_RETURN(1); negated= FALSE; cond= cond->next; break; } case NDB_COND_OR_FUNC: { level++; DBUG_PRINT("info", ("Generating %s group %u", (negated)?"NOR":"OR", level)); if ((negated) ? filter->begin(NdbScanFilter::NOR) : filter->begin(NdbScanFilter::OR) == -1) DBUG_RETURN(1); negated= FALSE; cond= cond->next; break; } case NDB_NOT_FUNC: { DBUG_PRINT("info", ("Generating negated query")); cond= cond->next; negated= TRUE; break; } default: if (build_scan_filter_predicate(cond, filter, negated)) DBUG_RETURN(1); negated= FALSE; break; } break; } case NDB_END_COND: DBUG_PRINT("info", ("End of group %u", level)); level--; if (cond) cond= cond->next; if (filter->end() == -1) DBUG_RETURN(1); if (!negated) break; // else fall through (NOT END is an illegal condition) default: { DBUG_PRINT("info", ("Illegal scan filter")); } } } while (level > 0 || negated); DBUG_RETURN(0); } int ha_ndbcluster::build_scan_filter(Ndb_cond * &cond, NdbScanFilter *filter) { bool simple_cond= TRUE; DBUG_ENTER("build_scan_filter"); switch (cond->ndb_item->type) { case NDB_FUNCTION: switch (cond->ndb_item->qualification.function_type) { case NDB_COND_AND_FUNC: case NDB_COND_OR_FUNC: simple_cond= FALSE; break; default: break; } break; default: break; } if (simple_cond && filter->begin() == -1) DBUG_RETURN(1); if (build_scan_filter_group(cond, filter)) DBUG_RETURN(1); if (simple_cond && filter->end() == -1) DBUG_RETURN(1); DBUG_RETURN(0); } int ha_ndbcluster::generate_scan_filter(Ndb_cond_stack *ndb_cond_stack, NdbScanOperation *op) { DBUG_ENTER("generate_scan_filter"); if (ndb_cond_stack) { DBUG_PRINT("info", ("Generating scan filter")); NdbScanFilter filter(op); bool multiple_cond= FALSE; // Wrap an AND group around multiple conditions if (ndb_cond_stack->next) { multiple_cond= TRUE; if (filter.begin() == -1) DBUG_RETURN(1); } for (Ndb_cond_stack *stack= ndb_cond_stack; (stack); stack= stack->next) { Ndb_cond *cond= stack->ndb_cond; if (build_scan_filter(cond, &filter)) { DBUG_PRINT("info", ("build_scan_filter failed")); DBUG_RETURN(1); } } if (multiple_cond && filter.end() == -1) DBUG_RETURN(1); } else { DBUG_PRINT("info", ("Empty stack")); } DBUG_RETURN(0); } /* Implements the SHOW NDB STATUS command. */ bool ndbcluster_show_status(THD* thd, stat_print_fn *stat_print, enum ha_stat_type stat_type) { char buf[IO_SIZE]; uint buflen; DBUG_ENTER("ndbcluster_show_status"); if (have_ndbcluster != SHOW_OPTION_YES) { DBUG_RETURN(FALSE); } if (stat_type != HA_ENGINE_STATUS) { DBUG_RETURN(FALSE); } update_status_variables(g_ndb_cluster_connection); buflen= my_snprintf(buf, sizeof(buf), "cluster_node_id=%u, " "connected_host=%s, " "connected_port=%u, " "number_of_storage_nodes=%u", ndb_cluster_node_id, ndb_connected_host, ndb_connected_port, ndb_number_of_storage_nodes); if (stat_print(thd, ndbcluster_hton.name, strlen(ndbcluster_hton.name), "connection", strlen("connection"), buf, buflen)) DBUG_RETURN(TRUE); if (get_thd_ndb(thd) && get_thd_ndb(thd)->ndb) { Ndb* ndb= (get_thd_ndb(thd))->ndb; Ndb::Free_list_usage tmp; tmp.m_name= 0; while (ndb->get_free_list_usage(&tmp)) { buflen= my_snprintf(buf, sizeof(buf), "created=%u, free=%u, sizeof=%u", tmp.m_created, tmp.m_free, tmp.m_sizeof); if (stat_print(thd, ndbcluster_hton.name, strlen(ndbcluster_hton.name), tmp.m_name, strlen(tmp.m_name), buf, buflen)) DBUG_RETURN(TRUE); } } #ifdef HAVE_NDB_BINLOG ndbcluster_show_status_binlog(thd, stat_print, stat_type); #endif DBUG_RETURN(FALSE); } /* Create a table in NDB Cluster */ static uint get_no_fragments(ulonglong max_rows) { #if MYSQL_VERSION_ID >= 50000 uint acc_row_size= 25 + /*safety margin*/ 2; #else uint acc_row_size= pk_length*4; /* add acc overhead */ if (pk_length <= 8) /* main page will set the limit */ acc_row_size+= 25 + /*safety margin*/ 2; else /* overflow page will set the limit */ acc_row_size+= 4 + /*safety margin*/ 4; #endif ulonglong acc_fragment_size= 512*1024*1024; #if MYSQL_VERSION_ID >= 50100 return (max_rows*acc_row_size)/acc_fragment_size+1; #else return ((max_rows*acc_row_size)/acc_fragment_size+1 +1/*correct rounding*/)/2; #endif } /* Routine to adjust default number of partitions to always be a multiple of number of nodes and never more than 4 times the number of nodes. */ static bool adjusted_frag_count(uint no_fragments, uint no_nodes, uint &reported_frags) { uint i= 0; reported_frags= no_nodes; while (reported_frags < no_fragments && ++i < 4 && (reported_frags + no_nodes) < MAX_PARTITIONS) reported_frags+= no_nodes; return (reported_frags < no_fragments); } int ha_ndbcluster::get_default_no_partitions(ulonglong max_rows) { uint reported_frags; uint no_fragments= get_no_fragments(max_rows); uint no_nodes= g_ndb_cluster_connection->no_db_nodes(); if (adjusted_frag_count(no_fragments, no_nodes, reported_frags)) { push_warning(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR, "Ndb might have problems storing the max amount of rows specified"); } return (int)reported_frags; } /* Set-up auto-partitioning for NDB Cluster SYNOPSIS set_auto_partitions() part_info Partition info struct to set-up RETURN VALUE NONE DESCRIPTION Set-up auto partitioning scheme for tables that didn't define any partitioning. We'll use PARTITION BY KEY() in this case which translates into partition by primary key if a primary key exists and partition by hidden key otherwise. */ void ha_ndbcluster::set_auto_partitions(partition_info *part_info) { DBUG_ENTER("ha_ndbcluster::set_auto_partitions"); part_info->list_of_part_fields= TRUE; part_info->part_type= HASH_PARTITION; switch (opt_ndb_distribution_id) { case ND_KEYHASH: part_info->linear_hash_ind= FALSE; break; case ND_LINHASH: part_info->linear_hash_ind= TRUE; break; } DBUG_VOID_RETURN; } int ha_ndbcluster::set_range_data(void *tab_ref, partition_info *part_info) { NDBTAB *tab= (NDBTAB*)tab_ref; int32 *range_data= (int32*)my_malloc(part_info->no_parts*sizeof(int32), MYF(0)); uint i; int error= 0; DBUG_ENTER("set_range_data"); if (!range_data) { mem_alloc_error(part_info->no_parts*sizeof(int32)); DBUG_RETURN(1); } for (i= 0; i < part_info->no_parts; i++) { longlong range_val= part_info->range_int_array[i]; if (range_val < INT_MIN32 || range_val >= INT_MAX32) { if ((i != part_info->no_parts - 1) || (range_val != LONGLONG_MAX)) { my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB"); error= 1; goto error; } range_val= INT_MAX32; } range_data[i]= (int32)range_val; } tab->setRangeListData(range_data, sizeof(int32)*part_info->no_parts); error: my_free((char*)range_data, MYF(0)); DBUG_RETURN(error); } int ha_ndbcluster::set_list_data(void *tab_ref, partition_info *part_info) { NDBTAB *tab= (NDBTAB*)tab_ref; int32 *list_data= (int32*)my_malloc(part_info->no_list_values * 2 * sizeof(int32), MYF(0)); uint32 *part_id, i; int error= 0; DBUG_ENTER("set_list_data"); if (!list_data) { mem_alloc_error(part_info->no_list_values*2*sizeof(int32)); DBUG_RETURN(1); } for (i= 0; i < part_info->no_list_values; i++) { LIST_PART_ENTRY *list_entry= &part_info->list_array[i]; longlong list_val= list_entry->list_value; if (list_val < INT_MIN32 || list_val > INT_MAX32) { my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB"); error= 1; goto error; } list_data[2*i]= (int32)list_val; part_id= (uint32*)&list_data[2*i+1]; *part_id= list_entry->partition_id; } tab->setRangeListData(list_data, 2*sizeof(int32)*part_info->no_list_values); error: my_free((char*)list_data, MYF(0)); DBUG_RETURN(error); } /* User defined partitioning set-up. We need to check how many fragments the user wants defined and which node groups to put those into. Later we also want to attach those partitions to a tablespace. All the functionality of the partition function, partition limits and so forth are entirely handled by the MySQL Server. There is one exception to this rule for PARTITION BY KEY where NDB handles the hash function and this type can thus be handled transparently also by NDB API program. For RANGE, HASH and LIST and subpartitioning the NDB API programs must implement the function to map to a partition. */ uint ha_ndbcluster::set_up_partition_info(partition_info *part_info, TABLE *table, void *tab_par) { uint16 frag_data[MAX_PARTITIONS]; char *ts_names[MAX_PARTITIONS]; ulong ts_index= 0, fd_index= 0, i, j; NDBTAB *tab= (NDBTAB*)tab_par; NDBTAB::FragmentType ftype= NDBTAB::UserDefined; partition_element *part_elem; bool first= TRUE; uint ts_id, ts_version, part_count= 0, tot_ts_name_len; List_iterator<partition_element> part_it(part_info->partitions); int error; char *name_ptr; DBUG_ENTER("ha_ndbcluster::set_up_partition_info"); if (part_info->part_type == HASH_PARTITION && part_info->list_of_part_fields == TRUE) { Field **fields= part_info->part_field_array; if (part_info->linear_hash_ind) ftype= NDBTAB::DistrKeyLin; else ftype= NDBTAB::DistrKeyHash; for (i= 0; i < part_info->part_field_list.elements; i++) { NDBCOL *col= tab->getColumn(fields[i]->fieldnr - 1); DBUG_PRINT("info",("setting dist key on %s", col->getName())); col->setPartitionKey(TRUE); } } else { /* Create a shadow field for those tables that have user defined partitioning. This field stores the value of the partition function such that NDB can handle reorganisations of the data even when the MySQL Server isn't available to assist with calculation of the partition function value. */ NDBCOL col; DBUG_PRINT("info", ("Generating partition func value field")); col.setName("$PART_FUNC_VALUE"); col.setType(NdbDictionary::Column::Int); col.setLength(1); col.setNullable(FALSE); col.setPrimaryKey(FALSE); col.setAutoIncrement(FALSE); tab->addColumn(col); if (part_info->part_type == RANGE_PARTITION) { if ((error= set_range_data((void*)tab, part_info))) { DBUG_RETURN(error); } } else if (part_info->part_type == LIST_PARTITION) { if ((error= set_list_data((void*)tab, part_info))) { DBUG_RETURN(error); } } } tab->setFragmentType(ftype); i= 0; tot_ts_name_len= 0; do { uint ng; part_elem= part_it++; if (!is_sub_partitioned(part_info)) { ng= part_elem->nodegroup_id; if (first && ng == UNDEF_NODEGROUP) ng= 0; ts_names[fd_index]= part_elem->tablespace_name; frag_data[fd_index++]= ng; } else { List_iterator<partition_element> sub_it(part_elem->subpartitions); j= 0; do { part_elem= sub_it++; ng= part_elem->nodegroup_id; if (first && ng == UNDEF_NODEGROUP) ng= 0; ts_names[fd_index]= part_elem->tablespace_name; frag_data[fd_index++]= ng; } while (++j < part_info->no_subparts); } first= FALSE; } while (++i < part_info->no_parts); tab->setDefaultNoPartitionsFlag(part_info->use_default_no_partitions); tab->setLinearFlag(part_info->linear_hash_ind); tab->setMaxRows(table->s->max_rows); tab->setTablespaceNames(ts_names, fd_index*sizeof(char*)); tab->setFragmentCount(fd_index); tab->setFragmentData(&frag_data, fd_index*2); DBUG_RETURN(0); } bool ha_ndbcluster::check_if_incompatible_data(HA_CREATE_INFO *info, uint table_changes) { return COMPATIBLE_DATA_NO; // Disable fast add/drop index if (table_changes != IS_EQUAL_YES) return COMPATIBLE_DATA_NO; /* Check that auto_increment value was not changed */ if ((info->used_fields & HA_CREATE_USED_AUTO) && info->auto_increment_value != 0) return COMPATIBLE_DATA_NO; /* Check that row format didn't change */ if ((info->used_fields & HA_CREATE_USED_AUTO) && get_row_type() != info->row_type) return COMPATIBLE_DATA_NO; return COMPATIBLE_DATA_YES; } bool set_up_tablespace(st_alter_tablespace *info, NdbDictionary::Tablespace *ndb_ts) { ndb_ts->setName(info->tablespace_name); ndb_ts->setExtentSize(info->extent_size); ndb_ts->setDefaultLogfileGroup(info->logfile_group_name); return false; } bool set_up_datafile(st_alter_tablespace *info, NdbDictionary::Datafile *ndb_df) { if (info->max_size > 0) { my_error(ER_TABLESPACE_AUTO_EXTEND_ERROR, MYF(0)); return true; } ndb_df->setPath(info->data_file_name); ndb_df->setSize(info->initial_size); ndb_df->setTablespace(info->tablespace_name); return false; } bool set_up_logfile_group(st_alter_tablespace *info, NdbDictionary::LogfileGroup *ndb_lg) { ndb_lg->setName(info->logfile_group_name); ndb_lg->setUndoBufferSize(info->undo_buffer_size); return false; } bool set_up_undofile(st_alter_tablespace *info, NdbDictionary::Undofile *ndb_uf) { ndb_uf->setPath(info->undo_file_name); ndb_uf->setSize(info->initial_size); ndb_uf->setLogfileGroup(info->logfile_group_name); return false; } int ndbcluster_alter_tablespace(THD* thd, st_alter_tablespace *info) { DBUG_ENTER("ha_ndbcluster::alter_tablespace"); Ndb *ndb= check_ndb_in_thd(thd); if (ndb == NULL) { DBUG_RETURN(HA_ERR_NO_CONNECTION); } NDBDICT *dict = ndb->getDictionary(); int error; const char * errmsg; switch (info->ts_cmd_type){ case (CREATE_TABLESPACE): { error= ER_CREATE_TABLESPACE_FAILED; NdbDictionary::Tablespace ndb_ts; NdbDictionary::Datafile ndb_df; if (set_up_tablespace(info, &ndb_ts)) { DBUG_RETURN(1); } if (set_up_datafile(info, &ndb_df)) { DBUG_RETURN(1); } errmsg= "TABLESPACE"; if (dict->createTablespace(ndb_ts)) { DBUG_PRINT("error", ("createTablespace returned %d", error)); goto ndberror; } DBUG_PRINT("info", ("Successfully created Tablespace")); errmsg= "DATAFILE"; if (dict->createDatafile(ndb_df)) { DBUG_PRINT("error", ("createDatafile returned %d", error)); goto ndberror; } break; } case (ALTER_TABLESPACE): { error= ER_ALTER_TABLESPACE_FAILED; if (info->ts_alter_tablespace_type == ALTER_TABLESPACE_ADD_FILE) { NdbDictionary::Datafile ndb_df; if (set_up_datafile(info, &ndb_df)) { DBUG_RETURN(1); } errmsg= " CREATE DATAFILE"; if (dict->createDatafile(ndb_df)) { goto ndberror; } } else if(info->ts_alter_tablespace_type == ALTER_TABLESPACE_DROP_FILE) { NdbDictionary::Datafile df = dict->getDatafile(0, info->data_file_name); if (strcmp(df.getPath(), info->data_file_name) == 0) { errmsg= " DROP DATAFILE"; if (dict->dropDatafile(df)) { goto ndberror; } } else { DBUG_PRINT("error", ("No such datafile")); my_error(ER_ALTER_TABLESPACE_FAILED, MYF(0), " NO SUCH FILE"); DBUG_RETURN(1); } } else { DBUG_PRINT("error", ("Unsupported alter tablespace: %d", info->ts_alter_tablespace_type)); DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } break; } case (CREATE_LOGFILE_GROUP): { error= ER_CREATE_TABLESPACE_FAILED; NdbDictionary::LogfileGroup ndb_lg; NdbDictionary::Undofile ndb_uf; if (info->undo_file_name == NULL) { /* REDO files in LOGFILE GROUP not supported yet */ DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } if (set_up_logfile_group(info, &ndb_lg)) { DBUG_RETURN(1); } errmsg= "LOGFILE GROUP"; if (dict->createLogfileGroup(ndb_lg)) { goto ndberror; } DBUG_PRINT("info", ("Successfully created Logfile Group")); if (set_up_undofile(info, &ndb_uf)) { DBUG_RETURN(1); } errmsg= "UNDOFILE"; if (dict->createUndofile(ndb_uf)) { goto ndberror; } break; } case (ALTER_LOGFILE_GROUP): { error= ER_ALTER_TABLESPACE_FAILED; if (info->undo_file_name == NULL) { /* REDO files in LOGFILE GROUP not supported yet */ DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } NdbDictionary::Undofile ndb_uf; if (set_up_undofile(info, &ndb_uf)) { DBUG_RETURN(1); } errmsg= "CREATE UNDOFILE"; if (dict->createUndofile(ndb_uf)) { goto ndberror; } break; } case (DROP_TABLESPACE): { error= ER_DROP_TABLESPACE_FAILED; errmsg= "TABLESPACE"; if (dict->dropTablespace(dict->getTablespace(info->tablespace_name))) { goto ndberror; } break; } case (DROP_LOGFILE_GROUP): { error= ER_DROP_TABLESPACE_FAILED; errmsg= "LOGFILE GROUP"; if (dict->dropLogfileGroup(dict->getLogfileGroup(info->logfile_group_name))) { goto ndberror; } break; } case (CHANGE_FILE_TABLESPACE): { DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } case (ALTER_ACCESS_MODE_TABLESPACE): { DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } default: { DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED); } } DBUG_RETURN(FALSE); ndberror: const NdbError err= dict->getNdbError(); ERR_PRINT(err); ndb_to_mysql_error(&err); my_error(error, MYF(0), errmsg); DBUG_RETURN(1); } bool ha_ndbcluster::get_no_parts(const char *name, uint *no_parts) { Ndb *ndb; NDBDICT *dict; const NDBTAB *tab; int err; DBUG_ENTER("ha_ndbcluster::get_no_parts"); set_dbname(name); set_tabname(name); do { if (check_ndb_connection()) { err= HA_ERR_NO_CONNECTION; break; } ndb= get_ndb(); dict= ndb->getDictionary(); if (!(tab= dict->getTable(m_tabname))) ERR_BREAK(dict->getNdbError(), err); // Check if thread has stale local cache if (tab->getObjectStatus() == NdbDictionary::Object::Invalid) { invalidate_dictionary_cache(FALSE); if (!(tab= dict->getTable(m_tabname))) ERR_BREAK(dict->getNdbError(), err); } *no_parts= tab->getFragmentCount(); DBUG_RETURN(FALSE); } while (1); end: print_error(err, MYF(0)); DBUG_RETURN(TRUE); }