/***************************************************************************** Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2017, 2018, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /********************************************************************//** @file btr/btr0sea.cc The index tree adaptive search Created 2/17/1996 Heikki Tuuri *************************************************************************/ #include "btr0sea.h" #ifdef BTR_CUR_HASH_ADAPT #include "buf0buf.h" #include "page0page.h" #include "page0cur.h" #include "btr0cur.h" #include "btr0pcur.h" #include "btr0btr.h" #include "ha0ha.h" #include "srv0mon.h" #include "sync0sync.h" /** Is search system enabled. Search system is protected by array of latches. */ char btr_search_enabled; /** Number of adaptive hash index partition. */ ulong btr_ahi_parts; #ifdef UNIV_SEARCH_PERF_STAT /** Number of successful adaptive hash index lookups */ ulint btr_search_n_succ = 0; /** Number of failed adaptive hash index lookups */ ulint btr_search_n_hash_fail = 0; #endif /* UNIV_SEARCH_PERF_STAT */ /** padding to prevent other memory update hotspots from residing on the same memory cache line as btr_search_latches */ UNIV_INTERN byte btr_sea_pad1[CACHE_LINE_SIZE]; /** The latches protecting the adaptive search system: this latches protects the (1) positions of records on those pages where a hash index has been built. NOTE: It does not protect values of non-ordering fields within a record from being updated in-place! We can use fact (1) to perform unique searches to indexes. We will allocate the latches from dynamic memory to get it to the same DRAM page as other hotspot semaphores */ rw_lock_t** btr_search_latches; /** padding to prevent other memory update hotspots from residing on the same memory cache line */ UNIV_INTERN byte btr_sea_pad2[CACHE_LINE_SIZE]; /** The adaptive hash index */ btr_search_sys_t* btr_search_sys; /** If the number of records on the page divided by this parameter would have been successfully accessed using a hash index, the index is then built on the page, assuming the global limit has been reached */ #define BTR_SEARCH_PAGE_BUILD_LIMIT 16U /** The global limit for consecutive potentially successful hash searches, before hash index building is started */ #define BTR_SEARCH_BUILD_LIMIT 100U /** Compute a hash value of a record in a page. @param[in] rec index record @param[in] offsets return value of rec_get_offsets() @param[in] n_fields number of complete fields to fold @param[in] n_bytes number of bytes to fold in the last field @param[in] index_id index tree ID @return the hash value */ static inline ulint rec_fold( const rec_t* rec, const ulint* offsets, ulint n_fields, ulint n_bytes, index_id_t tree_id) { ulint i; const byte* data; ulint len; ulint fold; ulint n_fields_rec; ut_ad(rec_offs_validate(rec, NULL, offsets)); ut_ad(rec_validate(rec, offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(!page_rec_is_default_row(rec)); ut_ad(n_fields > 0 || n_bytes > 0); n_fields_rec = rec_offs_n_fields(offsets); ut_ad(n_fields <= n_fields_rec); ut_ad(n_fields < n_fields_rec || n_bytes == 0); if (n_fields > n_fields_rec) { n_fields = n_fields_rec; } if (n_fields == n_fields_rec) { n_bytes = 0; } fold = ut_fold_ull(tree_id); for (i = 0; i < n_fields; i++) { data = rec_get_nth_field(rec, offsets, i, &len); if (len != UNIV_SQL_NULL) { fold = ut_fold_ulint_pair(fold, ut_fold_binary(data, len)); } } if (n_bytes > 0) { data = rec_get_nth_field(rec, offsets, i, &len); if (len != UNIV_SQL_NULL) { if (len > n_bytes) { len = n_bytes; } fold = ut_fold_ulint_pair(fold, ut_fold_binary(data, len)); } } return(fold); } /** Determine the number of accessed key fields. @param[in] n_fields number of complete fields @param[in] n_bytes number of bytes in an incomplete last field @return number of complete or incomplete fields */ inline MY_ATTRIBUTE((warn_unused_result)) ulint btr_search_get_n_fields( ulint n_fields, ulint n_bytes) { return(n_fields + (n_bytes > 0 ? 1 : 0)); } /** Determine the number of accessed key fields. @param[in] cursor b-tree cursor @return number of complete or incomplete fields */ inline MY_ATTRIBUTE((warn_unused_result)) ulint btr_search_get_n_fields( const btr_cur_t* cursor) { return(btr_search_get_n_fields(cursor->n_fields, cursor->n_bytes)); } /** This function should be called before reserving any btr search mutex, if the intended operation might add nodes to the search system hash table. Because of the latching order, once we have reserved the btr search system latch, we cannot allocate a free frame from the buffer pool. Checks that there is a free buffer frame allocated for hash table heap in the btr search system. If not, allocates a free frames for the heap. This check makes it probable that, when have reserved the btr search system latch and we need to allocate a new node to the hash table, it will succeed. However, the check will not guarantee success. @param[in] index index handler */ static void btr_search_check_free_space_in_heap(const dict_index_t* index) { hash_table_t* table; mem_heap_t* heap; ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); table = btr_get_search_table(index); heap = table->heap; /* Note that we peek the value of heap->free_block without reserving the latch: this is ok, because we will not guarantee that there will be enough free space in the hash table. */ if (heap->free_block == NULL) { buf_block_t* block = buf_block_alloc(NULL); rw_lock_t* ahi_latch = btr_get_search_latch(index); rw_lock_x_lock(ahi_latch); if (btr_search_enabled && heap->free_block == NULL) { heap->free_block = block; } else { buf_block_free(block); } rw_lock_x_unlock(ahi_latch); } } /** Creates and initializes the adaptive search system at a database start. @param[in] hash_size hash table size. */ void btr_search_sys_create(ulint hash_size) { /* Search System is divided into n parts. Each part controls access to distinct set of hash buckets from hash table through its own latch. */ /* Step-1: Allocate latches (1 per part). */ btr_search_latches = reinterpret_cast<rw_lock_t**>( ut_malloc(sizeof(rw_lock_t*) * btr_ahi_parts, mem_key_ahi)); for (ulint i = 0; i < btr_ahi_parts; ++i) { btr_search_latches[i] = reinterpret_cast<rw_lock_t*>( ut_malloc(sizeof(rw_lock_t), mem_key_ahi)); rw_lock_create(btr_search_latch_key, btr_search_latches[i], SYNC_SEARCH_SYS); } /* Step-2: Allocate hash tablees. */ btr_search_sys = reinterpret_cast<btr_search_sys_t*>( ut_malloc(sizeof(btr_search_sys_t), mem_key_ahi)); btr_search_sys->hash_tables = reinterpret_cast<hash_table_t**>( ut_malloc(sizeof(hash_table_t*) * btr_ahi_parts, mem_key_ahi)); for (ulint i = 0; i < btr_ahi_parts; ++i) { btr_search_sys->hash_tables[i] = ib_create((hash_size / btr_ahi_parts), LATCH_ID_HASH_TABLE_MUTEX, 0, MEM_HEAP_FOR_BTR_SEARCH); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG btr_search_sys->hash_tables[i]->adaptive = TRUE; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ } } /** Resize hash index hash table. @param[in] hash_size hash index hash table size */ void btr_search_sys_resize(ulint hash_size) { /* Step-1: Lock all search latches in exclusive mode. */ btr_search_x_lock_all(); if (btr_search_enabled) { btr_search_x_unlock_all(); ib::error() << "btr_search_sys_resize failed because" " hash index hash table is not empty."; ut_ad(0); return; } /* Step-2: Recreate hash tables with new size. */ for (ulint i = 0; i < btr_ahi_parts; ++i) { mem_heap_free(btr_search_sys->hash_tables[i]->heap); hash_table_free(btr_search_sys->hash_tables[i]); btr_search_sys->hash_tables[i] = ib_create((hash_size / btr_ahi_parts), LATCH_ID_HASH_TABLE_MUTEX, 0, MEM_HEAP_FOR_BTR_SEARCH); #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG btr_search_sys->hash_tables[i]->adaptive = TRUE; #endif /* UNIV_AHI_DEBUG || UNIV_DEBUG */ } /* Step-3: Unlock all search latches from exclusive mode. */ btr_search_x_unlock_all(); } /** Frees the adaptive search system at a database shutdown. */ void btr_search_sys_free() { if (!btr_search_sys) { ut_ad(!btr_search_latches); return; } ut_ad(btr_search_latches); /* Step-1: Release the hash tables. */ for (ulint i = 0; i < btr_ahi_parts; ++i) { mem_heap_free(btr_search_sys->hash_tables[i]->heap); hash_table_free(btr_search_sys->hash_tables[i]); } ut_free(btr_search_sys->hash_tables); ut_free(btr_search_sys); btr_search_sys = NULL; /* Step-2: Release all allocates latches. */ for (ulint i = 0; i < btr_ahi_parts; ++i) { rw_lock_free(btr_search_latches[i]); ut_free(btr_search_latches[i]); } ut_free(btr_search_latches); btr_search_latches = NULL; } /** Set index->ref_count = 0 on all indexes of a table. @param[in,out] table table handler */ static void btr_search_disable_ref_count( dict_table_t* table) { dict_index_t* index; ut_ad(mutex_own(&dict_sys->mutex)); for (index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { index->search_info->ref_count = 0; } } /** Disable the adaptive hash search system and empty the index. @param[in] need_mutex need to acquire dict_sys->mutex */ void btr_search_disable(bool need_mutex) { dict_table_t* table; if (need_mutex) { mutex_enter(&dict_sys->mutex); } ut_ad(mutex_own(&dict_sys->mutex)); btr_search_x_lock_all(); if (!btr_search_enabled) { if (need_mutex) { mutex_exit(&dict_sys->mutex); } btr_search_x_unlock_all(); return; } btr_search_enabled = false; /* Clear the index->search_info->ref_count of every index in the data dictionary cache. */ for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table; table = UT_LIST_GET_NEXT(table_LRU, table)) { btr_search_disable_ref_count(table); } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table; table = UT_LIST_GET_NEXT(table_LRU, table)) { btr_search_disable_ref_count(table); } if (need_mutex) { mutex_exit(&dict_sys->mutex); } /* Set all block->index = NULL. */ buf_pool_clear_hash_index(); /* Clear the adaptive hash index. */ for (ulint i = 0; i < btr_ahi_parts; ++i) { hash_table_clear(btr_search_sys->hash_tables[i]); mem_heap_empty(btr_search_sys->hash_tables[i]->heap); } btr_search_x_unlock_all(); } /** Enable the adaptive hash search system. */ void btr_search_enable() { buf_pool_mutex_enter_all(); if (srv_buf_pool_old_size != srv_buf_pool_size) { buf_pool_mutex_exit_all(); return; } buf_pool_mutex_exit_all(); btr_search_x_lock_all(); btr_search_enabled = true; btr_search_x_unlock_all(); } /** Returns the value of ref_count. The value is protected by latch. @param[in] info search info @param[in] index index identifier @return ref_count value. */ ulint btr_search_info_get_ref_count( btr_search_t* info, dict_index_t* index) { ulint ret = 0; if (!btr_search_enabled) { return(ret); } ut_ad(info); rw_lock_t* ahi_latch = btr_get_search_latch(index); rw_lock_s_lock(ahi_latch); ret = info->ref_count; rw_lock_s_unlock(ahi_latch); return(ret); } /** Updates the search info of an index about hash successes. NOTE that info is NOT protected by any semaphore, to save CPU time! Do not assume its fields are consistent. @param[in,out] info search info @param[in] cursor cursor which was just positioned */ static void btr_search_info_update_hash( btr_search_t* info, btr_cur_t* cursor) { dict_index_t* index = cursor->index; ulint n_unique; int cmp; ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); if (dict_index_is_ibuf(index)) { /* So many deletes are performed on an insert buffer tree that we do not consider a hash index useful on it: */ return; } n_unique = dict_index_get_n_unique_in_tree(index); if (info->n_hash_potential == 0) { goto set_new_recomm; } /* Test if the search would have succeeded using the recommended hash prefix */ if (info->n_fields >= n_unique && cursor->up_match >= n_unique) { increment_potential: info->n_hash_potential++; return; } cmp = ut_pair_cmp(info->n_fields, info->n_bytes, cursor->low_match, cursor->low_bytes); if (info->left_side ? cmp <= 0 : cmp > 0) { goto set_new_recomm; } cmp = ut_pair_cmp(info->n_fields, info->n_bytes, cursor->up_match, cursor->up_bytes); if (info->left_side ? cmp <= 0 : cmp > 0) { goto increment_potential; } set_new_recomm: /* We have to set a new recommendation; skip the hash analysis for a while to avoid unnecessary CPU time usage when there is no chance for success */ info->hash_analysis = 0; cmp = ut_pair_cmp(cursor->up_match, cursor->up_bytes, cursor->low_match, cursor->low_bytes); if (cmp == 0) { info->n_hash_potential = 0; /* For extra safety, we set some sensible values here */ info->n_fields = 1; info->n_bytes = 0; info->left_side = TRUE; } else if (cmp > 0) { info->n_hash_potential = 1; if (cursor->up_match >= n_unique) { info->n_fields = n_unique; info->n_bytes = 0; } else if (cursor->low_match < cursor->up_match) { info->n_fields = cursor->low_match + 1; info->n_bytes = 0; } else { info->n_fields = cursor->low_match; info->n_bytes = cursor->low_bytes + 1; } info->left_side = TRUE; } else { info->n_hash_potential = 1; if (cursor->low_match >= n_unique) { info->n_fields = n_unique; info->n_bytes = 0; } else if (cursor->low_match > cursor->up_match) { info->n_fields = cursor->up_match + 1; info->n_bytes = 0; } else { info->n_fields = cursor->up_match; info->n_bytes = cursor->up_bytes + 1; } info->left_side = FALSE; } } /** Update the block search info on hash successes. NOTE that info and block->n_hash_helps, n_fields, n_bytes, left_side are NOT protected by any semaphore, to save CPU time! Do not assume the fields are consistent. @return TRUE if building a (new) hash index on the block is recommended @param[in,out] info search info @param[in,out] block buffer block */ static bool btr_search_update_block_hash_info(btr_search_t* info, buf_block_t* block) { ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); ut_ad(rw_lock_own(&block->lock, RW_LOCK_S) || rw_lock_own(&block->lock, RW_LOCK_X)); info->last_hash_succ = FALSE; ut_a(buf_block_state_valid(block)); ut_ad(info->magic_n == BTR_SEARCH_MAGIC_N); if ((block->n_hash_helps > 0) && (info->n_hash_potential > 0) && (block->n_fields == info->n_fields) && (block->n_bytes == info->n_bytes) && (block->left_side == info->left_side)) { if ((block->index) && (block->curr_n_fields == info->n_fields) && (block->curr_n_bytes == info->n_bytes) && (block->curr_left_side == info->left_side)) { /* The search would presumably have succeeded using the hash index */ info->last_hash_succ = TRUE; } block->n_hash_helps++; } else { block->n_hash_helps = 1; block->n_fields = info->n_fields; block->n_bytes = info->n_bytes; block->left_side = info->left_side; } if ((block->n_hash_helps > page_get_n_recs(block->frame) / BTR_SEARCH_PAGE_BUILD_LIMIT) && (info->n_hash_potential >= BTR_SEARCH_BUILD_LIMIT)) { if ((!block->index) || (block->n_hash_helps > 2U * page_get_n_recs(block->frame)) || (block->n_fields != block->curr_n_fields) || (block->n_bytes != block->curr_n_bytes) || (block->left_side != block->curr_left_side)) { /* Build a new hash index on the page */ return(true); } } return(false); } /** Updates a hash node reference when it has been unsuccessfully used in a search which could have succeeded with the used hash parameters. This can happen because when building a hash index for a page, we do not check what happens at page boundaries, and therefore there can be misleading hash nodes. Also, collisions in the fold value can lead to misleading references. This function lazily fixes these imperfections in the hash index. @param[in] info search info @param[in] block buffer block where cursor positioned @param[in] cursor cursor */ static void btr_search_update_hash_ref( const btr_search_t* info, buf_block_t* block, const btr_cur_t* cursor) { dict_index_t* index; ulint fold; rec_t* rec; ut_ad(cursor->flag == BTR_CUR_HASH_FAIL); ut_ad(rw_lock_own(btr_get_search_latch(cursor->index), RW_LOCK_X)); ut_ad(rw_lock_own(&(block->lock), RW_LOCK_S) || rw_lock_own(&(block->lock), RW_LOCK_X)); ut_ad(page_align(btr_cur_get_rec(cursor)) == block->frame); ut_ad(page_is_leaf(block->frame)); assert_block_ahi_valid(block); index = block->index; if (!index) { return; } ut_ad(block->page.id.space() == index->table->space->id); ut_ad(index == cursor->index); ut_ad(!dict_index_is_ibuf(index)); if ((info->n_hash_potential > 0) && (block->curr_n_fields == info->n_fields) && (block->curr_n_bytes == info->n_bytes) && (block->curr_left_side == info->left_side)) { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); rec = btr_cur_get_rec(cursor); if (!page_rec_is_user_rec(rec)) { return; } fold = rec_fold(rec, rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &heap), block->curr_n_fields, block->curr_n_bytes, index->id); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } ha_insert_for_fold(btr_get_search_table(index), fold, block, rec); MONITOR_INC(MONITOR_ADAPTIVE_HASH_ROW_ADDED); } } /** Checks if a guessed position for a tree cursor is right. Note that if mode is PAGE_CUR_LE, which is used in inserts, and the function returns TRUE, then cursor->up_match and cursor->low_match both have sensible values. @param[in,out] cursor guess cursor position @param[in] can_only_compare_to_cursor_rec if we do not have a latch on the page of cursor, but a latch corresponding search system, then ONLY the columns of the record UNDER the cursor are protected, not the next or previous record in the chain: we cannot look at the next or previous record to check our guess! @param[in] tuple data tuple @param[in] mode PAGE_CUR_L, PAGE_CUR_LE, PAGE_CUR_G, PAGE_CUR_GE @return whether a match was found */ static bool btr_search_check_guess( btr_cur_t* cursor, bool can_only_compare_to_cursor_rec, const dtuple_t* tuple, ulint mode) { rec_t* rec; ulint n_unique; ulint match; int cmp; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; ibool success = FALSE; rec_offs_init(offsets_); n_unique = dict_index_get_n_unique_in_tree(cursor->index); rec = btr_cur_get_rec(cursor); ut_ad(page_rec_is_user_rec(rec)); ut_ad(page_rec_is_leaf(rec)); match = 0; offsets = rec_get_offsets(rec, cursor->index, offsets, true, n_unique, &heap); cmp = cmp_dtuple_rec_with_match(tuple, rec, offsets, &match); if (mode == PAGE_CUR_GE) { if (cmp > 0) { goto exit_func; } cursor->up_match = match; if (match >= n_unique) { success = TRUE; goto exit_func; } } else if (mode == PAGE_CUR_LE) { if (cmp < 0) { goto exit_func; } cursor->low_match = match; } else if (mode == PAGE_CUR_G) { if (cmp >= 0) { goto exit_func; } } else if (mode == PAGE_CUR_L) { if (cmp <= 0) { goto exit_func; } } if (can_only_compare_to_cursor_rec) { /* Since we could not determine if our guess is right just by looking at the record under the cursor, return FALSE */ goto exit_func; } match = 0; if ((mode == PAGE_CUR_G) || (mode == PAGE_CUR_GE)) { ut_ad(!page_rec_is_infimum(rec)); const rec_t* prev_rec = page_rec_get_prev(rec); if (page_rec_is_infimum(prev_rec)) { success = *reinterpret_cast<const uint32_t*>( page_align(prev_rec) + FIL_PAGE_PREV) == FIL_NULL; goto exit_func; } offsets = rec_get_offsets(prev_rec, cursor->index, offsets, true, n_unique, &heap); cmp = cmp_dtuple_rec_with_match( tuple, prev_rec, offsets, &match); if (mode == PAGE_CUR_GE) { success = cmp > 0; } else { success = cmp >= 0; } } else { ut_ad(!page_rec_is_supremum(rec)); const rec_t* next_rec = page_rec_get_next(rec); if (page_rec_is_supremum(next_rec)) { if (*reinterpret_cast<const uint32_t*>( page_align(next_rec) + FIL_PAGE_NEXT) == FIL_NULL) { cursor->up_match = 0; success = TRUE; } goto exit_func; } offsets = rec_get_offsets(next_rec, cursor->index, offsets, true, n_unique, &heap); cmp = cmp_dtuple_rec_with_match( tuple, next_rec, offsets, &match); if (mode == PAGE_CUR_LE) { success = cmp < 0; cursor->up_match = match; } else { success = cmp <= 0; } } exit_func: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(success); } static void btr_search_failure(btr_search_t* info, btr_cur_t* cursor) { cursor->flag = BTR_CUR_HASH_FAIL; #ifdef UNIV_SEARCH_PERF_STAT ++info->n_hash_fail; if (info->n_hash_succ > 0) { --info->n_hash_succ; } #endif /* UNIV_SEARCH_PERF_STAT */ info->last_hash_succ = FALSE; } /** Tries to guess the right search position based on the hash search info of the index. Note that if mode is PAGE_CUR_LE, which is used in inserts, and the function returns TRUE, then cursor->up_match and cursor->low_match both have sensible values. @param[in,out] index index @param[in,out] info index search info @param[in] tuple logical record @param[in] mode PAGE_CUR_L, .... @param[in] latch_mode BTR_SEARCH_LEAF, ...; NOTE that only if has_search_latch is 0, we will have a latch set on the cursor page, otherwise we assume the caller uses his search latch to protect the record! @param[out] cursor tree cursor @param[in] ahi_latch the adaptive hash index latch being held, or NULL @param[in] mtr mini transaction @return whether the search succeeded */ bool btr_search_guess_on_hash( dict_index_t* index, btr_search_t* info, const dtuple_t* tuple, ulint mode, ulint latch_mode, btr_cur_t* cursor, rw_lock_t* ahi_latch, mtr_t* mtr) { const rec_t* rec; ulint fold; index_id_t index_id; #ifdef notdefined btr_cur_t cursor2; btr_pcur_t pcur; #endif ut_ad(!ahi_latch || rw_lock_own(ahi_latch, RW_LOCK_S) || rw_lock_own(ahi_latch, RW_LOCK_X)); if (!btr_search_enabled) { return(FALSE); } ut_ad(index && info && tuple && cursor && mtr); ut_ad(!dict_index_is_ibuf(index)); ut_ad(!ahi_latch || ahi_latch == btr_get_search_latch(index)); ut_ad((latch_mode == BTR_SEARCH_LEAF) || (latch_mode == BTR_MODIFY_LEAF)); /* Not supported for spatial index */ ut_ad(!dict_index_is_spatial(index)); /* Note that, for efficiency, the struct info may not be protected by any latch here! */ if (info->n_hash_potential == 0) { return(FALSE); } cursor->n_fields = info->n_fields; cursor->n_bytes = info->n_bytes; if (dtuple_get_n_fields(tuple) < btr_search_get_n_fields(cursor)) { return(FALSE); } index_id = index->id; #ifdef UNIV_SEARCH_PERF_STAT info->n_hash_succ++; #endif fold = dtuple_fold(tuple, cursor->n_fields, cursor->n_bytes, index_id); cursor->fold = fold; cursor->flag = BTR_CUR_HASH; rw_lock_t* use_latch = ahi_latch ? NULL : btr_get_search_latch(index); if (use_latch) { rw_lock_s_lock(use_latch); if (!btr_search_enabled) { goto fail; } } else { ut_ad(btr_search_enabled); ut_ad(rw_lock_own(ahi_latch, RW_LOCK_S)); } rec = (rec_t*) ha_search_and_get_data( btr_get_search_table(index), fold); if (rec == NULL) { if (use_latch) { fail: rw_lock_s_unlock(use_latch); } btr_search_failure(info, cursor); return(FALSE); } buf_block_t* block = buf_block_from_ahi(rec); if (use_latch) { if (!buf_page_get_known_nowait( latch_mode, block, BUF_MAKE_YOUNG, __FILE__, __LINE__, mtr)) { goto fail; } rw_lock_s_unlock(use_latch); buf_block_dbg_add_level(block, SYNC_TREE_NODE_FROM_HASH); } if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE) { ut_ad(buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH); if (!ahi_latch) { btr_leaf_page_release(block, latch_mode, mtr); } btr_search_failure(info, cursor); return(FALSE); } ut_ad(page_rec_is_user_rec(rec)); btr_cur_position(index, (rec_t*) rec, block, cursor); /* Check the validity of the guess within the page */ /* If we only have the latch on search system, not on the page, it only protects the columns of the record the cursor is positioned on. We cannot look at the next of the previous record to determine if our guess for the cursor position is right. */ if (index_id != btr_page_get_index_id(block->frame) || !btr_search_check_guess(cursor, !!ahi_latch, tuple, mode)) { if (!ahi_latch) { btr_leaf_page_release(block, latch_mode, mtr); } btr_search_failure(info, cursor); return(FALSE); } if (info->n_hash_potential < BTR_SEARCH_BUILD_LIMIT + 5) { info->n_hash_potential++; } #ifdef notdefined /* These lines of code can be used in a debug version to check the correctness of the searched cursor position: */ info->last_hash_succ = FALSE; /* Currently, does not work if the following fails: */ ut_ad(!ahi_latch); btr_leaf_page_release(block, latch_mode, mtr); btr_cur_search_to_nth_level( index, 0, tuple, mode, latch_mode, &cursor2, 0, mtr); if (mode == PAGE_CUR_GE && page_rec_is_supremum(btr_cur_get_rec(&cursor2))) { /* If mode is PAGE_CUR_GE, then the binary search in the index tree may actually take us to the supremum of the previous page */ info->last_hash_succ = FALSE; btr_pcur_open_on_user_rec( index, tuple, mode, latch_mode, &pcur, mtr); ut_ad(btr_pcur_get_rec(&pcur) == btr_cur_get_rec(cursor)); } else { ut_ad(btr_cur_get_rec(&cursor2) == btr_cur_get_rec(cursor)); } /* NOTE that it is theoretically possible that the above assertions fail if the page of the cursor gets removed from the buffer pool meanwhile! Thus it might not be a bug. */ #endif info->last_hash_succ = TRUE; #ifdef UNIV_SEARCH_PERF_STAT btr_search_n_succ++; #endif if (!ahi_latch && buf_page_peek_if_too_old(&block->page)) { buf_page_make_young(&block->page); } /* Increment the page get statistics though we did not really fix the page: for user info only */ { buf_pool_t* buf_pool = buf_pool_from_bpage(&block->page); ++buf_pool->stat.n_page_gets; } return(TRUE); } /** Drop any adaptive hash index entries that point to an index page. @param[in,out] block block containing index page, s- or x-latched, or an index page for which we know that block->buf_fix_count == 0 or it is an index page which has already been removed from the buf_pool->page_hash i.e.: it is in state BUF_BLOCK_REMOVE_HASH */ void btr_search_drop_page_hash_index(buf_block_t* block) { ulint n_fields; ulint n_bytes; const page_t* page; const rec_t* rec; ulint fold; ulint prev_fold; ulint n_cached; ulint n_recs; ulint* folds; ulint i; mem_heap_t* heap; const dict_index_t* index; ulint* offsets; rw_lock_t* latch; btr_search_t* info; retry: /* Do a dirty check on block->index, return if the block is not in the adaptive hash index. */ index = block->index; /* This debug check uses a dirty read that could theoretically cause false positives while buf_pool_clear_hash_index() is executing. */ assert_block_ahi_valid(block); ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); if (index == NULL) { return; } ut_ad(block->page.buf_fix_count == 0 || buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH || rw_lock_own(&block->lock, RW_LOCK_S) || rw_lock_own(&block->lock, RW_LOCK_X)); ut_ad(page_is_leaf(block->frame)); /* We must not dereference index here, because it could be freed if (index->table->n_ref_count == 0 && !mutex_own(&dict_sys->mutex)). Determine the ahi_slot based on the block contents. */ const index_id_t index_id = btr_page_get_index_id(block->frame); const ulint ahi_slot = ut_fold_ulint_pair(static_cast<ulint>(index_id), static_cast<ulint>(block->page.id.space())) % btr_ahi_parts; latch = btr_search_latches[ahi_slot]; rw_lock_s_lock(latch); assert_block_ahi_valid(block); if (block->index == NULL) { rw_lock_s_unlock(latch); return; } /* The index associated with a block must remain the same, because we are holding block->lock or the block is not accessible by other threads (BUF_BLOCK_REMOVE_HASH), or the index is not accessible to other threads (buf_fix_count == 0 when DROP TABLE or similar is executing buf_LRU_drop_page_hash_for_tablespace()). */ ut_a(index == block->index); #ifdef MYSQL_INDEX_DISABLE_AHI ut_ad(!index->disable_ahi); #endif ut_ad(btr_search_enabled); ut_ad(block->page.id.space() == index->table->space_id); ut_a(index_id == index->id); ut_a(!dict_index_is_ibuf(index)); #ifdef UNIV_DEBUG switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_CREATION: /* The index is being created (bulk loaded). */ case ONLINE_INDEX_COMPLETE: /* The index has been published. */ case ONLINE_INDEX_ABORTED: /* Either the index creation was aborted due to an error observed by InnoDB (in which case there should not be any adaptive hash index entries), or it was completed and then flagged aborted in rollback_inplace_alter_table(). */ break; case ONLINE_INDEX_ABORTED_DROPPED: /* The index should have been dropped from the tablespace already, and the adaptive hash index entries should have been dropped as well. */ ut_error; } #endif /* UNIV_DEBUG */ n_fields = block->curr_n_fields; n_bytes = block->curr_n_bytes; /* NOTE: The AHI fields of block must not be accessed after releasing search latch, as the index page might only be s-latched! */ rw_lock_s_unlock(latch); ut_a(n_fields > 0 || n_bytes > 0); page = block->frame; n_recs = page_get_n_recs(page); /* Calculate and cache fold values into an array for fast deletion from the hash index */ folds = (ulint*) ut_malloc_nokey(n_recs * sizeof(ulint)); n_cached = 0; rec = page_get_infimum_rec(page); rec = page_rec_get_next_low(rec, page_is_comp(page)); if (rec_is_default_row(rec, index)) { rec = page_rec_get_next_low(rec, page_is_comp(page)); } prev_fold = 0; heap = NULL; offsets = NULL; while (!page_rec_is_supremum(rec)) { offsets = rec_get_offsets( rec, index, offsets, true, btr_search_get_n_fields(n_fields, n_bytes), &heap); fold = rec_fold(rec, offsets, n_fields, n_bytes, index_id); if (fold == prev_fold && prev_fold != 0) { goto next_rec; } /* Remove all hash nodes pointing to this page from the hash chain */ folds[n_cached] = fold; n_cached++; next_rec: rec = page_rec_get_next_low(rec, page_rec_is_comp(rec)); prev_fold = fold; } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } rw_lock_x_lock(latch); if (UNIV_UNLIKELY(!block->index)) { /* Someone else has meanwhile dropped the hash index */ goto cleanup; } ut_a(block->index == index); if (block->curr_n_fields != n_fields || block->curr_n_bytes != n_bytes) { /* Someone else has meanwhile built a new hash index on the page, with different parameters */ rw_lock_x_unlock(latch); ut_free(folds); goto retry; } for (i = 0; i < n_cached; i++) { ha_remove_all_nodes_to_page( btr_search_sys->hash_tables[ahi_slot], folds[i], page); } info = btr_search_get_info(block->index); ut_a(info->ref_count > 0); info->ref_count--; block->index = NULL; MONITOR_INC(MONITOR_ADAPTIVE_HASH_PAGE_REMOVED); MONITOR_INC_VALUE(MONITOR_ADAPTIVE_HASH_ROW_REMOVED, n_cached); cleanup: assert_block_ahi_valid(block); rw_lock_x_unlock(latch); ut_free(folds); } /** Drop possible adaptive hash index entries when a page is evicted from the buffer pool or freed in a file, or the index is being dropped. @param[in] page_id page id */ void btr_search_drop_page_hash_when_freed(const page_id_t& page_id) { buf_block_t* block; mtr_t mtr; dberr_t err = DB_SUCCESS; ut_d(export_vars.innodb_ahi_drop_lookups++); mtr_start(&mtr); /* If the caller has a latch on the page, then the caller must have a x-latch on the page and it must have already dropped the hash index for the page. Because of the x-latch that we are possibly holding, we cannot s-latch the page, but must (recursively) x-latch it, even though we are only reading. */ block = buf_page_get_gen(page_id, univ_page_size, RW_X_LATCH, NULL, BUF_PEEK_IF_IN_POOL, __FILE__, __LINE__, &mtr, &err); if (block) { /* If AHI is still valid, page can't be in free state. AHI is dropped when page is freed. */ ut_ad(!block->page.file_page_was_freed); buf_block_dbg_add_level(block, SYNC_TREE_NODE_FROM_HASH); dict_index_t* index = block->index; if (index != NULL) { /* In all our callers, the table handle should be open, or we should be in the process of dropping the table (preventing eviction). */ ut_ad(index->table->n_ref_count > 0 || mutex_own(&dict_sys->mutex)); btr_search_drop_page_hash_index(block); } } mtr_commit(&mtr); } /** Build a hash index on a page with the given parameters. If the page already has a hash index with different parameters, the old hash index is removed. If index is non-NULL, this function checks if n_fields and n_bytes are sensible, and does not build a hash index if not. @param[in,out] index index for which to build. @param[in,out] block index page, s-/x- latched. @param[in,out] ahi_latch the adaptive search latch @param[in] n_fields hash this many full fields @param[in] n_bytes hash this many bytes of the next field @param[in] left_side hash for searches from left side */ static void btr_search_build_page_hash_index( dict_index_t* index, buf_block_t* block, rw_lock_t* ahi_latch, ulint n_fields, ulint n_bytes, ibool left_side) { const rec_t* rec; const rec_t* next_rec; ulint fold; ulint next_fold; ulint n_cached; ulint n_recs; ulint* folds; const rec_t** recs; ulint i; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; #ifdef MYSQL_INDEX_DISABLE_AHI if (index->disable_ahi) return; #endif if (!btr_search_enabled) { return; } rec_offs_init(offsets_); ut_ad(ahi_latch == btr_get_search_latch(index)); ut_ad(index); ut_ad(block->page.id.space() == index->table->space->id); ut_a(!dict_index_is_ibuf(index)); ut_ad(page_is_leaf(block->frame)); ut_ad(rw_lock_own(&(block->lock), RW_LOCK_S) || rw_lock_own(&(block->lock), RW_LOCK_X)); rw_lock_s_lock(ahi_latch); const bool rebuild = block->index && (block->curr_n_fields != n_fields || block->curr_n_bytes != n_bytes || block->curr_left_side != left_side); rw_lock_s_unlock(ahi_latch); if (rebuild) { btr_search_drop_page_hash_index(block); } /* Check that the values for hash index build are sensible */ if (n_fields == 0 && n_bytes == 0) { return; } if (dict_index_get_n_unique_in_tree(index) < btr_search_get_n_fields(n_fields, n_bytes)) { return; } page_t* page = buf_block_get_frame(block); n_recs = page_get_n_recs(page); if (n_recs == 0) { return; } rec = page_rec_get_next_const(page_get_infimum_rec(page)); if (rec_is_default_row(rec, index)) { rec = page_rec_get_next_const(rec); if (!--n_recs) return; } /* Calculate and cache fold values and corresponding records into an array for fast insertion to the hash index */ folds = static_cast<ulint*>(ut_malloc_nokey(n_recs * sizeof *folds)); recs = static_cast<const rec_t**>( ut_malloc_nokey(n_recs * sizeof *recs)); n_cached = 0; ut_a(index->id == btr_page_get_index_id(page)); offsets = rec_get_offsets( rec, index, offsets, true, btr_search_get_n_fields(n_fields, n_bytes), &heap); ut_ad(page_rec_is_supremum(rec) || n_fields + (n_bytes > 0) == rec_offs_n_fields(offsets)); fold = rec_fold(rec, offsets, n_fields, n_bytes, index->id); if (left_side) { folds[n_cached] = fold; recs[n_cached] = rec; n_cached++; } for (;;) { next_rec = page_rec_get_next_const(rec); if (page_rec_is_supremum(next_rec)) { if (!left_side) { folds[n_cached] = fold; recs[n_cached] = rec; n_cached++; } break; } offsets = rec_get_offsets( next_rec, index, offsets, true, btr_search_get_n_fields(n_fields, n_bytes), &heap); next_fold = rec_fold(next_rec, offsets, n_fields, n_bytes, index->id); if (fold != next_fold) { /* Insert an entry into the hash index */ if (left_side) { folds[n_cached] = next_fold; recs[n_cached] = next_rec; n_cached++; } else { folds[n_cached] = fold; recs[n_cached] = rec; n_cached++; } } rec = next_rec; fold = next_fold; } btr_search_check_free_space_in_heap(index); hash_table_t* table = btr_get_search_table(index); rw_lock_x_lock(ahi_latch); if (!btr_search_enabled) { goto exit_func; } if (block->index && ((block->curr_n_fields != n_fields) || (block->curr_n_bytes != n_bytes) || (block->curr_left_side != left_side))) { goto exit_func; } /* This counter is decremented every time we drop page hash index entries and is incremented here. Since we can rebuild hash index for a page that is already hashed, we have to take care not to increment the counter in that case. */ if (!block->index) { assert_block_ahi_empty(block); index->search_info->ref_count++; } block->n_hash_helps = 0; block->curr_n_fields = unsigned(n_fields); block->curr_n_bytes = unsigned(n_bytes); block->curr_left_side = unsigned(left_side); block->index = index; for (i = 0; i < n_cached; i++) { ha_insert_for_fold(table, folds[i], block, recs[i]); } MONITOR_INC(MONITOR_ADAPTIVE_HASH_PAGE_ADDED); MONITOR_INC_VALUE(MONITOR_ADAPTIVE_HASH_ROW_ADDED, n_cached); exit_func: assert_block_ahi_valid(block); rw_lock_x_unlock(ahi_latch); ut_free(folds); ut_free(recs); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /** Updates the search info. @param[in,out] info search info @param[in,out] cursor cursor which was just positioned */ void btr_search_info_update_slow(btr_search_t* info, btr_cur_t* cursor) { rw_lock_t* ahi_latch = btr_get_search_latch(cursor->index); ut_ad(!rw_lock_own(ahi_latch, RW_LOCK_S)); ut_ad(!rw_lock_own(ahi_latch, RW_LOCK_X)); buf_block_t* block = btr_cur_get_block(cursor); /* NOTE that the following two function calls do NOT protect info or block->n_fields etc. with any semaphore, to save CPU time! We cannot assume the fields are consistent when we return from those functions! */ btr_search_info_update_hash(info, cursor); bool build_index = btr_search_update_block_hash_info(info, block); if (build_index || (cursor->flag == BTR_CUR_HASH_FAIL)) { btr_search_check_free_space_in_heap(cursor->index); } if (cursor->flag == BTR_CUR_HASH_FAIL) { /* Update the hash node reference, if appropriate */ #ifdef UNIV_SEARCH_PERF_STAT btr_search_n_hash_fail++; #endif /* UNIV_SEARCH_PERF_STAT */ rw_lock_x_lock(ahi_latch); btr_search_update_hash_ref(info, block, cursor); rw_lock_x_unlock(ahi_latch); } if (build_index) { /* Note that since we did not protect block->n_fields etc. with any semaphore, the values can be inconsistent. We have to check inside the function call that they make sense. */ btr_search_build_page_hash_index(cursor->index, block, ahi_latch, block->n_fields, block->n_bytes, block->left_side); } } /** Move or delete hash entries for moved records, usually in a page split. If new_block is already hashed, then any hash index for block is dropped. If new_block is not hashed, and block is hashed, then a new hash index is built to new_block with the same parameters as block. @param[in,out] new_block destination page @param[in,out] block source page (subject to deletion later) */ void btr_search_move_or_delete_hash_entries( buf_block_t* new_block, buf_block_t* block) { ut_ad(rw_lock_own(&(block->lock), RW_LOCK_X)); ut_ad(rw_lock_own(&(new_block->lock), RW_LOCK_X)); if (!btr_search_enabled) { return; } dict_index_t* index = block->index; if (!index) { index = new_block->index; } else { ut_ad(!new_block->index || index == new_block->index); } assert_block_ahi_valid(block); assert_block_ahi_valid(new_block); rw_lock_t* ahi_latch = index ? btr_get_search_latch(index) : NULL; if (new_block->index) { btr_search_drop_page_hash_index(block); return; } if (!index) { return; } rw_lock_s_lock(ahi_latch); if (block->index) { ulint n_fields = block->curr_n_fields; ulint n_bytes = block->curr_n_bytes; ibool left_side = block->curr_left_side; new_block->n_fields = block->curr_n_fields; new_block->n_bytes = block->curr_n_bytes; new_block->left_side = left_side; rw_lock_s_unlock(ahi_latch); ut_a(n_fields > 0 || n_bytes > 0); btr_search_build_page_hash_index( index, new_block, ahi_latch, n_fields, n_bytes, left_side); ut_ad(n_fields == block->curr_n_fields); ut_ad(n_bytes == block->curr_n_bytes); ut_ad(left_side == block->curr_left_side); return; } rw_lock_s_unlock(ahi_latch); } /** Updates the page hash index when a single record is deleted from a page. @param[in] cursor cursor which was positioned on the record to delete using btr_cur_search_, the record is not yet deleted.*/ void btr_search_update_hash_on_delete(btr_cur_t* cursor) { hash_table_t* table; buf_block_t* block; const rec_t* rec; ulint fold; dict_index_t* index; ulint offsets_[REC_OFFS_NORMAL_SIZE]; mem_heap_t* heap = NULL; rec_offs_init(offsets_); ut_ad(page_is_leaf(btr_cur_get_page(cursor))); #ifdef MYSQL_INDEX_DISABLE_AHI if (cursor->index->disable_ahi) return; #endif if (!btr_search_enabled) { return; } block = btr_cur_get_block(cursor); ut_ad(rw_lock_own(&(block->lock), RW_LOCK_X)); assert_block_ahi_valid(block); index = block->index; if (!index) { return; } ut_ad(block->page.id.space() == index->table->space->id); ut_a(index == cursor->index); ut_a(block->curr_n_fields > 0 || block->curr_n_bytes > 0); ut_a(!dict_index_is_ibuf(index)); table = btr_get_search_table(index); rec = btr_cur_get_rec(cursor); fold = rec_fold(rec, rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &heap), block->curr_n_fields, block->curr_n_bytes, index->id); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } rw_lock_t* ahi_latch = btr_get_search_latch(index); rw_lock_x_lock(ahi_latch); assert_block_ahi_valid(block); if (block->index) { ut_a(block->index == index); if (ha_search_and_delete_if_found(table, fold, rec)) { MONITOR_INC(MONITOR_ADAPTIVE_HASH_ROW_REMOVED); } else { MONITOR_INC( MONITOR_ADAPTIVE_HASH_ROW_REMOVE_NOT_FOUND); } assert_block_ahi_valid(block); } rw_lock_x_unlock(ahi_latch); } /** Updates the page hash index when a single record is inserted on a page. @param[in] cursor cursor which was positioned to the place to insert using btr_cur_search_, and the new record has been inserted next to the cursor. @param[in] ahi_latch the adaptive hash index latch */ void btr_search_update_hash_node_on_insert(btr_cur_t* cursor, rw_lock_t* ahi_latch) { hash_table_t* table; buf_block_t* block; dict_index_t* index; rec_t* rec; ut_ad(ahi_latch == btr_get_search_latch(cursor->index)); ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); #ifdef MYSQL_INDEX_DISABLE_AHI if (cursor->index->disable_ahi) return; #endif if (!btr_search_enabled) { return; } rec = btr_cur_get_rec(cursor); block = btr_cur_get_block(cursor); ut_ad(rw_lock_own(&(block->lock), RW_LOCK_X)); index = block->index; if (!index) { return; } ut_a(cursor->index == index); ut_a(!dict_index_is_ibuf(index)); rw_lock_x_lock(ahi_latch); if (!block->index) { goto func_exit; } ut_a(block->index == index); if ((cursor->flag == BTR_CUR_HASH) && (cursor->n_fields == block->curr_n_fields) && (cursor->n_bytes == block->curr_n_bytes) && !block->curr_left_side) { table = btr_get_search_table(index); if (ha_search_and_update_if_found( table, cursor->fold, rec, block, page_rec_get_next(rec))) { MONITOR_INC(MONITOR_ADAPTIVE_HASH_ROW_UPDATED); } func_exit: assert_block_ahi_valid(block); rw_lock_x_unlock(ahi_latch); } else { rw_lock_x_unlock(ahi_latch); btr_search_update_hash_on_insert(cursor, ahi_latch); } } /** Updates the page hash index when a single record is inserted on a page. @param[in,out] cursor cursor which was positioned to the place to insert using btr_cur_search_..., and the new record has been inserted next to the cursor @param[in] ahi_latch the adaptive hash index latch */ void btr_search_update_hash_on_insert(btr_cur_t* cursor, rw_lock_t* ahi_latch) { hash_table_t* table; buf_block_t* block; dict_index_t* index; const rec_t* rec; const rec_t* ins_rec; const rec_t* next_rec; ulint fold; ulint ins_fold; ulint next_fold = 0; /* remove warning (??? bug ???) */ ulint n_fields; ulint n_bytes; ibool left_side; bool locked = false; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); ut_ad(ahi_latch == btr_get_search_latch(cursor->index)); ut_ad(page_is_leaf(btr_cur_get_page(cursor))); ut_ad(!btr_search_own_any(RW_LOCK_S)); ut_ad(!btr_search_own_any(RW_LOCK_X)); #ifdef MYSQL_INDEX_DISABLE_AHI if (cursor->index->disable_ahi) return; #endif if (!btr_search_enabled) { return; } block = btr_cur_get_block(cursor); ut_ad(rw_lock_own(&(block->lock), RW_LOCK_X)); assert_block_ahi_valid(block); index = block->index; if (!index) { return; } ut_ad(block->page.id.space() == index->table->space->id); btr_search_check_free_space_in_heap(index); table = btr_get_search_table(index); rec = btr_cur_get_rec(cursor); #ifdef MYSQL_INDEX_DISABLE_AHI ut_a(!index->disable_ahi); #endif ut_a(index == cursor->index); ut_a(!dict_index_is_ibuf(index)); n_fields = block->curr_n_fields; n_bytes = block->curr_n_bytes; left_side = block->curr_left_side; ins_rec = page_rec_get_next_const(rec); next_rec = page_rec_get_next_const(ins_rec); offsets = rec_get_offsets(ins_rec, index, offsets, true, ULINT_UNDEFINED, &heap); ins_fold = rec_fold(ins_rec, offsets, n_fields, n_bytes, index->id); if (!page_rec_is_supremum(next_rec)) { offsets = rec_get_offsets( next_rec, index, offsets, true, btr_search_get_n_fields(n_fields, n_bytes), &heap); next_fold = rec_fold(next_rec, offsets, n_fields, n_bytes, index->id); } if (!page_rec_is_infimum(rec) && !rec_is_default_row(rec, index)) { offsets = rec_get_offsets( rec, index, offsets, true, btr_search_get_n_fields(n_fields, n_bytes), &heap); fold = rec_fold(rec, offsets, n_fields, n_bytes, index->id); } else { if (left_side) { locked = true; rw_lock_x_lock(ahi_latch); if (!btr_search_enabled) { goto function_exit; } ha_insert_for_fold(table, ins_fold, block, ins_rec); } goto check_next_rec; } if (fold != ins_fold) { if (!locked) { locked = true; rw_lock_x_lock(ahi_latch); if (!btr_search_enabled) { goto function_exit; } } if (!left_side) { ha_insert_for_fold(table, fold, block, rec); } else { ha_insert_for_fold(table, ins_fold, block, ins_rec); } } check_next_rec: if (page_rec_is_supremum(next_rec)) { if (!left_side) { if (!locked) { locked = true; rw_lock_x_lock(ahi_latch); if (!btr_search_enabled) { goto function_exit; } } ha_insert_for_fold(table, ins_fold, block, ins_rec); } goto function_exit; } if (ins_fold != next_fold) { if (!locked) { locked = true; rw_lock_x_lock(ahi_latch); if (!btr_search_enabled) { goto function_exit; } } if (!left_side) { ha_insert_for_fold(table, ins_fold, block, ins_rec); } else { ha_insert_for_fold(table, next_fold, block, next_rec); } } function_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } if (locked) { rw_lock_x_unlock(ahi_latch); } ut_ad(!rw_lock_own(ahi_latch, RW_LOCK_X)); } #if defined UNIV_AHI_DEBUG || defined UNIV_DEBUG /** Validates the search system for given hash table. @param[in] hash_table_id hash table to validate @return TRUE if ok */ static ibool btr_search_hash_table_validate(ulint hash_table_id) { ha_node_t* node; ibool ok = TRUE; ulint i; ulint cell_count; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; if (!btr_search_enabled) { return(TRUE); } /* How many cells to check before temporarily releasing search latches. */ ulint chunk_size = 10000; rec_offs_init(offsets_); btr_search_x_lock_all(); buf_pool_mutex_enter_all(); cell_count = hash_get_n_cells( btr_search_sys->hash_tables[hash_table_id]); for (i = 0; i < cell_count; i++) { /* We release search latches every once in a while to give other queries a chance to run. */ if ((i != 0) && ((i % chunk_size) == 0)) { buf_pool_mutex_exit_all(); btr_search_x_unlock_all(); os_thread_yield(); btr_search_x_lock_all(); buf_pool_mutex_enter_all(); ulint curr_cell_count = hash_get_n_cells( btr_search_sys->hash_tables[hash_table_id]); if (cell_count != curr_cell_count) { cell_count = curr_cell_count; if (i >= cell_count) { break; } } } node = (ha_node_t*) hash_get_nth_cell( btr_search_sys->hash_tables[hash_table_id], i)->node; for (; node != NULL; node = node->next) { const buf_block_t* block = buf_block_from_ahi((byte*) node->data); const buf_block_t* hash_block; buf_pool_t* buf_pool; index_id_t page_index_id; buf_pool = buf_pool_from_bpage((buf_page_t*) block); if (UNIV_LIKELY(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE)) { /* The space and offset are only valid for file blocks. It is possible that the block is being freed (BUF_BLOCK_REMOVE_HASH, see the assertion and the comment below) */ hash_block = buf_block_hash_get( buf_pool, block->page.id); } else { hash_block = NULL; } if (hash_block) { ut_a(hash_block == block); } else { /* When a block is being freed, buf_LRU_search_and_free_block() first removes the block from buf_pool->page_hash by calling buf_LRU_block_remove_hashed_page(). After that, it invokes btr_search_drop_page_hash_index() to remove the block from btr_search_sys->hash_tables[i]. */ ut_a(buf_block_get_state(block) == BUF_BLOCK_REMOVE_HASH); } ut_a(!dict_index_is_ibuf(block->index)); ut_ad(block->page.id.space() == block->index->table->space_id); page_index_id = btr_page_get_index_id(block->frame); offsets = rec_get_offsets( node->data, block->index, offsets, true, btr_search_get_n_fields(block->curr_n_fields, block->curr_n_bytes), &heap); const ulint fold = rec_fold( node->data, offsets, block->curr_n_fields, block->curr_n_bytes, page_index_id); if (node->fold != fold) { const page_t* page = block->frame; ok = FALSE; ib::error() << "Error in an adaptive hash" << " index pointer to page " << page_id_t(page_get_space_id(page), page_get_page_no(page)) << ", ptr mem address " << reinterpret_cast<const void*>( node->data) << ", index id " << page_index_id << ", node fold " << node->fold << ", rec fold " << fold; fputs("InnoDB: Record ", stderr); rec_print_new(stderr, node->data, offsets); fprintf(stderr, "\nInnoDB: on that page." " Page mem address %p, is hashed %p," " n fields %lu\n" "InnoDB: side %lu\n", (void*) page, (void*) block->index, (ulong) block->curr_n_fields, (ulong) block->curr_left_side); ut_ad(0); } } } for (i = 0; i < cell_count; i += chunk_size) { /* We release search latches every once in a while to give other queries a chance to run. */ if (i != 0) { buf_pool_mutex_exit_all(); btr_search_x_unlock_all(); os_thread_yield(); btr_search_x_lock_all(); buf_pool_mutex_enter_all(); ulint curr_cell_count = hash_get_n_cells( btr_search_sys->hash_tables[hash_table_id]); if (cell_count != curr_cell_count) { cell_count = curr_cell_count; if (i >= cell_count) { break; } } } ulint end_index = ut_min(i + chunk_size - 1, cell_count - 1); if (!ha_validate(btr_search_sys->hash_tables[hash_table_id], i, end_index)) { ok = FALSE; } } buf_pool_mutex_exit_all(); btr_search_x_unlock_all(); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(ok); } /** Validate the search system. @return true if ok. */ bool btr_search_validate() { for (ulint i = 0; i < btr_ahi_parts; ++i) { if (!btr_search_hash_table_validate(i)) { return(false); } } return(true); } #endif /* defined UNIV_AHI_DEBUG || defined UNIV_DEBUG */ #endif /* BTR_CUR_HASH_ADAPT */