Commit 04879b04 authored by Andrew Morton's avatar Andrew Morton Committed by Linus Torvalds

[PATCH] ppc64: VMX (Altivec) support & signal32 rework, from Ben Herrenschmidt

From: Anton Blanchard <anton@samba.org>

VMX (Altivec) support & signal32 rework, from Ben Herrenschmidt
parent d4c6e4e1
...@@ -72,6 +72,13 @@ config PPC64 ...@@ -72,6 +72,13 @@ config PPC64
bool bool
default y default y
# VMX is pSeries only for now until somebody writes the iSeries
# exception vectors for it
config ALTIVEC
bool "Support for VMX (Altivec) vector unit"
depends on PPC_PSERIES
default y
config POWER4_ONLY config POWER4_ONLY
bool "Optimize for POWER4" bool "Optimize for POWER4"
default n default n
......
...@@ -31,4 +31,6 @@ typedef struct { ...@@ -31,4 +31,6 @@ typedef struct {
#define BITS_PER_LONG 32 #define BITS_PER_LONG 32
typedef __vector128 vector128;
#endif /* _PPC64_TYPES_H */ #endif /* _PPC64_TYPES_H */
...@@ -56,6 +56,12 @@ int main(void) ...@@ -56,6 +56,12 @@ int main(void)
DEFINE(THREAD_FPSCR, offsetof(struct thread_struct, fpscr)); DEFINE(THREAD_FPSCR, offsetof(struct thread_struct, fpscr));
DEFINE(KSP, offsetof(struct thread_struct, ksp)); DEFINE(KSP, offsetof(struct thread_struct, ksp));
#ifdef CONFIG_ALTIVEC
DEFINE(THREAD_VR0, offsetof(struct thread_struct, vr[0]));
DEFINE(THREAD_VRSAVE, offsetof(struct thread_struct, vrsave));
DEFINE(THREAD_VSCR, offsetof(struct thread_struct, vscr));
DEFINE(THREAD_USED_VR, offsetof(struct thread_struct, used_vr));
#endif /* CONFIG_ALTIVEC */
DEFINE(MM, offsetof(struct task_struct, mm)); DEFINE(MM, offsetof(struct task_struct, mm));
/* naca */ /* naca */
......
...@@ -21,6 +21,13 @@ ...@@ -21,6 +21,13 @@
struct cpu_spec* cur_cpu_spec = NULL; struct cpu_spec* cur_cpu_spec = NULL;
/* NOTE:
* Unlike ppc32, ppc64 will only call this once for the boot CPU, it's
* the responsibility of the appropriate CPU save/restore functions to
* eventually copy these settings over. Those save/restore aren't yet
* part of the cputable though. That has to be fixed for both ppc32
* and ppc64
*/
extern void __setup_cpu_power3(unsigned long offset, struct cpu_spec* spec); extern void __setup_cpu_power3(unsigned long offset, struct cpu_spec* spec);
extern void __setup_cpu_power4(unsigned long offset, struct cpu_spec* spec); extern void __setup_cpu_power4(unsigned long offset, struct cpu_spec* spec);
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <asm/thread_info.h> #include <asm/thread_info.h>
#include <asm/ppc_asm.h> #include <asm/ppc_asm.h>
#include <asm/offsets.h> #include <asm/offsets.h>
#include <asm/cputable.h>
#ifdef CONFIG_PPC_ISERIES #ifdef CONFIG_PPC_ISERIES
#define DO_SOFT_DISABLE #define DO_SOFT_DISABLE
...@@ -211,6 +212,15 @@ _GLOBAL(ret_from_syscall_2) ...@@ -211,6 +212,15 @@ _GLOBAL(ret_from_syscall_2)
.align 2,0 .align 2,0
#endif #endif
_GLOBAL(ppc32_swapcontext)
bl .sys32_swapcontext
b 80f
_GLOBAL(ppc64_swapcontext)
bl .sys_swapcontext
b 80f
_GLOBAL(ppc32_sigreturn) _GLOBAL(ppc32_sigreturn)
bl .sys32_sigreturn bl .sys32_sigreturn
b 80f b 80f
...@@ -261,10 +271,17 @@ _GLOBAL(_switch) ...@@ -261,10 +271,17 @@ _GLOBAL(_switch)
SAVE_10GPRS(22, r1) SAVE_10GPRS(22, r1)
mflr r20 /* Return to switch caller */ mflr r20 /* Return to switch caller */
mfmsr r22 mfmsr r22
andi. r21, r22, MSR_FP li r0, MSR_FP
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
oris r0,r0,MSR_VEC@h /* Disable altivec */
mfspr r24,SPRN_VRSAVE /* save vrsave register value */
std r24,THREAD_VRSAVE(r3)
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif /* CONFIG_ALTIVEC */
and. r0,r0,r22
beq+ 1f beq+ 1f
li r6,MSR_FP /* Disable floating-point */ andc r22,r22,r0
andc r22,r22,r6
mtmsrd r22 mtmsrd r22
isync isync
1: std r20,_NIP(r1) 1: std r20,_NIP(r1)
...@@ -278,6 +295,14 @@ _GLOBAL(_switch) ...@@ -278,6 +295,14 @@ _GLOBAL(_switch)
ld r1,KSP(r4) /* Load new stack pointer */ ld r1,KSP(r4) /* Load new stack pointer */
ld r6,_CCR(r1) ld r6,_CCR(r1)
mtcrf 0xFF,r6 mtcrf 0xFF,r6
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
ld r0,THREAD_VRSAVE(r4)
mtspr SPRN_VRSAVE,r0 /* if G4, restore VRSAVE reg */
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif /* CONFIG_ALTIVEC */
/* r3-r13 are destroyed -- Cort */ /* r3-r13 are destroyed -- Cort */
REST_8GPRS(14, r1) REST_8GPRS(14, r1)
REST_10GPRS(22, r1) REST_10GPRS(22, r1)
......
...@@ -391,9 +391,34 @@ __start_interrupts: ...@@ -391,9 +391,34 @@ __start_interrupts:
STD_EXCEPTION_PSERIES( 0xc00, SystemCall ) STD_EXCEPTION_PSERIES( 0xc00, SystemCall )
STD_EXCEPTION_PSERIES( 0xd00, SingleStep ) STD_EXCEPTION_PSERIES( 0xd00, SingleStep )
STD_EXCEPTION_PSERIES( 0xe00, Trap_0e ) STD_EXCEPTION_PSERIES( 0xe00, Trap_0e )
STD_EXCEPTION_PSERIES( 0xf00, PerformanceMonitor )
/* We need to deal with the Altivec unavailable exception
* here which is at 0xf20, thus in the middle of the
* prolog code of the PerformanceMonitor one. A little
* trickery is thus necessary
*/
. = 0xf00
b .PerformanceMonitor_Pseries
. = 0xf20
b .AltivecUnavailable_Pseries
STD_EXCEPTION_PSERIES( 0x1300, InstructionBreakpoint ) STD_EXCEPTION_PSERIES( 0x1300, InstructionBreakpoint )
STD_EXCEPTION_PSERIES( 0x1700, AltivecAssist )
/* Here are the "moved" performance monitor and
* altivec unavailable exceptions
*/
. = 0x3000
.globl PerformanceMonitor_Pseries;
.PerformanceMonitor_Pseries:
EXCEPTION_PROLOG_PSERIES(0xf00, PerformanceMonitor_common)
. = 0x3100
.globl AltivecUnavailable_Pseries;
.AltivecUnavailable_Pseries:
EXCEPTION_PROLOG_PSERIES(0xf20, AltivecUnavailable_common)
/* Space for the naca. Architected to be located at real address /* Space for the naca. Architected to be located at real address
* NACA_PHYS_ADDR. Various tools rely on this location being fixed. * NACA_PHYS_ADDR. Various tools rely on this location being fixed.
* The first dword of the naca is required by iSeries LPAR to * The first dword of the naca is required by iSeries LPAR to
...@@ -580,7 +605,11 @@ __end_stab: ...@@ -580,7 +605,11 @@ __end_stab:
STD_EXCEPTION_COMMON( 0xe00, Trap_0e, .UnknownException ) STD_EXCEPTION_COMMON( 0xe00, Trap_0e, .UnknownException )
STD_EXCEPTION_COMMON( 0xf00, PerformanceMonitor, .PerformanceMonitorException ) STD_EXCEPTION_COMMON( 0xf00, PerformanceMonitor, .PerformanceMonitorException )
STD_EXCEPTION_COMMON(0x1300, InstructionBreakpoint, .InstructionBreakpointException ) STD_EXCEPTION_COMMON(0x1300, InstructionBreakpoint, .InstructionBreakpointException )
#ifdef CONFIG_ALTIVEC
STD_EXCEPTION_COMMON(0x1700, AltivecAssist, .AltivecAssistException )
#else
STD_EXCEPTION_COMMON(0x1700, AltivecAssist, .UnknownException )
#endif
/* /*
* Return from an exception which is handled without calling * Return from an exception which is handled without calling
* save_remaining_regs. The caller is assumed to have done * save_remaining_regs. The caller is assumed to have done
...@@ -755,6 +784,23 @@ FPUnavailable_common: ...@@ -755,6 +784,23 @@ FPUnavailable_common:
bl .KernelFPUnavailableException bl .KernelFPUnavailableException
BUG_OPCODE BUG_OPCODE
.globl AltivecUnavailable_common
AltivecUnavailable_common:
EXCEPTION_PROLOG_COMMON
#ifdef CONFIG_ALTIVEC
bne .load_up_altivec /* if from user, just load it up */
#endif
addi r3,r1,STACK_FRAME_OVERHEAD
DO_COPY_EE()
li r6,0xf20
bl .save_remaining_regs
#ifdef CONFIG_ALTIVEC
bl .KernelAltivecUnavailableException
#else
bl .UnknownException
#endif
BUG_OPCODE
.globl SystemCall_common .globl SystemCall_common
SystemCall_common: SystemCall_common:
EXCEPTION_PROLOG_COMMON EXCEPTION_PROLOG_COMMON
...@@ -1483,6 +1529,126 @@ _GLOBAL(giveup_fpu) ...@@ -1483,6 +1529,126 @@ _GLOBAL(giveup_fpu)
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
blr blr
#ifdef CONFIG_ALTIVEC
/*
* load_up_altivec(unused, unused, tsk)
* Disable VMX for the task which had it previously,
* and save its vector registers in its thread_struct.
* Enables the VMX for use in the kernel on return.
* On SMP we know the VMX is free, since we give it up every
* switch (ie, no lazy save of the vector registers).
* On entry: r13 == 'current' && last_task_used_altivec != 'current'
*/
_STATIC(load_up_altivec)
mfmsr r5 /* grab the current MSR */
oris r5,r5,MSR_VEC@h
mtmsrd r5 /* enable use of VMX now */
isync
/*
* For SMP, we don't do lazy VMX switching because it just gets too
* horrendously complex, especially when a task switches from one CPU
* to another. Instead we call giveup_altvec in switch_to.
* VRSAVE isn't dealt with here, that is done in the normal context
* switch code. Note that we could rely on vrsave value to eventually
* avoid saving all of the VREGs here...
*/
#ifndef CONFIG_SMP
LOADBASE(r3,last_task_used_altivec)
ld r4,last_task_used_altivec@l(r3)
cmpi 0,r4,0
beq 1f
/* Save VMX state to last_task_used_altivec's THREAD struct */
addi r4,r4,THREAD
SAVE_32VRS(0,r5,r4)
mfvscr vr0
li r10,THREAD_VSCR
stvx vr0,r10,r4
/* Disable VMX for last_task_used_altivec */
ld r5,PT_REGS(r4)
ld r4,_MSR-STACK_FRAME_OVERHEAD(r5)
lis r20,MSR_VEC@h
andc r4,r4,r20
std r4,_MSR-STACK_FRAME_OVERHEAD(r5)
1:
#endif /* CONFIG_SMP */
/* Hack: if we get an altivec unavailable trap with VRSAVE
* set to all zeros, we assume this is a broken application
* that fails to set it properly, and thus we switch it to
* all 1's
*/
mfspr r4,SPRN_VRSAVE
cmpi 0,r4,0
bne+ 1f
li r4,-1
mtspr SPRN_VRSAVE,r4
1:
/* enable use of VMX after return */
ld r4,PACACURRENT(r13)
addi r5,r4,THREAD /* Get THREAD */
oris r23,r23,MSR_VEC@h
li r4,1
li r10,THREAD_VSCR
stw r4,THREAD_USED_VR(r5)
lvx vr0,r10,r5
REST_32VRS(0,r4,r5)
#ifndef CONFIG_SMP
/* Update last_task_used_math to 'current' */
subi r4,r5,THREAD /* Back to 'current' */
std r4,last_task_used_altivec@l(r3)
#endif /* CONFIG_SMP */
/* restore registers and return */
b fast_exception_return
/*
* disable_kernel_altivec()
* Disable the VMX.
*/
_GLOBAL(disable_kernel_altivec)
mfmsr r3
rldicl r0,r3,(63-MSR_VEC_LG),1
rldicl r3,r0,(MSR_VEC_LG+1),0
mtmsrd r3 /* disable use of VMX now */
isync
blr
/*
* giveup_altivec(tsk)
* Disable VMX for the task given as the argument,
* and save the vector registers in its thread_struct.
* Enables the VMX for use in the kernel on return.
