Commit 06ace7a9 authored by Herbert Xu's avatar Herbert Xu Committed by David S. Miller

[CRYPTO] Use standard byte order macros wherever possible

A lot of crypto code needs to read/write a 32-bit/64-bit words in a
specific gender.  Many of them open code them by reading/writing one
byte at a time.  This patch converts all the applicable usages over
to use the standard byte order macros.

This is based on a previous patch by Denis Vlasenko.
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 2df15fff
......@@ -36,6 +36,8 @@
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
*/
#include <asm/byteorder.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
......@@ -59,7 +61,6 @@ struct aes_ctx {
};
#define WPOLY 0x011b
#define u32_in(x) le32_to_cpup((const __le32 *)(x))
#define bytes2word(b0, b1, b2, b3) \
(((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0))
......@@ -393,13 +394,14 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
int i;
u32 ss[8];
struct aes_ctx *ctx = ctx_arg;
const __le32 *key = (const __le32 *)in_key;
/* encryption schedule */
ctx->ekey[0] = ss[0] = u32_in(in_key);
ctx->ekey[1] = ss[1] = u32_in(in_key + 4);
ctx->ekey[2] = ss[2] = u32_in(in_key + 8);
ctx->ekey[3] = ss[3] = u32_in(in_key + 12);
ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]);
ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]);
ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]);
ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]);
switch(key_len) {
case 16:
......@@ -410,8 +412,8 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
break;
case 24:
ctx->ekey[4] = ss[4] = u32_in(in_key + 16);
ctx->ekey[5] = ss[5] = u32_in(in_key + 20);
ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
for (i = 0; i < 7; i++)
ke6(ctx->ekey, i);
kel6(ctx->ekey, 7);
......@@ -419,10 +421,10 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
break;
case 32:
ctx->ekey[4] = ss[4] = u32_in(in_key + 16);
ctx->ekey[5] = ss[5] = u32_in(in_key + 20);
ctx->ekey[6] = ss[6] = u32_in(in_key + 24);
ctx->ekey[7] = ss[7] = u32_in(in_key + 28);
ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]);
ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]);
for (i = 0; i < 6; i++)
ke8(ctx->ekey, i);
kel8(ctx->ekey, 6);
......@@ -436,10 +438,10 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
/* decryption schedule */
ctx->dkey[0] = ss[0] = u32_in(in_key);
ctx->dkey[1] = ss[1] = u32_in(in_key + 4);
ctx->dkey[2] = ss[2] = u32_in(in_key + 8);
ctx->dkey[3] = ss[3] = u32_in(in_key + 12);
ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]);
ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]);
ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]);
ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]);
switch (key_len) {
case 16:
......@@ -450,8 +452,8 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
break;
case 24:
ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16));
ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20));
ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
kdf6(ctx->dkey, 0);
for (i = 1; i < 7; i++)
kd6(ctx->dkey, i);
......@@ -459,10 +461,10 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
break;
case 32:
ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16));
ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20));
ctx->dkey[6] = ff(ss[6] = u32_in(in_key + 24));
ctx->dkey[7] = ff(ss[7] = u32_in(in_key + 28));
ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6]));
ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7]));
kdf8(ctx->dkey, 0);
for (i = 1; i < 6; i++)
kd8(ctx->dkey, i);
......
......@@ -74,8 +74,6 @@ static inline u8 byte(const u32 x, const unsigned n)
return x >> (n << 3);
}
#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
struct aes_ctx
{
u32 key_length;
......@@ -234,6 +232,7 @@ static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len,
u32 *flags)
{
struct aes_ctx *ctx = ctx_arg;
const __le32 *key = (const __le32 *)in_key;
u32 i, j, t, u, v, w;
if (key_len != 16 && key_len != 24 && key_len != 32) {
......@@ -243,10 +242,10 @@ static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len,
ctx->key_length = key_len;
D_KEY[key_len + 24] = E_KEY[0] = u32_in(in_key);
D_KEY[key_len + 25] = E_KEY[1] = u32_in(in_key + 4);
D_KEY[key_len + 26] = E_KEY[2] = u32_in(in_key + 8);
D_KEY[key_len + 27] = E_KEY[3] = u32_in(in_key + 12);
D_KEY[key_len + 24] = E_KEY[0] = le32_to_cpu(key[0]);
D_KEY[key_len + 25] = E_KEY[1] = le32_to_cpu(key[1]);
D_KEY[key_len + 26] = E_KEY[2] = le32_to_cpu(key[2]);
D_KEY[key_len + 27] = E_KEY[3] = le32_to_cpu(key[3]);
switch (key_len) {
case 16:
......@@ -256,17 +255,17 @@ static int aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len,
break;
case 24:
E_KEY[4] = u32_in(in_key + 16);
t = E_KEY[5] = u32_in(in_key + 20);
E_KEY[4] = le32_to_cpu(key[4]);
t = E_KEY[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i)
loop6 (i);
break;
case 32:
E_KEY[4] = u32_in(in_key + 16);
E_KEY[5] = u32_in(in_key + 20);
E_KEY[6] = u32_in(in_key + 24);
t = E_KEY[7] = u32_in(in_key + 28);
E_KEY[4] = le32_to_cpu(key[4]);
E_KEY[5] = le32_to_cpu(key[5]);
E_KEY[6] = le32_to_cpu(key[6]);
t = E_KEY[7] = le32_to_cpu(key[7]);
for (i = 0; i < 7; ++i)
loop8(i);
break;
......
......@@ -73,9 +73,6 @@ byte(const u32 x, const unsigned n)
return x >> (n << 3);
}
#define u32_in(x) le32_to_cpu(*(const u32 *)(x))
#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
struct aes_ctx {
int key_length;
u32 E[60];
......@@ -256,6 +253,7 @@ static int
aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
{
struct aes_ctx *ctx = ctx_arg;
const __le32 *key = (const __le32 *)in_key;
u32 i, t, u, v, w;
if (key_len != 16 && key_len != 24 && key_len != 32) {
......@@ -265,10 +263,10 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
ctx->key_length = key_len;
E_KEY[0] = u32_in (in_key);
E_KEY[1] = u32_in (in_key + 4);
E_KEY[2] = u32_in (in_key + 8);
E_KEY[3] = u32_in (in_key + 12);
E_KEY[0] = le32_to_cpu(key[0]);
E_KEY[1] = le32_to_cpu(key[1]);
E_KEY[2] = le32_to_cpu(key[2]);
E_KEY[3] = le32_to_cpu(key[3]);
switch (key_len) {
case 16:
......@@ -278,17 +276,17 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
break;
case 24:
E_KEY[4] = u32_in (in_key + 16);
t = E_KEY[5] = u32_in (in_key + 20);
E_KEY[4] = le32_to_cpu(key[4]);
t = E_KEY[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i)
loop6 (i);
break;
case 32:
E_KEY[4] = u32_in (in_key + 16);
E_KEY[5] = u32_in (in_key + 20);
E_KEY[6] = u32_in (in_key + 24);
t = E_KEY[7] = u32_in (in_key + 28);
E_KEY[4] = le32_to_cpu(key[4]);
E_KEY[5] = le32_to_cpu(key[5]);
E_KEY[6] = le32_to_cpu(key[6]);
t = E_KEY[7] = le32_to_cpu(key[7]);
for (i = 0; i < 7; ++i)
loop8 (i);
break;
......@@ -324,13 +322,15 @@ aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
{
const struct aes_ctx *ctx = ctx_arg;
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
u32 b0[4], b1[4];
const u32 *kp = E_KEY + 4;
b0[0] = u32_in (in) ^ E_KEY[0];
b0[1] = u32_in (in + 4) ^ E_KEY[1];
b0[2] = u32_in (in + 8) ^ E_KEY[2];
b0[3] = u32_in (in + 12) ^ E_KEY[3];
b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
if (ctx->key_length > 24) {
f_nround (b1, b0, kp);
......@@ -353,10 +353,10 @@ static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
f_nround (b1, b0, kp);
f_lround (b0, b1, kp);
u32_out (out, b0[0]);
u32_out (out + 4, b0[1]);
u32_out (out + 8, b0[2]);
u32_out (out + 12, b0[3]);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
dst[2] = cpu_to_le32(b0[2]);
dst[3] = cpu_to_le32(b0[3]);
}
/* decrypt a block of text */
......@@ -377,14 +377,16 @@ static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
{
const struct aes_ctx *ctx = ctx_arg;
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
u32 b0[4], b1[4];
const int key_len = ctx->key_length;
const u32 *kp = D_KEY + key_len + 20;
b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
if (key_len > 24) {
i_nround (b1, b0, kp);
......@@ -407,10 +409,10 @@ static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
i_nround (b1, b0, kp);
i_lround (b0, b1, kp);
u32_out (out, b0[0]);
u32_out (out + 4, b0[1]);
u32_out (out + 8, b0[2]);
u32_out (out + 12, b0[3]);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
dst[2] = cpu_to_le32(b0[2]);
dst[3] = cpu_to_le32(b0[3]);
}
......
......@@ -32,8 +32,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define ANUBIS_MIN_KEY_SIZE 16
#define ANUBIS_MAX_KEY_SIZE 40
......@@ -461,8 +463,8 @@ static const u32 rc[] = {
static int anubis_setkey(void *ctx_arg, const u8 *in_key,
unsigned int key_len, u32 *flags)
{
int N, R, i, pos, r;
const __be32 *key = (const __be32 *)in_key;
int N, R, i, r;
u32 kappa[ANUBIS_MAX_N];
u32 inter[ANUBIS_MAX_N];
......@@ -483,13 +485,8 @@ static int anubis_setkey(void *ctx_arg, const u8 *in_key,
ctx->R = R = 8 + N;
/* * map cipher key to initial key state (mu): */
for (i = 0, pos = 0; i < N; i++, pos += 4) {
kappa[i] =
(in_key[pos ] << 24) ^
(in_key[pos + 1] << 16) ^
(in_key[pos + 2] << 8) ^
(in_key[pos + 3] );
}
for (i = 0; i < N; i++)
kappa[i] = be32_to_cpu(key[i]);
/*
* generate R + 1 round keys:
......@@ -578,7 +575,9 @@ static int anubis_setkey(void *ctx_arg, const u8 *in_key,
static void anubis_crypt(u32 roundKey[ANUBIS_MAX_ROUNDS + 1][4],
u8 *ciphertext, const u8 *plaintext, const int R)
{
int i, pos, r;
const __be32 *src = (const __be32 *)plaintext;
__be32 *dst = (__be32 *)ciphertext;
int i, r;
u32 state[4];
u32 inter[4];
......@@ -586,14 +585,8 @@ static void anubis_crypt(u32 roundKey[ANUBIS_MAX_ROUNDS + 1][4],
* map plaintext block to cipher state (mu)
* and add initial round key (sigma[K^0]):
*/
for (i = 0, pos = 0; i < 4; i++, pos += 4) {
state[i] =
(plaintext[pos ] << 24) ^
(plaintext[pos + 1] << 16) ^
(plaintext[pos + 2] << 8) ^
(plaintext[pos + 3] ) ^
roundKey[0][i];
}
for (i = 0; i < 4; i++)
state[i] = be32_to_cpu(src[i]) ^ roundKey[0][i];
/*
* R - 1 full rounds:
......@@ -663,13 +656,8 @@ static void anubis_crypt(u32 roundKey[ANUBIS_MAX_ROUNDS + 1][4],
* map cipher state to ciphertext block (mu^{-1}):
*/
for (i = 0, pos = 0; i < 4; i++, pos += 4) {
u32 w = inter[i];
ciphertext[pos ] = (u8)(w >> 24);
ciphertext[pos + 1] = (u8)(w >> 16);
ciphertext[pos + 2] = (u8)(w >> 8);
ciphertext[pos + 3] = (u8)(w );
}
for (i = 0; i < 4; i++)
dst[i] = cpu_to_be32(inter[i]);
}
static void anubis_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
......
......@@ -19,8 +19,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define BF_BLOCK_SIZE 8
#define BF_MIN_KEY_SIZE 4
......
......@@ -21,11 +21,13 @@
*/
#include <asm/byteorder.h>
#include <linux/init.h>
#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#define CAST5_BLOCK_SIZE 8
#define CAST5_MIN_KEY_SIZE 5
......@@ -578,6 +580,8 @@ static const u32 sb8[256] = {
static void cast5_encrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
{
struct cast5_ctx *c = (struct cast5_ctx *) ctx;
const __be32 *src = (const __be32 *)inbuf;
__be32 *dst = (__be32 *)outbuf;
u32 l, r, t;
u32 I; /* used by the Fx macros */
u32 *Km;
......@@ -589,8 +593,8 @@ static void cast5_encrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
/* (L0,R0) <-- (m1...m64). (Split the plaintext into left and
* right 32-bit halves L0 = m1...m32 and R0 = m33...m64.)
*/
l = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
r = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
l = be32_to_cpu(src[0]);
r = be32_to_cpu(src[1]);
/* (16 rounds) for i from 1 to 16, compute Li and Ri as follows:
* Li = Ri-1;
......@@ -634,19 +638,15 @@ static void cast5_encrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
/* c1...c64 <-- (R16,L16). (Exchange final blocks L16, R16 and
* concatenate to form the ciphertext.) */
outbuf[0] = (r >> 24) & 0xff;
outbuf[1] = (r >> 16) & 0xff;
outbuf[2] = (r >> 8) & 0xff;
outbuf[3] = r & 0xff;
outbuf[4] = (l >> 24) & 0xff;
outbuf[5] = (l >> 16) & 0xff;
outbuf[6] = (l >> 8) & 0xff;
outbuf[7] = l & 0xff;
dst[0] = cpu_to_be32(r);
dst[1] = cpu_to_be32(l);
}
static void cast5_decrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
{
struct cast5_ctx *c = (struct cast5_ctx *) ctx;
const __be32 *src = (const __be32 *)inbuf;
__be32 *dst = (__be32 *)outbuf;
u32 l, r, t;
u32 I;
u32 *Km;
......@@ -655,8 +655,8 @@ static void cast5_decrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
Km = c->Km;
Kr = c->Kr;
l = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
r = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
l = be32_to_cpu(src[0]);
r = be32_to_cpu(src[1]);
if (!(c->rr)) {
t = l; l = r; r = t ^ F1(r, Km[15], Kr[15]);
......@@ -690,14 +690,8 @@ static void cast5_decrypt(void *ctx, u8 * outbuf, const u8 * inbuf)
t = l; l = r; r = t ^ F1(r, Km[0], Kr[0]);
}
outbuf[0] = (r >> 24) & 0xff;
outbuf[1] = (r >> 16) & 0xff;
outbuf[2] = (r >> 8) & 0xff;
outbuf[3] = r & 0xff;
outbuf[4] = (l >> 24) & 0xff;
outbuf[5] = (l >> 16) & 0xff;
outbuf[6] = (l >> 8) & 0xff;
outbuf[7] = l & 0xff;
dst[0] = cpu_to_be32(r);
dst[1] = cpu_to_be32(l);
}
static void key_schedule(u32 * x, u32 * z, u32 * k)
......@@ -782,7 +776,7 @@ cast5_setkey(void *ctx, const u8 * key, unsigned key_len, u32 * flags)
u32 x[4];
u32 z[4];
u32 k[16];
u8 p_key[16];
__be32 p_key[4];
struct cast5_ctx *c = (struct cast5_ctx *) ctx;
if (key_len < 5 || key_len > 16) {
......@@ -796,12 +790,10 @@ cast5_setkey(void *ctx, const u8 * key, unsigned key_len, u32 * flags)
memcpy(p_key, key, key_len);
x[0] = p_key[0] << 24 | p_key[1] << 16 | p_key[2] << 8 | p_key[3];
x[1] = p_key[4] << 24 | p_key[5] << 16 | p_key[6] << 8 | p_key[7];
x[2] =
p_key[8] << 24 | p_key[9] << 16 | p_key[10] << 8 | p_key[11];
x[3] =
p_key[12] << 24 | p_key[13] << 16 | p_key[14] << 8 | p_key[15];
x[0] = be32_to_cpu(p_key[0]);
x[1] = be32_to_cpu(p_key[1]);
x[2] = be32_to_cpu(p_key[2]);
x[3] = be32_to_cpu(p_key[3]);
key_schedule(x, z, k);
for (i = 0; i < 16; i++)
......
......@@ -18,11 +18,13 @@
*/
#include <asm/byteorder.h>
#include <linux/init.h>
#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#define CAST6_BLOCK_SIZE 16
#define CAST6_MIN_KEY_SIZE 16
......@@ -384,7 +386,7 @@ cast6_setkey(void *ctx, const u8 * in_key, unsigned key_len, u32 * flags)
{
int i;
u32 key[8];
u8 p_key[32]; /* padded key */
__be32 p_key[8]; /* padded key */
struct cast6_ctx *c = (struct cast6_ctx *) ctx;
if (key_len < 16 || key_len > 32 || key_len % 4 != 0) {
......@@ -395,14 +397,14 @@ cast6_setkey(void *ctx, const u8 * in_key, unsigned key_len, u32 * flags)
memset (p_key, 0, 32);
memcpy (p_key, in_key, key_len);
key[0] = p_key[0] << 24 | p_key[1] << 16 | p_key[2] << 8 | p_key[3]; /* A */
key[1] = p_key[4] << 24 | p_key[5] << 16 | p_key[6] << 8 | p_key[7]; /* B */
key[2] = p_key[8] << 24 | p_key[9] << 16 | p_key[10] << 8 | p_key[11]; /* C */
key[3] = p_key[12] << 24 | p_key[13] << 16 | p_key[14] << 8 | p_key[15]; /* D */
key[4] = p_key[16] << 24 | p_key[17] << 16 | p_key[18] << 8 | p_key[19]; /* E */
key[5] = p_key[20] << 24 | p_key[21] << 16 | p_key[22] << 8 | p_key[23]; /* F */
key[6] = p_key[24] << 24 | p_key[25] << 16 | p_key[26] << 8 | p_key[27]; /* G */
key[7] = p_key[28] << 24 | p_key[29] << 16 | p_key[30] << 8 | p_key[31]; /* H */
key[0] = be32_to_cpu(p_key[0]); /* A */
key[1] = be32_to_cpu(p_key[1]); /* B */
key[2] = be32_to_cpu(p_key[2]); /* C */
key[3] = be32_to_cpu(p_key[3]); /* D */
key[4] = be32_to_cpu(p_key[4]); /* E */
key[5] = be32_to_cpu(p_key[5]); /* F */
key[6] = be32_to_cpu(p_key[6]); /* G */
key[7] = be32_to_cpu(p_key[7]); /* H */
......@@ -444,14 +446,16 @@ static inline void QBAR (u32 * block, u8 * Kr, u32 * Km) {
static void cast6_encrypt (void * ctx, u8 * outbuf, const u8 * inbuf) {
struct cast6_ctx * c = (struct cast6_ctx *)ctx;
const __be32 *src = (const __be32 *)inbuf;
__be32 *dst = (__be32 *)outbuf;
u32 block[4];
u32 * Km;
u8 * Kr;
block[0] = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
block[1] = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
block[2] = inbuf[8] << 24 | inbuf[9] << 16 | inbuf[10] << 8 | inbuf[11];
block[3] = inbuf[12] << 24 | inbuf[13] << 16 | inbuf[14] << 8 | inbuf[15];
block[0] = be32_to_cpu(src[0]);
block[1] = be32_to_cpu(src[1]);
block[2] = be32_to_cpu(src[2]);
block[3] = be32_to_cpu(src[3]);
Km = c->Km[0]; Kr = c->Kr[0]; Q (block, Kr, Km);
Km = c->Km[1]; Kr = c->Kr[1]; Q (block, Kr, Km);
......@@ -466,34 +470,24 @@ static void cast6_encrypt (void * ctx, u8 * outbuf, const u8 * inbuf) {
Km = c->Km[10]; Kr = c->Kr[10]; QBAR (block, Kr, Km);
Km = c->Km[11]; Kr = c->Kr[11]; QBAR (block, Kr, Km);
outbuf[0] = (block[0] >> 24) & 0xff;
outbuf[1] = (block[0] >> 16) & 0xff;
outbuf[2] = (block[0] >> 8) & 0xff;
outbuf[3] = block[0] & 0xff;
outbuf[4] = (block[1] >> 24) & 0xff;
outbuf[5] = (block[1] >> 16) & 0xff;
outbuf[6] = (block[1] >> 8) & 0xff;
outbuf[7] = block[1] & 0xff;
outbuf[8] = (block[2] >> 24) & 0xff;
outbuf[9] = (block[2] >> 16) & 0xff;
outbuf[10] = (block[2] >> 8) & 0xff;
outbuf[11] = block[2] & 0xff;
outbuf[12] = (block[3] >> 24) & 0xff;
outbuf[13] = (block[3] >> 16) & 0xff;
outbuf[14] = (block[3] >> 8) & 0xff;
outbuf[15] = block[3] & 0xff;
dst[0] = cpu_to_be32(block[0]);
dst[1] = cpu_to_be32(block[1]);
dst[2] = cpu_to_be32(block[2]);
dst[3] = cpu_to_be32(block[3]);
}
static void cast6_decrypt (void * ctx, u8 * outbuf, const u8 * inbuf) {
struct cast6_ctx * c = (struct cast6_ctx *)ctx;
const __be32 *src = (const __be32 *)inbuf;
__be32 *dst = (__be32 *)outbuf;
u32 block[4];
u32 * Km;
u8 * Kr;
block[0] = inbuf[0] << 24 | inbuf[1] << 16 | inbuf[2] << 8 | inbuf[3];
block[1] = inbuf[4] << 24 | inbuf[5] << 16 | inbuf[6] << 8 | inbuf[7];
block[2] = inbuf[8] << 24 | inbuf[9] << 16 | inbuf[10] << 8 | inbuf[11];
block[3] = inbuf[12] << 24 | inbuf[13] << 16 | inbuf[14] << 8 | inbuf[15];
block[0] = be32_to_cpu(src[0]);
block[1] = be32_to_cpu(src[1]);
block[2] = be32_to_cpu(src[2]);
block[3] = be32_to_cpu(src[3]);
Km = c->Km[11]; Kr = c->Kr[11]; Q (block, Kr, Km);
Km = c->Km[10]; Kr = c->Kr[10]; Q (block, Kr, Km);
......@@ -508,22 +502,10 @@ static void cast6_decrypt (void * ctx, u8 * outbuf, const u8 * inbuf) {
Km = c->Km[1]; Kr = c->Kr[1]; QBAR (block, Kr, Km);
Km = c->Km[0]; Kr = c->Kr[0]; QBAR (block, Kr, Km);
outbuf[0] = (block[0] >> 24) & 0xff;
outbuf[1] = (block[0] >> 16) & 0xff;
outbuf[2] = (block[0] >> 8) & 0xff;
outbuf[3] = block[0] & 0xff;
outbuf[4] = (block[1] >> 24) & 0xff;
outbuf[5] = (block[1] >> 16) & 0xff;
outbuf[6] = (block[1] >> 8) & 0xff;
outbuf[7] = block[1] & 0xff;
outbuf[8] = (block[2] >> 24) & 0xff;
outbuf[9] = (block[2] >> 16) & 0xff;
outbuf[10] = (block[2] >> 8) & 0xff;
outbuf[11] = block[2] & 0xff;
outbuf[12] = (block[3] >> 24) & 0xff;
outbuf[13] = (block[3] >> 16) & 0xff;
outbuf[14] = (block[3] >> 8) & 0xff;
outbuf[15] = block[3] & 0xff;
dst[0] = cpu_to_be32(block[0]);
dst[1] = cpu_to_be32(block[1]);
dst[2] = cpu_to_be32(block[2]);
dst[3] = cpu_to_be32(block[3]);
}
static struct crypto_alg alg = {
......
......@@ -16,6 +16,7 @@
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/crc32c.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#define CHKSUM_BLOCK_SIZE 32
......
......@@ -12,11 +12,13 @@
*
*/
#include <asm/byteorder.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define DES_KEY_SIZE 8
#define DES_EXPKEY_WORDS 32
......
......@@ -22,8 +22,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define KHAZAD_KEY_SIZE 16
#define KHAZAD_BLOCK_SIZE 8
......@@ -755,8 +757,8 @@ static const u64 c[KHAZAD_ROUNDS + 1] = {
static int khazad_setkey(void *ctx_arg, const u8 *in_key,
unsigned int key_len, u32 *flags)
{
struct khazad_ctx *ctx = ctx_arg;
const __be64 *key = (const __be64 *)in_key;
int r;
const u64 *S = T7;
u64 K2, K1;
......@@ -767,22 +769,8 @@ static int khazad_setkey(void *ctx_arg, const u8 *in_key,
return -EINVAL;
}
K2 = ((u64)in_key[ 0] << 56) ^
((u64)in_key[ 1] << 48) ^
((u64)in_key[ 2] << 40) ^
((u64)in_key[ 3] << 32) ^
((u64)in_key[ 4] << 24) ^
((u64)in_key[ 5] << 16) ^
((u64)in_key[ 6] << 8) ^
((u64)in_key[ 7] );
K1 = ((u64)in_key[ 8] << 56) ^
((u64)in_key[ 9] << 48) ^
((u64)in_key[10] << 40) ^
((u64)in_key[11] << 32) ^
((u64)in_key[12] << 24) ^
((u64)in_key[13] << 16) ^
((u64)in_key[14] << 8) ^
((u64)in_key[15] );
K2 = be64_to_cpu(key[0]);
K1 = be64_to_cpu(key[1]);
/* setup the encrypt key */
for (r = 0; r <= KHAZAD_ROUNDS; r++) {
......@@ -820,19 +808,12 @@ static int khazad_setkey(void *ctx_arg, const u8 *in_key,
static void khazad_crypt(const u64 roundKey[KHAZAD_ROUNDS + 1],
u8 *ciphertext, const u8 *plaintext)
{
const __be64 *src = (const __be64 *)plaintext;
__be64 *dst = (__be64 *)ciphertext;
int r;
u64 state;
state = ((u64)plaintext[0] << 56) ^
((u64)plaintext[1] << 48) ^
((u64)plaintext[2] << 40) ^
((u64)plaintext[3] << 32) ^
((u64)plaintext[4] << 24) ^
((u64)plaintext[5] << 16) ^
((u64)plaintext[6] << 8) ^
((u64)plaintext[7] ) ^
roundKey[0];
state = be64_to_cpu(*src) ^ roundKey[0];
for (r = 1; r < KHAZAD_ROUNDS; r++) {
state = T0[(int)(state >> 56) ] ^
......@@ -856,15 +837,7 @@ static void khazad_crypt(const u64 roundKey[KHAZAD_ROUNDS + 1],
(T7[(int)(state ) & 0xff] & 0x00000000000000ffULL) ^
roundKey[KHAZAD_ROUNDS];
ciphertext[0] = (u8)(state >> 56);
ciphertext[1] = (u8)(state >> 48);
ciphertext[2] = (u8)(state >> 40);
ciphertext[3] = (u8)(state >> 32);
ciphertext[4] = (u8)(state >> 24);
ciphertext[5] = (u8)(state >> 16);
ciphertext[6] = (u8)(state >> 8);
ciphertext[7] = (u8)(state );
*dst = cpu_to_be64(state);
}
static void khazad_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
......
......@@ -24,6 +24,7 @@
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#define MD4_DIGEST_SIZE 16
......
......@@ -19,6 +19,7 @@
#include <linux/module.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#define MD5_DIGEST_SIZE 16
......
......@@ -10,10 +10,12 @@
* published by the Free Software Foundation.
*/
#include <asm/byteorder.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/types.h>
struct michael_mic_ctx {
......@@ -43,21 +45,6 @@ do { \
} while (0)
static inline u32 get_le32(const u8 *p)
{
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
}
static inline void put_le32(u8 *p, u32 v)
{
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
}
static void michael_init(void *ctx)
{
struct michael_mic_ctx *mctx = ctx;
......@@ -68,6 +55,7 @@ static void michael_init(void *ctx)
static void michael_update(void *ctx, const u8 *data, unsigned int len)
{
struct michael_mic_ctx *mctx = ctx;
const __le32 *src;
if (mctx->pending_len) {
int flen = 4 - mctx->pending_len;
......@@ -81,21 +69,23 @@ static void michael_update(void *ctx, const u8 *data, unsigned int len)
if (mctx->pending_len < 4)
return;
mctx->l ^= get_le32(mctx->pending);
src = (const __le32 *)mctx->pending;
mctx->l ^= le32_to_cpup(src);
michael_block(mctx->l, mctx->r);
mctx->pending_len = 0;
}
src = (const __le32 *)data;
while (len >= 4) {
mctx->l ^= get_le32(data);
mctx->l ^= le32_to_cpup(src++);
michael_block(mctx->l, mctx->r);
data += 4;
len -= 4;
}
if (len > 0) {
mctx->pending_len = len;
memcpy(mctx->pending, data, len);
memcpy(mctx->pending, src, len);
}
}
......@@ -104,6 +94,7 @@ static void michael_final(void *ctx, u8 *out)
{
struct michael_mic_ctx *mctx = ctx;
u8 *data = mctx->pending;
__le32 *dst = (__le32 *)out;
/* Last block and padding (0x5a, 4..7 x 0) */
switch (mctx->pending_len) {
......@@ -125,8 +116,8 @@ static void michael_final(void *ctx, u8 *out)
/* l ^= 0; */
michael_block(mctx->l, mctx->r);
put_le32(out, mctx->l);
put_le32(out + 4, mctx->r);
dst[0] = cpu_to_le32(mctx->l);
dst[1] = cpu_to_le32(mctx->r);
}
......@@ -134,13 +125,16 @@ static int michael_setkey(void *ctx, const u8 *key, unsigned int keylen,
u32 *flags)
{
struct michael_mic_ctx *mctx = ctx;
const __le32 *data = (const __le32 *)key;
if (keylen != 8) {
if (flags)
*flags = CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
mctx->l = get_le32(key);
mctx->r = get_le32(key + 4);
mctx->l = le32_to_cpu(data[0]);
mctx->r = le32_to_cpu(data[1]);
return 0;
}
......
......@@ -20,6 +20,7 @@
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <linux/crypto.h>
#include <linux/types.h>
/* Key is padded to the maximum of 256 bits before round key generation.
* Any key length <= 256 bits (32 bytes) is allowed by the algorithm.
......
......@@ -21,6 +21,7 @@
#include <linux/mm.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <asm/scatterlist.h>
#include <asm/byteorder.h>
......@@ -72,20 +73,12 @@ static void sha1_update(void *ctx, const u8 *data, unsigned int len)
static void sha1_final(void* ctx, u8 *out)
{
struct sha1_ctx *sctx = ctx;
u32 i, j, index, padlen;
u64 t;
u8 bits[8] = { 0, };
__be32 *dst = (__be32 *)out;
u32 i, index, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
t = sctx->count;
bits[7] = 0xff & t; t>>=8;
bits[6] = 0xff & t; t>>=8;
bits[5] = 0xff & t; t>>=8;
bits[4] = 0xff & t; t>>=8;
bits[3] = 0xff & t; t>>=8;
bits[2] = 0xff & t; t>>=8;
bits[1] = 0xff & t; t>>=8;
bits[0] = 0xff & t;
bits = cpu_to_be64(sctx->count);
/* Pad out to 56 mod 64 */
index = (sctx->count >> 3) & 0x3f;
......@@ -93,16 +86,11 @@ static void sha1_final(void* ctx, u8 *out)
sha1_update(sctx, padding, padlen);
/* Append length */
sha1_update(sctx, bits, sizeof bits);
sha1_update(sctx, (const u8 *)&bits, sizeof(bits));
/* Store state in digest */
for (i = j = 0; i < 5; i++, j += 4) {
u32 t2 = sctx->state[i];
out[j+3] = t2 & 0xff; t2>>=8;
out[j+2] = t2 & 0xff; t2>>=8;
out[j+1] = t2 & 0xff; t2>>=8;
out[j ] = t2 & 0xff;
}
for (i = 0; i < 5; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Wipe context */
memset(sctx, 0, sizeof *sctx);
......
......@@ -20,6 +20,7 @@
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/crypto.h>
#include <linux/types.h>
#include <asm/scatterlist.h>
#include <asm/byteorder.h>
......@@ -279,22 +280,15 @@ static void sha256_update(void *ctx, const u8 *data, unsigned int len)
static void sha256_final(void* ctx, u8 *out)
{
struct sha256_ctx *sctx = ctx;
u8 bits[8];
unsigned int index, pad_len, t;
int i, j;
__be32 *dst = (__be32 *)out;
__be32 bits[2];
unsigned int index, pad_len;
int i;
static const u8 padding[64] = { 0x80, };
/* Save number of bits */
t = sctx->count[0];
bits[7] = t; t >>= 8;
bits[6] = t; t >>= 8;
bits[5] = t; t >>= 8;
bits[4] = t;
t = sctx->count[1];
bits[3] = t; t >>= 8;
bits[2] = t; t >>= 8;
bits[1] = t; t >>= 8;
bits[0] = t;
bits[1] = cpu_to_be32(sctx->count[0]);
bits[0] = cpu_to_be32(sctx->count[1]);
/* Pad out to 56 mod 64. */
index = (sctx->count[0] >> 3) & 0x3f;
......@@ -302,16 +296,11 @@ static void sha256_final(void* ctx, u8 *out)
sha256_update(sctx, padding, pad_len);
/* Append length (before padding) */
sha256_update(sctx, bits, 8);
sha256_update(sctx, (const u8 *)bits, sizeof(bits));
/* Store state in digest */
for (i = j = 0; i < 8; i++, j += 4) {
t = sctx->state[i];
out[j+3] = t; t >>= 8;
out[j+2] = t; t >>= 8;
out[j+1] = t; t >>= 8;
out[j ] = t;
}
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Zeroize sensitive information. */
memset(sctx, 0, sizeof(*sctx));
......
......@@ -17,6 +17,7 @@
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/crypto.h>
#include <linux/types.h>
#include <asm/scatterlist.h>
#include <asm/byteorder.h>
......@@ -235,39 +236,17 @@ static void
sha512_final(void *ctx, u8 *hash)
{
struct sha512_ctx *sctx = ctx;
static u8 padding[128] = { 0x80, };
u32 t;
u64 t2;
u8 bits[128];
__be64 *dst = (__be64 *)hash;
__be32 bits[4];
unsigned int index, pad_len;
int i, j;
index = pad_len = t = i = j = 0;
t2 = 0;
int i;
/* Save number of bits */
t = sctx->count[0];
bits[15] = t; t>>=8;
bits[14] = t; t>>=8;
bits[13] = t; t>>=8;
bits[12] = t;
t = sctx->count[1];
bits[11] = t; t>>=8;
bits[10] = t; t>>=8;
bits[9 ] = t; t>>=8;
bits[8 ] = t;
t = sctx->count[2];
bits[7 ] = t; t>>=8;
bits[6 ] = t; t>>=8;
bits[5 ] = t; t>>=8;
bits[4 ] = t;
t = sctx->count[3];
bits[3 ] = t; t>>=8;
bits[2 ] = t; t>>=8;
bits[1 ] = t; t>>=8;
bits[0 ] = t;
bits[3] = cpu_to_be32(sctx->count[0]);
bits[2] = cpu_to_be32(sctx->count[1]);
bits[1] = cpu_to_be32(sctx->count[2]);
bits[0] = cpu_to_be32(sctx->count[3]);
/* Pad out to 112 mod 128. */
index = (sctx->count[0] >> 3) & 0x7f;
......@@ -275,20 +254,11 @@ sha512_final(void *ctx, u8 *hash)
sha512_update(sctx, padding, pad_len);
/* Append length (before padding) */
sha512_update(sctx, bits, 16);
sha512_update(sctx, (const u8 *)bits, sizeof(bits));
/* Store state in digest */
for (i = j = 0; i < 8; i++, j += 8) {
t2 = sctx->state[i];
hash[j+7] = (char)t2 & 0xff; t2>>=8;
hash[j+6] = (char)t2 & 0xff; t2>>=8;
hash[j+5] = (char)t2 & 0xff; t2>>=8;
hash[j+4] = (char)t2 & 0xff; t2>>=8;
hash[j+3] = (char)t2 & 0xff; t2>>=8;
hash[j+2] = (char)t2 & 0xff; t2>>=8;
hash[j+1] = (char)t2 & 0xff; t2>>=8;
hash[j ] = (char)t2 & 0xff;
}
for (i = 0; i < 8; i++)
dst[i] = cpu_to_be64(sctx->state[i]);
/* Zeroize sensitive information. */
memset(sctx, 0, sizeof(struct sha512_ctx));
......
......@@ -22,8 +22,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define TEA_KEY_SIZE 16
#define TEA_BLOCK_SIZE 8
......@@ -35,9 +37,6 @@
#define XTEA_ROUNDS 32
#define XTEA_DELTA 0x9e3779b9
#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
#define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from))
struct tea_ctx {
u32 KEY[4];
};
......@@ -49,8 +48,8 @@ struct xtea_ctx {
static int tea_setkey(void *ctx_arg, const u8 *in_key,
unsigned int key_len, u32 *flags)
{
struct tea_ctx *ctx = ctx_arg;
const __le32 *key = (const __le32 *)in_key;
if (key_len != 16)
{
......@@ -58,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key,
return -EINVAL;
}
ctx->KEY[0] = u32_in (in_key);
ctx->KEY[1] = u32_in (in_key + 4);
ctx->KEY[2] = u32_in (in_key + 8);
ctx->KEY[3] = u32_in (in_key + 12);
ctx->KEY[0] = le32_to_cpu(key[0]);
ctx->KEY[1] = le32_to_cpu(key[1]);
ctx->KEY[2] = le32_to_cpu(key[2]);
ctx->KEY[3] = le32_to_cpu(key[3]);
return 0;
......@@ -73,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
u32 k0, k1, k2, k3;
struct tea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
k0 = ctx->KEY[0];
k1 = ctx->KEY[1];
......@@ -90,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
{
u32 y, z, n, sum;
u32 k0, k1, k2, k3;
struct tea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
k0 = ctx->KEY[0];
k1 = ctx->KEY[1];
......@@ -119,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
sum -= TEA_DELTA;
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static int xtea_setkey(void *ctx_arg, const u8 *in_key,
unsigned int key_len, u32 *flags)
{
struct xtea_ctx *ctx = ctx_arg;
const __le32 *key = (const __le32 *)in_key;
if (key_len != 16)
{
......@@ -136,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
return -EINVAL;
}
ctx->KEY[0] = u32_in (in_key);
ctx->KEY[1] = u32_in (in_key + 4);
ctx->KEY[2] = u32_in (in_key + 8);
ctx->KEY[3] = u32_in (in_key + 12);
ctx->KEY[0] = le32_to_cpu(key[0]);
ctx->KEY[1] = le32_to_cpu(key[1]);
ctx->KEY[2] = le32_to_cpu(key[2]);
ctx->KEY[3] = le32_to_cpu(key[3]);
return 0;
......@@ -147,14 +148,15 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
{
u32 y, z, sum = 0;
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
struct xtea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
while (sum != limit) {
y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
......@@ -162,19 +164,19 @@ static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
{
u32 y, z, sum;
struct tea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
sum = XTEA_DELTA * XTEA_ROUNDS;
......@@ -184,22 +186,22 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
{
u32 y, z, sum = 0;
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
struct xtea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
while (sum != limit) {
y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
......@@ -207,19 +209,19 @@ static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
{
u32 y, z, sum;
struct tea_ctx *ctx = ctx_arg;
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;
y = u32_in (src);
z = u32_in (src + 4);
y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);
sum = XTEA_DELTA * XTEA_ROUNDS;
......@@ -229,9 +231,8 @@ static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
}
u32_out (dst, y);
u32_out (dst + 4, z);
out[0] = cpu_to_le32(y);
out[1] = cpu_to_le32(z);
}
static struct crypto_alg tea_alg = {
......
......@@ -24,8 +24,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define TGR192_DIGEST_SIZE 24
#define TGR160_DIGEST_SIZE 20
......@@ -467,18 +469,10 @@ static void tgr192_transform(struct tgr192_ctx *tctx, const u8 * data)
u64 a, b, c, aa, bb, cc;
u64 x[8];
int i;
const u8 *ptr = data;
for (i = 0; i < 8; i++, ptr += 8) {
x[i] = (((u64)ptr[7] ) << 56) ^
(((u64)ptr[6] & 0xffL) << 48) ^
(((u64)ptr[5] & 0xffL) << 40) ^
(((u64)ptr[4] & 0xffL) << 32) ^
(((u64)ptr[3] & 0xffL) << 24) ^
(((u64)ptr[2] & 0xffL) << 16) ^
(((u64)ptr[1] & 0xffL) << 8) ^
(((u64)ptr[0] & 0xffL) );
}
const __le64 *ptr = (const __le64 *)data;
for (i = 0; i < 8; i++)
x[i] = le64_to_cpu(ptr[i]);
/* save */
a = aa = tctx->a;
......@@ -558,9 +552,10 @@ static void tgr192_update(void *ctx, const u8 * inbuf, unsigned int len)
static void tgr192_final(void *ctx, u8 * out)
{
struct tgr192_ctx *tctx = ctx;
__be64 *dst = (__be64 *)out;
__be64 *be64p;
__le32 *le32p;
u32 t, msb, lsb;
u8 *p;
int i, j;
tgr192_update(tctx, NULL, 0); /* flush */ ;
......@@ -594,41 +589,16 @@ static void tgr192_final(void *ctx, u8 * out)
memset(tctx->hash, 0, 56); /* fill next block with zeroes */
}
/* append the 64 bit count */
tctx->hash[56] = lsb;
tctx->hash[57] = lsb >> 8;
tctx->hash[58] = lsb >> 16;
tctx->hash[59] = lsb >> 24;
tctx->hash[60] = msb;
tctx->hash[61] = msb >> 8;
tctx->hash[62] = msb >> 16;
tctx->hash[63] = msb >> 24;
le32p = (__le32 *)&tctx->hash[56];
le32p[0] = cpu_to_le32(lsb);
le32p[1] = cpu_to_le32(msb);
tgr192_transform(tctx, tctx->hash);
p = tctx->hash;
*p++ = tctx->a >> 56; *p++ = tctx->a >> 48; *p++ = tctx->a >> 40;
*p++ = tctx->a >> 32; *p++ = tctx->a >> 24; *p++ = tctx->a >> 16;
*p++ = tctx->a >> 8; *p++ = tctx->a;\
*p++ = tctx->b >> 56; *p++ = tctx->b >> 48; *p++ = tctx->b >> 40;
*p++ = tctx->b >> 32; *p++ = tctx->b >> 24; *p++ = tctx->b >> 16;
*p++ = tctx->b >> 8; *p++ = tctx->b;
*p++ = tctx->c >> 56; *p++ = tctx->c >> 48; *p++ = tctx->c >> 40;
*p++ = tctx->c >> 32; *p++ = tctx->c >> 24; *p++ = tctx->c >> 16;
*p++ = tctx->c >> 8; *p++ = tctx->c;
/* unpack the hash */
j = 7;
for (i = 0; i < 8; i++) {
out[j--] = (tctx->a >> 8 * i) & 0xff;
}
j = 15;
for (i = 0; i < 8; i++) {
out[j--] = (tctx->b >> 8 * i) & 0xff;
}
j = 23;
for (i = 0; i < 8; i++) {
out[j--] = (tctx->c >> 8 * i) & 0xff;
}
be64p = (__be64 *)tctx->hash;
dst[0] = be64p[0] = cpu_to_be64(tctx->a);
dst[1] = be64p[1] = cpu_to_be64(tctx->b);
dst[2] = be64p[2] = cpu_to_be64(tctx->c);
}
static void tgr160_final(void *ctx, u8 * out)
......
......@@ -37,6 +37,8 @@
* Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
* Third Edition.
*/
#include <asm/byteorder.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
......@@ -621,13 +623,11 @@ static const u8 calc_sb_tbl[512] = {
* whitening subkey number m. */
#define INPACK(n, x, m) \
x = in[4 * (n)] ^ (in[4 * (n) + 1] << 8) \
^ (in[4 * (n) + 2] << 16) ^ (in[4 * (n) + 3] << 24) ^ ctx->w[m]
x = le32_to_cpu(src[n]) ^ ctx->w[m]
#define OUTUNPACK(n, x, m) \
x ^= ctx->w[m]; \
out[4 * (n)] = x; out[4 * (n) + 1] = x >> 8; \
out[4 * (n) + 2] = x >> 16; out[4 * (n) + 3] = x >> 24
dst[n] = cpu_to_le32(x)
#define TF_MIN_KEY_SIZE 16
#define TF_MAX_KEY_SIZE 32
......@@ -804,6 +804,8 @@ static int twofish_setkey(void *cx, const u8 *key,
static void twofish_encrypt(void *cx, u8 *out, const u8 *in)
{
struct twofish_ctx *ctx = cx;
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
/* The four 32-bit chunks of the text. */
u32 a, b, c, d;
......@@ -839,6 +841,8 @@ static void twofish_encrypt(void *cx, u8 *out, const u8 *in)
static void twofish_decrypt(void *cx, u8 *out, const u8 *in)
{
struct twofish_ctx *ctx = cx;
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
/* The four 32-bit chunks of the text. */
u32 a, b, c, d;
......
......@@ -22,8 +22,10 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <asm/byteorder.h>
#include <asm/scatterlist.h>
#include <linux/crypto.h>
#include <linux/types.h>
#define WP512_DIGEST_SIZE 64
#define WP384_DIGEST_SIZE 48
......@@ -778,19 +780,10 @@ static void wp512_process_buffer(struct wp512_ctx *wctx) {
u64 block[8]; /* mu(buffer) */
u64 state[8]; /* the cipher state */
u64 L[8];
u8 *buffer = wctx->buffer;
const __be64 *buffer = (const __be64 *)wctx->buffer;
for (i = 0; i < 8; i++, buffer += 8) {
block[i] =
(((u64)buffer[0] ) << 56) ^
(((u64)buffer[1] & 0xffL) << 48) ^
(((u64)buffer[2] & 0xffL) << 40) ^
(((u64)buffer[3] & 0xffL) << 32) ^
(((u64)buffer[4] & 0xffL) << 24) ^
(((u64)buffer[5] & 0xffL) << 16) ^
(((u64)buffer[6] & 0xffL) << 8) ^
(((u64)buffer[7] & 0xffL) );
}
for (i = 0; i < 8; i++)
block[i] = be64_to_cpu(buffer[i]);
state[0] = block[0] ^ (K[0] = wctx->hash[0]);
state[1] = block[1] ^ (K[1] = wctx->hash[1]);
......@@ -1069,7 +1062,7 @@ static void wp512_final(void *ctx, u8 *out)
u8 *bitLength = wctx->bitLength;
int bufferBits = wctx->bufferBits;
int bufferPos = wctx->bufferPos;
u8 *digest = out;
__be64 *digest = (__be64 *)out;
buffer[bufferPos] |= 0x80U >> (bufferBits & 7);
bufferPos++;
......@@ -1088,17 +1081,8 @@ static void wp512_final(void *ctx, u8 *out)
memcpy(&buffer[WP512_BLOCK_SIZE - WP512_LENGTHBYTES],
bitLength, WP512_LENGTHBYTES);
wp512_process_buffer(wctx);
for (i = 0; i < WP512_DIGEST_SIZE/8; i++) {
digest[0] = (u8)(wctx->hash[i] >> 56);
digest[1] = (u8)(wctx->hash[i] >> 48);
digest[2] = (u8)(wctx->hash[i] >> 40);
digest[3] = (u8)(wctx->hash[i] >> 32);
digest[4] = (u8)(wctx->hash[i] >> 24);
digest[5] = (u8)(wctx->hash[i] >> 16);
digest[6] = (u8)(wctx->hash[i] >> 8);
digest[7] = (u8)(wctx->hash[i] );
digest += 8;
}
for (i = 0; i < WP512_DIGEST_SIZE/8; i++)
digest[i] = cpu_to_be64(wctx->hash[i]);
wctx->bufferBits = bufferBits;
wctx->bufferPos = bufferPos;
}
......
......@@ -99,9 +99,6 @@ byte(const uint32_t x, const unsigned n)
return x >> (n << 3);
}
#define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
#define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
#define E_KEY ctx->E
#define D_KEY ctx->D
......@@ -294,6 +291,7 @@ static int
aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
{
struct aes_ctx *ctx = aes_ctx(ctx_arg);
const __le32 *key = (const __le32 *)in_key;
uint32_t i, t, u, v, w;
uint32_t P[AES_EXTENDED_KEY_SIZE];
uint32_t rounds;
......@@ -313,10 +311,10 @@ aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t
ctx->E = ctx->e_data;
ctx->D = ctx->e_data;
E_KEY[0] = uint32_t_in (in_key);
E_KEY[1] = uint32_t_in (in_key + 4);
E_KEY[2] = uint32_t_in (in_key + 8);
E_KEY[3] = uint32_t_in (in_key + 12);
E_KEY[0] = le32_to_cpu(key[0]);
E_KEY[1] = le32_to_cpu(key[1]);
E_KEY[2] = le32_to_cpu(key[2]);
E_KEY[3] = le32_to_cpu(key[3]);
/* Prepare control words. */
memset(&ctx->cword, 0, sizeof(ctx->cword));
......@@ -343,17 +341,17 @@ aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t
break;
case 24:
E_KEY[4] = uint32_t_in (in_key + 16);
t = E_KEY[5] = uint32_t_in (in_key + 20);
E_KEY[4] = le32_to_cpu(key[4]);
t = E_KEY[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i)
loop6 (i);
break;
case 32:
E_KEY[4] = uint32_t_in (in_key + 16);
E_KEY[5] = uint32_t_in (in_key + 20);
E_KEY[6] = uint32_t_in (in_key + 24);
t = E_KEY[7] = uint32_t_in (in_key + 28);
E_KEY[4] = le32_to_cpu(in_key[4]);
E_KEY[5] = le32_to_cpu(in_key[5]);
E_KEY[6] = le32_to_cpu(in_key[6]);
t = E_KEY[7] = le32_to_cpu(in_key[7]);
for (i = 0; i < 7; ++i)
loop8 (i);
break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment