# https://www.periscopedata.com/blog/medians-in-sql.html module Gitlab module Database module Median def median_datetime(arel_table, query_so_far, column_sym) if Gitlab::Database.postgresql? pg_median_datetime(arel_table, query_so_far, column_sym) elsif Gitlab::Database.mysql? mysql_median_datetime(arel_table, query_so_far, column_sym) end end def extract_median(results) result = results.compact.first if Gitlab::Database.postgresql? result = result.first.presence median = result['median'] if result median.to_f if median elsif Gitlab::Database.mysql? result.to_a.flatten.first end end def mysql_median_datetime(arel_table, query_so_far, column_sym) query = arel_table. from(arel_table.project(Arel.sql('*')).order(arel_table[column_sym]).as(arel_table.table_name)). project(average([arel_table[column_sym]], 'median')). where(Arel::Nodes::Between.new( Arel.sql("(select @row_id := @row_id + 1)"), Arel::Nodes::And.new( [Arel.sql('@ct/2.0'), Arel.sql('@ct/2.0 + 1')] ))). # Disallow negative values where(arel_table[column_sym].gteq(0)) [ Arel.sql("CREATE TEMPORARY TABLE IF NOT EXISTS #{query_so_far.to_sql}"), Arel.sql("set @ct := (select count(1) from #{arel_table.table_name});"), Arel.sql("set @row_id := 0;"), query, Arel.sql("DROP TEMPORARY TABLE IF EXISTS #{arel_table.table_name};") ] end def pg_median_datetime(arel_table, query_so_far, column_sym) # Create a CTE with the column we're operating on, row number (after sorting by the column # we're operating on), and count of the table we're operating on (duplicated across) all rows # of the CTE. For example, if we're looking to find the median of the `projects.star_count` # column, the CTE might look like this: # # star_count | row_id | ct # ------------+--------+---- # 5 | 1 | 3 # 9 | 2 | 3 # 15 | 3 | 3 cte_table = Arel::Table.new("ordered_records") cte = Arel::Nodes::As.new( cte_table, arel_table. project(arel_table[column_sym].as(column_sym.to_s), Arel::Nodes::Over.new(Arel::Nodes::NamedFunction.new("row_number", []), Arel::Nodes::Window.new.order(arel_table[column_sym])).as('row_id'), arel_table.project("COUNT(1)").as('ct')). # Disallow negative values where(arel_table[column_sym].gteq(zero_interval))) # From the CTE, select either the middle row or the middle two rows (this is accomplished # by 'where cte.row_id between cte.ct / 2.0 AND cte.ct / 2.0 + 1'). Find the average of the # selected rows, and this is the median value. cte_table.project(average([extract_epoch(cte_table[column_sym])], "median")). where(Arel::Nodes::Between.new(cte_table[:row_id], Arel::Nodes::And.new([(cte_table[:ct] / Arel.sql('2.0')), (cte_table[:ct] / Arel.sql('2.0') + 1)]))). with(query_so_far, cte) end private def average(args, as) Arel::Nodes::NamedFunction.new("AVG", args, as) end def extract_epoch(arel_attribute) Arel.sql(%Q{EXTRACT(EPOCH FROM "#{arel_attribute.relation.name}"."#{arel_attribute.name}")}) end # Need to cast '0' to an INTERVAL before we can check if the interval is positive def zero_interval Arel::Nodes::NamedFunction.new("CAST", [Arel.sql("'0' AS INTERVAL")]) end end end end