*/
_GLOBAL(giveup_altivec)
mfmsr r5
oris r5,r5,MSR_VEC@h
mtmsrd r5 /* enable use of VMX now */
isync
cmpi 0,r3,0
beqlr- /* if no previous owner, done */
addi r3,r3,THREAD /* want THREAD of task */
ld r5,PT_REGS(r3)
cmpi 0,r5,0
SAVE_32VRS(0,r4,r3)
mfvscr vr0
li r4,THREAD_VSCR
stvx vr0,r4,r3
beq 1f
ld r4,_MSR-STACK_FRAME_OVERHEAD(r5)
lis r3,MSR_VEC@h
andc r4,r4,r3 /* disable FP for previous task */
std r4,_MSR-STACK_FRAME_OVERHEAD(r5)
1:
#ifndef CONFIG_SMP
li r5,0
LOADBASE(r4,last_task_used_altivec)
std r5,last_task_used_altivec@l(r4)
#endif /* CONFIG_SMP */
blr
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/* /*
* This function is called after the master CPU has released the * This function is called after the master CPU has released the
...@@ -1784,6 +1950,12 @@ _STATIC(start_here_common) ...@@ -1784,6 +1950,12 @@ _STATIC(start_here_common)
addi r2,r2,0x4000 addi r2,r2,0x4000
addi r2,r2,0x4000 addi r2,r2,0x4000
/* Apply the CPUs-specific fixups (nop out sections not relevant
* to this CPU
*/
li r3,0
bl .do_cpu_ftr_fixups
/* setup the systemcfg pointer */ /* setup the systemcfg pointer */
LOADADDR(r9,systemcfg) LOADADDR(r9,systemcfg)
SET_REG_TO_CONST(r8, SYSTEMCFG_VIRT_ADDR) SET_REG_TO_CONST(r8, SYSTEMCFG_VIRT_ADDR)
......
...@@ -418,7 +418,7 @@ _GLOBAL(cvt_df) ...@@ -418,7 +418,7 @@ _GLOBAL(cvt_df)
blr blr
/* /*
* identify_cpu, * identify_cpu and calls setup_cpu
* In: r3 = base of the cpu_specs array * In: r3 = base of the cpu_specs array
* r4 = address of cur_cpu_spec * r4 = address of cur_cpu_spec
* r5 = relocation offset * r5 = relocation offset
...@@ -434,9 +434,17 @@ _GLOBAL(identify_cpu) ...@@ -434,9 +434,17 @@ _GLOBAL(identify_cpu)
addi r3,r3,CPU_SPEC_ENTRY_SIZE addi r3,r3,CPU_SPEC_ENTRY_SIZE
b 1b b 1b
1: 1:
add r3,r3,r5 add r0,r3,r5
std r3,0(r4) std r0,0(r4)
blr ld r4,CPU_SPEC_SETUP(r3)
sub r4,r4,r5
ld r4,0(r4)
sub r4,r4,r5
mtctr r4
/* Calling convention for cpu setup is r3=offset, r4=cur_cpu_spec */
mr r4,r3
mr r3,r5
bctr
/* /*
* do_cpu_ftr_fixups - goes through the list of CPU feature fixups * do_cpu_ftr_fixups - goes through the list of CPU feature fixups
...@@ -486,25 +494,6 @@ _GLOBAL(do_cpu_ftr_fixups) ...@@ -486,25 +494,6 @@ _GLOBAL(do_cpu_ftr_fixups)
isync isync
b 1b b 1b
/*
* call_setup_cpu - call the setup_cpu function for this cpu
* r3 = data offset
*
* Setup function is called with:
* r3 = data offset
* r4 = ptr to CPU spec (relocated)
*/
_GLOBAL(call_setup_cpu)
LOADADDR(r4, cur_cpu_spec)
sub r4,r4,r3
lwz r4,0(r4) # load pointer to cpu_spec
sub r4,r4,r3 # relocate
lwz r6,CPU_SPEC_SETUP(r4) # load function pointer
sub r6,r6,r3
mtctr r6
bctr
/* /*
* Create a kernel thread * Create a kernel thread
...@@ -823,7 +812,7 @@ _GLOBAL(sys_call_table32) ...@@ -823,7 +812,7 @@ _GLOBAL(sys_call_table32)
.llong .compat_clock_gettime .llong .compat_clock_gettime
.llong .compat_clock_getres .llong .compat_clock_getres
.llong .compat_clock_nanosleep .llong .compat_clock_nanosleep
.llong .sys_ni_syscall .llong .ppc32_swapcontext
.llong .sys32_tgkill /* 250 */ .llong .sys32_tgkill /* 250 */
.llong .sys32_utimes .llong .sys32_utimes
.llong .compat_statfs64 .llong .compat_statfs64
...@@ -1082,7 +1071,7 @@ _GLOBAL(sys_call_table) ...@@ -1082,7 +1071,7 @@ _GLOBAL(sys_call_table)
.llong .sys_clock_gettime .llong .sys_clock_gettime
.llong .sys_clock_getres .llong .sys_clock_getres
.llong .sys_clock_nanosleep .llong .sys_clock_nanosleep
.llong .sys_ni_syscall .llong .ppc64_swapcontext
.llong .sys_tgkill /* 250 */ .llong .sys_tgkill /* 250 */
.llong .sys_utimes .llong .sys_utimes
.llong .sys_statfs64 .llong .sys_statfs64
......
...@@ -164,7 +164,9 @@ EXPORT_SYMBOL(kernel_thread); ...@@ -164,7 +164,9 @@ EXPORT_SYMBOL(kernel_thread);
EXPORT_SYMBOL(flush_instruction_cache); EXPORT_SYMBOL(flush_instruction_cache);
EXPORT_SYMBOL(_get_PVR); EXPORT_SYMBOL(_get_PVR);
EXPORT_SYMBOL(giveup_fpu); EXPORT_SYMBOL(giveup_fpu);
EXPORT_SYMBOL(enable_kernel_fp); #ifdef CONFIG_ALTIVEC
EXPORT_SYMBOL(giveup_altivec);
#endif
EXPORT_SYMBOL(flush_icache_range); EXPORT_SYMBOL(flush_icache_range);
EXPORT_SYMBOL(flush_icache_user_range); EXPORT_SYMBOL(flush_icache_user_range);
EXPORT_SYMBOL(flush_dcache_page); EXPORT_SYMBOL(flush_dcache_page);
......
...@@ -50,7 +50,10 @@ ...@@ -50,7 +50,10 @@
#include <asm/cputable.h> #include <asm/cputable.h>
#include <asm/sections.h> #include <asm/sections.h>
#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL; struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
#endif
struct mm_struct ioremap_mm = { pgd : ioremap_dir struct mm_struct ioremap_mm = { pgd : ioremap_dir
,page_table_lock : SPIN_LOCK_UNLOCKED }; ,page_table_lock : SPIN_LOCK_UNLOCKED };
...@@ -58,8 +61,7 @@ struct mm_struct ioremap_mm = { pgd : ioremap_dir ...@@ -58,8 +61,7 @@ struct mm_struct ioremap_mm = { pgd : ioremap_dir
char *sysmap = NULL; char *sysmap = NULL;
unsigned long sysmap_size = 0; unsigned long sysmap_size = 0;
void void enable_kernel_fp(void)
enable_kernel_fp(void)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
...@@ -70,6 +72,7 @@ enable_kernel_fp(void) ...@@ -70,6 +72,7 @@ enable_kernel_fp(void)
giveup_fpu(last_task_used_math); giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
} }
EXPORT_SYMBOL(enable_kernel_fp);
int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
{ {
...@@ -85,6 +88,31 @@ int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) ...@@ -85,6 +88,31 @@ int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
return 1; return 1;
} }
#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
#ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
giveup_altivec(current);
else
giveup_altivec(NULL); /* just enables FP for kernel */
#else
giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);
int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
{
if (regs->msr & MSR_VEC)
giveup_altivec(current);
memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
return 1;
}
#endif /* CONFIG_ALTIVEC */
struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *new) struct task_struct *new)
{ {
...@@ -104,8 +132,20 @@ struct task_struct *__switch_to(struct task_struct *prev, ...@@ -104,8 +132,20 @@ struct task_struct *__switch_to(struct task_struct *prev,
*/ */
if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
giveup_fpu(prev); giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
#if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
/* Avoid the trap. On smp this this never happens since
* we don't set last_task_used_altivec -- Cort
*/
if (new->thread.regs && last_task_used_altivec == new)
new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
new_thread = &new->thread; new_thread = &new->thread;
old_thread = &current->thread; old_thread = &current->thread;
...@@ -158,8 +198,14 @@ void show_regs(struct pt_regs * regs) ...@@ -158,8 +198,14 @@ void show_regs(struct pt_regs * regs)
void exit_thread(void) void exit_thread(void)
{ {
#ifndef CONFIG_SMP
if (last_task_used_math == current) if (last_task_used_math == current)
last_task_used_math = NULL; last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
if (last_task_used_altivec == current)
last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
#endif /* CONFIG_SMP */
} }
void flush_thread(void) void flush_thread(void)
...@@ -169,8 +215,14 @@ void flush_thread(void) ...@@ -169,8 +215,14 @@ void flush_thread(void)
if (t->flags & _TIF_ABI_PENDING) if (t->flags & _TIF_ABI_PENDING)
t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
#ifndef CONFIG_SMP
if (last_task_used_math == current) if (last_task_used_math == current)
last_task_used_math = NULL; last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
if (last_task_used_altivec == current)
last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
#endif /* CONFIG_SMP */
} }
void void
...@@ -178,6 +230,25 @@ release_thread(struct task_struct *t) ...@@ -178,6 +230,25 @@ release_thread(struct task_struct *t)
{ {
} }
/*
* This gets called before we allocate a new thread and copy
* the current task into it.
*/
void prepare_to_copy(struct task_struct *tsk)
{
struct pt_regs *regs = tsk->thread.regs;
if (regs == NULL)
return;
if (regs->msr & MSR_FP)
giveup_fpu(current);
#ifdef CONFIG_ALTIVEC
if (regs->msr & MSR_VEC)
giveup_altivec(current);
#endif /* CONFIG_ALTIVEC */
}
/* /*
* Copy a thread.. * Copy a thread..
*/ */
...@@ -268,9 +339,25 @@ void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp) ...@@ -268,9 +339,25 @@ void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
regs->gpr[1] = sp; regs->gpr[1] = sp;
regs->gpr[2] = toc; regs->gpr[2] = toc;
regs->msr = MSR_USER64; regs->msr = MSR_USER64;
#ifndef CONFIG_SMP
if (last_task_used_math == current) if (last_task_used_math == current)
last_task_used_math = 0; last_task_used_math = 0;
#endif /* CONFIG_SMP */
memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
current->thread.fpscr = 0; current->thread.fpscr = 0;
#ifdef CONFIG_ALTIVEC
#ifndef CONFIG_SMP
if (last_task_used_altivec == current)
last_task_used_altivec = 0;
#endif /* CONFIG_SMP */
memset(current->thread.vr, 0, sizeof(current->thread.vr));
current->thread.vscr.u[0] = 0;
current->thread.vscr.u[1] = 0;
current->thread.vscr.u[2] = 0;
current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
} }
int set_fpexc_mode(struct task_struct *tsk, unsigned int val) int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
...@@ -314,9 +401,6 @@ int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3, ...@@ -314,9 +401,6 @@ int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
} }
} }
if (regs->msr & MSR_FP)
giveup_fpu(current);
return do_fork(clone_flags & ~CLONE_IDLETASK, p2, regs, 0, return do_fork(clone_flags & ~CLONE_IDLETASK, p2, regs, 0,
(int *)parent_tidptr, (int *)child_tidptr); (int *)parent_tidptr, (int *)child_tidptr);
} }
...@@ -325,9 +409,6 @@ int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, ...@@ -325,9 +409,6 @@ int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
unsigned long p4, unsigned long p5, unsigned long p6, unsigned long p4, unsigned long p5, unsigned long p6,
struct pt_regs *regs) struct pt_regs *regs)
{ {
if (regs->msr & MSR_FP)
giveup_fpu(current);
return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
} }
...@@ -335,9 +416,6 @@ int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, ...@@ -335,9 +416,6 @@ int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
unsigned long p4, unsigned long p5, unsigned long p6, unsigned long p4, unsigned long p5, unsigned long p6,
struct pt_regs *regs) struct pt_regs *regs)
{ {
if (regs->msr & MSR_FP)
giveup_fpu(current);
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0, return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
NULL, NULL); NULL, NULL);
} }
...@@ -355,7 +433,10 @@ int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, ...@@ -355,7 +433,10 @@ int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
goto out; goto out;
if (regs->msr & MSR_FP) if (regs->msr & MSR_FP)
giveup_fpu(current); giveup_fpu(current);
#ifdef CONFIG_ALTIVEC
if (regs->msr & MSR_VEC)
giveup_altivec(current);
#endif /* CONFIG_ALTIVEC */
error = do_execve(filename, (char **) a1, (char **) a2, regs); error = do_execve(filename, (char **) a1, (char **) a2, regs);
if (error == 0) if (error == 0)
......
...@@ -312,6 +312,11 @@ static int show_cpuinfo(struct seq_file *m, void *v) ...@@ -312,6 +312,11 @@ static int show_cpuinfo(struct seq_file *m, void *v)
else else
seq_printf(m, "unknown (%08x)", pvr); seq_printf(m, "unknown (%08x)", pvr);
#ifdef CONFIG_ALTIVEC
if (cur_cpu_spec->cpu_features & CPU_FTR_ALTIVEC)
seq_printf(m, ", altivec supported");
#endif /* CONFIG_ALTIVEC */
seq_printf(m, "\n"); seq_printf(m, "\n");
#ifdef CONFIG_PPC_PSERIES #ifdef CONFIG_PPC_PSERIES
......
...@@ -114,19 +114,49 @@ long sys_sigaltstack(const stack_t *uss, stack_t *uoss, unsigned long r5, ...@@ -114,19 +114,49 @@ long sys_sigaltstack(const stack_t *uss, stack_t *uoss, unsigned long r5,
* Set up the sigcontext for the signal frame. * Set up the sigcontext for the signal frame.
*/ */
static int static int setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs,
setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs,
int signr, sigset_t *set, unsigned long handler) int signr, sigset_t *set, unsigned long handler)
{ {
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
* process never used altivec yet (MSR_VEC is zero in pt_regs of
* the context). This is very important because we must ensure we
* don't lose the VRSAVE content that may have been set prior to
* the process doing its first vector operation
* Userland shall check AT_HWCAP to know wether it can rely on the
* v_regs pointer or not
*/
#ifdef CONFIG_ALTIVEC
elf_vrreg_t *v_regs = (elf_vrreg_t *)(((unsigned long)sc->vmx_reserve) & ~0xful);
#endif
int err = 0; int err = 0;
if (regs->msr & MSR_FP) if (regs->msr & MSR_FP)
giveup_fpu(current); giveup_fpu(current);
current->thread.saved_msr = regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1); /* Make sure signal doesn't get spurrious FP exceptions */
regs->msr = current->thread.saved_msr | current->thread.fpexc_mode; current->thread.fpscr = 0;
current->thread.saved_softe = regs->softe;
#ifdef CONFIG_ALTIVEC
err |= __put_user(v_regs, &sc->v_regs);
/* save altivec registers */
if (current->thread.used_vr) {
if (regs->msr & MSR_VEC)
giveup_altivec(current);
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
err |= __copy_to_user(v_regs, current->thread.vr, 33 * sizeof(vector128));
/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
* contains valid data.
*/
regs->msr |= MSR_VEC;
}
/* We always copy to/from vrsave, it's 0 if we don't have or don't
* use altivec.
*/
err |= __put_user(current->thread.vrsave, (u32 *)&v_regs[33]);
#else /* CONFIG_ALTIVEC */
err |= __put_user(0, &sc->v_regs);
#endif /* CONFIG_ALTIVEC */
err |= __put_user(&sc->gp_regs, &sc->regs); err |= __put_user(&sc->gp_regs, &sc->regs);
err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE); err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE);
err |= __copy_to_user(&sc->fp_regs, &current->thread.fpr, FP_REGS_SIZE); err |= __copy_to_user(&sc->fp_regs, &current->thread.fpr, FP_REGS_SIZE);
...@@ -135,9 +165,6 @@ setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs, ...@@ -135,9 +165,6 @@ setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs,
if (set != NULL) if (set != NULL)
err |= __put_user(set->sig[0], &sc->oldmask); err |= __put_user(set->sig[0], &sc->oldmask);
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
current->thread.fpscr = 0;
return err; return err;
} }
...@@ -145,23 +172,42 @@ setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs, ...@@ -145,23 +172,42 @@ setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs,
* Restore the sigcontext from the signal frame. * Restore the sigcontext from the signal frame.
*/ */
static int static int restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig, struct sigcontext *sc)
restore_sigcontext(struct pt_regs *regs, sigset_t *set, struct sigcontext *sc)
{ {
#ifdef CONFIG_ALTIVEC
elf_vrreg_t *v_regs;
#endif
unsigned int err = 0; unsigned int err = 0;
unsigned long save_r13;
if (regs->msr & MSR_FP) /* If this is not a signal return, we preserve the TLS in r13 */
giveup_fpu(current); if (!sig)
save_r13 = regs->gpr[13];
err |= __copy_from_user(regs, &sc->gp_regs, GP_REGS_SIZE); err |= __copy_from_user(regs, &sc->gp_regs, GP_REGS_SIZE);
if (!sig)
regs->gpr[13] = save_r13;
err |= __copy_from_user(&current->thread.fpr, &sc->fp_regs, FP_REGS_SIZE); err |= __copy_from_user(&current->thread.fpr, &sc->fp_regs, FP_REGS_SIZE);
current->thread.fpexc_mode = regs->msr & (MSR_FE0 | MSR_FE1);
if (set != NULL) if (set != NULL)
err |= __get_user(set->sig[0], &sc->oldmask); err |= __get_user(set->sig[0], &sc->oldmask);
/* Don't allow the signal handler to change these modulo FE{0,1} */ #ifdef CONFIG_ALTIVEC
regs->msr = current->thread.saved_msr & ~(MSR_FP | MSR_FE0 | MSR_FE1); err |= __get_user(v_regs, &sc->v_regs);
regs->softe = current->thread.saved_softe; if (err)
return err;
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
if (v_regs != 0 && (regs->msr & MSR_VEC) != 0)
err |= __copy_from_user(current->thread.vr, v_regs, 33 * sizeof(vector128));
else if (current->thread.used_vr)
memset(&current->thread.vr, 0, 33);
/* Always get VRSAVE back */
if (v_regs != 0)
err |= __get_user(current->thread.vrsave, (u32 *)&v_regs[33]);
else
current->thread.vrsave = 0;
#endif /* CONFIG_ALTIVEC */
/* Force reload of FP/VEC */
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC);
return err; return err;
} }
...@@ -169,8 +215,8 @@ restore_sigcontext(struct pt_regs *regs, sigset_t *set, struct sigcontext *sc) ...@@ -169,8 +215,8 @@ restore_sigcontext(struct pt_regs *regs, sigset_t *set, struct sigcontext *sc)
/* /*
* Allocate space for the signal frame * Allocate space for the signal frame
*/ */
static inline void * static inline void * get_sigframe(struct k_sigaction *ka, struct pt_regs *regs,
get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size) size_t frame_size)
{ {
unsigned long newsp; unsigned long newsp;
...@@ -185,8 +231,10 @@ get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size) ...@@ -185,8 +231,10 @@ get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size)
return (void *)((newsp - frame_size) & -8ul); return (void *)((newsp - frame_size) & -8ul);
} }
static int /*
setup_trampoline(unsigned int syscall, unsigned int *tramp) * Setup the trampoline code on the stack
*/
static int setup_trampoline(unsigned int syscall, unsigned int *tramp)
{ {
int i, err = 0; int i, err = 0;
...@@ -208,6 +256,72 @@ setup_trampoline(unsigned int syscall, unsigned int *tramp) ...@@ -208,6 +256,72 @@ setup_trampoline(unsigned int syscall, unsigned int *tramp)
return err; return err;
} }
/*
* Restore the user process's signal mask (also used by signal32.c)
*/
void restore_sigmask(sigset_t *set)
{
sigdelsetmask(set, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock);
current->blocked = *set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
/*
* Handle {get,set,swap}_context operations
*/
int sys_swapcontext(struct ucontext __user *old_ctx,
struct ucontext __user *new_ctx,
long ctx_size, long r6, long r7, long r8, struct pt_regs *regs)
{
unsigned char tmp;
sigset_t set;
/* Context size is for future use. Right now, we only make sure
* we are passed something we understand
*/
if (ctx_size < sizeof(struct ucontext))
return -EINVAL;
if (old_ctx != NULL) {
if (verify_area(VERIFY_WRITE, old_ctx, sizeof(*old_ctx))
|| setup_sigcontext(&old_ctx->uc_mcontext, regs, 0, NULL, 0)
|| __copy_to_user(&old_ctx->uc_sigmask,
&current->blocked, sizeof(sigset_t)))
return -EFAULT;
}
if (new_ctx == NULL)
return 0;
if (verify_area(VERIFY_READ, new_ctx, sizeof(*new_ctx))
|| __get_user(tmp, (u8 *) new_ctx)
|| __get_user(tmp, (u8 *) (new_ctx + 1) - 1))
return -EFAULT;
/*
* If we get a fault copying the context into the kernel's
* image of the user's registers, we can't just return -EFAULT
* because the user's registers will be corrupted. For instance
* the NIP value may have been updated but not some of the
* other registers. Given that we have done the verify_area
* and successfully read the first and last bytes of the region
* above, this should only happen in an out-of-memory situation
* or if another thread unmaps the region containing the context.
* We kill the task with a SIGSEGV in this situation.
*/
if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set)))
do_exit(SIGSEGV);
restore_sigmask(&set);
if (restore_sigcontext(regs, NULL, 0, &new_ctx->uc_mcontext))
do_exit(SIGSEGV);
/* This returns like rt_sigreturn */
return 0;
}
/* /*
* Do a signal return; undo the signal stack. * Do a signal return; undo the signal stack.
*/ */
...@@ -218,7 +332,6 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5, ...@@ -218,7 +332,6 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
{ {
struct ucontext *uc = (struct ucontext *)regs->gpr[1]; struct ucontext *uc = (struct ucontext *)regs->gpr[1];
sigset_t set; sigset_t set;
stack_t st;
/* Always make any pending restarted system calls return -EINTR */ /* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall; current_thread_info()->restart_block.fn = do_no_restart_syscall;
...@@ -228,20 +341,14 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5, ...@@ -228,20 +341,14 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set))) if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set)))
goto badframe; goto badframe;
sigdelsetmask(&set, ~_BLOCKABLE); restore_sigmask(&set);
spin_lock_irq(&current->sighand->siglock); if (restore_sigcontext(regs, NULL, 1, &uc->uc_mcontext))
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
if (restore_sigcontext(regs, NULL, &uc->uc_mcontext))
goto badframe; goto badframe;
if (__copy_from_user(&st, &uc->uc_stack, sizeof(st))) /* do_sigaltstack expects a __user pointer and won't modify
goto badframe; * what's in there anyway
/* This function sets back the stack flags into */
the current task structure. */ do_sigaltstack(&uc->uc_stack, NULL, regs->gpr[1]);
sys_sigaltstack(&st, NULL, 0, 0, 0, 0, regs);
return regs->result; return regs->result;
...@@ -253,8 +360,7 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5, ...@@ -253,8 +360,7 @@ int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
do_exit(SIGSEGV); do_exit(SIGSEGV);
} }
static void static void setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info,
setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info,
sigset_t *set, struct pt_regs *regs) sigset_t *set, struct pt_regs *regs)
{ {
/* Handler is *really* a pointer to the function descriptor for /* Handler is *really* a pointer to the function descriptor for
...@@ -332,9 +438,8 @@ setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info, ...@@ -332,9 +438,8 @@ setup_rt_frame(int signr, struct k_sigaction *ka, siginfo_t *info,
/* /*
* OK, we're invoking a handler * OK, we're invoking a handler
*/ */
static void static void handle_signal(unsigned long sig, struct k_sigaction *ka,
handle_signal(unsigned long sig, struct k_sigaction *ka, siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
{ {
/* Set up Signal Frame */ /* Set up Signal Frame */
setup_rt_frame(sig, ka, info, oldset, regs); setup_rt_frame(sig, ka, info, oldset, regs);
...@@ -352,8 +457,7 @@ handle_signal(unsigned long sig, struct k_sigaction *ka, ...@@ -352,8 +457,7 @@ handle_signal(unsigned long sig, struct k_sigaction *ka,
return; return;
} }
static inline void static inline void syscall_restart(struct pt_regs *regs, struct k_sigaction *ka)
syscall_restart(struct pt_regs *regs, struct k_sigaction *ka)
{ {
switch ((int)regs->result) { switch ((int)regs->result) {
case -ERESTART_RESTARTBLOCK: case -ERESTART_RESTARTBLOCK:
......
...@@ -32,71 +32,207 @@ ...@@ -32,71 +32,207 @@
#define DEBUG_SIG 0 #define DEBUG_SIG 0
#define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP))) #define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
/*
* These are the flags in the MSR that the user is allowed to change #define GP_REGS_SIZE32 min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
* by modifying the saved value of the MSR on the stack. SE and BE
* should not be in this list since gdb may want to change these. I.e,
* you should be able to step out of a signal handler to see what
* instruction executes next after the signal handler completes.
* Alternately, if you stepped into a signal handler, you should be
* able to continue 'til the next breakpoint from within the signal
* handler, even if the handler returns.
*/
#if 0
#define MSR_USERCHANGE (MSR_FE0 | MSR_FE1)
#else
/* /*
* glibc tries to set FE0/FE1 via a signal handler. Since it only ever * When we have signals to deliver, we set up on the
* sets both bits and this is the default setting we now disable this * user stack, going down from the original stack pointer:
* behaviour. This is done to insure the new prctl which alters FE0/FE1 does * a sigregs32 struct
* not get overriden by glibc. Setting and clearing FE0/FE1 via signal * a sigcontext32 struct
* handler has always been bogus since load_up_fpu used to set FE0/FE1 * a gap of __SIGNAL_FRAMESIZE32 bytes
* unconditionally. *
* Each of these things must be a multiple of 16 bytes in size.
*
*/ */
#define MSR_USERCHANGE 0
#endif
struct sigregs32 { struct sigregs32 {
/* struct mcontext32 mctx; /* all the register values */
* the gp_regs array is 32 bit representation of the pt_regs
* structure that was stored on the kernel stack during the
* system call that was interrupted for the signal.
*
* Note that the entire pt_regs regs structure will fit in
* the gp_regs structure because the ELF_NREG value is 48 for
* PPC and the pt_regs structure contains 44 registers
*/
elf_gregset_t32 gp_regs;
double fp_regs[ELF_NFPREG];
unsigned int tramp[2];
/* /*
* Programs using the rs6000/xcoff abi can save up to 19 gp * Programs using the rs6000/xcoff abi can save up to 19 gp
* regs and 18 fp regs below sp before decrementing it. * regs and 18 fp regs below sp before decrementing it.
*/ */
int abigap[56]; int abigap[56];
}; };
/* We use the mc_pad field for the signal return trampoline. */
#define tramp mc_pad
struct rt_sigframe_32 { /*
* When we have rt signals to deliver, we set up on the
* user stack, going down from the original stack pointer:
* one rt_sigframe32 struct (siginfo + ucontext + ABI gap)
* a gap of __SIGNAL_FRAMESIZE32+16 bytes
* (the +16 is to get the siginfo and ucontext32 in the same
* positions as in older kernels).
*
* Each of these things must be a multiple of 16 bytes in size.
*
*/
struct rt_sigframe32 {
struct compat_siginfo info;
struct ucontext32 uc;
/* /*
* Unused space at start of frame to allow for storing of * Programs using the rs6000/xcoff abi can save up to 19 gp
* stack pointers * regs and 18 fp regs below sp before decrementing it.
*/ */
unsigned long _unused; int abigap[56];
/* };
* This is a 32 bit pointer in user address space
* it is a pointer to the siginfo stucture in the rt stack frame
/*
* Common utility functions used by signal and context support
*
*/
/*
* Restore the user process's signal mask
* (implemented in signal.c)
*/
extern void restore_sigmask(sigset_t *set);
/*
* Functions for flipping sigsets (thanks to brain dead generic
* implementation that makes things simple for little endian only
*/
static inline void compat_from_sigset(compat_sigset_t *compat, sigset_t *set)
{
switch (_NSIG_WORDS) {
case 4: compat->sig[5] = set->sig[3] & 0xffffffffull ;
compat->sig[7] = set->sig[3] >> 32;
case 3: compat->sig[4] = set->sig[2] & 0xffffffffull ;
compat->sig[5] = set->sig[2] >> 32;
case 2: compat->sig[2] = set->sig[1] & 0xffffffffull ;
compat->sig[3] = set->sig[1] >> 32;
case 1: compat->sig[0] = set->sig[0] & 0xffffffffull ;
compat->sig[1] = set->sig[0] >> 32;
}
}
static inline void sigset_from_compat(sigset_t *set, compat_sigset_t *compat)
{
switch (_NSIG_WORDS) {
case 4: set->sig[3] = compat->sig[6] | (((long)compat->sig[7]) << 32);
case 3: set->sig[2] = compat->sig[4] | (((long)compat->sig[5]) << 32);
case 2: set->sig[1] = compat->sig[2] | (((long)compat->sig[3]) << 32);
case 1: set->sig[0] = compat->sig[0] | (((long)compat->sig[1]) << 32);
}
}
/*
* Save the current user registers on the user stack.
* We only save the altivec registers if the process has used
* altivec instructions at some point.
*/
static int save_user_regs(struct pt_regs *regs, struct mcontext32 *frame, int sigret)
{
elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
int i, err = 0;
/* Make sure floating point registers are stored in regs */
if (regs->msr & MSR_FP)
giveup_fpu(current);
/* save general and floating-point registers */
for (i = 0; i <= PT_RESULT; i ++)
err |= __put_user((unsigned int)gregs[i], &frame->mc_gregs[i]);
err |= __copy_to_user(&frame->mc_fregs, current->thread.fpr,
ELF_NFPREG * sizeof(double));
if (err)
return 1;
current->thread.fpscr = 0; /* turn off all fp exceptions */
#ifdef CONFIG_ALTIVEC
/* save altivec registers */
if (current->thread.used_vr) {
if (regs->msr & MSR_VEC)
giveup_altivec(current);
if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
ELF_NVRREG32 * sizeof(vector128)))
return 1;
/* set MSR_VEC in the saved MSR value to indicate that
frame->mc_vregs contains valid data */
if (__put_user(regs->msr | MSR_VEC, &frame->mc_gregs[PT_MSR]))
return 1;
}
/* else assert((regs->msr & MSR_VEC) == 0) */
/* We always copy to/from vrsave, it's 0 if we don't have or don't
* use altivec. Since VSCR only contains 32 bits saved in the least
* significant bits of a vector, we "cheat" and stuff VRSAVE in the
* most significant bits of that same vector. --BenH
*/ */
u32 pinfo; if (__put_user(current->thread.vrsave, (u32 *)&frame->mc_vregs[32]))
return 1;
#endif /* CONFIG_ALTIVEC */
if (sigret) {
/* Set up the sigreturn trampoline: li r0,sigret; sc */
if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
|| __put_user(0x44000002UL, &frame->tramp[1]))
return 1;
flush_icache_range((unsigned long) &frame->tramp[0],
(unsigned long) &frame->tramp[2]);
}
return 0;
}
/*
* Restore the current user register values from the user stack,
* (except for MSR).
*/
static int restore_user_regs(struct pt_regs *regs, struct mcontext32 __user *sr, int sig)
{
elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
int i, err = 0;
unsigned int save_r2;
#ifdef CONFIG_ALTIVEC
unsigned long msr;
#endif
/* /*
* This is a 32 bit pointer in user address space * restore general registers but not including MSR. Also take
* it is a pointer to the user context in the rt stack frame * care of keeping r2 (TLS) intact if not a signal
*/ */
u32 puc; if (!sig)
struct compat_siginfo info; save_r2 = (unsigned int)regs->gpr[2];
struct ucontext32 uc; for (i = 0; i < PT_MSR; i ++)
}; err |= __get_user(gregs[i], &sr->mc_gregs[i]);
for (i ++; i <= PT_RESULT; i ++)
err |= __get_user(gregs[i], &sr->mc_gregs[i]);
if (!sig)
regs->gpr[2] = (unsigned long) save_r2;
if (err)
return 1;
/* force the process to reload the FP registers from
current->thread when it next does FP instructions */
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
if (__copy_from_user(current->thread.fpr, &sr->mc_fregs,
sizeof(sr->mc_fregs)))
return 1;
#ifdef CONFIG_ALTIVEC
/* force the process to reload the altivec registers from
current->thread when it next does altivec instructions */
regs->msr &= ~MSR_VEC;
if (!__get_user(msr, &sr->mc_gregs[PT_MSR]) && (msr & MSR_VEC) != 0) {
/* restore altivec registers from the stack */
if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
sizeof(sr->mc_vregs)))
return 1;
} else if (current->thread.used_vr)
memset(&current->thread.vr, 0, ELF_NVRREG32 * sizeof(vector128));
/* Always get VRSAVE back */
if (__get_user(current->thread.vrsave, (u32 *)&sr->mc_vregs[32]))
return 1;
#endif /* CONFIG_ALTIVEC */
return 0;
}
/* /*
...@@ -181,209 +317,6 @@ long sys32_sigaction(int sig, struct old_sigaction32 *act, ...@@ -181,209 +317,6 @@ long sys32_sigaction(int sig, struct old_sigaction32 *act,
} }
/*
* When we have signals to deliver, we set up on the
* user stack, going down from the original stack pointer:
* a sigregs struct
* one or more sigcontext structs
* a gap of __SIGNAL_FRAMESIZE32 bytes
*
* Each of these things must be a multiple of 16 bytes in size.
*
*/
/*
* Do a signal return; undo the signal stack.
*/
long sys32_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
struct pt_regs *regs)
{
struct sigcontext32 *sc, sigctx;
struct sigregs32 *sr;
int ret;
elf_gregset_t32 saved_regs; /* an array of ELF_NGREG unsigned ints (32 bits) */
sigset_t set;
int i;
sc = (struct sigcontext32 *)(regs->gpr[1] + __SIGNAL_FRAMESIZE32);
if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
goto badframe;
/*
* Note that PPC32 puts the upper 32 bits of the sigmask in the
* unused part of the signal stackframe
*/
set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
sigdelsetmask(&set, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock);
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
if (regs->msr & MSR_FP )
giveup_fpu(current);
/* Last stacked signal - restore registers */
sr = (struct sigregs32*)(u64)sigctx.regs;
/*
* copy the 32 bit register values off the user stack
* into the 32 bit register area
*/
if (copy_from_user(saved_regs, &sr->gp_regs, sizeof(sr->gp_regs)))
goto badframe;
/*
* The saved reg structure in the frame is an elf_grepset_t32,
* it is a 32 bit register save of the registers in the
* pt_regs structure that was stored on the kernel stack
* during the system call when the system call was interrupted
* for the signal. Only 32 bits are saved because the
* sigcontext contains a pointer to the regs and the sig
* context address is passed as a pointer to the signal
* handler.
*
* The entries in the elf_grepset have the same index as the
* elements in the pt_regs structure.
*/
saved_regs[PT_MSR] = (regs->msr & ~MSR_USERCHANGE)
| (saved_regs[PT_MSR] & MSR_USERCHANGE);
/*
* Register 2 is the kernel toc - should be reset on
* any calls into the kernel
*/
for (i = 0; i < 32; i++)
regs->gpr[i] = (u64)(saved_regs[i]) & 0xFFFFFFFF;
/*
* restore the non gpr registers
*/
regs->msr = (u64)(saved_regs[PT_MSR]) & 0xFFFFFFFF;
/*
* Insure that the interrupt mode is 64 bit, during 32 bit
* execution. (This is necessary because we only saved
* lower 32 bits of msr.)
*/
regs->msr = regs->msr | MSR_ISF; /* When this thread is interrupted it should run in 64 bit mode. */
regs->nip = (u64)(saved_regs[PT_NIP]) & 0xFFFFFFFF;
regs->orig_gpr3 = (u64)(saved_regs[PT_ORIG_R3]) & 0xFFFFFFFF;
regs->ctr = (u64)(saved_regs[PT_CTR]) & 0xFFFFFFFF;
regs->link = (u64)(saved_regs[PT_LNK]) & 0xFFFFFFFF;
regs->xer = (u64)(saved_regs[PT_XER]) & 0xFFFFFFFF;
regs->ccr = (u64)(saved_regs[PT_CCR]) & 0xFFFFFFFF;
/* regs->softe is left unchanged (like the MSR.EE bit) */
/******************************************************/
/* the DAR and the DSISR are only relevant during a */
/* data or instruction storage interrupt. The value */
/* will be set to zero. */
/******************************************************/
regs->dar = 0;
regs->dsisr = 0;
regs->result = (u64)(saved_regs[PT_RESULT]) & 0xFFFFFFFF;
if (copy_from_user(current->thread.fpr, &sr->fp_regs,
sizeof(sr->fp_regs)))
goto badframe;
ret = regs->result;
return ret;
badframe:
do_exit(SIGSEGV);
}
/*
* Set up a signal frame.
*/
static void setup_frame32(struct pt_regs *regs, struct sigregs32 *frame,
unsigned int newsp)
{
struct sigcontext32 *sc = (struct sigcontext32 *)(u64)newsp;
int i;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
if (verify_area(VERIFY_WRITE, frame, sizeof(*frame)))
goto badframe;
if (regs->msr & MSR_FP)
giveup_fpu(current);
/*
* Copy the register contents for the pt_regs structure on the
* kernel stack to the elf_gregset_t32 structure on the user
* stack. This is a copy of 64 bit register values to 32 bit
* register values. The high order 32 bits of the 64 bit
* registers are not needed since a 32 bit application is
* running and the saved registers are the contents of the
* user registers at the time of a system call.
*
* The values saved on the user stack will be restored into
* the registers during the signal return processing
*/
for (i = 0; i < 32; i++) {
if (__put_user((u32)regs->gpr[i], &frame->gp_regs[i]))
goto badframe;
}
/*
* Copy the non gpr registers to the user stack
*/
if (__put_user((u32)regs->gpr[PT_NIP], &frame->gp_regs[PT_NIP])
|| __put_user((u32)regs->gpr[PT_MSR], &frame->gp_regs[PT_MSR])
|| __put_user((u32)regs->gpr[PT_ORIG_R3], &frame->gp_regs[PT_ORIG_R3])
|| __put_user((u32)regs->gpr[PT_CTR], &frame->gp_regs[PT_CTR])
|| __put_user((u32)regs->gpr[PT_LNK], &frame->gp_regs[PT_LNK])
|| __put_user((u32)regs->gpr[PT_XER], &frame->gp_regs[PT_XER])
|| __put_user((u32)regs->gpr[PT_CCR], &frame->gp_regs[PT_CCR])
#if 0
|| __put_user((u32)regs->gpr[PT_MQ], &frame->gp_regs[PT_MQ])
#endif
|| __put_user((u32)regs->gpr[PT_RESULT], &frame->gp_regs[PT_RESULT]))
goto badframe;
/*
* Now copy the floating point registers onto the user stack
*
* Also set up so on the completion of the signal handler, the
* sys_sigreturn will get control to reset the stack
*/
if (__copy_to_user(&frame->fp_regs, current->thread.fpr,
ELF_NFPREG * sizeof(double))
/* li r0, __NR_sigreturn */
|| __put_user(0x38000000U + __NR_sigreturn, &frame->tramp[0])
/* sc */
|| __put_user(0x44000002U, &frame->tramp[1]))
goto badframe;
flush_icache_range((unsigned long)&frame->tramp[0],
(unsigned long)&frame->tramp[2]);
current->thread.fpscr = 0; /* turn off all fp exceptions */
newsp -= __SIGNAL_FRAMESIZE32;
if (put_user(regs->gpr[1], (u32*)(u64)newsp)
|| get_user(regs->nip, &sc->handler)
|| get_user(regs->gpr[3], &sc->signal))
goto badframe;
regs->gpr[1] = newsp & 0xFFFFFFFF;
/*
* first parameter to the signal handler is the signal number
* - the value is in gpr3
* second parameter to the signal handler is the sigcontext
* - set the value into gpr4
*/
regs->gpr[4] = (unsigned long) sc;
regs->link = (unsigned long) frame->tramp;
return;
badframe:
#if DEBUG_SIG
printk("badframe in setup_frame32, regs=%p frame=%p newsp=%lx\n",
regs, frame, newsp);
#endif
do_exit(SIGSEGV);
}
/* /*
* Start of RT signal support * Start of RT signal support
...@@ -405,115 +338,6 @@ static void setup_frame32(struct pt_regs *regs, struct sigregs32 *frame, ...@@ -405,115 +338,6 @@ static void setup_frame32(struct pt_regs *regs, struct sigregs32 *frame,
* siginfo32to64 * siginfo32to64
*/ */
/*
* This code executes after the rt signal handler in 32 bit mode has
* completed and returned
*/
long sys32_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
struct pt_regs * regs)
{
struct rt_sigframe_32 *rt_sf;
struct sigcontext32 sigctx;
struct sigregs32 *sr;
int ret;
elf_gregset_t32 saved_regs; /* an array of 32 bit register values */
sigset_t set;
stack_t st;
int i;
mm_segment_t old_fs;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
/* Adjust the inputted reg1 to point to the first rt signal frame */
rt_sf = (struct rt_sigframe_32 *)(regs->gpr[1] + __SIGNAL_FRAMESIZE32);
/* Copy the information from the user stack */
if (copy_from_user(&sigctx, &rt_sf->uc.uc_mcontext, sizeof(sigctx))
|| copy_from_user(&set, &rt_sf->uc.uc_sigmask, sizeof(set))
|| copy_from_user(&st,&rt_sf->uc.uc_stack, sizeof(st)))
goto badframe;
/*
* Unblock the signal that was processed
* After a signal handler runs -
* if the signal is blockable - the signal will be unblocked
* (sigkill and sigstop are not blockable)
*/
sigdelsetmask(&set, ~_BLOCKABLE);
/* update the current based on the sigmask found in the rt_stackframe */
spin_lock_irq(&current->sighand->siglock);
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
/* If currently owning the floating point - give them up */
if (regs->msr & MSR_FP)
giveup_fpu(current);
/*
* Set to point to the next rt_sigframe - this is used to
* determine whether this is the last signal to process
*/
sr = (struct sigregs32 *)(u64)sigctx.regs;
if (copy_from_user(saved_regs, &sr->gp_regs, sizeof(sr->gp_regs)))
goto badframe;
/*
* The saved reg structure in the frame is an elf_grepset_t32,
* it is a 32 bit register save of the registers in the
* pt_regs structure that was stored on the kernel stack
* during the system call when the system call was interrupted
* for the signal. Only 32 bits are saved because the
* sigcontext contains a pointer to the regs and the sig
* context address is passed as a pointer to the signal handler
*
* The entries in the elf_grepset have the same index as
* the elements in the pt_regs structure.
*/
saved_regs[PT_MSR] = (regs->msr & ~MSR_USERCHANGE)
| (saved_regs[PT_MSR] & MSR_USERCHANGE);
/*
* Register 2 is the kernel toc - should be reset on any
* calls into the kernel
*/
for (i = 0; i < 32; i++)
regs->gpr[i] = (u64)(saved_regs[i]) & 0xFFFFFFFF;
/*
* restore the non gpr registers
*/
regs->msr = (u64)(saved_regs[PT_MSR]) & 0xFFFFFFFF;
regs->nip = (u64)(saved_regs[PT_NIP]) & 0xFFFFFFFF;
regs->orig_gpr3 = (u64)(saved_regs[PT_ORIG_R3]) & 0xFFFFFFFF;
regs->ctr = (u64)(saved_regs[PT_CTR]) & 0xFFFFFFFF;
regs->link = (u64)(saved_regs[PT_LNK]) & 0xFFFFFFFF;
regs->xer = (u64)(saved_regs[PT_XER]) & 0xFFFFFFFF;
regs->ccr = (u64)(saved_regs[PT_CCR]) & 0xFFFFFFFF;
/* regs->softe is left unchanged (like MSR.EE) */
/*
* the DAR and the DSISR are only relevant during a
* data or instruction storage interrupt. The value
* will be set to zero.
*/
regs->dar = 0;
regs->dsisr = 0;
regs->result = (u64)(saved_regs[PT_RESULT]) & 0xFFFFFFFF;
if (copy_from_user(current->thread.fpr, &sr->fp_regs,
sizeof(sr->fp_regs)))
goto badframe;
/* This function sets back the stack flags into
the current task structure. */
old_fs = get_fs();
set_fs(KERNEL_DS);
do_sigaltstack(&st, NULL, regs->gpr[1]);
set_fs(old_fs);
ret = regs->result;
return ret;
badframe:
do_exit(SIGSEGV);
}
long sys32_rt_sigaction(int sig, const struct sigaction32 *act, long sys32_rt_sigaction(int sig, const struct sigaction32 *act,
struct sigaction32 *oact, size_t sigsetsize) struct sigaction32 *oact, size_t sigsetsize)
...@@ -530,16 +354,7 @@ long sys32_rt_sigaction(int sig, const struct sigaction32 *act, ...@@ -530,16 +354,7 @@ long sys32_rt_sigaction(int sig, const struct sigaction32 *act,
ret = get_user((long)new_ka.sa.sa_handler, &act->sa_handler); ret = get_user((long)new_ka.sa.sa_handler, &act->sa_handler);
ret |= __copy_from_user(&set32, &act->sa_mask, ret |= __copy_from_user(&set32, &act->sa_mask,
sizeof(compat_sigset_t)); sizeof(compat_sigset_t));
switch (_NSIG_WORDS) { sigset_from_compat(&new_ka.sa.sa_mask, &set32);
case 4: new_ka.sa.sa_mask.sig[3] = set32.sig[6]
| (((long)set32.sig[7]) << 32);
case 3: new_ka.sa.sa_mask.sig[2] = set32.sig[4]
| (((long)set32.sig[5]) << 32);
case 2: new_ka.sa.sa_mask.sig[1] = set32.sig[2]
| (((long)set32.sig[3]) << 32);
case 1: new_ka.sa.sa_mask.sig[0] = set32.sig[0]
| (((long)set32.sig[1]) << 32);
}
ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
if (ret) if (ret)
return -EFAULT; return -EFAULT;
...@@ -547,20 +362,7 @@ long sys32_rt_sigaction(int sig, const struct sigaction32 *act, ...@@ -547,20 +362,7 @@ long sys32_rt_sigaction(int sig, const struct sigaction32 *act,
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) { if (!ret && oact) {
switch (_NSIG_WORDS) { compat_from_sigset(&set32, &old_ka.sa.sa_mask);
case 4:
set32.sig[7] = (old_ka.sa.sa_mask.sig[3] >> 32);
set32.sig[6] = old_ka.sa.sa_mask.sig[3];
case 3:
set32.sig[5] = (old_ka.sa.sa_mask.sig[2] >> 32);
set32.sig[4] = old_ka.sa.sa_mask.sig[2];
case 2:
set32.sig[3] = (old_ka.sa.sa_mask.sig[1] >> 32);
set32.sig[2] = old_ka.sa.sa_mask.sig[1];
case 1:
set32.sig[1] = (old_ka.sa.sa_mask.sig[0] >> 32);
set32.sig[0] = old_ka.sa.sa_mask.sig[0];
}
ret = put_user((long)old_ka.sa.sa_handler, &oact->sa_handler); ret = put_user((long)old_ka.sa.sa_handler, &oact->sa_handler);
ret |= __copy_to_user(&oact->sa_mask, &set32, ret |= __copy_to_user(&oact->sa_mask, &set32,
sizeof(compat_sigset_t)); sizeof(compat_sigset_t));
...@@ -586,14 +388,8 @@ long sys32_rt_sigprocmask(u32 how, compat_sigset_t *set, ...@@ -586,14 +388,8 @@ long sys32_rt_sigprocmask(u32 how, compat_sigset_t *set,
if (set) { if (set) {
if (copy_from_user (&s32, set, sizeof(compat_sigset_t))) if (copy_from_user (&s32, set, sizeof(compat_sigset_t)))
return -EFAULT; return -EFAULT;
sigset_from_compat(&s, &s32);
switch (_NSIG_WORDS) {
case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
}
} }
set_fs(KERNEL_DS); set_fs(KERNEL_DS);
...@@ -603,12 +399,7 @@ long sys32_rt_sigprocmask(u32 how, compat_sigset_t *set, ...@@ -603,12 +399,7 @@ long sys32_rt_sigprocmask(u32 how, compat_sigset_t *set,
if (ret) if (ret)
return ret; return ret;
if (oset) { if (oset) {
switch (_NSIG_WORDS) { compat_from_sigset(&s32, &s);
case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3];
case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2];
case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1];
case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0];
}
if (copy_to_user (oset, &s32, sizeof(compat_sigset_t))) if (copy_to_user (oset, &s32, sizeof(compat_sigset_t)))
return -EFAULT; return -EFAULT;
} }
...@@ -626,12 +417,7 @@ long sys32_rt_sigpending(compat_sigset_t *set, compat_size_t sigsetsize) ...@@ -626,12 +417,7 @@ long sys32_rt_sigpending(compat_sigset_t *set, compat_size_t sigsetsize)
ret = sys_rt_sigpending(&s, sigsetsize); ret = sys_rt_sigpending(&s, sigsetsize);
set_fs(old_fs); set_fs(old_fs);
if (!ret) { if (!ret) {
switch (_NSIG_WORDS) { compat_from_sigset(&s32, &s);
case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3];
case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2];
case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1];
case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0];
}
if (copy_to_user (set, &s32, sizeof(compat_sigset_t))) if (copy_to_user (set, &s32, sizeof(compat_sigset_t)))
return -EFAULT; return -EFAULT;
} }
...@@ -693,12 +479,7 @@ long sys32_rt_sigtimedwait(compat_sigset_t *uthese, compat_siginfo_t *uinfo, ...@@ -693,12 +479,7 @@ long sys32_rt_sigtimedwait(compat_sigset_t *uthese, compat_siginfo_t *uinfo,
if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t))) if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
return -EFAULT; return -EFAULT;
switch (_NSIG_WORDS) { sigset_from_compat(&s, &s32);
case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
}
if (uts && get_compat_timespec(&t, uts)) if (uts && get_compat_timespec(&t, uts))
return -EFAULT; return -EFAULT;
set_fs(KERNEL_DS); set_fs(KERNEL_DS);
...@@ -793,15 +574,9 @@ int sys32_rt_sigsuspend(compat_sigset_t* unewset, size_t sigsetsize, int p3, ...@@ -793,15 +574,9 @@ int sys32_rt_sigsuspend(compat_sigset_t* unewset, size_t sigsetsize, int p3,
* Swap the 2 words of the 64-bit sigset_t (they are stored * Swap the 2 words of the 64-bit sigset_t (they are stored
* in the "wrong" endian in 32-bit user storage). * in the "wrong" endian in 32-bit user storage).
*/ */
switch (_NSIG_WORDS) { sigset_from_compat(&newset, &s32);
case 4: newset.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
case 3: newset.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
case 2: newset.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
case 1: newset.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
}
sigdelsetmask(&newset, ~_BLOCKABLE); sigdelsetmask(&newset, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock); spin_lock_irq(&current->sighand->siglock);
saveset = current->blocked; saveset = current->blocked;
current->blocked = newset; current->blocked = newset;
...@@ -827,237 +602,324 @@ int sys32_rt_sigsuspend(compat_sigset_t* unewset, size_t sigsetsize, int p3, ...@@ -827,237 +602,324 @@ int sys32_rt_sigsuspend(compat_sigset_t* unewset, size_t sigsetsize, int p3,
} }
} }
/* /*
* Set up a rt signal frame. * Start Alternate signal stack support
*
* System Calls
* sigaltatck sys32_sigaltstack
*/ */
static void setup_rt_frame32(struct pt_regs *regs, struct sigregs32 *frame,
unsigned int newsp) int sys32_sigaltstack(u32 newstack, u32 oldstack, int r5,
int r6, int r7, int r8, struct pt_regs *regs)
{ {
unsigned int copyreg4, copyreg5; stack_t uss, uoss;
struct rt_sigframe_32 * rt_sf = (struct rt_sigframe_32 *) (u64)newsp; int ret;
int i; mm_segment_t old_fs;
unsigned long sp;
if (verify_area(VERIFY_WRITE, frame, sizeof(*frame)))
goto badframe;
if (regs->msr & MSR_FP)
giveup_fpu(current);
/* /*
* Copy the register contents for the pt_regs structure on the * set sp to the user stack on entry to the system call
* kernel stack to the elf_gregset_t32 structure on the user * the system call router sets R9 to the saved registers
* stack. This is a copy of 64 bit register values to 32 bit
* register values. The high order 32 bits of the 64 bit
* registers are not needed since a 32 bit application is
* running and the saved registers are the contents of the
* user registers at the time of a system call.
*
* The values saved on the user stack will be restored into
* the registers during the signal return processing
*/ */
for (i = 0; i < 32; i++) { sp = regs->gpr[1];
if (__put_user((u32)regs->gpr[i], &frame->gp_regs[i]))
goto badframe;
}
/* /* Put new stack info in local 64 bit stack struct */
* Copy the non gpr registers to the user stack if (newstack &&
*/ (get_user((long)uss.ss_sp,
if (__put_user((u32)regs->gpr[PT_NIP], &frame->gp_regs[PT_NIP]) &((stack_32_t *)(long)newstack)->ss_sp) ||
|| __put_user((u32)regs->gpr[PT_MSR], &frame->gp_regs[PT_MSR]) __get_user(uss.ss_flags,
|| __put_user((u32)regs->gpr[PT_ORIG_R3], &frame->gp_regs[PT_ORIG_R3]) &((stack_32_t *)(long)newstack)->ss_flags) ||
|| __put_user((u32)regs->gpr[PT_CTR], &frame->gp_regs[PT_CTR]) __get_user(uss.ss_size,
|| __put_user((u32)regs->gpr[PT_LNK], &frame->gp_regs[PT_LNK]) &((stack_32_t *)(long)newstack)->ss_size)))
|| __put_user((u32)regs->gpr[PT_XER], &frame->gp_regs[PT_XER]) return -EFAULT;
|| __put_user((u32)regs->gpr[PT_CCR], &frame->gp_regs[PT_CCR])
|| __put_user((u32)regs->gpr[PT_RESULT], &frame->gp_regs[PT_RESULT])) old_fs = get_fs();
goto badframe; set_fs(KERNEL_DS);
ret = do_sigaltstack(newstack ? &uss : NULL, oldstack ? &uoss : NULL,
sp);
set_fs(old_fs);
/* Copy the stack information to the user output buffer */
if (!ret && oldstack &&
(put_user((long)uoss.ss_sp,
&((stack_32_t *)(long)oldstack)->ss_sp) ||
__put_user(uoss.ss_flags,
&((stack_32_t *)(long)oldstack)->ss_flags) ||
__put_user(uoss.ss_size,
&((stack_32_t *)(long)oldstack)->ss_size)))
return -EFAULT;
return ret;
}
/* /*
* Now copy the floating point registers onto the user stack * Set up a signal frame for a "real-time" signal handler
* * (one which gets siginfo).
* Also set up so on the completion of the signal handler, the */
* sys_sigreturn will get control to reset the stack static void handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
*/ siginfo_t *info, sigset_t *oldset,
if (__copy_to_user(&frame->fp_regs, current->thread.fpr, struct pt_regs * regs, unsigned long newsp)
ELF_NFPREG * sizeof(double)) {
|| __put_user(0x38000000U + __NR_rt_sigreturn, &frame->tramp[0]) /* li r0, __NR_rt_sigreturn */ struct rt_sigframe32 __user *rt_sf;
|| __put_user(0x44000002U, &frame->tramp[1])) /* sc */ struct mcontext32 __user *frame;
goto badframe; unsigned long origsp = newsp;
compat_sigset_t c_oldset;
flush_icache_range((unsigned long) &frame->tramp[0], /* Set up Signal Frame */
(unsigned long) &frame->tramp[2]); /* Put a Real Time Context onto stack */
current->thread.fpscr = 0; /* turn off all fp exceptions */ newsp -= sizeof(*rt_sf);
rt_sf = (struct rt_sigframe32 __user *)newsp;
/* /* create a stack frame for the caller of the handler */
* Retrieve rt_sigframe from stack and newsp -= __SIGNAL_FRAMESIZE32 + 16;
* set up registers for signal handler
*/ if (verify_area(VERIFY_WRITE, (void __user *)newsp, origsp - newsp))
newsp -= __SIGNAL_FRAMESIZE32; goto badframe;
compat_from_sigset(&c_oldset, oldset);
/* Put the siginfo & fill in most of the ucontext */
if (copy_siginfo_to_user32(&rt_sf->info, info)
|| __put_user(0, &rt_sf->uc.uc_flags)
|| __put_user(0, &rt_sf->uc.uc_link)
|| __put_user(current->sas_ss_sp, &rt_sf->uc.uc_stack.ss_sp)
|| __put_user(sas_ss_flags(regs->gpr[1]),
&rt_sf->uc.uc_stack.ss_flags)
|| __put_user(current->sas_ss_size, &rt_sf->uc.uc_stack.ss_size)
|| __put_user((u32)(u64)&rt_sf->uc.uc_mcontext, &rt_sf->uc.uc_regs)
|| __copy_to_user(&rt_sf->uc.uc_sigmask, &c_oldset, sizeof(c_oldset)))
goto badframe;
if (put_user((u32)(regs->gpr[1]), (unsigned int *)(u64)newsp) /* Save user registers on the stack */
|| get_user(regs->nip, &rt_sf->uc.uc_mcontext.handler) frame = &rt_sf->uc.uc_mcontext;
|| get_user(regs->gpr[3], &rt_sf->uc.uc_mcontext.signal) if (save_user_regs(regs, frame, __NR_rt_sigreturn))
|| get_user(copyreg4, &rt_sf->pinfo)
|| get_user(copyreg5, &rt_sf->puc))
goto badframe; goto badframe;
regs->gpr[4] = copyreg4; if (put_user(regs->gpr[1], (unsigned long __user *)newsp))
regs->gpr[5] = copyreg5; goto badframe;
regs->gpr[1] = newsp; regs->gpr[1] = (unsigned long) newsp;
regs->gpr[3] = sig;
regs->gpr[4] = (unsigned long) &rt_sf->info;
regs->gpr[5] = (unsigned long) &rt_sf->uc;
regs->gpr[6] = (unsigned long) rt_sf; regs->gpr[6] = (unsigned long) rt_sf;
regs->nip = (unsigned long) ka->sa.sa_handler;
regs->link = (unsigned long) frame->tramp; regs->link = (unsigned long) frame->tramp;
regs->trap = 0;
return; return;
badframe: badframe:
#if DEBUG_SIG #if DEBUG_SIG
printk("badframe in setup_frame32, regs=%p frame=%p newsp=%lx\n", printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
regs, frame, newsp); regs, frame, newsp);
#endif #endif
do_exit(SIGSEGV); if (sig == SIGSEGV)
ka->sa.sa_handler = SIG_DFL;
force_sig(SIGSEGV, current);
} }
static long do_setcontext32(struct ucontext32 __user *ucp, struct pt_regs *regs, int sig)
{
compat_sigset_t c_set;
sigset_t set;
u32 mcp;
if (__copy_from_user(&c_set, &ucp->uc_sigmask, sizeof(c_set))
|| __get_user(mcp, &ucp->uc_regs))
return -EFAULT;
sigset_from_compat(&set, &c_set);
restore_sigmask(&set);
if (restore_user_regs(regs, (struct mcontext32 *)(u64)mcp, sig))
return -EFAULT;
return 0;
}
/* /*
* OK, we're invoking a handler * Handle {get,set,swap}_context operations for 32 bits processes
*/ */
static void handle_signal32(unsigned long sig, siginfo_t *info,
sigset_t *oldset, struct pt_regs * regs, unsigned int *newspp, long sys32_swapcontext(struct ucontext32 __user *old_ctx,
unsigned int frame) struct ucontext32 __user *new_ctx,
int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
{ {
struct sigcontext32 *sc; unsigned char tmp;
struct rt_sigframe_32 *rt_sf; compat_sigset_t c_set;
struct k_sigaction *ka = &current->sighand->action[sig-1];
/* Context size is for future use. Right now, we only make sure
if (regs->trap == 0x0C00 /* System Call! */ * we are passed something we understand
&& ((int)regs->result == -ERESTARTNOHAND || */
(int)regs->result == -ERESTART_RESTARTBLOCK || if (ctx_size < sizeof(struct ucontext32))
((int)regs->result == -ERESTARTSYS && return -EINVAL;
!(ka->sa.sa_flags & SA_RESTART)))) {
if ((int)regs->result == -ERESTART_RESTARTBLOCK) if (old_ctx != NULL) {
current_thread_info()->restart_block.fn compat_from_sigset(&c_set, &current->blocked);
= do_no_restart_syscall; if (verify_area(VERIFY_WRITE, old_ctx, sizeof(*old_ctx))
regs->result = -EINTR; || save_user_regs(regs, &old_ctx->uc_mcontext, 0)
|| __copy_to_user(&old_ctx->uc_sigmask, &c_set, sizeof(c_set))
|| __put_user((u32)(u64)&old_ctx->uc_mcontext, &old_ctx->uc_regs))
return -EFAULT;
} }
if (new_ctx == NULL)
return 0;
if (verify_area(VERIFY_READ, new_ctx, sizeof(*new_ctx))
|| __get_user(tmp, (u8 *) new_ctx)
|| __get_user(tmp, (u8 *) (new_ctx + 1) - 1))
return -EFAULT;
/* /*
* Set up the signal frame * If we get a fault copying the context into the kernel's
* Determine if a real time frame and a siginfo is required * image of the user's registers, we can't just return -EFAULT
* because the user's registers will be corrupted. For instance
* the NIP value may have been updated but not some of the
* other registers. Given that we have done the verify_area
* and successfully read the first and last bytes of the region
* above, this should only happen in an out-of-memory situation
* or if another thread unmaps the region containing the context.
* We kill the task with a SIGSEGV in this situation.
*/ */
if (ka->sa.sa_flags & SA_SIGINFO) { if (do_setcontext32(new_ctx, regs, 0))
*newspp -= sizeof(*rt_sf); do_exit(SIGSEGV);
rt_sf = (struct rt_sigframe_32 *)(u64)(*newspp);
if (verify_area(VERIFY_WRITE, rt_sf, sizeof(*rt_sf)))
goto badframe;
if (__put_user((u32)(u64)ka->sa.sa_handler,
&rt_sf->uc.uc_mcontext.handler)
|| __put_user((u32)(u64)&rt_sf->info, &rt_sf->pinfo)
|| __put_user((u32)(u64)&rt_sf->uc, &rt_sf->puc)
/* put the siginfo on the user stack */
|| copy_siginfo_to_user32(&rt_sf->info, info)
/* set the ucontext on the user stack */
|| __put_user(0, &rt_sf->uc.uc_flags)
|| __put_user(0, &rt_sf->uc.uc_link)
|| __put_user(current->sas_ss_sp, &rt_sf->uc.uc_stack.ss_sp)
|| __put_user(sas_ss_flags(regs->gpr[1]),
&rt_sf->uc.uc_stack.ss_flags)
|| __put_user(current->sas_ss_size,
&rt_sf->uc.uc_stack.ss_size)
|| __copy_to_user(&rt_sf->uc.uc_sigmask,
oldset, sizeof(*oldset))
/* point the mcontext.regs to the pramble register frame */
|| __put_user(frame, &rt_sf->uc.uc_mcontext.regs)
|| __put_user(sig,&rt_sf->uc.uc_mcontext.signal))
goto badframe;
} else {
/* Put a sigcontext on the stack */
*newspp -= sizeof(*sc);
sc = (struct sigcontext32 *)(u64)*newspp;
if (verify_area(VERIFY_WRITE, sc, sizeof(*sc)))
goto badframe;
/*
* Note the upper 32 bits of the signal mask are stored
* in the unused part of the signal stack frame
*/
if (__put_user((u32)(u64)ka->sa.sa_handler, &sc->handler)
|| __put_user(oldset->sig[0], &sc->oldmask)
|| __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
|| __put_user((unsigned int)frame, &sc->regs)
|| __put_user(sig, &sc->signal))
goto badframe;
}
if (ka->sa.sa_flags & SA_ONESHOT) return 0;
ka->sa.sa_handler = SIG_DFL; }
long sys32_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
struct pt_regs *regs)
{
struct rt_sigframe32 __user *rt_sf;
int ret;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
rt_sf = (struct rt_sigframe32 __user *)
(regs->gpr[1] + __SIGNAL_FRAMESIZE32 + 16);
if (verify_area(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
goto bad;
if (do_setcontext32(&rt_sf->uc, regs, 1))
goto bad;
/*
* It's not clear whether or why it is desirable to save the
* sigaltstack setting on signal delivery and restore it on
* signal return. But other architectures do this and we have
* always done it up until now so it is probably better not to
* change it. -- paulus
* We use the sys32_ version that does the 32/64 bits conversion
* and takes userland pointer directly. What about error checking ?
* nobody does any...
*/
sys32_sigaltstack((u32)(u64)&rt_sf->uc.uc_stack, 0, 0, 0, 0, 0, regs);
regs->result &= 0xFFFFFFFF;
ret = regs->result;
return ret;
bad:
force_sig(SIGSEGV, current);
return 0;
}
/*
* OK, we're invoking a handler
*/
static void handle_signal32(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset,
struct pt_regs * regs, unsigned long newsp)
{
struct sigcontext32 __user *sc;
struct sigregs32 __user *frame;
unsigned long origsp = newsp;
/* Set up Signal Frame */
newsp -= sizeof(struct sigregs32);
frame = (struct sigregs32 __user *) newsp;
/* Put a sigcontext on the stack */
newsp -= sizeof(*sc);
sc = (struct sigcontext32 __user *) newsp;
/* create a stack frame for the caller of the handler */
newsp -= __SIGNAL_FRAMESIZE32;
if (verify_area(VERIFY_WRITE, (void *) newsp, origsp - newsp))
goto badframe;
#if _NSIG != 64
#error "Please adjust handle_signal32()"
#endif
if (__put_user((u32)(u64)ka->sa.sa_handler, &sc->handler)
|| __put_user(oldset->sig[0], &sc->oldmask)
|| __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
|| __put_user((u32)(u64)frame, &sc->regs)
|| __put_user(sig, &sc->signal))
goto badframe;
if (save_user_regs(regs, &frame->mctx, __NR_sigreturn))
goto badframe;
if (put_user(regs->gpr[1], (unsigned long __user *)newsp))
goto badframe;
regs->gpr[1] = (unsigned long) newsp;
regs->gpr[3] = sig;
regs->gpr[4] = (unsigned long) sc;
regs->nip = (unsigned long) ka->sa.sa_handler;
regs->link = (unsigned long) frame->mctx.tramp;
regs->trap = 0;
if (!(ka->sa.sa_flags & SA_NODEFER)) {
spin_lock_irq(&current->sighand->siglock);
sigorsets(&current->blocked,&current->blocked,&ka->sa.sa_mask);
sigaddset(&current->blocked,sig);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
return; return;
badframe: badframe:
#if DEBUG_SIG #if DEBUG_SIG
printk("badframe in handle_signal32, regs=%p frame=%lx newsp=%lx\n", printk("badframe in handle_signal, regs=%p frame=%x newsp=%x\n",
regs, frame, *newspp); regs, frame, *newspp);
printk("sc=%p sig=%d ka=%p info=%p oldset=%p\n", sc, sig, ka, info, oldset);
#endif #endif
do_exit(SIGSEGV); if (sig == SIGSEGV)
ka->sa.sa_handler = SIG_DFL;
force_sig(SIGSEGV, current);
} }
/* /*
* Start Alternate signal stack support * Do a signal return; undo the signal stack.
*
* System Calls
* sigaltatck sys32_sigaltstack
*/ */
long sys32_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
int sys32_sigaltstack(u32 newstack, u32 oldstack, int p3, struct pt_regs *regs)
int p4, int p6, int p7, struct pt_regs *regs)
{ {
stack_t uss, uoss; struct sigcontext32 __user *sc;
struct sigcontext32 sigctx;
struct mcontext32 __user *sr;
sigset_t set;
int ret; int ret;
mm_segment_t old_fs;
unsigned long sp; /* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
sc = (struct sigcontext32 __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE32);
if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
goto badframe;
/* /*
* set sp to the user stack on entry to the system call * Note that PPC32 puts the upper 32 bits of the sigmask in the
* the system call router sets R9 to the saved registers * unused part of the signal stackframe
*/ */
sp = regs->gpr[1]; set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
restore_sigmask(&set);
/* Put new stack info in local 64 bit stack struct */ sr = (struct mcontext32 *)(u64)sigctx.regs;
if (newstack && if (verify_area(VERIFY_READ, sr, sizeof(*sr))
(get_user((long)uss.ss_sp, || restore_user_regs(regs, sr, 1))
&((stack_32_t *)(long)newstack)->ss_sp) || goto badframe;
__get_user(uss.ss_flags,
&((stack_32_t *)(long)newstack)->ss_flags) ||
__get_user(uss.ss_size,
&((stack_32_t *)(long)newstack)->ss_size)))
return -EFAULT;
old_fs = get_fs(); regs->result &= 0xFFFFFFFF;
set_fs(KERNEL_DS); ret = regs->result;
ret = do_sigaltstack(newstack ? &uss : NULL, oldstack ? &uoss : NULL,
sp);
set_fs(old_fs);
/* Copy the stack information to the user output buffer */
if (!ret && oldstack &&
(put_user((long)uoss.ss_sp,
&((stack_32_t *)(long)oldstack)->ss_sp) ||
__put_user(uoss.ss_flags,
&((stack_32_t *)(long)oldstack)->ss_flags) ||
__put_user(uoss.ss_size,
&((stack_32_t *)(long)oldstack)->ss_size)))
return -EFAULT;
return ret; return ret;
badframe:
force_sig(SIGSEGV, current);
return 0;
} }
...@@ -1082,7 +944,7 @@ int do_signal32(sigset_t *oldset, struct pt_regs *regs) ...@@ -1082,7 +944,7 @@ int do_signal32(sigset_t *oldset, struct pt_regs *regs)
siginfo_t info; siginfo_t info;
struct k_sigaction *ka; struct k_sigaction *ka;
unsigned int frame, newsp; unsigned int frame, newsp;
int signr; int signr, ret;
if (!oldset) if (!oldset)
oldset = &current->blocked; oldset = &current->blocked;
...@@ -1090,40 +952,60 @@ int do_signal32(sigset_t *oldset, struct pt_regs *regs) ...@@ -1090,40 +952,60 @@ int do_signal32(sigset_t *oldset, struct pt_regs *regs)
newsp = frame = 0; newsp = frame = 0;
signr = get_signal_to_deliver(&info, regs, NULL); signr = get_signal_to_deliver(&info, regs, NULL);
if (signr > 0) {
ka = &current->sighand->action[signr-1];
if ((ka->sa.sa_flags & SA_ONSTACK)
&& (!on_sig_stack(regs->gpr[1])))
newsp = (current->sas_ss_sp + current->sas_ss_size);
else
newsp = regs->gpr[1];
newsp = frame = newsp - sizeof(struct sigregs32);
/* Whee! Actually deliver the signal. */
handle_signal32(signr, &info, oldset, regs, &newsp, frame);
}
if (regs->trap == 0x0C00) { /* System Call! */ ka = (signr == 0)? NULL: &current->sighand->action[signr-1];
if ((int)regs->result == -ERESTARTNOHAND ||
(int)regs->result == -ERESTARTSYS || if (regs->trap == 0x0C00 /* System Call! */
(int)regs->result == -ERESTARTNOINTR) { && regs->ccr & 0x10000000 /* error signalled */
regs->gpr[3] = regs->orig_gpr3; && ((ret = regs->gpr[3]) == ERESTARTSYS
regs->nip -= 4; /* Back up & retry system call */ || ret == ERESTARTNOHAND || ret == ERESTARTNOINTR
regs->result = 0; || ret == ERESTART_RESTARTBLOCK)) {
} else if ((int)regs->result == -ERESTART_RESTARTBLOCK) {
regs->gpr[0] = __NR_restart_syscall; if (signr > 0
regs->nip -= 4; && (ret == ERESTARTNOHAND || ret == ERESTART_RESTARTBLOCK
|| (ret == ERESTARTSYS
&& !(ka->sa.sa_flags & SA_RESTART)))) {
/* make the system call return an EINTR error */
regs->result = -EINTR;
regs->gpr[3] = EINTR;
/* note that the cr0.SO bit is already set */
} else {
regs->nip -= 4; /* Back up & retry system call */
regs->result = 0; regs->result = 0;
regs->trap = 0;
if (ret == ERESTART_RESTARTBLOCK)
regs->gpr[0] = __NR_restart_syscall;
else
regs->gpr[3] = regs->orig_gpr3;
} }
} }
if (newsp == frame) if (signr == 0)
return 0; /* no signals delivered */ return 0; /* no signals delivered */
/* Invoke correct stack setup routine */ if ((ka->sa.sa_flags & SA_ONSTACK) && current->sas_ss_size
&& (!on_sig_stack(regs->gpr[1])))
newsp = (current->sas_ss_sp + current->sas_ss_size);
else
newsp = regs->gpr[1];
newsp &= ~0xfUL;
/* Whee! Actually deliver the signal. */
if (ka->sa.sa_flags & SA_SIGINFO) if (ka->sa.sa_flags & SA_SIGINFO)
setup_rt_frame32(regs, (struct sigregs32*)(u64)frame, newsp); handle_rt_signal32(signr, ka, &info, oldset, regs, newsp);
else else
setup_frame32(regs, (struct sigregs32*)(u64)frame, newsp); handle_signal32(signr, ka, &info, oldset, regs, newsp);
if (ka->sa.sa_flags & SA_ONESHOT)
ka->sa.sa_handler = SIG_DFL;
if (!(ka->sa.sa_flags & SA_NODEFER)) {
spin_lock_irq(&current->sighand->siglock);
sigorsets(&current->blocked,&current->blocked,&ka->sa.sa_mask);
sigaddset(&current->blocked, signr);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
return 1; return 1;
} }
...@@ -2106,6 +2106,10 @@ long sys32_execve(unsigned long a0, unsigned long a1, unsigned long a2, ...@@ -2106,6 +2106,10 @@ long sys32_execve(unsigned long a0, unsigned long a1, unsigned long a2,
goto out; goto out;
if (regs->msr & MSR_FP) if (regs->msr & MSR_FP)
giveup_fpu(current); giveup_fpu(current);
#ifdef CONFIG_ALTIVEC
if (regs->msr & MSR_VEC)
giveup_altivec(current);
#endif /* CONFIG_ALTIVEC */
error = do_execve32(filename, (u32*) a1, (u32*) a2, regs); error = do_execve32(filename, (u32*) a1, (u32*) a2, regs);
...@@ -2126,9 +2130,25 @@ void start_thread32(struct pt_regs* regs, unsigned long nip, unsigned long sp) ...@@ -2126,9 +2130,25 @@ void start_thread32(struct pt_regs* regs, unsigned long nip, unsigned long sp)
regs->nip = nip; regs->nip = nip;
regs->gpr[1] = sp; regs->gpr[1] = sp;
regs->msr = MSR_USER32; regs->msr = MSR_USER32;
#ifndef CONFIG_SMP
if (last_task_used_math == current) if (last_task_used_math == current)
last_task_used_math = 0; last_task_used_math = 0;
#endif /* CONFIG_SMP */
current->thread.fpscr = 0; current->thread.fpscr = 0;
memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
#ifdef CONFIG_ALTIVEC
#ifndef CONFIG_SMP
if (last_task_used_altivec == current)
last_task_used_altivec = 0;
#endif /* CONFIG_SMP */
memset(current->thread.vr, 0, sizeof(current->thread.vr));
current->thread.vscr.u[0] = 0;
current->thread.vscr.u[1] = 0;
current->thread.vscr.u[2] = 0;
current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
} }
extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3, extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3,
......
...@@ -419,6 +419,14 @@ KernelFPUnavailableException(struct pt_regs *regs) ...@@ -419,6 +419,14 @@ KernelFPUnavailableException(struct pt_regs *regs)
panic("Unrecoverable FP Unavailable Exception in Kernel"); panic("Unrecoverable FP Unavailable Exception in Kernel");
} }
void
KernelAltivecUnavailableException(struct pt_regs *regs)
{
printk("Illegal VMX/Altivec used in kernel (task=0x%p, "
"pc=0x%016lx, trap=0x%lx)\n", current, regs->nip, regs->trap);
panic("Unrecoverable VMX/Altivec Unavailable Exception in Kernel");
}
void void
SingleStepException(struct pt_regs *regs) SingleStepException(struct pt_regs *regs)
{ {
...@@ -488,6 +496,17 @@ AlignmentException(struct pt_regs *regs) ...@@ -488,6 +496,17 @@ AlignmentException(struct pt_regs *regs)
_exception(SIGBUS, &info, regs); _exception(SIGBUS, &info, regs);
} }
#ifdef CONFIG_ALTIVEC
void
AltivecAssistException(struct pt_regs *regs)
{
if (regs->msr & MSR_VEC)
giveup_altivec(current);
/* XXX quick hack for now: set the non-Java bit in the VSCR */
current->thread.vscr.u[3] |= 0x10000;
}
#endif /* CONFIG_ALTIVEC */
void __init trap_init(void) void __init trap_init(void)
{ {
} }
#ifndef __PPC64_ELF_H #ifndef __PPC64_ELF_H
#define __PPC64_ELF_H #define __PPC64_ELF_H
#include <asm/types.h>
#include <asm/ptrace.h>
#include <asm/cputable.h>
/* PowerPC relocations defined by the ABIs */ /* PowerPC relocations defined by the ABIs */
#define R_PPC_NONE 0 #define R_PPC_NONE 0
#define R_PPC_ADDR32 1 /* 32bit absolute address */ #define R_PPC_ADDR32 1 /* 32bit absolute address */
...@@ -39,8 +43,39 @@ ...@@ -39,8 +43,39 @@
#define R_PPC_SECTOFF_LO 34 #define R_PPC_SECTOFF_LO 34
#define R_PPC_SECTOFF_HI 35 #define R_PPC_SECTOFF_HI 35
#define R_PPC_SECTOFF_HA 36 #define R_PPC_SECTOFF_HA 36
/* PowerPC relocations defined for the TLS access ABI. */
#define R_PPC_TLS 67 /* none (sym+add)@tls */
#define R_PPC_DTPMOD32 68 /* word32 (sym+add)@dtpmod */
#define R_PPC_TPREL16 69 /* half16* (sym+add)@tprel */
#define R_PPC_TPREL16_LO 70 /* half16 (sym+add)@tprel@l */
#define R_PPC_TPREL16_HI 71 /* half16 (sym+add)@tprel@h */
#define R_PPC_TPREL16_HA 72 /* half16 (sym+add)@tprel@ha */
#define R_PPC_TPREL32 73 /* word32 (sym+add)@tprel */
#define R_PPC_DTPREL16 74 /* half16* (sym+add)@dtprel */
#define R_PPC_DTPREL16_LO 75 /* half16 (sym+add)@dtprel@l */
#define R_PPC_DTPREL16_HI 76 /* half16 (sym+add)@dtprel@h */
#define R_PPC_DTPREL16_HA 77 /* half16 (sym+add)@dtprel@ha */
#define R_PPC_DTPREL32 78 /* word32 (sym+add)@dtprel */
#define R_PPC_GOT_TLSGD16 79 /* half16* (sym+add)@got@tlsgd */
#define R_PPC_GOT_TLSGD16_LO 80 /* half16 (sym+add)@got@tlsgd@l */
#define R_PPC_GOT_TLSGD16_HI 81 /* half16 (sym+add)@got@tlsgd@h */
#define R_PPC_GOT_TLSGD16_HA 82 /* half16 (sym+add)@got@tlsgd@ha */
#define R_PPC_GOT_TLSLD16 83 /* half16* (sym+add)@got@tlsld */
#define R_PPC_GOT_TLSLD16_LO 84 /* half16 (sym+add)@got@tlsld@l */
#define R_PPC_GOT_TLSLD16_HI 85 /* half16 (sym+add)@got@tlsld@h */
#define R_PPC_GOT_TLSLD16_HA 86 /* half16 (sym+add)@got@tlsld@ha */
#define R_PPC_GOT_TPREL16 87 /* half16* (sym+add)@got@tprel */
#define R_PPC_GOT_TPREL16_LO 88 /* half16 (sym+add)@got@tprel@l */
#define R_PPC_GOT_TPREL16_HI 89 /* half16 (sym+add)@got@tprel@h */
#define R_PPC_GOT_TPREL16_HA 90 /* half16 (sym+add)@got@tprel@ha */
#define R_PPC_GOT_DTPREL16 91 /* half16* (sym+add)@got@dtprel */
#define R_PPC_GOT_DTPREL16_LO 92 /* half16* (sym+add)@got@dtprel@l */
#define R_PPC_GOT_DTPREL16_HI 93 /* half16* (sym+add)@got@dtprel@h */
#define R_PPC_GOT_DTPREL16_HA 94 /* half16* (sym+add)@got@dtprel@ha */
/* Keep this the last entry. */ /* Keep this the last entry. */
#define R_PPC_NUM 37 #define R_PPC_NUM 95
/* /*
* ELF register definitions.. * ELF register definitions..
...@@ -54,7 +89,8 @@ ...@@ -54,7 +89,8 @@
#define ELF_NGREG 48 /* includes nip, msr, lr, etc. */ #define ELF_NGREG 48 /* includes nip, msr, lr, etc. */
#define ELF_NFPREG 33 /* includes fpscr */ #define ELF_NFPREG 33 /* includes fpscr */
#define ELF_NVRREG 34 /* includes vscr */ #define ELF_NVRREG32 33 /* includes vscr & vrsave stuffed together */
#define ELF_NVRREG 34 /* includes vscr & vrsave in split vectors */
typedef unsigned long elf_greg_t64; typedef unsigned long elf_greg_t64;
typedef elf_greg_t64 elf_gregset_t64[ELF_NGREG]; typedef elf_greg_t64 elf_gregset_t64[ELF_NGREG];
...@@ -95,9 +131,13 @@ typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG]; ...@@ -95,9 +131,13 @@ typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
* ptrace interface. This allows signal handling and ptrace to use the same * ptrace interface. This allows signal handling and ptrace to use the same
* structures. This also simplifies the implementation of a bi-arch * structures. This also simplifies the implementation of a bi-arch
* (combined (32- and 64-bit) gdb. * (combined (32- and 64-bit) gdb.
*
* Note that it's _not_ compatible with 32 bits ucontext which stuffs the
* vrsave along with vscr and so only uses 33 vectors for the register set
*/ */
typedef __vector128 elf_vrreg_t; typedef __vector128 elf_vrreg_t;
typedef elf_vrreg_t elf_vrregset_t[ELF_NVRREG]; typedef elf_vrreg_t elf_vrregset_t[ELF_NVRREG];
typedef elf_vrreg_t elf_vrregset_t32[ELF_NVRREG32];
/* /*
* This is used to ensure we don't load something for the wrong architecture. * This is used to ensure we don't load something for the wrong architecture.
...@@ -145,13 +185,15 @@ static inline int dump_task_regs(struct task_struct *tsk, ...@@ -145,13 +185,15 @@ static inline int dump_task_regs(struct task_struct *tsk,
extern int dump_task_fpu(struct task_struct *, elf_fpregset_t *); extern int dump_task_fpu(struct task_struct *, elf_fpregset_t *);
#define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs) #define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs)
/* XXX Should we define the XFPREGS using altivec ??? */
#endif #endif
/* This yields a mask that user programs can use to figure out what /* This yields a mask that user programs can use to figure out what
instruction set this cpu supports. This could be done in userspace, instruction set this cpu supports. This could be done in userspace,
but it's not easy, and we've already done it here. */ but it's not easy, and we've already done it here. */
#define ELF_HWCAP (0) #define ELF_HWCAP (cur_cpu_spec->cpu_user_features)
/* This yields a string that ld.so will use to load implementation /* This yields a string that ld.so will use to load implementation
specific libraries for optimization. This is more specific in specific libraries for optimization. This is more specific in
...@@ -289,7 +331,50 @@ do { \ ...@@ -289,7 +331,50 @@ do { \
#define R_PPC64_TOC16_LO_DS 64 /* half16ds #lo(S + A - .TOC.) >> 2. */ #define R_PPC64_TOC16_LO_DS 64 /* half16ds #lo(S + A - .TOC.) >> 2. */
#define R_PPC64_PLTGOT16_DS 65 /* half16ds* (M + A) >> 2. */ #define R_PPC64_PLTGOT16_DS 65 /* half16ds* (M + A) >> 2. */
#define R_PPC64_PLTGOT16_LO_DS 66 /* half16ds #lo(M + A) >> 2. */ #define R_PPC64_PLTGOT16_LO_DS 66 /* half16ds #lo(M + A) >> 2. */
/* PowerPC64 relocations defined for the TLS access ABI. */
#define R_PPC64_TLS 67 /* none (sym+add)@tls */
#define R_PPC64_DTPMOD64 68 /* doubleword64 (sym+add)@dtpmod */
#define R_PPC64_TPREL16 69 /* half16* (sym+add)@tprel */
#define R_PPC64_TPREL16_LO 70 /* half16 (sym+add)@tprel@l */
#define R_PPC64_TPREL16_HI 71 /* half16 (sym+add)@tprel@h */
#define R_PPC64_TPREL16_HA 72 /* half16 (sym+add)@tprel@ha */
#define R_PPC64_TPREL64 73 /* doubleword64 (sym+add)@tprel */
#define R_PPC64_DTPREL16 74 /* half16* (sym+add)@dtprel */
#define R_PPC64_DTPREL16_LO 75 /* half16 (sym+add)@dtprel@l */
#define R_PPC64_DTPREL16_HI 76 /* half16 (sym+add)@dtprel@h */
#define R_PPC64_DTPREL16_HA 77 /* half16 (sym+add)@dtprel@ha */
#define R_PPC64_DTPREL64 78 /* doubleword64 (sym+add)@dtprel */
#define R_PPC64_GOT_TLSGD16 79 /* half16* (sym+add)@got@tlsgd */
#define R_PPC64_GOT_TLSGD16_LO 80 /* half16 (sym+add)@got@tlsgd@l */
#define R_PPC64_GOT_TLSGD16_HI 81 /* half16 (sym+add)@got@tlsgd@h */
#define R_PPC64_GOT_TLSGD16_HA 82 /* half16 (sym+add)@got@tlsgd@ha */
#define R_PPC64_GOT_TLSLD16 83 /* half16* (sym+add)@got@tlsld */
#define R_PPC64_GOT_TLSLD16_LO 84 /* half16 (sym+add)@got@tlsld@l */
#define R_PPC64_GOT_TLSLD16_HI 85 /* half16 (sym+add)@got@tlsld@h */
#define R_PPC64_GOT_TLSLD16_HA 86 /* half16 (sym+add)@got@tlsld@ha */
#define R_PPC64_GOT_TPREL16_DS 87 /* half16ds* (sym+add)@got@tprel */
#define R_PPC64_GOT_TPREL16_LO_DS 88 /* half16ds (sym+add)@got@tprel@l */
#define R_PPC64_GOT_TPREL16_HI 89 /* half16 (sym+add)@got@tprel@h */
#define R_PPC64_GOT_TPREL16_HA 90 /* half16 (sym+add)@got@tprel@ha */
#define R_PPC64_GOT_DTPREL16_DS 91 /* half16ds* (sym+add)@got@dtprel */
#define R_PPC64_GOT_DTPREL16_LO_DS 92 /* half16ds (sym+add)@got@dtprel@l */
#define R_PPC64_GOT_DTPREL16_HI 93 /* half16 (sym+add)@got@dtprel@h */
#define R_PPC64_GOT_DTPREL16_HA 94 /* half16 (sym+add)@got@dtprel@ha */
#define R_PPC64_TPREL16_DS 95 /* half16ds* (sym+add)@tprel */
#define R_PPC64_TPREL16_LO_DS 96 /* half16ds (sym+add)@tprel@l */
#define R_PPC64_TPREL16_HIGHER 97 /* half16 (sym+add)@tprel@higher */
#define R_PPC64_TPREL16_HIGHERA 98 /* half16 (sym+add)@tprel@highera */
#define R_PPC64_TPREL16_HIGHEST 99 /* half16 (sym+add)@tprel@highest */
#define R_PPC64_TPREL16_HIGHESTA 100 /* half16 (sym+add)@tprel@highesta */
#define R_PPC64_DTPREL16_DS 101 /* half16ds* (sym+add)@dtprel */
#define R_PPC64_DTPREL16_LO_DS 102 /* half16ds (sym+add)@dtprel@l */
#define R_PPC64_DTPREL16_HIGHER 103 /* half16 (sym+add)@dtprel@higher */
#define R_PPC64_DTPREL16_HIGHERA 104 /* half16 (sym+add)@dtprel@highera */
#define R_PPC64_DTPREL16_HIGHEST 105 /* half16 (sym+add)@dtprel@highest */
#define R_PPC64_DTPREL16_HIGHESTA 106 /* half16 (sym+add)@dtprel@highesta */
/* Keep this the last entry. */ /* Keep this the last entry. */
#define R_PPC64_NUM 67 #define R_PPC64_NUM 107
#endif /* __PPC64_ELF_H */ #endif /* __PPC64_ELF_H */
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <linux/mm.h> #include <linux/mm.h>
#include <asm/mmu.h> #include <asm/mmu.h>
#include <asm/ppcdebug.h> #include <asm/ppcdebug.h>
#include <asm/cputable.h>
/* /*
* Copyright (C) 2001 PPC 64 Team, IBM Corp * Copyright (C) 2001 PPC 64 Team, IBM Corp
...@@ -139,10 +140,16 @@ extern void flush_stab(struct task_struct *tsk, struct mm_struct *mm); ...@@ -139,10 +140,16 @@ extern void flush_stab(struct task_struct *tsk, struct mm_struct *mm);
* switch_mm is the entry point called from the architecture independent * switch_mm is the entry point called from the architecture independent
* code in kernel/sched.c * code in kernel/sched.c
*/ */
static inline void static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk)
struct task_struct *tsk)
{ {
#ifdef CONFIG_ALTIVEC
asm volatile (
BEGIN_FTR_SECTION
"dssall;\n"
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
: : );
#endif /* CONFIG_ALTIVEC */
flush_stab(tsk, next); flush_stab(tsk, next);
cpu_set(smp_processor_id(), next->cpu_vm_mask); cpu_set(smp_processor_id(), next->cpu_vm_mask);
} }
......
...@@ -121,12 +121,24 @@ struct sigcontext32 { ...@@ -121,12 +121,24 @@ struct sigcontext32 {
u32 regs; /* 4 byte pointer to the pt_regs32 structure. */ u32 regs; /* 4 byte pointer to the pt_regs32 structure. */
}; };
struct mcontext32 {
elf_gregset_t32 mc_gregs;
elf_fpregset_t mc_fregs;
unsigned int mc_pad[2];
elf_vrregset_t32 mc_vregs __attribute__((__aligned__(16)));
};
struct ucontext32 { struct ucontext32 {
unsigned int uc_flags; unsigned int uc_flags;
unsigned int uc_link; unsigned int uc_link;
stack_32_t uc_stack; stack_32_t uc_stack;
struct sigcontext32 uc_mcontext; int uc_pad[7];
sigset_t uc_sigmask; /* mask last for extensibility */ u32 uc_regs; /* points to uc_mcontext field */
compat_sigset_t uc_sigmask; /* mask last for extensibility */
/* glibc has 1024-bit signal masks, ours are 64-bit */
int uc_maskext[30];
int uc_pad2[3];
struct mcontext32 uc_mcontext;
}; };
typedef struct compat_sigevent { typedef struct compat_sigevent {
......
...@@ -39,6 +39,19 @@ ...@@ -39,6 +39,19 @@
#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base) #define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base) #define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
#define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,b,base
#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
#define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,b,base
#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
#define CHECKANYINT(ra,rb) \ #define CHECKANYINT(ra,rb) \
mfspr rb,SPRG3; /* Get Paca address */\ mfspr rb,SPRG3; /* Get Paca address */\
ld ra,PACALPPACA+LPPACAANYINT(rb); /* Get pending interrupt flags */\ ld ra,PACALPPACA+LPPACAANYINT(rb); /* Get pending interrupt flags */\
......
...@@ -311,6 +311,7 @@ ...@@ -311,6 +311,7 @@
#define SPRN_USIA 0x3AB /* User Sampled Instruction Address Register */ #define SPRN_USIA 0x3AB /* User Sampled Instruction Address Register */
#define SPRN_XER 0x001 /* Fixed Point Exception Register */ #define SPRN_XER 0x001 /* Fixed Point Exception Register */
#define SPRN_ZPR 0x3B0 /* Zone Protection Register */ #define SPRN_ZPR 0x3B0 /* Zone Protection Register */
#define SPRN_VRSAVE 0x100 /* Vector save */
/* Short-hand versions for a number of the above SPRNs */ /* Short-hand versions for a number of the above SPRNs */
...@@ -464,11 +465,9 @@ void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp); ...@@ -464,11 +465,9 @@ void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp);
void release_thread(struct task_struct *); void release_thread(struct task_struct *);
/* Prepare to copy thread state - unlazy all lazy status */ /* Prepare to copy thread state - unlazy all lazy status */
#define prepare_to_copy(tsk) do { } while (0) extern void prepare_to_copy(struct task_struct *tsk);
/* /* Create a new kernel thread. */
* Create a new kernel thread.
*/
extern long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
/* /*
...@@ -479,6 +478,7 @@ extern long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); ...@@ -479,6 +478,7 @@ extern long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
/* Lazy FPU handling on uni-processor */ /* Lazy FPU handling on uni-processor */
extern struct task_struct *last_task_used_math; extern struct task_struct *last_task_used_math;
extern struct task_struct *last_task_used_altivec;
#ifdef __KERNEL__ #ifdef __KERNEL__
...@@ -518,6 +518,14 @@ struct thread_struct { ...@@ -518,6 +518,14 @@ struct thread_struct {
unsigned long fpexc_mode; /* Floating-point exception mode */ unsigned long fpexc_mode; /* Floating-point exception mode */
unsigned long saved_msr; /* Save MSR across signal handlers */ unsigned long saved_msr; /* Save MSR across signal handlers */
unsigned long saved_softe; /* Ditto for Soft Enable/Disable */ unsigned long saved_softe; /* Ditto for Soft Enable/Disable */
#ifdef CONFIG_ALTIVEC
/* Complete AltiVec register set */
vector128 vr[32] __attribute((aligned(16)));
/* AltiVec status */
vector128 vscr __attribute((aligned(16)));
unsigned long vrsave;
int used_vr; /* set if process has used altivec */
#endif /* CONFIG_ALTIVEC */
}; };
#define INIT_SP (sizeof(init_stack) + (unsigned long) &init_stack) #define INIT_SP (sizeof(init_stack) + (unsigned long) &init_stack)
......
...@@ -85,6 +85,9 @@ extern int _get_PVR(void); ...@@ -85,6 +85,9 @@ extern int _get_PVR(void);
extern void giveup_fpu(struct task_struct *); extern void giveup_fpu(struct task_struct *);
extern void disable_kernel_fp(void); extern void disable_kernel_fp(void);
extern void enable_kernel_fp(void); extern void enable_kernel_fp(void);
extern void giveup_altivec(struct task_struct *);
extern void disable_kernel_altivec(void);
extern void enable_kernel_altivec(void);
extern void cvt_fd(float *from, double *to, unsigned long *fpscr); extern void cvt_fd(float *from, double *to, unsigned long *fpscr);
extern void cvt_df(double *from, float *to, unsigned long *fpscr); extern void cvt_df(double *from, float *to, unsigned long *fpscr);
extern int abs(int); extern int abs(int);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment