Commit 03e4d592 authored by David Mosberger's avatar David Mosberger

ia64: Revert compile-time optimization for bzero().

parent 6d92fcdd
...@@ -6,11 +6,7 @@ ...@@ -6,11 +6,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/string.h> #include <linux/string.h>
#undef memset
extern void *memset (void *, int, size_t);
EXPORT_SYMBOL_NOVERS(memset); /* gcc generates direct calls to memset()... */ EXPORT_SYMBOL_NOVERS(memset); /* gcc generates direct calls to memset()... */
EXPORT_SYMBOL_NOVERS(__memset_generic);
EXPORT_SYMBOL_NOVERS(__bzero);
EXPORT_SYMBOL(memchr); EXPORT_SYMBOL(memchr);
EXPORT_SYMBOL(memcmp); EXPORT_SYMBOL(memcmp);
EXPORT_SYMBOL_NOVERS(memcpy); EXPORT_SYMBOL_NOVERS(memcpy);
......
/* /* Optimized version of the standard memset() function.
*
* Optimized version of the standard memset() function Copyright (c) 2002 Hewlett-Packard Co/CERN
* Sverre Jarp <Sverre.Jarp@cern.ch>
* Return: none
* Return: dest
* Inputs:
* in0: address of buffer Inputs:
* in1: byte value to use for storing in0: dest
* in2: length of the buffer in1: value
* in2: count
* Copyright (C) 1999, 2001, 2002 Hewlett-Packard Co
* Stephane Eranian <eranian@hpl.hp.com> The algorithm is fairly straightforward: set byte by byte until we
*/ we get to a 16B-aligned address, then loop on 128 B chunks using an
early store as prefetching, then loop on 32B chucks, then clear remaining
words, finally clear remaining bytes.
Since a stf.spill f0 can store 16B in one go, we use this instruction
to get peak speed when value = 0. */
#include <asm/asmmacro.h> #include <asm/asmmacro.h>
#undef ret
#define dest in0
#define value in1
#define cnt in2
#define tmp r31
#define save_lc r30
#define ptr0 r29
#define ptr1 r28
#define ptr2 r27
#define ptr3 r26
#define ptr9 r24
#define loopcnt r23
#define linecnt r22
#define bytecnt r21
// arguments #define fvalue f6
//
#define buf r32 // This routine uses only scratch predicate registers (p6 - p15)
#define val r33 #define p_scr p6 // default register for same-cycle branches
#define len r34 #define p_nz p7
#define p_zr p8
// #define p_unalgn p9
// local registers #define p_y p11
// #define p_n p12
#define saved_pfs r14 #define p_yy p13
#define cnt r18 #define p_nn p14
#define buf2 r19
#define saved_lc r20 #define MIN1 15
#define tmp r21 #define MIN1P1HALF 8
#define LINE_SIZE 128
GLOBAL_ENTRY(__bzero) #define LSIZE_SH 7 // shift amount
#define PREF_AHEAD 8
GLOBAL_ENTRY(memset)
{ .mmi
.prologue .prologue
.save ar.pfs, saved_pfs alloc tmp = ar.pfs, 3, 0, 0, 0
alloc saved_pfs=ar.pfs,0,0,3,0 .body
mov out2=out1 lfetch.nt1 [dest] //
mov out1=0 .save ar.lc, save_lc
/* FALL THROUGH (explicit NOPs so that next alloc is preceded by stop bit!) */ mov.i save_lc = ar.lc
} { .mmi
mov ret0 = dest // return value
cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
cmp.eq p_scr, p0 = cnt, r0
;; }
{ .mmi
and ptr2 = -(MIN1+1), dest // aligned address
and tmp = MIN1, dest // prepare to check for correct alignment
tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
} { .mib
mov ptr1 = dest
mux1 value = value, @brcst // create 8 identical bytes in word
(p_scr) br.ret.dpnt.many rp // return immediately if count = 0
;; }
{ .mib
cmp.ne p_unalgn, p0 = tmp, r0 //
} { .mib
sub bytecnt = (MIN1+1), tmp // NB: # of bytes to move is 1 higher than loopcnt
cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
;; }
{ .mmi
(p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
;; }
{ .mib
(p_y) add cnt = -8, cnt //
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
} { .mib
(p_y) st8 [ptr2] = value,-4 //
(p_n) add ptr2 = 4, ptr2 //
;; }
{ .mib
(p_yy) add cnt = -4, cnt //
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
} { .mib
(p_yy) st4 [ptr2] = value,-2 //
(p_nn) add ptr2 = 2, ptr2 //
;; }
{ .mmi
mov tmp = LINE_SIZE+1 // for compare
(p_y) add cnt = -2, cnt //
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
} { .mmi
setf.sig fvalue=value // transfer value to FLP side
(p_y) st2 [ptr2] = value,-1 //
(p_n) add ptr2 = 1, ptr2 //
;; }
{ .mmi
(p_yy) st1 [ptr2] = value //
cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
} { .mbb
(p_yy) add cnt = -1, cnt //
(p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
;; }
{ .mib
nop.m 0 nop.m 0
nop.f 0 shr.u linecnt = cnt, LSIZE_SH
(p_zr) br.cond.dptk.many .l1b // Jump to use stf.spill
;; }
.align 32 // -------------------------- // L1A: store ahead into cache lines; fill later
{ .mmi
and tmp = -(LINE_SIZE), cnt // compute end of range
mov ptr9 = ptr1 // used for prefetching
and cnt = (LINE_SIZE-1), cnt // remainder
} { .mmi
mov loopcnt = PREF_AHEAD-1 // default prefetch loop
cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
;; }
{ .mmi
(p_scr) add loopcnt = -1, linecnt //
add ptr2 = 8, ptr1 // start of stores (beyond prefetch stores)
add ptr1 = tmp, ptr1 // first address beyond total range
;; }
{ .mmi
add tmp = -1, linecnt // next loop count
mov.i ar.lc = loopcnt //
;; }
.pref_l1a:
{ .mib
stf8 [ptr9] = fvalue, 128 // Do stores one cache line apart
nop.i 0 nop.i 0
;; br.cloop.dptk.few .pref_l1a
END(__bzero) ;; }
GLOBAL_ENTRY(__memset_generic) { .mmi
.prologue add ptr0 = 16, ptr2 // Two stores in parallel
.save ar.pfs, saved_pfs mov.i ar.lc = tmp //
alloc saved_pfs=ar.pfs,3,0,0,0 // cnt is sink here ;; }
cmp.eq p8,p0=r0,len // check for zero length .l1ax:
.save ar.lc, saved_lc { .mmi
mov saved_lc=ar.lc // preserve ar.lc (slow) stf8 [ptr2] = fvalue, 8
;; stf8 [ptr0] = fvalue, 8
;; }
{ .mmi
stf8 [ptr2] = fvalue, 24
stf8 [ptr0] = fvalue, 24
;; }
{ .mmi
stf8 [ptr2] = fvalue, 8
stf8 [ptr0] = fvalue, 8
;; }
{ .mmi
stf8 [ptr2] = fvalue, 24
stf8 [ptr0] = fvalue, 24
;; }
{ .mmi
stf8 [ptr2] = fvalue, 8
stf8 [ptr0] = fvalue, 8
;; }
{ .mmi
stf8 [ptr2] = fvalue, 24
stf8 [ptr0] = fvalue, 24
;; }
{ .mmi
stf8 [ptr2] = fvalue, 8
stf8 [ptr0] = fvalue, 32
cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
;; }
{ .mmb
stf8 [ptr2] = fvalue, 24
(p_scr) stf8 [ptr9] = fvalue, 128
br.cloop.dptk.few .l1ax
;; }
{ .mbb
cmp.le p_scr, p0 = 8, cnt // just a few bytes left ?
(p_scr) br.cond.dpnt.many .fraction_of_line // Branch no. 2
br.cond.dpnt.many .move_bytes_from_alignment // Branch no. 3
;; }
.body .align 32
.l1b: // ------------------------------------ // L1B: store ahead into cache lines; fill later
{ .mmi
and tmp = -(LINE_SIZE), cnt // compute end of range
mov ptr9 = ptr1 // used for prefetching
and cnt = (LINE_SIZE-1), cnt // remainder
} { .mmi
mov loopcnt = PREF_AHEAD-1 // default prefetch loop
cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
;; }
{ .mmi
(p_scr) add loopcnt = -1, linecnt
add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
add ptr1 = tmp, ptr1 // first address beyond total range
;; }
{ .mmi
add tmp = -1, linecnt // next loop count
mov.i ar.lc = loopcnt
;; }
.pref_l1b:
{ .mib
stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
nop.i 0
br.cloop.dptk.few .pref_l1b
;; }
{ .mmi
add ptr0 = 16, ptr2 // Two stores in parallel
mov.i ar.lc = tmp
;; }
.l1bx:
{ .mmi
stf.spill [ptr2] = f0, 32
stf.spill [ptr0] = f0, 32
;; }
{ .mmi
stf.spill [ptr2] = f0, 32
stf.spill [ptr0] = f0, 32
;; }
{ .mmi
stf.spill [ptr2] = f0, 32
stf.spill [ptr0] = f0, 64
cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
;; }
{ .mmb
stf.spill [ptr2] = f0, 32
(p_scr) stf.spill [ptr9] = f0, 128
br.cloop.dptk.few .l1bx
;; }
{ .mib
cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
(p_scr) br.cond.dpnt.many .move_bytes_from_alignment //
;; }
adds tmp=-1,len // br.ctop is repeat/until .fraction_of_line:
tbit.nz p6,p0=buf,0 // odd alignment { .mib
(p8) br.ret.spnt.many rp add ptr2 = 16, ptr1
shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
cmp.lt p7,p0=16,len // if len > 16 then long memset ;; }
mux1 val=val,@brcst // prepare value { .mib
(p7) br.cond.dptk .long_memset cmp.eq p_scr, p0 = loopcnt, r0
;; add loopcnt = -1, loopcnt
mov ar.lc=tmp // initialize lc for small count (p_scr) br.cond.dpnt.many .store_words
;; // avoid RAW and WAW on ar.lc ;; }
1: // worst case 15 cyles, avg 8 cycles { .mib
st1 [buf]=val,1 and cnt = 0x1f, cnt // compute the remaining cnt
br.cloop.dptk.few 1b mov.i ar.lc = loopcnt
;; // avoid RAW on ar.lc ;; }
mov ar.lc=saved_lc .align 32
mov ar.pfs=saved_pfs .l2: // ------------------------------------ // L2A: store 32B in 2 cycles
br.ret.sptk.many rp // end of short memset { .mmb
stf8 [ptr1] = fvalue, 8
// at this point we know we have more than 16 bytes to copy stf8 [ptr2] = fvalue, 8
// so we focus on alignment ;; } { .mmb
.long_memset: stf8 [ptr1] = fvalue, 24
(p6) st1 [buf]=val,1 // 1-byte aligned stf8 [ptr2] = fvalue, 24
(p6) adds len=-1,len;; // sync because buf is modified br.cloop.dptk.many .l2
tbit.nz p6,p0=buf,1 ;; }
;; .store_words:
(p6) st2 [buf]=val,2 // 2-byte aligned { .mib
(p6) adds len=-2,len;; cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
tbit.nz p6,p0=buf,2 (p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
;; ;; }
(p6) st4 [buf]=val,4 // 4-byte aligned
(p6) adds len=-4,len;; { .mmi
tbit.nz p6,p0=buf,3 stf8 [ptr1] = fvalue, 8 // store
;; cmp.le p_y, p_n = 16, cnt
(p6) st8 [buf]=val,8 // 8-byte aligned add cnt = -8, cnt // subtract
(p6) adds len=-8,len;; ;; }
shr.u cnt=len,4 // number of 128-bit (2x64bit) words { .mmi
;; (p_y) stf8 [ptr1] = fvalue, 8 // store
cmp.eq p6,p0=r0,cnt (p_y) cmp.le.unc p_yy, p_nn = 16, cnt
adds tmp=-1,cnt (p_y) add cnt = -8, cnt // subtract
(p6) br.cond.dpnt .dotail // we have less than 16 bytes left ;; }
;; { .mmi // store
adds buf2=8,buf // setup second base pointer (p_yy) stf8 [ptr1] = fvalue, 8
mov ar.lc=tmp (p_yy) add cnt = -8, cnt // subtract
;; ;; }
2: // 16bytes/iteration
st8 [buf]=val,16 .move_bytes_from_alignment:
st8 [buf2]=val,16 { .mib
br.cloop.dptk.few 2b cmp.eq p_scr, p0 = cnt, r0
;; tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
.dotail: // tail correction based on len only (p_scr) br.cond.dpnt.few .restore_and_exit
tbit.nz p6,p0=len,3 ;; }
;; { .mib
(p6) st8 [buf]=val,8 // at least 8 bytes (p_y) st4 [ptr1] = value,4
tbit.nz p6,p0=len,2 tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
;; ;; }
(p6) st4 [buf]=val,4 // at least 4 bytes { .mib
tbit.nz p6,p0=len,1 (p_yy) st2 [ptr1] = value,2
;; tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
(p6) st2 [buf]=val,2 // at least 2 bytes ;; }
tbit.nz p6,p0=len,0
mov ar.lc=saved_lc { .mib
;; (p_y) st1 [ptr1] = value
(p6) st1 [buf]=val // only 1 byte left ;; }
.restore_and_exit:
{ .mib
nop.m 0
mov.i ar.lc = save_lc
br.ret.sptk.many rp br.ret.sptk.many rp
END(__memset_generic) ;; }
.global memset .move_bytes_unaligned:
memset = __memset_generic // alias needed for gcc { .mmi
.pred.rel "mutex",p_y, p_n
.pred.rel "mutex",p_yy, p_nn
(p_n) cmp.le p_yy, p_nn = 4, cnt
(p_y) cmp.le p_yy, p_nn = 5, cnt
(p_n) add ptr2 = 2, ptr1
} { .mmi
(p_y) add ptr2 = 3, ptr1
(p_y) st1 [ptr1] = value, 1 // fill 1 (odd-aligned) byte [15, 14 (or less) left]
(p_y) add cnt = -1, cnt
;; }
{ .mmi
(p_yy) cmp.le.unc p_y, p0 = 8, cnt
add ptr3 = ptr1, cnt // prepare last store
mov.i ar.lc = save_lc
} { .mmi
(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [11, 10 (o less) left]
(p_yy) add cnt = -4, cnt
;; }
{ .mmi
(p_y) cmp.le.unc p_yy, p0 = 8, cnt
add ptr3 = -1, ptr3 // last store
tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
} { .mmi
(p_y) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
(p_y) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [7, 6 (or less) left]
(p_y) add cnt = -4, cnt
;; }
{ .mmi
(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [3, 2 (or less) left]
tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
} { .mmi
(p_yy) add cnt = -4, cnt
;; }
{ .mmb
(p_scr) st2 [ptr1] = value // fill 2 (aligned) bytes
(p_y) st1 [ptr3] = value // fill last byte (using ptr3)
br.ret.sptk.many rp
}
END(memset)
...@@ -18,20 +18,6 @@ ...@@ -18,20 +18,6 @@
extern __kernel_size_t strlen (const char *); extern __kernel_size_t strlen (const char *);
extern void *memcpy (void *, const void *, __kernel_size_t); extern void *memcpy (void *, const void *, __kernel_size_t);
extern void *memset (void *, int, __kernel_size_t);
extern void *__memset_generic (void *, int, __kernel_size_t);
extern void __bzero (void *, __kernel_size_t);
#define memset(s, c, count) \
({ \
void *_s = (s); \
int _c = (c); \
__kernel_size_t _count = (count); \
\
if (__builtin_constant_p(_c) && _c == 0) \
__bzero(_s, _count); \
else \
__memset_generic(_s, _c, _count); \
})
#endif /* _ASM_IA64_STRING_H */ #endif /* _ASM_IA64_STRING_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment