This program shows kernel stack traces and task names that were blocked and
"off-CPU", along with the stack traces and task names for the threads that woke
...
...
@@ -25,11 +25,6 @@ flame graph".
See http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
The stack depth is currently limited to 20 for the off-CPU stack, and 10 for
the waker stack, and the stack traces are kernel mode only. Check for newer
versions where this should be improved.
This currently only works on x86_64. Check for future versions.
.SH REQUIREMENTS
CONFIG_BPF and bcc.
.SH OPTIONS
...
...
@@ -38,22 +33,40 @@ CONFIG_BPF and bcc.
Print usage message.
.TP
\-f
Output stacks in folded format.
Print output in folded stack format.
.TP
\-p PID
Trace this process ID only (filtered in-kernel).
.TP
\-t TID
Trace this thread ID only (filtered in-kernel).
.TP
\-u
Only trace user threads (not kernel threads).
Only trace user threads (no kernel threads).
.TP
\-v
Show raw addresses for non-folded mode.
\-k
Only trace kernel threads (no user threads).
.TP
\-p PID
Trace this process ID only (filtered in-kernel).
\-U
Show stacks from user space only (no kernel space stacks).
.TP
\-K
Show stacks from kernel space only (no user space stacks).
.TP
\-\-stack-storage-size STACK_STORAGE_SIZE
Change the number of unique stack traces that can be stored and displayed.
.TP
duration
Duration to trace, in seconds.
.TP
\-m MIN_BLOCK_TIME
The amount of time in microseconds over which we store traces (default 1)
.TP
\-M MAX_BLOCK_TIME
The amount of time in microseconds under which we store traces (default U64_MAX)
.SH EXAMPLES
.TP
Trace all thread blocking events, and summarize (in-kernel) by kernel off-CPU stack trace, waker stack traces, task names, and total blocked time:
Trace all thread blocking events, and summarize (in-kernel) by user and kernel off-CPU stack trace, waker stack traces, task names, and total blocked time:
#
.B offwaketime
.TP
...
...
@@ -76,8 +89,8 @@ is printed. While these techniques greatly lower overhead, scheduler events are
still a high frequency event, as they can exceed 1 million events per second,
and so caution should still be used. Test before production use.
If the overhead is still a problem, take a look at the MINBLOCK_US tunable in
the code. If your aim is to chase down longer blocking events, then this could
If the overhead is still a problem, take a look at the min block option.
If your aim is to chase down longer blocking events, then this could
be increased to filter shorter blocking events, further lowering overhead.