extension.erp5.JupyterCompile.py 36.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
# -*- coding: utf-8 -*-
from matplotlib.figure import Figure
from IPython.core.display import DisplayObject
from IPython.lib.display import IFrame
from cStringIO import StringIO
from erp5.portal_type import Image
from types import ModuleType
from ZODB.serialize import ObjectWriter
import cPickle
import sys
import traceback
import ast
import base64
import json
import transaction
import Acquisition
import astor

def Base_executeJupyter(self, python_expression=None, reference=None, \
                        title=None, request_reference=False, **kw):
  # Check permissions for current user and display message to non-authorized user 
  if not self.Base_checkPermission('portal_components', 'Manage Portal'):
    return "You are not authorized to access the script"
  
  # Convert the request_reference argument string to their respeced boolean values
  request_reference = {'True': True, \
                       'False': False}.get(request_reference, False)
  
  # Return python dictionary with title and reference of all notebooks
  # for request_reference=True
  if request_reference:
    data_notebook_list = self.portal_catalog(portal_type='Data Notebook')
    notebook_detail_list = [{'reference': obj.getReference(), \
                             'title': obj.getTitle()} for obj in data_notebook_list]
    return notebook_detail_list
  
  if not reference:
    message = "Please set or use reference for the notebook you want to use"
    return message
  
  # Take python_expression as '' for empty code from jupyter frontend
  if not python_expression:
    python_expression = ''
  
  # Get Data Notebook with the specific reference
  data_notebook = self.portal_catalog.getResultValue(
                         portal_type='Data Notebook',
                         reference=reference)
  
  # Create new Data Notebook if reference doesn't match with any from existing ones
  if not data_notebook:
    notebook_module = self.getDefaultModule(portal_type='Data Notebook')
    data_notebook = notebook_module.DataNotebookModule_addDataNotebook(
                                      title=title,
                                      reference=reference,
                                      batch_mode=True)
  
  # Add new Data Notebook Line to the Data Notebook
  data_notebook_line = data_notebook.DataNotebook_addDataNotebookLine(
                                       notebook_code=python_expression,
                                       batch_mode=True)
  
  # Gets the context associated to the data notebook being used
  old_notebook_context = data_notebook.getNotebookContext()
  if not old_notebook_context:
    old_notebook_context = self.Base_createNotebookContext()
  
  # Pass all to code Base_runJupyter external function which would execute the code
  # and returns a dict of result
  final_result = Base_runJupyterCode(self, python_expression, old_notebook_context)
    
  new_notebook_context = final_result['notebook_context']
  
  result = {
    u'code_result': final_result['result_string'],
    u'ename': final_result['ename'],
    u'evalue': final_result['evalue'],
    u'traceback': final_result['traceback'],
    u'status': final_result['status'],
    u'mime_type': final_result['mime_type']}
  
  # Updates the context in the notebook with the resulting context of code 
  # execution.
  data_notebook.setNotebookContext(new_notebook_context)
  
  # We try to commit, but the notebook context property may have variables that
  # cannot be serialized into the ZODB and couldn't be captured by our code yet.
  # In this case we abort the transaction and warn the user about it. Unforunately,
  # the exeception raised when this happens doesn't help to know exactly which
  # object caused the problem, so we cannot tell the user what to fix.
  try:
    transaction.commit()
  except transaction.interfaces.TransactionError as e:
    transaction.abort()
    exception_dict = getErrorMessageForException(self, e, new_notebook_context)
    result.update(exception_dict)
    return json.dumps(result)
  
  # Catch exception while seriaizing the result to be passed to jupyter frontend
  # and in case of error put code_result as None and status as 'error' which would
  # be shown by Jupyter frontend
  try:
    serialized_result = json.dumps(result)
  except UnicodeDecodeError:
    result = {
      u'code_result': None,
      u'ename': u'UnicodeDecodeError',
      u'evalue': None,
      u'traceback': None,
      u'status': u'error',
      u'mime_type': result['mime_type']}
    serialized_result = json.dumps(result)
  
  data_notebook_line.edit(
    notebook_code_result = result['code_result'], 
    mime_type = result['mime_type'])
  
  return serialized_result  


def Base_runJupyterCode(self, jupyter_code, old_notebook_context):
  """
    Function to execute jupyter code and update the context dictionary.
    Code execution depends on 'interactivity', a.k.a , if the ast.node object has
    ast.Expr instance (valid for expressions) or not.
    
    old_notebook_context should contain both variables dict and setup functions.
    Here, setup dict is {key: value} pair of setup function names and another dict,
    which contains the function's alias and code, as string. These functions
    should be executed before `jupyter_code` to properly create the required
    environment.

    For example:
    old_notebook_context =  {
      'setup': {
        'numpy setup': {
          'func_name': 'numpy_setup_function',
          'code': ...
        }
      },
      'variables': {
        'my_variable': 1
      }
    }

    The behaviour would be similar to that of jupyter notebook:-
    ( https://github.com/ipython/ipython/blob/master/IPython/core/interactiveshell.py#L2954 )
    Example:

      code1 = '''
      23
      print 23 #Last node not an expression, interactivity = 'last'
      '''
      out1 = '23'

      code2 = '''
      123
      12 #Last node an expression, interactivity = 'none'
      '''
      out2 = '12'

  """
  mime_type = 'text/plain'
  status = u'ok'
  ename, evalue, tb_list = None, None, None
  
  # Other way would be to use all the globals variables instead of just an empty
  # dictionary, but that might hamper the speed of exec or eval.
  # Something like -- user_context = globals(); user_context['context'] = self;
  user_context = {}
  output = ''

  # Saving the initial globals dict so as to compare it after code execution
  globals_dict = globals()
  notebook_context = old_notebook_context

  inject_variable_dict = {}
  current_var_dict = {}
  current_setup_dict = {}
  
  # Execute only if jupyter_code is not empty
  if jupyter_code:
    # Create ast parse tree
    try:
      ast_node = ast.parse(jupyter_code)
    except Exception as e:
      # It's not necessary to abort the current transaction here 'cause the 
      # user's code wasn't executed at all yet.
      return getErrorMessageForException(self, e, notebook_context)
    
    # Fixing "normal" imports and detecting environment object usage
    import_fixer = ImportFixer()
    print_fixer = PrintFixer()
    environment_collector = EnvironmentParser()
    ast_node = import_fixer.visit(ast_node)
    ast_node = print_fixer.visit(ast_node)
    ast.fix_missing_locations(ast_node)
    
    # The collector also raises errors when environment.define and undefine
    # calls are made incorrectly, so we need to capture them to propagate
    # to Jupyter for rendering.
    try:
      ast_node = environment_collector.visit(ast_node)
    except (EnvironmentDefinitionError, EnvironmentUndefineError) as e:
      transaction.abort()
      return getErrorMessageForException(self, e, notebook_context)
    
    # Get the node list from the parsed tree
    nodelist = ast_node.body

    # Handle case for empty nodelist(in case of comments as jupyter_code)
    if nodelist:
      # If the last node is instance of ast.Expr, set its interactivity as 'last'
      # This would be the case if the last node is expression
      if isinstance(nodelist[-1], ast.Expr):
        interactivity = "last"
      else:
        interactivity = "none"

      # Here, we define which nodes to execute with 'single' and which to execute
      # with 'exec' mode.
      if interactivity == 'none':
        to_run_exec, to_run_interactive = nodelist, []
      elif interactivity == 'last':
        to_run_exec, to_run_interactive = nodelist[:-1], nodelist[-1:]
      
      # Variables used at the display hook to get the proper form to display
      # the last returning variable of any code cell.
      display_data = {'result': '', 
                      'mime_type': None}
      
      # This is where one part of the  display magic happens. We create an 
      # instance of ProcessorList and add each of the built-in processors.
      # The classes which each of them are responsiblefor rendering are defined
      # in the classes themselves.
      # The customized display hook will automatically use the processor
      # of the matching class to decide how the object should be displayed.
      processor_list = ProcessorList()
      processor_list.addProcessor(IPythonDisplayObjectProcessor)
      processor_list.addProcessor(MatplotlibFigureProcessor)
      processor_list.addProcessor(ERP5ImageProcessor)
      processor_list.addProcessor(IPythonDisplayObjectProcessor)
      
      # Putting necessary variables in the `exec` calls context and storing
      inject_variable_dict = {
        'context': self,
        'environment': Environment(),
        '_display_data': display_data,
        '_processor_list': processor_list,
        '_volatile_variable_list': [],
        '_print': CustomPrint()}
      user_context.update(inject_variable_dict)
      user_context.update(notebook_context['variables'])
      
      # Getting the environment setup defined in the current code cell
      current_setup_dict = environment_collector.getEnvironmentSetupDict()
      current_var_dict = environment_collector.getEnvironmentVarDict()

      # Removing old setup from the setup functions
      removed_setup_message_list = []
      for func_alias in environment_collector.getEnvironmentRemoveList():
        found = False
        for key, data in notebook_context['setup'].items():
          if key == func_alias:
            found = True
            func_name = data['func_name']
            del notebook_context['setup'][func_alias]
            try:
              del user_context[func_alias]
            except KeyError:
              pass
            removed_setup_message = (
              "%s (%s) was removed from the setup list. "
              "Variables it may have added to the context and are not pickleable "
              "were automatically removed.\n"
            ) % (func_name, func_alias)
            removed_setup_message_list.append(removed_setup_message)
            break
        if not found:
          transaction.abort()
          result = {
            'result_string': "EnvironmentUndefineError: Trying to remove non existing function/variable from environment: '%s'\n" % func_alias,
            'notebook_context': notebook_context,
            'status': 'ok',
            'mime_type': 'text/plain',
            'evalue': None,
            'ename': None,
            'traceback': None}
          return result

      # Removing all the setup functions if user call environment.clearAll()
      if environment_collector.clearAll():
        keys = notebook_context ['setup'].keys()
        for key in keys:
          del notebook_context['setup'][key]
      
      # Running all the setup functions that we got
      for key, value in notebook_context['setup'].iteritems():
        try:
          code = compile(value['code'], '<string>', 'exec')
          exec(code, user_context, user_context)
        # An error happened, so we show the user the stacktrace along with a
        # note that the exception happened in a setup function's code.
        except Exception as e:
          if value['func_name'] in user_context:
            del user_context[value['func_name']]
          error_return_dict =  getErrorMessageForException(self, e, notebook_context)
          additional_information = "An error happened when trying to run the one of your setup functions:"
          error_return_dict['traceback'].insert(0, additional_information)
          # As in any other user's code execution, transaction needs to be 
          # aborted.
          transaction.abort()
          return error_return_dict
      
      # Iterating over envinronment.define calls captured by the environment collector
      # that are functions and saving them as setup functions.
      for func_name, data in current_setup_dict.iteritems():
        setup_string = (
          "%s\n"
          "_result = %s()\n"
          "if _result and isinstance(_result, dict):\n"
          "    globals().update(_result)\n"
          "_volatile_variable_list += _result.keys()\n"
          "del %s, _result\n"
        ) % (data['code'], func_name, func_name)
        notebook_context['setup'][data['alias']] = {
          "func_name": func_name,
          "code": setup_string}

      # Iterating over envinronment.define calls captured by the environment collector
      # that are simple variables and saving them in the setup.
      for variable, value, in current_var_dict.iteritems():
        setup_string = "%s = %s\n" % (variable, repr(value))
        notebook_context['setup'][variable] = {
          'func_name': variable,
          'code': setup_string}
        user_context['_volatile_variable_list'] += variable
        
      if environment_collector.showEnvironmentSetup():
        inject_variable_dict.write("%s\n" % str(notebook_context['setup']))

      # Execute the nodes with 'exec' mode
      for node in to_run_exec:
        mod = ast.Module([node])
        code = compile(mod, '<string>', "exec")
        try:
          exec(code, user_context, user_context)
        except Exception as e:
          # Abort the current transaction. As a consequence, the notebook lines
          # are not added if an exception occurs.
          transaction.abort()
          return getErrorMessageForException(self, e, notebook_context)

      # Execute the interactive nodes with 'single' mode
      for node in to_run_interactive:
        mod = ast.Interactive([node])
        try:
          code = compile(mod, '<string>', 'single')
          exec(code, user_context, user_context)
        except Exception as e:
          # Abort the current transaction. As a consequence, the notebook lines
          # are not added if an exception occurs.
          transaction.abort()
          return getErrorMessageForException(self, e, notebook_context)

      mime_type = display_data['mime_type'] or mime_type
      inject_variable_dict['_print'].write("\n".join(removed_setup_message_list) + display_data['result'])

    # Saves a list of all the variables we injected into the user context and
    # shall be deleted before saving the context.
    volatile_variable_list = current_setup_dict.keys() + inject_variable_dict.keys() + user_context.get('_volatile_variable_list', [])
    volatile_variable_list.append('__builtins__')

    for key, val in user_context.items():
      if not key in globals_dict.keys() and not isinstance(val, ModuleType) and not key in volatile_variable_list:
        if canSerialize(val):
          notebook_context['variables'][key] = val
        else:
          del user_context[key]
          message = (
            "Cannot serialize the variable named %s whose value is %s, "
            "thus it will not be stored in the context. "
            "You should move it's definition to a function and " 
            "use the environment object to load it.\n"
          ) % (key, val)
          inject_variable_dict['_print'].write(message)
    
    # Deleting from the variable storage the keys that are not in the user 
    # context anymore (i.e., variables that are deleted by the user).
    for key in notebook_context['variables'].keys():
      if not key in user_context:
        del notebook_context['variables'][key]
    
    if inject_variable_dict.get('_print') is not None:
      output = inject_variable_dict['_print'].getCapturedOutputString()
  
  result = {
    'result_string': output,
    'notebook_context': notebook_context,
    'status': status,
    'mime_type': mime_type,
    'evalue': evalue,
    'ename': ename,
    'traceback': tb_list}
  return result


class EnvironmentUndefineError(TypeError):
  pass


class EnvironmentDefinitionError(TypeError):
  pass


def canSerialize(obj):

  container_type_tuple = (list, tuple, dict, set, frozenset)
  
  # if object is a container, we need to check its elements for presence of
  # objects that cannot be put inside the zodb
  if isinstance(obj, container_type_tuple):
    if isinstance(obj, dict):
      result_list = []
      for key, value in obj.iteritems():
        result_list.append(canSerialize(key))
        result_list.append(canSerialize(value))
    else:
      result_list = [canSerialize(element) for element in obj]
    return all(result_list)
  # if obj is an object and implements __getstate__, ZODB.serialize can check
  # if we can store it
  elif isinstance(obj, object) and hasattr(obj, '__getstate__') and hasattr(obj, '_p_jar'):
    # Need to unwrap the variable, otherwise we get a TypeError, because
    # objects cannot be pickled while inside an acquisition wrapper.
    unwrapped_obj = Acquisition.aq_base(obj)
    writer = ObjectWriter(unwrapped_obj)
    for obj in writer:
      try:
        writer.serialize(obj)
      # Because writer.serialize(obj) relies on the implementation of __getstate__
      # of obj, all errors can happen, so the "except all" is necessary here.
      except:
        return False
    return True
  else:
    # If cannot serialize object with ZODB.serialize, try with cPickle
    # Only a dump of the object is not enough. Dumping and trying to
    # load it will properly raise errors in all possible situations, 
    # for example: if the user defines a dict with an object of a class 
    # that he created the dump will stil work, but the load will fail. 
    try:
      cPickle.loads(cPickle.dumps(obj))
    # By unknowing reasons, trying to catch cPickle.PicklingError in the "normal"
    # way isn't working. This issue might be related to some weirdness in 
    # pickle/cPickle that is reported in this issue: http://bugs.python.org/issue1457119.
    #
    # So, as a temporary fix, we're investigating the exception's class name as
    # string to be able to identify them.
    # 
    # Even though the issue seems complicated, this quickfix should be 
    # properly rewritten in a better way as soon as possible.
    except (cPickle.PicklingError, TypeError, NameError, AttributeError):
      return False
    else:
      return True
  
  
class CustomPrint(object):
  
  def __init__(self):
    self.captured_output_list = []
    
  def write(self, *args):
    self.captured_output_list += args
    
  def getCapturedOutputString(self):
    return ''.join(self.captured_output_list)
    

class PrintFixer(ast.NodeTransformer):
    
  def visit_Print(self, node):
    _print_name_node = ast.Name(id="_print", ctx=ast.Load())
    node.dest = _print_name_node
    return node
  

class EnvironmentParser(ast.NodeTransformer):
  """
    EnvironmentParser class is an AST transformer that walks in the abstract
    code syntax tree to find calls to `define` and `undefine`  on a variable
    named `environment`.
    
    The `define` call should receive a function, which will have it's code
    stored as string in `self.environment_setup_dict`. If only kw args are 
    provided, the variables definition will be stored in self.environment_var_dict.
    
    The `undefine` call will removed keys in self.environment_setup_dict.
  """

  def __init__(self):
    self.environment_setup_dict = {}
    self.environment_var_dict = {}
    self.environment_remove_list = []
    self.function_dict = {}
    self.environment_clear_all = False
    self.show_environment_setup = False

  def visit_FunctionDef(self, node):
    """
      Stores all the function nodes in a dictionary to be accesed later when
      we detect they are used as parameters for an `environment.define` call.
    """
    self.function_dict[node.name] = node
    return node

  def visit_Expr(self, node):
    """
      Visits expressions and check if they are in the form of either 
      `environment.define` or `environment.undefine` properly stores the 
      arguments definition as string.
    """
    value = node.value
    if isinstance(value, ast.Call):
      function = value.func
      if isinstance(function, ast.Attribute):
        attribute = function.value
        if isinstance(attribute, ast.Name):
          name = attribute.id
          if name == 'environment' and function.attr == 'define' and not value.keywords:
            if not len(value.args) == 2:
              raise EnvironmentDefinitionError('environment.define calls receive 2 arguments')
              
            self._ensureType(
              obj=value.args[0], 
              klass=ast.Name, 
              error_message='Type mismatch. environment.define receives a function as first argument.'
            )
            
            self._ensureType(
              obj=value.args[1], 
              klass=ast.Str, 
              error_message='Type mismatch. environment.define receives a string as second argument.'
            )
            
            func_name = value.args[0].id
            func_alias = value.args[1].s
            function_node = self.function_dict[func_name]
            function_string = astor.to_source(function_node)
            self.environment_setup_dict[func_name] = {
              "code": function_string,
              "alias": func_alias
            }
          elif name == 'environment' and function.attr == 'define' and value.keywords:
            for keyword in value.keywords:
              arg_name = keyword.arg
              arg_value_node = keyword.value
              
              # The value can be a number, string or name. We need to handle 
              # them separatedly. This dict trick was used to avoid the very
              # ugly if.
              node_value_dict = {
                ast.Num: lambda node: str(node.n),
                ast.Str: lambda node: node.s,
                ast.Name: lambda node: node.id
              }
              arg_value = node_value_dict[type(arg_value_node)](arg_value_node)
              self.environment_var_dict[arg_name] = arg_value
          elif name == 'environment' and function.attr == 'undefine':
            self._ensureType(
              obj=value.args[0], 
              klass=ast.Str, 
              call_type='undefine',
              error_message='Type mismatch. environment.undefine receives only a string as argument.'
            )
            
            func_alias = value.args[0].s
            self.environment_remove_list.append(func_alias)
          elif name == 'environment' and function.attr == 'clearAll':
            self.environment_clear_all = True
          elif name == 'environment'and function.attr == 'showSetup':
            self.show_environment_setup = True
    return node
    
  def _ensureType(self, obj=None, klass=None, error_message=None, call_type='define'):
    if not isinstance(obj, klass):
      if call_type == 'define':
        error_class = EnvironmentDefinitionError
      elif call_type == 'undefine':
        error_class = EnvironmentUndefineError
      raise error_class(error_message)
    
  def clearAll(self):
    return self.environment_clear_all
    
  def showEnvironmentSetup(self):
    return self.show_environment_setup

  def getEnvironmentSetupDict(self):
    return self.environment_setup_dict
    
  def getEnvironmentVarDict(self):
    return self.environment_var_dict
    
  def getEnvironmentRemoveList(self):
    return self.environment_remove_list


class Environment(object):
  """
   Dumb object used to receive call on an object named `environment` inside
   user context. These calls will be tracked by the EnvironmentParser calls.
  """
  
  def define(self, *args, **kwargs):
    pass
  
  def undefine(self, name):
    pass
        
  def clearAll(self):
    pass
    
  def showSetup(self):
    pass
  

class ImportFixer(ast.NodeTransformer):
  """
   The ImportFixer class is responsivle for fixing "normal" imports that users
   might try to execute.
   
   It will automatically replace them with the proper usage of the environment
   object using AST manipulation.
  """
  
  def __init__(self):
    self.import_func_dict = {}
  
  def visit_FunctionDef(self, node):
    """
      Processes funcion definition nodes. We want to store a list of all the 
      import that are inside functions, because they do not affect the outter
      user context, thus do not imply in any un-pickleable variable being added
      there.
    """
    for child in node.body:
      if isinstance(child, ast.Import):
        for alias in child.names:
          if getattr(alias, 'asname'):
            import_name = alias.asname
          else:
            import_name = alias.name
          self.import_func_dict[import_name] = node.name  
    return self.generic_visit(node)
    
  def visit_ImportFrom(self, node):
    """
     Fixes `import x from y` statements in the same way `import y` is fixed.
    """
    return self.visit_Import(node)

  def visit_Import(self, node):
    """
    This function replaces `normal` imports by creating AST nodes to define
    and environment function which setups the module and return it to be merged
    with the user context.
    """
    module_name = node.names[0].name
    if getattr(node.names[0], 'asname'):
      module_name = node.names[0].asname
    if not self.import_func_dict.get(module_name):
      empty_function = self.newEmptyFunction("%s_setup" % module_name)
      return_dict = self.newReturnDict(module_name)
      empty_function.body = [node, return_dict]
      environment_set = self.newEnvironmentSetCall("%s_setup" % module_name)
      warning = self.newImportWarningCall(module_name)
      return [empty_function, environment_set, warning]
    else:
      return node

  def newEmptyFunction(self, func_name):
    """
      Return a AST.Function object representing a function with name `func_name`
      and an empty body.
    """
    func_body = "def %s(): pass" % func_name
    return ast.parse(func_body).body[0]

  def newReturnDict(self, module_name):
    """
      Return an AST.Expr representing a returned dict with one single key named
      `'module_name'` (as string) which returns the variable `module_name` (as 
      exoression).
    """
    return_dict = "return {'%s': %s}" % (module_name, module_name)
    return ast.parse(return_dict).body[0]

  def newEnvironmentSetCall(self, func_name):
    """
      Return an AST.Expr representaion an `environment.define` call receiving
      `func_name` (as an expression) and `'func_name'` (as string).
    """
    code_string = "environment.define(%s, '%s')" % (func_name, func_name)
    tree = ast.parse(code_string)
    return tree.body[0]

  def newImportWarningCall(self, module_name):
    """
      Return an AST.Expr representanting a print statement with a warning to an
      user about the import of a module named `module_name` and instructs him
      on how to fix it.
    """
    warning = ("print '"
               "WARNING: Your imported the module %s without using "
               "the environment object, which is not recomended. "
               "Your import was automatically converted to use such method."
               "The setup function was named as: %s_setup.\\n" 
               "'") % (module_name, module_name)
    tree = ast.parse(warning)
    return tree.body[0]

  
def renderAsHtml(self, renderable_object):
  '''
    renderAsHtml will render its parameter as HTML by using the matching 
    display processor for that class. Some processors can be found in this
    file. 
  '''
  # Ugly frame hack to access the processor list defined in the body of the
  # kernel's code, where `exec` is called.
  #
  # At this point the stack should be, from top to the bottom:
  #
  #   5. ExternalMethod Patch call
  #   4. Base_runJupyterCode frame (where we want to change variable)
  #   3. exec call to run the user's code
  #   2. ExternalMethod Patch call through `context.Base_renderAsHtml` in the notebook
  #   1. renderAsHtml frame (where the function is)
  # 
  # So sys._getframe(3) is enough to get us up into the frame we want.
  #
  compile_jupyter_frame = sys._getframe(3)
  compile_jupyter_locals = compile_jupyter_frame.f_locals
  processor = compile_jupyter_locals['processor_list'].getProcessorFor(renderable_object)
  result, _ = processor(renderable_object).process()
  compile_jupyter_locals['inject_variable_dict']['_print'].write(result)
  compile_jupyter_locals['display_data']['mime_type'] = 'text/html'

def getErrorMessageForException(self, exception, notebook_context):
  '''
    getErrorMessageForException receives an Expcetion object and a context for
    code execution (notebook_context) and will return a dict as Jupyter
    requires for error rendering.
  '''
  _, value, _ = sys.exc_info()
  traceback_text = traceback.format_exc().split('\n')[:-1]
  return {
    'status': 'error',
    'result_string': None,
    'notebook_context': notebook_context,
    'mime_type': 'text/plain',
    'evalue': str(value),
    'ename': exception.__class__.__name__,
    'traceback': traceback_text
  }

def createNotebookContext(self):
  """
  Function to create an empty notebook context.
  """
  return {'variables': {}, 'setup': {}}

class ObjectProcessor(object):
  '''
    Basic object processor that stores the first parameters of the constructor
    in the `subject` attribute and store the target classes for that processor.
  '''
  TARGET_CLASSES=None
  TARGET_MODULES=None
  
  @classmethod
  def getTargetClasses(cls):
    return cls.TARGET_CLASSES
    
  @classmethod
  def getTargetModules(cls):
    return cls.TARGET_MODULES
    
  def __init__(self, something):
    self.subject = something

class MatplotlibFigureProcessor(ObjectProcessor):
  '''
    MatplotlibFigureProcessor handles the rich display of 
    matplotlib.figure.Figure objects. It displays them using an img tag with
    the inline png image encoded as base64.
  '''
  TARGET_CLASSES=[Figure,]
  TARGET_MODULES=['matplotlib.pyplot',]

  def process(self):
    image_io = StringIO()
    self.subject.savefig(image_io, format='png')
    image_io.seek(0)
    return self._getImageHtml(image_io), 'text/html'
  
  def _getImageHtml(self, image_io):
    return '<img src="data:image/png;base64,%s" /><br />' % base64.b64encode(image_io.getvalue())
    
class ERP5ImageProcessor(ObjectProcessor):
  '''
   ERP5ImageProcessor handles the rich display of ERP5's image_module object.
   It gets the image data and content type and use them to create a proper img
   tag.
  '''
  TARGET_CLASSES=[Image,]
  
  def process(self):
    from base64 import b64encode
    figure_data = b64encode(self.subject.getData())
    mime_type = self.subject.getContentType()
    return '<img src="data:%s;base64,%s" /><br />' % (mime_type, figure_data), 'text/html'

class IPythonDisplayObjectProcessor(ObjectProcessor):
  '''
    IPythonDisplayObjectProcessor handles the display of all objects from the
    IPython.display module, including: Audio, IFrame, YouTubeVideo, VimeoVideo, 
    ScribdDocument, FileLink, and FileLinks. 
    
    All these objects have the `_repr_html_` method, which is used by the class
    to render them.
  '''
  TARGET_CLASSES=[DisplayObject, IFrame]
  
  def process(self):
    html_repr = self.subject._repr_html_()
    return html_repr + '<br />', 'text/html' 

class GenericProcessor(ObjectProcessor):
  '''
    Generic processor to render objects as string.
  '''
  
  def process(self):
    return str(self.subject), 'text/plain'
    
class ProcessorList(object):
  '''
    ProcessorList is responsible to store all the processors in a dict using
    the classes they handle as the key. Subclasses of these classes will have
    the same processor of the eigen class. This means that the order of adding
    processors is important, as some classes' processors may be overwritten in
    some situations.
    
    The `getProcessorFor` method uses `something.__class__' and not 
    `type(something)` because using the later onobjects returned by portal 
    catalog queries will return an AcquisitionWrapper type instead of the 
    object's real class.
  '''
  
  def __init__(self, default=GenericProcessor):
    self.processors = {}
    self.default_processor = GenericProcessor
  
  def addProcessor(self, processor):
    classes = processor.getTargetClasses()
    modules = processor.getTargetModules()
    
    if classes and not len(classes) == 0:
      for klass in classes:
        self.processors[klass] = processor
        for subclass in klass.__subclasses__():
          self.processors[subclass] = processor
      
    if modules and not len(modules) == 0:
      for module in modules:
        self.processors[module] = processor
        
  def getProcessorFor(self, something):
    if not isinstance(something, ModuleType):
      return self.processors.get(something.__class__, self.default_processor)
    else:
      return self.processors.get(something.__name__, self.default_processor)


def storeIFrame(self, html, key):
  self.portal_caches.erp5_pivottable_frame_cache.set(key, html)
  return True


# WARNING! 
# 
# This is a highly experimental PivotTableJs integration which does not follow
# ERP5 Javascrpt standards and it will be refactored to use JIO and RenderJS.
#
def erp5PivotTableUI(self, df):
  from IPython.display import IFrame
  template = """
  <!DOCTYPE html>
  <html>
    <head>
      <title>PivotTable.js</title>

      <!-- external libs from cdnjs -->
      <link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.min.css">
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jquery-csv/0.71/jquery.csv-0.71.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.min.js"></script>

      <link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/pivot.min.css">
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/pivot.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/d3_renderers.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/c3_renderers.min.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/export_renderers.min.js"></script>

      <style>
        body {font-family: Verdana;}
        .node {
         border: solid 1px white;
         font: 10px sans-serif;
         line-height: 12px;
         overflow: hidden;
         position: absolute;
         text-indent: 2px;
        }
        .c3-line, .c3-focused {stroke-width: 3px !important;}
        .c3-bar {stroke: white !important; stroke-width: 1;}
        .c3 text { font-size: 12px; color: grey;}
        .tick line {stroke: white;}
        .c3-axis path {stroke: grey;}
        .c3-circle { opacity: 1 !important; }
      </style>
    </head>
    <body>
      <script type="text/javascript">
        $(function(){
          if(window.location != window.parent.location)
            $("<a>", {target:"_blank", href:""})
              .text("[pop out]").prependTo($("body"));

          $("#output").pivotUI( 
            $.csv.toArrays($("#output").text()), 
            { 
              renderers: $.extend(
                $.pivotUtilities.renderers, 
                $.pivotUtilities.c3_renderers, 
                $.pivotUtilities.d3_renderers,
                $.pivotUtilities.export_renderers
                ),
              hiddenAttributes: [""]
            }
          ).show();
         });
      </script>
      <div id="output" style="display: none;">%s</div>
    </body>
  </html>
  """
  html_string = template % df.to_csv()
  from hashlib import sha512
  key = sha512(html_string).hexdigest()
  storeIFrame(self, html_string, key)
  iframe_host = self.REQUEST['HTTP_X_FORWARDED_HOST'].split(',')[0]
  url = "https://%s/erp5/Base_displayPivotTableFrame?key=%s" % (iframe_host, key)
  return IFrame(src=url, width='100%', height='500')