Commit a04c0f4e authored by Mark's avatar Mark

Merge pull request #76 from markflorisson88/arrayinstruct

Buffer format arrays, strings and alignment on first member
parents a8d81e52 e52e8771
No related merge requests found
......@@ -649,7 +649,6 @@ class GetAndReleaseBufferUtilityCode(object):
"""))
def mangle_dtype_name(dtype):
# Use prefixes to seperate user defined types from builtins
# (consider "typedef float unsigned_int")
......@@ -662,16 +661,20 @@ def mangle_dtype_name(dtype):
prefix = "nn_"
else:
prefix = ""
return prefix + dtype.declaration_code("").replace(" ", "_")
type_decl = dtype.declaration_code("")
type_decl = type_decl.replace(" ", "_")
return prefix + type_decl.replace("[", "_").replace("]", "_")
def get_type_information_cname(code, dtype, maxdepth=None):
# Output the run-time type information (__Pyx_TypeInfo) for given dtype,
# and return the name of the type info struct.
#
# Structs with two floats of the same size are encoded as complex numbers.
# One can seperate between complex numbers declared as struct or with native
# encoding by inspecting to see if the fields field of the type is
# filled in.
"""
Output the run-time type information (__Pyx_TypeInfo) for given dtype,
and return the name of the type info struct.
Structs with two floats of the same size are encoded as complex numbers.
One can seperate between complex numbers declared as struct or with native
encoding by inspecting to see if the fields field of the type is
filled in.
"""
namesuffix = mangle_dtype_name(dtype)
name = "__Pyx_TypeInfo_%s" % namesuffix
structinfo_name = "__Pyx_StructFields_%s" % namesuffix
......@@ -688,6 +691,12 @@ def get_type_information_cname(code, dtype, maxdepth=None):
code.globalstate.utility_codes.add(name)
typecode = code.globalstate['typeinfo']
arraysizes = []
if dtype.is_array:
while dtype.is_array:
arraysizes.append(dtype.size)
dtype = dtype.base_type
complex_possible = dtype.is_struct_or_union and dtype.can_be_complex()
declcode = dtype.declaration_code("")
......@@ -729,7 +738,6 @@ def get_type_information_cname(code, dtype, maxdepth=None):
elif dtype.is_pyobject:
typegroup = 'O'
else:
print dtype
assert False
if dtype.is_int:
......@@ -737,15 +745,13 @@ def get_type_information_cname(code, dtype, maxdepth=None):
else:
is_unsigned = "0"
typecode.putln(('static __Pyx_TypeInfo %s = { "%s", %s, sizeof(%s), \'%s\', %s, %s };'
) % (name,
rep,
structinfo_name,
declcode,
typegroup,
is_unsigned,
flags,
), safe=True)
typeinfo = ('static __Pyx_TypeInfo %s = '
'{ "%s", %s, sizeof(%s), { %s }, %s, \'%s\', %s, %s };')
tup = (name, rep, structinfo_name, declcode,
', '.join([str(x) for x in arraysizes]), len(arraysizes),
typegroup, is_unsigned, flags)
typecode.putln(typeinfo % tup, safe=True)
return name
def load_buffer_utility(util_code_name, context=None, **kwargs):
......
......@@ -2548,6 +2548,7 @@ class IndexNode(ExprNode):
warning(index.pos, "Index should be typed for more "
"efficient access", level=2)
IndexNode.warned_untyped_idx = True
self.memslice_index = True
index = index.coerce_to(index_type, env)
indices[i] = index
......@@ -6935,7 +6936,8 @@ class CythonArrayNode(ExprNode):
"n" * len(shapes),
", ".join(shapes)))
err = "!%s || !%s || !PyBytes_Check(%s)" % (format_temp, shapes_temp,
err = "!%s || !%s || !PyBytes_AsString(%s)" % (format_temp,
shapes_temp,
format_temp)
code.putln(code.error_goto_if(err, self.pos))
code.put_gotref(format_temp)
......
......@@ -157,7 +157,7 @@ def src_conforms_to_dst(src, dst):
return True
def valid_memslice_dtype(dtype):
def valid_memslice_dtype(dtype, i=0):
"""
Return whether type dtype can be used as the base type of a
memoryview slice.
......@@ -178,6 +178,8 @@ def valid_memslice_dtype(dtype):
dtype.is_error or
# Pointers are not valid (yet)
# (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or
(dtype.is_array and i < 8 and
valid_memslice_dtype(dtype.base_type, i + 1)) or
dtype.is_numeric or
dtype.is_pyobject or
dtype.is_fused or # accept this as it will be replaced by specializations later
......
This diff is collapsed.
......@@ -394,7 +394,6 @@ cdef class memoryview(object):
info.readonly = 0
info.obj = self
# Some properties that have the same sematics as in NumPy
property T:
@cname('__pyx_memoryview_transpose')
......@@ -920,6 +919,8 @@ cdef extern from *:
char* name
__Pyx_StructField* fields
size_t size
size_t arraysize[8]
int ndim
char typegroup
char is_unsigned
int flags
......@@ -945,6 +946,11 @@ cdef extern from *:
@cname('__pyx_format_from_typeinfo')
cdef format_from_typeinfo(__Pyx_TypeInfo *type):
"""
We want to return bytes, but python 3 doesn't allow you to do anything
useful with bytes. So use str and convert back and forth to/from unicode.
Thank you python 3 for making bytes the most useless thing ever!
"""
cdef __Pyx_StructField *field
cdef __pyx_typeinfo_string fmt
......@@ -960,12 +966,16 @@ cdef format_from_typeinfo(__Pyx_TypeInfo *type):
field = type.fields
while field.type:
parts.append(format_from_typeinfo(field.type))
parts.append(format_from_typeinfo(field.type).decode('ascii'))
field += 1
result = alignment.join(parts) + '}'
else:
fmt = __Pyx_TypeInfoToFormat(type)
result = fmt.string
if type.arraysize[0]:
extents = [str(type.arraysize[i]) for i in range(type.ndim)]
result = "(%s)%s" % (','.join(extents), fmt.string.decode('ascii'))
else:
result = fmt.string.decode('ascii')
return result
return result.encode('ascii')
......@@ -46,6 +46,14 @@ cdef intp[:, :] myarray
cdef int[:] a10 = <int[:10]> object()
cdef int[:] a11 = <int[:5.4]> <int *> 1
cdef struct Valid:
int array[1][2][3][4][5][6][7][8]
cdef struct Invalid:
int array[1][2][3][4][5][6][7][8][9]
cdef Valid[:] validslice
cdef Invalid[:] invalidslice
# These are VALID
cdef int[::view.indirect_contiguous, ::view.contiguous] a9
......@@ -70,4 +78,5 @@ _ERRORS = u'''
44:10: Invalid base type for memoryview slice: intp
46:35: Can only create cython.array from pointer or array
47:24: Cannot assign type 'double' to 'Py_ssize_t'
55:13: Invalid base type for memoryview slice: Invalid
'''
......@@ -1456,6 +1456,151 @@ def test_memslice_prange(arg):
for k in range(src.shape[2]):
assert src[i, j, k] == dst[i, j, k], (src[i, j, k] == dst[i, j, k])
# Test arrays in structs
cdef struct ArrayStruct:
int ints[10]
char chars[3]
cdef packed struct PackedArrayStruct:
int ints[10]
char chars[3]
cdef fused FusedStruct:
ArrayStruct
PackedArrayStruct
@testcase
def test_memslice_struct_with_arrays():
"""
>>> test_memslice_struct_with_arrays()
abc
abc
"""
cdef ArrayStruct a1[10]
cdef PackedArrayStruct a2[10]
test_structs_with_arr(a1)
test_structs_with_arr(a2)
cdef test_structs_with_arr(FusedStruct array[10]):
cdef FusedStruct[:] myslice1, myslice2, myslice3, myslice4
cdef int i, j
myslice1 = <FusedStruct[:10]> array
for i in range(10):
for j in range(10):
myslice1[i].ints[j] = i
for j in range(3):
myslice1[i].chars[j] = 97 + j
if sys.version_info[:2] >= (2, 7):
if sys.version_info[0] < 3:
import __builtin__ as builtins
else:
import builtins
size1 = sizeof(FusedStruct)
size2 = len(builtins.memoryview(myslice1)[0])
assert size1 == size2, (size1, size2, builtins.memoryview(myslice1).format)
myslice2 = builtins.memoryview(myslice1)
for i in range(10):
assert myslice2[i].ints[i] == myslice1[i].ints[i]
assert myslice2[i].chars[i] == myslice1[i].chars[i]
myslice3 = <object> myslice1
myslice4 = myslice1
for i in range(10):
for j in range(10):
assert myslice3[i].ints[j] == myslice4[i].ints[j] == myslice1[i].ints[j]
for j in range(3):
assert myslice3[i].chars[j] == myslice4[i].chars[j] == myslice1[i].chars[j]
print myslice1[0].chars[:3].decode('ascii')
# Test padding at the end of structs in the buffer support
cdef struct PaddedAtEnd:
int a[3]
char b[3]
cdef struct AlignedNested:
PaddedAtEnd a
char chars[1]
cdef struct PaddedAtEndNormal:
int a
char b
char c
char d
cdef struct AlignedNestedNormal:
PaddedAtEndNormal a
char chars
# Test nested structs in a struct, make sure we compute padding each time
# accordingly. If the first struct member is a struct, align on the first
# member of that struct (recursively)
cdef struct A:
double d
char c
cdef struct B:
char c1
A a
char c2
cdef struct C:
A a
char c1
cdef struct D:
B b
C cstruct
int a[2]
char c
cdef fused FusedPadded:
ArrayStruct
PackedArrayStruct
AlignedNested
AlignedNestedNormal
A
B
C
D
@testcase
def test_padded_structs():
"""
>>> test_padded_structs()
"""
cdef ArrayStruct a1[10]
cdef PackedArrayStruct a2[10]
cdef AlignedNested a3[10]
cdef AlignedNestedNormal a4[10]
cdef A a5[10]
cdef B a6[10]
cdef C a7[10]
cdef D a8[10]
_test_padded(a1)
_test_padded(a2)
_test_padded(a3)
_test_padded(a4)
_test_padded(a5)
_test_padded(a6)
_test_padded(a7)
# There is a pre-existing bug that doesn't parse the format for this
# struct properly -- fix this
#_test_padded(a8)
cdef _test_padded(FusedPadded myarray[10]):
# test that the buffer format parser accepts our format string...
cdef FusedPadded[:] myslice = <FusedPadded[:10]> myarray
obj = myslice
cdef FusedPadded[:] myotherslice = obj
@testcase
def test_object_indices():
"""
......
......@@ -391,3 +391,120 @@ def acquire_release_cycle(obj):
del buf
gc.collect()
cdef packed struct StructArray:
int a[4]
char b[5]
@testcase_numpy_1_5
def test_memslice_structarray(data, dtype):
"""
>>> data = [(range(4), 'spam\\0'), (range(4, 8), 'ham\\0\\0'), (range(8, 12), 'eggs\\0')]
>>> dtype = np.dtype([('a', '4i'), ('b', '5b')])
>>> test_memslice_structarray([(L, map(ord, s)) for L, s in data], dtype)
0
1
2
3
spam
4
5
6
7
ham
8
9
10
11
eggs
Test the same thing with the string format specifier
>>> dtype = np.dtype([('a', '4i'), ('b', 'S5')])
>>> test_memslice_structarray(data, dtype)
0
1
2
3
spam
4
5
6
7
ham
8
9
10
11
eggs
"""
a = np.empty((3,), dtype=dtype)
a[:] = data
cdef StructArray[:] myslice = a
cdef int i, j
for i in range(3):
for j in range(4):
print myslice[i].a[j]
print myslice[i].b
@testcase_numpy_1_5
def test_structarray_errors(StructArray[:] a):
"""
>>> dtype = np.dtype([('a', '4i'), ('b', '5b')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
>>> dtype = np.dtype([('a', '6i'), ('b', '5b')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
Traceback (most recent call last):
...
ValueError: Expected a dimension of size 4, got 6
>>> dtype = np.dtype([('a', '(4,4)i'), ('b', '5b')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
Traceback (most recent call last):
...
ValueError: Expected 1 dimension(s), got 2
Test the same thing with the string format specifier
>>> dtype = np.dtype([('a', '4i'), ('b', 'S5')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
>>> dtype = np.dtype([('a', '6i'), ('b', 'S5')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
Traceback (most recent call last):
...
ValueError: Expected a dimension of size 4, got 6
>>> dtype = np.dtype([('a', '(4,4)i'), ('b', 'S5')])
>>> test_structarray_errors(np.empty((5,), dtype=dtype))
Traceback (most recent call last):
...
ValueError: Expected 1 dimension(s), got 2
"""
cdef struct StringStruct:
char c[4][4]
ctypedef char String[4][4]
def stringstructtest(StringStruct[:] view):
pass
def stringtest(String[:] view):
pass
@testcase_numpy_1_5
def test_string_invalid_dims():
"""
>>> dtype = np.dtype([('a', 'S4')])
>>> data = ['spam', 'eggs']
>>> stringstructtest(np.array(data, dtype=dtype))
Traceback (most recent call last):
...
ValueError: Expected 2 dimensions, got 1
>>> stringtest(np.array(data, dtype='S4'))
Traceback (most recent call last):
...
ValueError: Expected 2 dimensions, got 1
"""
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment