Commit 0a268dbd authored by Tejun Heo's avatar Tejun Heo

cgroup: move cgroup v1 specific code to kernel/cgroup/cgroup-v1.c

cgroup.c is getting too unwieldy.  Let's move out cgroup v1 specific
code along with the debug controller into kernel/cgroup/cgroup-v1.c.

v2: cgroup_mutex and css_set_lock made available in cgroup-internal.h
    regardless of CONFIG_PROVE_RCU.
Signed-off-by: default avatarTejun Heo <tj@kernel.org>
Acked-by: default avatarAcked-by: Zefan Li <lizefan@huawei.com>
parent 201af4c0
obj-y := cgroup.o obj-y := cgroup.o cgroup-v1.o
obj-$(CONFIG_CGROUP_FREEZER) += freezer.o obj-$(CONFIG_CGROUP_FREEZER) += freezer.o
obj-$(CONFIG_CGROUP_PIDS) += pids.o obj-$(CONFIG_CGROUP_PIDS) += pids.o
......
#ifndef __CGROUP_INTERNAL_H
#define __CGROUP_INTERNAL_H
#include <linux/cgroup.h>
#include <linux/kernfs.h>
#include <linux/workqueue.h>
#include <linux/list.h>
/*
* A cgroup can be associated with multiple css_sets as different tasks may
* belong to different cgroups on different hierarchies. In the other
* direction, a css_set is naturally associated with multiple cgroups.
* This M:N relationship is represented by the following link structure
* which exists for each association and allows traversing the associations
* from both sides.
*/
struct cgrp_cset_link {
/* the cgroup and css_set this link associates */
struct cgroup *cgrp;
struct css_set *cset;
/* list of cgrp_cset_links anchored at cgrp->cset_links */
struct list_head cset_link;
/* list of cgrp_cset_links anchored at css_set->cgrp_links */
struct list_head cgrp_link;
};
extern struct mutex cgroup_mutex;
extern spinlock_t css_set_lock;
extern struct cgroup_subsys *cgroup_subsys[];
extern struct list_head cgroup_roots;
extern struct file_system_type cgroup_fs_type;
/* iterate across the hierarchies */
#define for_each_root(root) \
list_for_each_entry((root), &cgroup_roots, root_list)
/**
* for_each_subsys - iterate all enabled cgroup subsystems
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*/
#define for_each_subsys(ss, ssid) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
return !(cgrp->self.flags & CSS_ONLINE);
}
static inline bool notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
bool cgroup_ssid_enabled(int ssid);
bool cgroup_on_dfl(const struct cgroup *cgrp);
struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root);
struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root);
struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline);
void cgroup_kn_unlock(struct kernfs_node *kn);
int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns);
int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
bool cgroup_may_migrate_to(struct cgroup *dst_cgrp);
void cgroup_migrate_finish(struct list_head *preloaded_csets);
void cgroup_migrate_add_src(struct css_set *src_cset,
struct cgroup *dst_cgrp,
struct list_head *preloaded_csets);
int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets);
int cgroup_migrate(struct task_struct *leader, bool threadgroup,
struct cgroup_root *root);
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
bool threadgroup);
ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off, bool threadgroup);
ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
loff_t off);
void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
/*
* cgroup-v1.c
*/
extern spinlock_t release_agent_path_lock;
extern struct cftype cgroup_legacy_base_files[];
extern const struct file_operations proc_cgroupstats_operations;
bool cgroup_ssid_no_v1(int ssid);
void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str);
void cgroup_release_agent(struct work_struct *work);
void check_for_release(struct cgroup *cgrp);
#endif /* __CGROUP_INTERNAL_H */
#include "cgroup-internal.h"
#include <linux/kmod.h>
#include <linux/sort.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delayacct.h>
#include <linux/pid_namespace.h>
#include <linux/cgroupstats.h>
#include <trace/events/cgroup.h>
/*
* pidlists linger the following amount before being destroyed. The goal
* is avoiding frequent destruction in the middle of consecutive read calls
* Expiring in the middle is a performance problem not a correctness one.
* 1 sec should be enough.
*/
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
/* Controllers blocked by the commandline in v1 */
static u16 cgroup_no_v1_mask;
/*
* pidlist destructions need to be flushed on cgroup destruction. Use a
* separate workqueue as flush domain.
*/
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
/*
* Protects cgroup_subsys->release_agent_path. Modifying it also requires
* cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
*/
DEFINE_SPINLOCK(release_agent_path_lock);
bool cgroup_ssid_no_v1(int ssid)
{
return cgroup_no_v1_mask & (1 << ssid);
}
/**
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroup_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
for_each_root(root) {
struct cgroup *from_cgrp;
if (root == &cgrp_dfl_root)
continue;
spin_lock_irq(&css_set_lock);
from_cgrp = task_cgroup_from_root(from, root);
spin_unlock_irq(&css_set_lock);
retval = cgroup_attach_task(from_cgrp, tsk, false);
if (retval)
break;
}
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
/**
* cgroup_trasnsfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*
* Locking rules between cgroup_post_fork() and the migration path
* guarantee that, if a task is forking while being migrated, the new child
* is guaranteed to be either visible in the source cgroup after the
* parent's migration is complete or put into the target cgroup. No task
* can slip out of migration through forking.
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
LIST_HEAD(preloaded_csets);
struct cgrp_cset_link *link;
struct css_task_iter it;
struct task_struct *task;
int ret;
if (cgroup_on_dfl(to))
return -EINVAL;
if (!cgroup_may_migrate_to(to))
return -EBUSY;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
/* all tasks in @from are being moved, all csets are source */
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &from->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
spin_unlock_irq(&css_set_lock);
ret = cgroup_migrate_prepare_dst(&preloaded_csets);
if (ret)
goto out_err;
/*
* Migrate tasks one-by-one until @from is empty. This fails iff
* ->can_attach() fails.
*/
do {
css_task_iter_start(&from->self, &it);
task = css_task_iter_next(&it);
if (task)
get_task_struct(task);
css_task_iter_end(&it);
if (task) {
ret = cgroup_migrate(task, false, to->root);
if (!ret)
trace_cgroup_transfer_tasks(to, task, false);
put_task_struct(task);
}
} while (task && !ret);
out_err:
cgroup_migrate_finish(&preloaded_csets);
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return ret;
}
/*
* Stuff for reading the 'tasks'/'procs' files.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
*/
/* which pidlist file are we talking about? */
enum cgroup_filetype {
CGROUP_FILE_PROCS,
CGROUP_FILE_TASKS,
};
/*
* A pidlist is a list of pids that virtually represents the contents of one
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
* a pair (one each for procs, tasks) for each pid namespace that's relevant
* to the cgroup.
*/
struct cgroup_pidlist {
/*
* used to find which pidlist is wanted. doesn't change as long as
* this particular list stays in the list.
*/
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
/* array of xids */
pid_t *list;
/* how many elements the above list has */
int length;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
/* for delayed destruction */
struct delayed_work destroy_dwork;
};
/*
* The following two functions "fix" the issue where there are more pids
* than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
* TODO: replace with a kernel-wide solution to this problem
*/
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
if (PIDLIST_TOO_LARGE(count))
return vmalloc(count * sizeof(pid_t));
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
kvfree(p);
}
/*
* Used to destroy all pidlists lingering waiting for destroy timer. None
* should be left afterwards.
*/
void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
struct cgroup_pidlist *l, *tmp_l;
mutex_lock(&cgrp->pidlist_mutex);
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
mutex_unlock(&cgrp->pidlist_mutex);
flush_workqueue(cgroup_pidlist_destroy_wq);
BUG_ON(!list_empty(&cgrp->pidlists));
}
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
destroy_dwork);
struct cgroup_pidlist *tofree = NULL;
mutex_lock(&l->owner->pidlist_mutex);
/*
* Destroy iff we didn't get queued again. The state won't change
* as destroy_dwork can only be queued while locked.
*/
if (!delayed_work_pending(dwork)) {
list_del(&l->links);
pidlist_free(l->list);
put_pid_ns(l->key.ns);
tofree = l;
}
mutex_unlock(&l->owner->pidlist_mutex);
kfree(tofree);
}
/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
static int pidlist_uniq(pid_t *list, int length)
{
int src, dest = 1;
/*
* we presume the 0th element is unique, so i starts at 1. trivial
* edge cases first; no work needs to be done for either
*/
if (length == 0 || length == 1)
return length;
/* src and dest walk down the list; dest counts unique elements */
for (src = 1; src < length; src++) {
/* find next unique element */
while (list[src] == list[src-1]) {
src++;
if (src == length)
goto after;
}
/* dest always points to where the next unique element goes */
list[dest] = list[src];
dest++;
}
after:
return dest;
}
/*
* The two pid files - task and cgroup.procs - guaranteed that the result
* is sorted, which forced this whole pidlist fiasco. As pid order is
* different per namespace, each namespace needs differently sorted list,
* making it impossible to use, for example, single rbtree of member tasks
* sorted by task pointer. As pidlists can be fairly large, allocating one
* per open file is dangerous, so cgroup had to implement shared pool of
* pidlists keyed by cgroup and namespace.
*/
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
/* don't need task_nsproxy() if we're looking at ourself */
struct pid_namespace *ns = task_active_pid_ns(current);
lockdep_assert_held(&cgrp->pidlist_mutex);
list_for_each_entry(l, &cgrp->pidlists, links)
if (l->key.type == type && l->key.ns == ns)
return l;
return NULL;
}
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
l = cgroup_pidlist_find(cgrp, type);
if (l)
return l;
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
if (!l)
return l;
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
/* don't need task_nsproxy() if we're looking at ourself */
l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
return l;
}
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*
* Return the number of tasks in the cgroup. The returned number can be
* higher than the actual number of tasks due to css_set references from
* namespace roots and temporary usages.
*/
static int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cgrp_cset_link *link;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
count += atomic_read(&link->cset->refcount);
spin_unlock_irq(&css_set_lock);
return count;
}
/*
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
*/
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct cgroup_pidlist **lp)
{
pid_t *array;
int length;
int pid, n = 0; /* used for populating the array */
struct css_task_iter it;
struct task_struct *tsk;
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
length = cgroup_task_count(cgrp);
array = pidlist_allocate(length);
if (!array)
return -ENOMEM;
/* now, populate the array */
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
if (unlikely(n == length))
break;
/* get tgid or pid for procs or tasks file respectively */
if (type == CGROUP_FILE_PROCS)
pid = task_tgid_vnr(tsk);
else
pid = task_pid_vnr(tsk);
if (pid > 0) /* make sure to only use valid results */
array[n++] = pid;
}
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
pidlist_free(array);
return -ENOMEM;
}
/* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
*lp = l;
return 0;
}
/*
* seq_file methods for the tasks/procs files. The seq_file position is the
* next pid to display; the seq_file iterator is a pointer to the pid
* in the cgroup->l->list array.
*/
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
/*
* Initially we receive a position value that corresponds to
* one more than the last pid shown (or 0 on the first call or
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct cgroup_pidlist *l;
enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
int *iter, ret;
mutex_lock(&cgrp->pidlist_mutex);
/*
* !NULL @of->priv indicates that this isn't the first start()
* after open. If the matching pidlist is around, we can use that.
* Look for it. Note that @of->priv can't be used directly. It
* could already have been destroyed.
*/
if (of->priv)
of->priv = cgroup_pidlist_find(cgrp, type);
/*
* Either this is the first start() after open or the matching
* pidlist has been destroyed inbetween. Create a new one.
*/
if (!of->priv) {
ret = pidlist_array_load(cgrp, type,
(struct cgroup_pidlist **)&of->priv);
if (ret)
return ERR_PTR(ret);
}
l = of->priv;
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
if (l->list[mid] == pid) {
index = mid;
break;
} else if (l->list[mid] <= pid)
index = mid + 1;
else
end = mid;
}
}
/* If we're off the end of the array, we're done */
if (index >= l->length)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
*pos = *iter;
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
if (l)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
CGROUP_PIDLIST_DESTROY_DELAY);
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
* Advance to the next pid in the array. If this goes off the
* end, we're done
*/
p++;
if (p >= end) {
return NULL;
} else {
*pos = *p;
return p;
}
}
static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", *(int *)v);
return 0;
}
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, false);
}
static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup *cgrp;
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
cgrp = cgroup_kn_lock_live(of->kn, false);
if (!cgrp)
return -ENODEV;
spin_lock(&release_agent_path_lock);
strlcpy(cgrp->root->release_agent_path, strstrip(buf),
sizeof(cgrp->root->release_agent_path));
spin_unlock(&release_agent_path_lock);
cgroup_kn_unlock(of->kn);
return nbytes;
}
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
spin_lock(&release_agent_path_lock);
seq_puts(seq, cgrp->root->release_agent_path);
spin_unlock(&release_agent_path_lock);
seq_putc(seq, '\n');
return 0;
}
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
seq_puts(seq, "0\n");
return 0;
}
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return notify_on_release(css->cgroup);
}
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
else
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
return 0;
}
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
}
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
else
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
return 0;
}
/* cgroup core interface files for the legacy hierarchies */
struct cftype cgroup_legacy_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write = cgroup_procs_write,
},
{
.name = "cgroup.clone_children",
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
{
.name = "tasks",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write = cgroup_tasks_write,
},
{
.name = "notify_on_release",
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
};
/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->legacy_name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps),
cgroup_ssid_enabled(i));
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroupstats_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_cgroupstats_show, NULL);
}
const struct file_operations proc_cgroupstats_operations = {
.open = cgroupstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* cgroupstats_build - build and fill cgroupstats
* @stats: cgroupstats to fill information into
* @dentry: A dentry entry belonging to the cgroup for which stats have
* been requested.
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup *cgrp;
struct css_task_iter it;
struct task_struct *tsk;
/* it should be kernfs_node belonging to cgroupfs and is a directory */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return -EINVAL;
mutex_lock(&cgroup_mutex);
/*
* We aren't being called from kernfs and there's no guarantee on
* @kn->priv's validity. For this and css_tryget_online_from_dir(),
* @kn->priv is RCU safe. Let's do the RCU dancing.
*/
rcu_read_lock();
cgrp = rcu_dereference(kn->priv);
if (!cgrp || cgroup_is_dead(cgrp)) {
rcu_read_unlock();
mutex_unlock(&cgroup_mutex);
return -ENOENT;
}
rcu_read_unlock();
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
switch (tsk->state) {
case TASK_RUNNING:
stats->nr_running++;
break;
case TASK_INTERRUPTIBLE:
stats->nr_sleeping++;
break;
case TASK_UNINTERRUPTIBLE:
stats->nr_uninterruptible++;
break;
case TASK_STOPPED:
stats->nr_stopped++;
break;
default:
if (delayacct_is_task_waiting_on_io(tsk))
stats->nr_io_wait++;
break;
}
}
css_task_iter_end(&it);
mutex_unlock(&cgroup_mutex);
return 0;
}
void check_for_release(struct cgroup *cgrp)
{
if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
!css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
schedule_work(&cgrp->release_agent_work);
}
/*
* Notify userspace when a cgroup is released, by running the
* configured release agent with the name of the cgroup (path
* relative to the root of cgroup file system) as the argument.
*
* Most likely, this user command will try to rmdir this cgroup.
*
* This races with the possibility that some other task will be
* attached to this cgroup before it is removed, or that some other
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
* unused, and this cgroup will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
* means only wait until the task is successfully execve()'d. The
* separate release agent task is forked by call_usermodehelper(),
* then control in this thread returns here, without waiting for the
* release agent task. We don't bother to wait because the caller of
* this routine has no use for the exit status of the release agent
* task, so no sense holding our caller up for that.
*/
void cgroup_release_agent(struct work_struct *work)
{
struct cgroup *cgrp =
container_of(work, struct cgroup, release_agent_work);
char *pathbuf = NULL, *agentbuf = NULL;
char *argv[3], *envp[3];
int ret;
mutex_lock(&cgroup_mutex);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
if (!pathbuf || !agentbuf)
goto out;
spin_lock_irq(&css_set_lock);
ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
spin_unlock_irq(&css_set_lock);
if (ret < 0 || ret >= PATH_MAX)
goto out;
argv[0] = agentbuf;
argv[1] = pathbuf;
argv[2] = NULL;
/* minimal command environment */
envp[0] = "HOME=/";
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[2] = NULL;
mutex_unlock(&cgroup_mutex);
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
goto out_free;
out:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(agentbuf);
kfree(pathbuf);
}
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str)
{
struct cgroup *cgrp = kn->priv;
int ret;
if (kernfs_type(kn) != KERNFS_DIR)
return -ENOTDIR;
if (kn->parent != new_parent)
return -EIO;
/*
* This isn't a proper migration and its usefulness is very
* limited. Disallow on the default hierarchy.
*/
if (cgroup_on_dfl(cgrp))
return -EPERM;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. kernfs_rename() doesn't require active_ref
* protection. Break them before grabbing cgroup_mutex.
*/
kernfs_break_active_protection(new_parent);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_mutex);
ret = kernfs_rename(kn, new_parent, new_name_str);
if (!ret)
trace_cgroup_rename(cgrp);
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
kernfs_unbreak_active_protection(new_parent);
return ret;
}
static int __init cgroup1_wq_init(void)
{
/*
* Used to destroy pidlists and separate to serve as flush domain.
* Cap @max_active to 1 too.
*/
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
0, 1);
BUG_ON(!cgroup_pidlist_destroy_wq);
return 0;
}
core_initcall(cgroup1_wq_init);
static int __init cgroup_no_v1(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
if (!strcmp(token, "all")) {
cgroup_no_v1_mask = U16_MAX;
break;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->name) &&
strcmp(token, ss->legacy_name))
continue;
cgroup_no_v1_mask |= 1 << i;
}
}
return 1;
}
__setup("cgroup_no_v1=", cgroup_no_v1);
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
if (!css)
return ERR_PTR(-ENOMEM);
return css;
}
static void debug_css_free(struct cgroup_subsys_state *css)
{
kfree(css);
}
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return cgroup_task_count(css->cgroup);
}
static u64 current_css_set_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return (u64)(unsigned long)current->cgroups;
}
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
u64 count;
rcu_read_lock();
count = atomic_read(&task_css_set(current)->refcount);
rcu_read_unlock();
return count;
}
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
{
struct cgrp_cset_link *link;
struct css_set *cset;
char *name_buf;
name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
if (!name_buf)
return -ENOMEM;
spin_lock_irq(&css_set_lock);
rcu_read_lock();
cset = rcu_dereference(current->cgroups);
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
cgroup_name(c, name_buf, NAME_MAX + 1);
seq_printf(seq, "Root %d group %s\n",
c->root->hierarchy_id, name_buf);
}
rcu_read_unlock();
spin_unlock_irq(&css_set_lock);
kfree(name_buf);
return 0;
}
#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct seq_file *seq, void *v)
{
struct cgroup_subsys_state *css = seq_css(seq);
struct cgrp_cset_link *link;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
struct css_set *cset = link->cset;
struct task_struct *task;
int count = 0;
seq_printf(seq, "css_set %p\n", cset);
list_for_each_entry(task, &cset->tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
list_for_each_entry(task, &cset->mg_tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
continue;
overflow:
seq_puts(seq, " ...\n");
}
spin_unlock_irq(&css_set_lock);
return 0;
}
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
return (!cgroup_is_populated(css->cgroup) &&
!css_has_online_children(&css->cgroup->self));
}
static struct cftype debug_files[] = {
{
.name = "taskcount",
.read_u64 = debug_taskcount_read,
},
{
.name = "current_css_set",
.read_u64 = current_css_set_read,
},
{
.name = "current_css_set_refcount",
.read_u64 = current_css_set_refcount_read,
},
{
.name = "current_css_set_cg_links",
.seq_show = current_css_set_cg_links_read,
},
{
.name = "cgroup_css_links",
.seq_show = cgroup_css_links_read,
},
{
.name = "releasable",
.read_u64 = releasable_read,
},
{ } /* terminate */
};
struct cgroup_subsys debug_cgrp_subsys = {
.css_alloc = debug_css_alloc,
.css_free = debug_css_free,
.legacy_cftypes = debug_files,
};
#endif /* CONFIG_CGROUP_DEBUG */
...@@ -28,15 +28,14 @@ ...@@ -28,15 +28,14 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cgroup.h> #include "cgroup-internal.h"
#include <linux/cred.h> #include <linux/cred.h>
#include <linux/ctype.h> #include <linux/ctype.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/init_task.h> #include <linux/init_task.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/list.h>
#include <linux/magic.h> #include <linux/magic.h>
#include <linux/mm.h>
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/mount.h> #include <linux/mount.h>
#include <linux/pagemap.h> #include <linux/pagemap.h>
...@@ -47,14 +46,8 @@ ...@@ -47,14 +46,8 @@
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/percpu-rwsem.h> #include <linux/percpu-rwsem.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
#include <linux/hashtable.h> #include <linux/hashtable.h>
#include <linux/pid_namespace.h>
#include <linux/idr.h> #include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
#include <linux/kthread.h> #include <linux/kthread.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/atomic.h> #include <linux/atomic.h>
...@@ -67,14 +60,6 @@ ...@@ -67,14 +60,6 @@
#define CREATE_TRACE_POINTS #define CREATE_TRACE_POINTS
#include <trace/events/cgroup.h> #include <trace/events/cgroup.h>
/*
* pidlists linger the following amount before being destroyed. The goal
* is avoiding frequent destruction in the middle of consecutive read calls
* Expiring in the middle is a performance problem not a correctness one.
* 1 sec should be enough.
*/
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
MAX_CFTYPE_NAME + 2) MAX_CFTYPE_NAME + 2)
...@@ -88,14 +73,12 @@ ...@@ -88,14 +73,12 @@
* These locks are exported if CONFIG_PROVE_RCU so that accessors in * These locks are exported if CONFIG_PROVE_RCU so that accessors in
* cgroup.h can use them for lockdep annotations. * cgroup.h can use them for lockdep annotations.
*/ */
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex); DEFINE_MUTEX(cgroup_mutex);
DEFINE_SPINLOCK(css_set_lock); DEFINE_SPINLOCK(css_set_lock);
#ifdef CONFIG_PROVE_RCU
EXPORT_SYMBOL_GPL(cgroup_mutex); EXPORT_SYMBOL_GPL(cgroup_mutex);
EXPORT_SYMBOL_GPL(css_set_lock); EXPORT_SYMBOL_GPL(css_set_lock);
#else
static DEFINE_MUTEX(cgroup_mutex);
static DEFINE_SPINLOCK(css_set_lock);
#endif #endif
/* /*
...@@ -110,12 +93,6 @@ static DEFINE_SPINLOCK(cgroup_idr_lock); ...@@ -110,12 +93,6 @@ static DEFINE_SPINLOCK(cgroup_idr_lock);
*/ */
static DEFINE_SPINLOCK(cgroup_file_kn_lock); static DEFINE_SPINLOCK(cgroup_file_kn_lock);
/*
* Protects cgroup_subsys->release_agent_path. Modifying it also requires
* cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
*/
static DEFINE_SPINLOCK(release_agent_path_lock);
struct percpu_rw_semaphore cgroup_threadgroup_rwsem; struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
#define cgroup_assert_mutex_or_rcu_locked() \ #define cgroup_assert_mutex_or_rcu_locked() \
...@@ -131,15 +108,9 @@ struct percpu_rw_semaphore cgroup_threadgroup_rwsem; ...@@ -131,15 +108,9 @@ struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
*/ */
static struct workqueue_struct *cgroup_destroy_wq; static struct workqueue_struct *cgroup_destroy_wq;
/*
* pidlist destructions need to be flushed on cgroup destruction. Use a
* separate workqueue as flush domain.
*/
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
/* generate an array of cgroup subsystem pointers */ /* generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
static struct cgroup_subsys *cgroup_subsys[] = { struct cgroup_subsys *cgroup_subsys[] = {
#include <linux/cgroup_subsys.h> #include <linux/cgroup_subsys.h>
}; };
#undef SUBSYS #undef SUBSYS
...@@ -186,9 +157,6 @@ EXPORT_SYMBOL_GPL(cgrp_dfl_root); ...@@ -186,9 +157,6 @@ EXPORT_SYMBOL_GPL(cgrp_dfl_root);
*/ */
static bool cgrp_dfl_visible; static bool cgrp_dfl_visible;
/* Controllers blocked by the commandline in v1 */
static u16 cgroup_no_v1_mask;
/* some controllers are not supported in the default hierarchy */ /* some controllers are not supported in the default hierarchy */
static u16 cgrp_dfl_inhibit_ss_mask; static u16 cgrp_dfl_inhibit_ss_mask;
...@@ -196,8 +164,7 @@ static u16 cgrp_dfl_inhibit_ss_mask; ...@@ -196,8 +164,7 @@ static u16 cgrp_dfl_inhibit_ss_mask;
static unsigned long cgrp_dfl_implicit_ss_mask; static unsigned long cgrp_dfl_implicit_ss_mask;
/* The list of hierarchy roots */ /* The list of hierarchy roots */
LIST_HEAD(cgroup_roots);
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count; static int cgroup_root_count;
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
...@@ -235,10 +202,7 @@ static u16 have_canfork_callback __read_mostly; ...@@ -235,10 +202,7 @@ static u16 have_canfork_callback __read_mostly;
static struct file_system_type cgroup2_fs_type; static struct file_system_type cgroup2_fs_type;
static struct cftype cgroup_dfl_base_files[]; static struct cftype cgroup_dfl_base_files[];
static struct cftype cgroup_legacy_base_files[];
static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
static int cgroup_apply_control(struct cgroup *cgrp); static int cgroup_apply_control(struct cgroup *cgrp);
static void cgroup_finalize_control(struct cgroup *cgrp, int ret); static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
static void css_task_iter_advance(struct css_task_iter *it); static void css_task_iter_advance(struct css_task_iter *it);
...@@ -259,7 +223,7 @@ static int cgroup_addrm_files(struct cgroup_subsys_state *css, ...@@ -259,7 +223,7 @@ static int cgroup_addrm_files(struct cgroup_subsys_state *css,
* is fine for individual subsystems but unsuitable for cgroup core. This * is fine for individual subsystems but unsuitable for cgroup core. This
* is slower static_key_enabled() based test indexed by @ssid. * is slower static_key_enabled() based test indexed by @ssid.
*/ */
static bool cgroup_ssid_enabled(int ssid) bool cgroup_ssid_enabled(int ssid)
{ {
if (CGROUP_SUBSYS_COUNT == 0) if (CGROUP_SUBSYS_COUNT == 0)
return false; return false;
...@@ -267,11 +231,6 @@ static bool cgroup_ssid_enabled(int ssid) ...@@ -267,11 +231,6 @@ static bool cgroup_ssid_enabled(int ssid)
return static_key_enabled(cgroup_subsys_enabled_key[ssid]); return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
} }
static bool cgroup_ssid_no_v1(int ssid)
{
return cgroup_no_v1_mask & (1 << ssid);
}
/** /**
* cgroup_on_dfl - test whether a cgroup is on the default hierarchy * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
* @cgrp: the cgroup of interest * @cgrp: the cgroup of interest
...@@ -325,7 +284,7 @@ static bool cgroup_ssid_no_v1(int ssid) ...@@ -325,7 +284,7 @@ static bool cgroup_ssid_no_v1(int ssid)
* *
* - debug: disallowed on the default hierarchy. * - debug: disallowed on the default hierarchy.
*/ */
static bool cgroup_on_dfl(const struct cgroup *cgrp) bool cgroup_on_dfl(const struct cgroup *cgrp)
{ {
return cgrp->root == &cgrp_dfl_root; return cgrp->root == &cgrp_dfl_root;
} }
...@@ -481,12 +440,6 @@ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, ...@@ -481,12 +440,6 @@ struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
return css; return css;
} }
/* convenient tests for these bits */
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
return !(cgrp->self.flags & CSS_ONLINE);
}
static void cgroup_get(struct cgroup *cgrp) static void cgroup_get(struct cgroup *cgrp)
{ {
WARN_ON_ONCE(cgroup_is_dead(cgrp)); WARN_ON_ONCE(cgroup_is_dead(cgrp));
...@@ -518,11 +471,6 @@ struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) ...@@ -518,11 +471,6 @@ struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
} }
EXPORT_SYMBOL_GPL(of_css); EXPORT_SYMBOL_GPL(of_css);
static int notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
/** /**
* for_each_css - iterate all css's of a cgroup * for_each_css - iterate all css's of a cgroup
* @css: the iteration cursor * @css: the iteration cursor
...@@ -552,15 +500,6 @@ static int notify_on_release(const struct cgroup *cgrp) ...@@ -552,15 +500,6 @@ static int notify_on_release(const struct cgroup *cgrp)
; \ ; \
else else
/**
* for_each_subsys - iterate all enabled cgroup subsystems
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*/
#define for_each_subsys(ss, ssid) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
/** /**
* do_each_subsys_mask - filter for_each_subsys with a bitmask * do_each_subsys_mask - filter for_each_subsys with a bitmask
* @ss: the iteration cursor * @ss: the iteration cursor
...@@ -585,10 +524,6 @@ static int notify_on_release(const struct cgroup *cgrp) ...@@ -585,10 +524,6 @@ static int notify_on_release(const struct cgroup *cgrp)
} \ } \
} while (false) } while (false)
/* iterate across the hierarchies */
#define for_each_root(root) \
list_for_each_entry((root), &cgroup_roots, root_list)
/* iterate over child cgrps, lock should be held throughout iteration */ /* iterate over child cgrps, lock should be held throughout iteration */
#define cgroup_for_each_live_child(child, cgrp) \ #define cgroup_for_each_live_child(child, cgrp) \
list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
...@@ -615,29 +550,6 @@ static int notify_on_release(const struct cgroup *cgrp) ...@@ -615,29 +550,6 @@ static int notify_on_release(const struct cgroup *cgrp)
; \ ; \
else else
static void cgroup_release_agent(struct work_struct *work);
static void check_for_release(struct cgroup *cgrp);
/*
* A cgroup can be associated with multiple css_sets as different tasks may
* belong to different cgroups on different hierarchies. In the other
* direction, a css_set is naturally associated with multiple cgroups.
* This M:N relationship is represented by the following link structure
* which exists for each association and allows traversing the associations
* from both sides.
*/
struct cgrp_cset_link {
/* the cgroup and css_set this link associates */
struct cgroup *cgrp;
struct css_set *cset;
/* list of cgrp_cset_links anchored at cgrp->cset_links */
struct list_head cset_link;
/* list of cgrp_cset_links anchored at css_set->cgrp_links */
struct list_head cgrp_link;
};
/* /*
* The default css_set - used by init and its children prior to any * The default css_set - used by init and its children prior to any
* hierarchies being mounted. It contains a pointer to the root state * hierarchies being mounted. It contains a pointer to the root state
...@@ -1138,7 +1050,7 @@ static struct css_set *find_css_set(struct css_set *old_cset, ...@@ -1138,7 +1050,7 @@ static struct css_set *find_css_set(struct css_set *old_cset,
return cset; return cset;
} }
static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
{ {
struct cgroup *root_cgrp = kf_root->kn->priv; struct cgroup *root_cgrp = kf_root->kn->priv;
...@@ -1283,8 +1195,8 @@ static struct cgroup *cset_cgroup_from_root(struct css_set *cset, ...@@ -1283,8 +1195,8 @@ static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
* Return the cgroup for "task" from the given hierarchy. Must be * Return the cgroup for "task" from the given hierarchy. Must be
* called with cgroup_mutex and css_set_lock held. * called with cgroup_mutex and css_set_lock held.
*/ */
static struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root) struct cgroup_root *root)
{ {
/* /*
* No need to lock the task - since we hold cgroup_mutex the * No need to lock the task - since we hold cgroup_mutex the
...@@ -1321,7 +1233,6 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task, ...@@ -1321,7 +1233,6 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,
*/ */
static struct kernfs_syscall_ops cgroup_kf_syscall_ops; static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
static const struct file_operations proc_cgroupstats_operations;
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
char *buf) char *buf)
...@@ -1415,7 +1326,7 @@ static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) ...@@ -1415,7 +1326,7 @@ static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
* inaccessible any time. If the caller intends to continue to access the * inaccessible any time. If the caller intends to continue to access the
* cgroup, it should pin it before invoking this function. * cgroup, it should pin it before invoking this function.
*/ */
static void cgroup_kn_unlock(struct kernfs_node *kn) void cgroup_kn_unlock(struct kernfs_node *kn)
{ {
struct cgroup *cgrp; struct cgroup *cgrp;
...@@ -1447,8 +1358,7 @@ static void cgroup_kn_unlock(struct kernfs_node *kn) ...@@ -1447,8 +1358,7 @@ static void cgroup_kn_unlock(struct kernfs_node *kn)
* locking under kernfs active protection and allows all kernfs operations * locking under kernfs active protection and allows all kernfs operations
* including self-removal. * including self-removal.
*/ */
static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
bool drain_offline)
{ {
struct cgroup *cgrp; struct cgroup *cgrp;
...@@ -1559,7 +1469,7 @@ static int css_populate_dir(struct cgroup_subsys_state *css) ...@@ -1559,7 +1469,7 @@ static int css_populate_dir(struct cgroup_subsys_state *css)
return ret; return ret;
} }
static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
{ {
struct cgroup *dcgrp = &dst_root->cgrp; struct cgroup *dcgrp = &dst_root->cgrp;
struct cgroup_subsys *ss; struct cgroup_subsys *ss;
...@@ -1656,8 +1566,7 @@ static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, ...@@ -1656,8 +1566,7 @@ static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
return len; return len;
} }
static int cgroup_show_options(struct seq_file *seq, static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
struct kernfs_root *kf_root)
{ {
struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_subsys *ss; struct cgroup_subsys *ss;
...@@ -2311,7 +2220,7 @@ static void cgroup_kill_sb(struct super_block *sb) ...@@ -2311,7 +2220,7 @@ static void cgroup_kill_sb(struct super_block *sb)
kernfs_kill_sb(sb); kernfs_kill_sb(sb);
} }
static struct file_system_type cgroup_fs_type = { struct file_system_type cgroup_fs_type = {
.name = "cgroup", .name = "cgroup",
.mount = cgroup_mount, .mount = cgroup_mount,
.kill_sb = cgroup_kill_sb, .kill_sb = cgroup_kill_sb,
...@@ -2325,8 +2234,8 @@ static struct file_system_type cgroup2_fs_type = { ...@@ -2325,8 +2234,8 @@ static struct file_system_type cgroup2_fs_type = {
.fs_flags = FS_USERNS_MOUNT, .fs_flags = FS_USERNS_MOUNT,
}; };
static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns) struct cgroup_namespace *ns)
{ {
struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
...@@ -2616,7 +2525,7 @@ static int cgroup_taskset_migrate(struct cgroup_taskset *tset, ...@@ -2616,7 +2525,7 @@ static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
* zero for migration destination cgroups with tasks so that child cgroups * zero for migration destination cgroups with tasks so that child cgroups
* don't compete against tasks. * don't compete against tasks.
*/ */
static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
{ {
return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
!dst_cgrp->subtree_control; !dst_cgrp->subtree_control;
...@@ -2629,7 +2538,7 @@ static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) ...@@ -2629,7 +2538,7 @@ static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
* Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
* those functions for details. * those functions for details.
*/ */
static void cgroup_migrate_finish(struct list_head *preloaded_csets) void cgroup_migrate_finish(struct list_head *preloaded_csets)
{ {
struct css_set *cset, *tmp_cset; struct css_set *cset, *tmp_cset;
...@@ -2662,9 +2571,9 @@ static void cgroup_migrate_finish(struct list_head *preloaded_csets) ...@@ -2662,9 +2571,9 @@ static void cgroup_migrate_finish(struct list_head *preloaded_csets)
* into play and the preloaded css_sets are guaranteed to cover all * into play and the preloaded css_sets are guaranteed to cover all
* migrations. * migrations.
*/ */
static void cgroup_migrate_add_src(struct css_set *src_cset, void cgroup_migrate_add_src(struct css_set *src_cset,
struct cgroup *dst_cgrp, struct cgroup *dst_cgrp,
struct list_head *preloaded_csets) struct list_head *preloaded_csets)
{ {
struct cgroup *src_cgrp; struct cgroup *src_cgrp;
...@@ -2709,7 +2618,7 @@ static void cgroup_migrate_add_src(struct css_set *src_cset, ...@@ -2709,7 +2618,7 @@ static void cgroup_migrate_add_src(struct css_set *src_cset,
* using cgroup_migrate(), cgroup_migrate_finish() must be called on * using cgroup_migrate(), cgroup_migrate_finish() must be called on
* @preloaded_csets. * @preloaded_csets.
*/ */
static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets) int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
{ {
LIST_HEAD(csets); LIST_HEAD(csets);
struct css_set *src_cset, *tmp_cset; struct css_set *src_cset, *tmp_cset;
...@@ -2773,8 +2682,8 @@ static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets) ...@@ -2773,8 +2682,8 @@ static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
* decided for all targets by invoking group_migrate_prepare_dst() before * decided for all targets by invoking group_migrate_prepare_dst() before
* actually starting migrating. * actually starting migrating.
*/ */
static int cgroup_migrate(struct task_struct *leader, bool threadgroup, int cgroup_migrate(struct task_struct *leader, bool threadgroup,
struct cgroup_root *root) struct cgroup_root *root)
{ {
struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
struct task_struct *task; struct task_struct *task;
...@@ -2806,8 +2715,8 @@ static int cgroup_migrate(struct task_struct *leader, bool threadgroup, ...@@ -2806,8 +2715,8 @@ static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
* *
* Call holding cgroup_mutex and cgroup_threadgroup_rwsem. * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
*/ */
static int cgroup_attach_task(struct cgroup *dst_cgrp, int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
struct task_struct *leader, bool threadgroup) bool threadgroup)
{ {
LIST_HEAD(preloaded_csets); LIST_HEAD(preloaded_csets);
struct task_struct *task; struct task_struct *task;
...@@ -2888,8 +2797,8 @@ static int cgroup_procs_write_permission(struct task_struct *task, ...@@ -2888,8 +2797,8 @@ static int cgroup_procs_write_permission(struct task_struct *task,
* function to attach either it or all tasks in its threadgroup. Will lock * function to attach either it or all tasks in its threadgroup. Will lock
* cgroup_mutex and threadgroup. * cgroup_mutex and threadgroup.
*/ */
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off, bool threadgroup) size_t nbytes, loff_t off, bool threadgroup)
{ {
struct task_struct *tsk; struct task_struct *tsk;
struct cgroup_subsys *ss; struct cgroup_subsys *ss;
...@@ -2950,86 +2859,12 @@ static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, ...@@ -2950,86 +2859,12 @@ static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
return ret ?: nbytes; return ret ?: nbytes;
} }
/** ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' loff_t off)
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroup_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
for_each_root(root) {
struct cgroup *from_cgrp;
if (root == &cgrp_dfl_root)
continue;
spin_lock_irq(&css_set_lock);
from_cgrp = task_cgroup_from_root(from, root);
spin_unlock_irq(&css_set_lock);
retval = cgroup_attach_task(from_cgrp, tsk, false);
if (retval)
break;
}
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, false);
}
static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{ {
return __cgroup_procs_write(of, buf, nbytes, off, true); return __cgroup_procs_write(of, buf, nbytes, off, true);
} }
static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup *cgrp;
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
cgrp = cgroup_kn_lock_live(of->kn, false);
if (!cgrp)
return -ENODEV;
spin_lock(&release_agent_path_lock);
strlcpy(cgrp->root->release_agent_path, strstrip(buf),
sizeof(cgrp->root->release_agent_path));
spin_unlock(&release_agent_path_lock);
cgroup_kn_unlock(of->kn);
return nbytes;
}
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
spin_lock(&release_agent_path_lock);
seq_puts(seq, cgrp->root->release_agent_path);
spin_unlock(&release_agent_path_lock);
seq_putc(seq, '\n');
return 0;
}
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
seq_puts(seq, "0\n");
return 0;
}
static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
{ {
struct cgroup_subsys *ss; struct cgroup_subsys *ss;
...@@ -3131,7 +2966,7 @@ static int cgroup_update_dfl_csses(struct cgroup *cgrp) ...@@ -3131,7 +2966,7 @@ static int cgroup_update_dfl_csses(struct cgroup *cgrp)
* controller while the previous css is still around. This function grabs * controller while the previous css is still around. This function grabs
* cgroup_mutex and drains the previous css instances of @cgrp's subtree. * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
*/ */
static void cgroup_lock_and_drain_offline(struct cgroup *cgrp) void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
__acquires(&cgroup_mutex) __acquires(&cgroup_mutex)
{ {
struct cgroup *dsct; struct cgroup *dsct;
...@@ -3610,48 +3445,6 @@ static struct kernfs_ops cgroup_kf_ops = { ...@@ -3610,48 +3445,6 @@ static struct kernfs_ops cgroup_kf_ops = {
.seq_show = cgroup_seqfile_show, .seq_show = cgroup_seqfile_show,
}; };
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str)
{
struct cgroup *cgrp = kn->priv;
int ret;
if (kernfs_type(kn) != KERNFS_DIR)
return -ENOTDIR;
if (kn->parent != new_parent)
return -EIO;
/*
* This isn't a proper migration and its usefulness is very
* limited. Disallow on the default hierarchy.
*/
if (cgroup_on_dfl(cgrp))
return -EPERM;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. kernfs_rename() doesn't require active_ref
* protection. Break them before grabbing cgroup_mutex.
*/
kernfs_break_active_protection(new_parent);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_mutex);
ret = kernfs_rename(kn, new_parent, new_name_str);
if (!ret)
trace_cgroup_rename(cgrp);
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
kernfs_unbreak_active_protection(new_parent);
return ret;
}
/* set uid and gid of cgroup dirs and files to that of the creator */ /* set uid and gid of cgroup dirs and files to that of the creator */
static int cgroup_kn_set_ugid(struct kernfs_node *kn) static int cgroup_kn_set_ugid(struct kernfs_node *kn)
{ {
...@@ -3947,26 +3740,6 @@ void cgroup_file_notify(struct cgroup_file *cfile) ...@@ -3947,26 +3740,6 @@ void cgroup_file_notify(struct cgroup_file *cfile)
spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
} }
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*
* Return the number of tasks in the cgroup. The returned number can be
* higher than the actual number of tasks due to css_set references from
* namespace roots and temporary usages.
*/
static int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cgrp_cset_link *link;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
count += atomic_read(&link->cset->refcount);
spin_unlock_irq(&css_set_lock);
return count;
}
/** /**
* css_next_child - find the next child of a given css * css_next_child - find the next child of a given css
* @pos: the current position (%NULL to initiate traversal) * @pos: the current position (%NULL to initiate traversal)
...@@ -4365,70 +4138,6 @@ void css_task_iter_end(struct css_task_iter *it) ...@@ -4365,70 +4138,6 @@ void css_task_iter_end(struct css_task_iter *it)
put_task_struct(it->cur_task); put_task_struct(it->cur_task);
} }
/**
* cgroup_trasnsfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*
* Locking rules between cgroup_post_fork() and the migration path
* guarantee that, if a task is forking while being migrated, the new child
* is guaranteed to be either visible in the source cgroup after the
* parent's migration is complete or put into the target cgroup. No task
* can slip out of migration through forking.
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
LIST_HEAD(preloaded_csets);
struct cgrp_cset_link *link;
struct css_task_iter it;
struct task_struct *task;
int ret;
if (cgroup_on_dfl(to))
return -EINVAL;
if (!cgroup_may_migrate_to(to))
return -EBUSY;
mutex_lock(&cgroup_mutex);
percpu_down_write(&cgroup_threadgroup_rwsem);
/* all tasks in @from are being moved, all csets are source */
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &from->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
spin_unlock_irq(&css_set_lock);
ret = cgroup_migrate_prepare_dst(&preloaded_csets);
if (ret)
goto out_err;
/*
* Migrate tasks one-by-one until @from is empty. This fails iff
* ->can_attach() fails.
*/
do {
css_task_iter_start(&from->self, &it);
task = css_task_iter_next(&it);
if (task)
get_task_struct(task);
css_task_iter_end(&it);
if (task) {
ret = cgroup_migrate(task, false, to->root);
if (!ret)
trace_cgroup_transfer_tasks(to, task, false);
put_task_struct(task);
}
} while (task && !ret);
out_err:
cgroup_migrate_finish(&preloaded_csets);
percpu_up_write(&cgroup_threadgroup_rwsem);
mutex_unlock(&cgroup_mutex);
return ret;
}
static void cgroup_procs_release(struct kernfs_open_file *of) static void cgroup_procs_release(struct kernfs_open_file *of)
{ {
if (of->priv) { if (of->priv) {
...@@ -4483,456 +4192,6 @@ static int cgroup_procs_show(struct seq_file *s, void *v) ...@@ -4483,456 +4192,6 @@ static int cgroup_procs_show(struct seq_file *s, void *v)
return 0; return 0;
} }
/*
* Stuff for reading the 'tasks'/'procs' files.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
*/
/* which pidlist file are we talking about? */
enum cgroup_filetype {
CGROUP_FILE_PROCS,
CGROUP_FILE_TASKS,
};
/*
* A pidlist is a list of pids that virtually represents the contents of one
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
* a pair (one each for procs, tasks) for each pid namespace that's relevant
* to the cgroup.
*/
struct cgroup_pidlist {
/*
* used to find which pidlist is wanted. doesn't change as long as
* this particular list stays in the list.
*/
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
/* array of xids */
pid_t *list;
/* how many elements the above list has */
int length;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
/* for delayed destruction */
struct delayed_work destroy_dwork;
};
/*
* The following two functions "fix" the issue where there are more pids
* than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
* TODO: replace with a kernel-wide solution to this problem
*/
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
if (PIDLIST_TOO_LARGE(count))
return vmalloc(count * sizeof(pid_t));
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
kvfree(p);
}
/*
* Used to destroy all pidlists lingering waiting for destroy timer. None
* should be left afterwards.
*/
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
struct cgroup_pidlist *l, *tmp_l;
mutex_lock(&cgrp->pidlist_mutex);
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
mutex_unlock(&cgrp->pidlist_mutex);
flush_workqueue(cgroup_pidlist_destroy_wq);
BUG_ON(!list_empty(&cgrp->pidlists));
}
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
destroy_dwork);
struct cgroup_pidlist *tofree = NULL;
mutex_lock(&l->owner->pidlist_mutex);
/*
* Destroy iff we didn't get queued again. The state won't change
* as destroy_dwork can only be queued while locked.
*/
if (!delayed_work_pending(dwork)) {
list_del(&l->links);
pidlist_free(l->list);
put_pid_ns(l->key.ns);
tofree = l;
}
mutex_unlock(&l->owner->pidlist_mutex);
kfree(tofree);
}
/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
static int pidlist_uniq(pid_t *list, int length)
{
int src, dest = 1;
/*
* we presume the 0th element is unique, so i starts at 1. trivial
* edge cases first; no work needs to be done for either
*/
if (length == 0 || length == 1)
return length;
/* src and dest walk down the list; dest counts unique elements */
for (src = 1; src < length; src++) {
/* find next unique element */
while (list[src] == list[src-1]) {
src++;
if (src == length)
goto after;
}
/* dest always points to where the next unique element goes */
list[dest] = list[src];
dest++;
}
after:
return dest;
}
/*
* The two pid files - task and cgroup.procs - guaranteed that the result
* is sorted, which forced this whole pidlist fiasco. As pid order is
* different per namespace, each namespace needs differently sorted list,
* making it impossible to use, for example, single rbtree of member tasks
* sorted by task pointer. As pidlists can be fairly large, allocating one
* per open file is dangerous, so cgroup had to implement shared pool of
* pidlists keyed by cgroup and namespace.
*/
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
/* don't need task_nsproxy() if we're looking at ourself */
struct pid_namespace *ns = task_active_pid_ns(current);
lockdep_assert_held(&cgrp->pidlist_mutex);
list_for_each_entry(l, &cgrp->pidlists, links)
if (l->key.type == type && l->key.ns == ns)
return l;
return NULL;
}
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
l = cgroup_pidlist_find(cgrp, type);
if (l)
return l;
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
if (!l)
return l;
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
/* don't need task_nsproxy() if we're looking at ourself */
l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
return l;
}
/*
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
*/
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct cgroup_pidlist **lp)
{
pid_t *array;
int length;
int pid, n = 0; /* used for populating the array */
struct css_task_iter it;
struct task_struct *tsk;
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
length = cgroup_task_count(cgrp);
array = pidlist_allocate(length);
if (!array)
return -ENOMEM;
/* now, populate the array */
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
if (unlikely(n == length))
break;
/* get tgid or pid for procs or tasks file respectively */
if (type == CGROUP_FILE_PROCS)
pid = task_tgid_vnr(tsk);
else
pid = task_pid_vnr(tsk);
if (pid > 0) /* make sure to only use valid results */
array[n++] = pid;
}
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
pidlist_free(array);
return -ENOMEM;
}
/* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
*lp = l;
return 0;
}
/**
* cgroupstats_build - build and fill cgroupstats
* @stats: cgroupstats to fill information into
* @dentry: A dentry entry belonging to the cgroup for which stats have
* been requested.
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup *cgrp;
struct css_task_iter it;
struct task_struct *tsk;
/* it should be kernfs_node belonging to cgroupfs and is a directory */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return -EINVAL;
mutex_lock(&cgroup_mutex);
/*
* We aren't being called from kernfs and there's no guarantee on
* @kn->priv's validity. For this and css_tryget_online_from_dir(),
* @kn->priv is RCU safe. Let's do the RCU dancing.
*/
rcu_read_lock();
cgrp = rcu_dereference(kn->priv);
if (!cgrp || cgroup_is_dead(cgrp)) {
rcu_read_unlock();
mutex_unlock(&cgroup_mutex);
return -ENOENT;
}
rcu_read_unlock();
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
switch (tsk->state) {
case TASK_RUNNING:
stats->nr_running++;
break;
case TASK_INTERRUPTIBLE:
stats->nr_sleeping++;
break;
case TASK_UNINTERRUPTIBLE:
stats->nr_uninterruptible++;
break;
case TASK_STOPPED:
stats->nr_stopped++;
break;
default:
if (delayacct_is_task_waiting_on_io(tsk))
stats->nr_io_wait++;
break;
}
}
css_task_iter_end(&it);
mutex_unlock(&cgroup_mutex);
return 0;
}
/*
* seq_file methods for the tasks/procs files. The seq_file position is the
* next pid to display; the seq_file iterator is a pointer to the pid
* in the cgroup->l->list array.
*/
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
/*
* Initially we receive a position value that corresponds to
* one more than the last pid shown (or 0 on the first call or
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct cgroup_pidlist *l;
enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
int *iter, ret;
mutex_lock(&cgrp->pidlist_mutex);
/*
* !NULL @of->priv indicates that this isn't the first start()
* after open. If the matching pidlist is around, we can use that.
* Look for it. Note that @of->priv can't be used directly. It
* could already have been destroyed.
*/
if (of->priv)
of->priv = cgroup_pidlist_find(cgrp, type);
/*
* Either this is the first start() after open or the matching
* pidlist has been destroyed inbetween. Create a new one.
*/
if (!of->priv) {
ret = pidlist_array_load(cgrp, type,
(struct cgroup_pidlist **)&of->priv);
if (ret)
return ERR_PTR(ret);
}
l = of->priv;
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
if (l->list[mid] == pid) {
index = mid;
break;
} else if (l->list[mid] <= pid)
index = mid + 1;
else
end = mid;
}
}
/* If we're off the end of the array, we're done */
if (index >= l->length)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
*pos = *iter;
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
if (l)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
CGROUP_PIDLIST_DESTROY_DELAY);
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
* Advance to the next pid in the array. If this goes off the
* end, we're done
*/
p++;
if (p >= end) {
return NULL;
} else {
*pos = *p;
return p;
}
}
static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
seq_printf(s, "%d\n", *(int *)v);
return 0;
}
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return notify_on_release(css->cgroup);
}
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
else
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
return 0;
}
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
}
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
else
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
return 0;
}
/* cgroup core interface files for the default hierarchy */ /* cgroup core interface files for the default hierarchy */
static struct cftype cgroup_dfl_base_files[] = { static struct cftype cgroup_dfl_base_files[] = {
{ {
...@@ -4962,51 +4221,6 @@ static struct cftype cgroup_dfl_base_files[] = { ...@@ -4962,51 +4221,6 @@ static struct cftype cgroup_dfl_base_files[] = {
{ } /* terminate */ { } /* terminate */
}; };
/* cgroup core interface files for the legacy hierarchies */
static struct cftype cgroup_legacy_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write = cgroup_procs_write,
},
{
.name = "cgroup.clone_children",
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
{
.name = "tasks",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write = cgroup_tasks_write,
},
{
.name = "notify_on_release",
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
};
/* /*
* css destruction is four-stage process. * css destruction is four-stage process.
* *
...@@ -5792,15 +5006,6 @@ static int __init cgroup_wq_init(void) ...@@ -5792,15 +5006,6 @@ static int __init cgroup_wq_init(void)
*/ */
cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
BUG_ON(!cgroup_destroy_wq); BUG_ON(!cgroup_destroy_wq);
/*
* Used to destroy pidlists and separate to serve as flush domain.
* Cap @max_active to 1 too.
*/
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
0, 1);
BUG_ON(!cgroup_pidlist_destroy_wq);
return 0; return 0;
} }
core_initcall(cgroup_wq_init); core_initcall(cgroup_wq_init);
...@@ -5883,42 +5088,6 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, ...@@ -5883,42 +5088,6 @@ int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
return retval; return retval;
} }
/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->legacy_name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps),
cgroup_ssid_enabled(i));
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroupstats_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_cgroupstats_show, NULL);
}
static const struct file_operations proc_cgroupstats_operations = {
.open = cgroupstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/** /**
* cgroup_fork - initialize cgroup related fields during copy_process() * cgroup_fork - initialize cgroup related fields during copy_process()
* @child: pointer to task_struct of forking parent process. * @child: pointer to task_struct of forking parent process.
...@@ -6098,76 +5267,6 @@ void cgroup_free(struct task_struct *task) ...@@ -6098,76 +5267,6 @@ void cgroup_free(struct task_struct *task)
put_css_set(cset); put_css_set(cset);
} }
static void check_for_release(struct cgroup *cgrp)
{
if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
!css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
schedule_work(&cgrp->release_agent_work);
}
/*
* Notify userspace when a cgroup is released, by running the
* configured release agent with the name of the cgroup (path
* relative to the root of cgroup file system) as the argument.
*
* Most likely, this user command will try to rmdir this cgroup.
*
* This races with the possibility that some other task will be
* attached to this cgroup before it is removed, or that some other
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
* unused, and this cgroup will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
* means only wait until the task is successfully execve()'d. The
* separate release agent task is forked by call_usermodehelper(),
* then control in this thread returns here, without waiting for the
* release agent task. We don't bother to wait because the caller of
* this routine has no use for the exit status of the release agent
* task, so no sense holding our caller up for that.
*/
static void cgroup_release_agent(struct work_struct *work)
{
struct cgroup *cgrp =
container_of(work, struct cgroup, release_agent_work);
char *pathbuf = NULL, *agentbuf = NULL;
char *argv[3], *envp[3];
int ret;
mutex_lock(&cgroup_mutex);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
if (!pathbuf || !agentbuf)
goto out;
spin_lock_irq(&css_set_lock);
ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
spin_unlock_irq(&css_set_lock);
if (ret < 0 || ret >= PATH_MAX)
goto out;
argv[0] = agentbuf;
argv[1] = pathbuf;
argv[2] = NULL;
/* minimal command environment */
envp[0] = "HOME=/";
envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[2] = NULL;
mutex_unlock(&cgroup_mutex);
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
goto out_free;
out:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(agentbuf);
kfree(pathbuf);
}
static int __init cgroup_disable(char *str) static int __init cgroup_disable(char *str)
{ {
struct cgroup_subsys *ss; struct cgroup_subsys *ss;
...@@ -6189,33 +5288,6 @@ static int __init cgroup_disable(char *str) ...@@ -6189,33 +5288,6 @@ static int __init cgroup_disable(char *str)
} }
__setup("cgroup_disable=", cgroup_disable); __setup("cgroup_disable=", cgroup_disable);
static int __init cgroup_no_v1(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
if (!strcmp(token, "all")) {
cgroup_no_v1_mask = U16_MAX;
break;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->name) &&
strcmp(token, ss->legacy_name))
continue;
cgroup_no_v1_mask |= 1 << i;
}
}
return 1;
}
__setup("cgroup_no_v1=", cgroup_no_v1);
/** /**
* css_tryget_online_from_dir - get corresponding css from a cgroup dentry * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
* @dentry: directory dentry of interest * @dentry: directory dentry of interest
...@@ -6557,149 +5629,3 @@ void cgroup_bpf_update(struct cgroup *cgrp, ...@@ -6557,149 +5629,3 @@ void cgroup_bpf_update(struct cgroup *cgrp,
mutex_unlock(&cgroup_mutex); mutex_unlock(&cgroup_mutex);
} }
#endif /* CONFIG_CGROUP_BPF */ #endif /* CONFIG_CGROUP_BPF */
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
if (!css)
return ERR_PTR(-ENOMEM);
return css;
}
static void debug_css_free(struct cgroup_subsys_state *css)
{
kfree(css);
}
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return cgroup_task_count(css->cgroup);
}
static u64 current_css_set_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return (u64)(unsigned long)current->cgroups;
}
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
u64 count;
rcu_read_lock();
count = atomic_read(&task_css_set(current)->refcount);
rcu_read_unlock();
return count;
}
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
{
struct cgrp_cset_link *link;
struct css_set *cset;
char *name_buf;
name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
if (!name_buf)
return -ENOMEM;
spin_lock_irq(&css_set_lock);
rcu_read_lock();
cset = rcu_dereference(current->cgroups);
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
cgroup_name(c, name_buf, NAME_MAX + 1);
seq_printf(seq, "Root %d group %s\n",
c->root->hierarchy_id, name_buf);
}
rcu_read_unlock();
spin_unlock_irq(&css_set_lock);
kfree(name_buf);
return 0;
}
#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct seq_file *seq, void *v)
{
struct cgroup_subsys_state *css = seq_css(seq);
struct cgrp_cset_link *link;
spin_lock_irq(&css_set_lock);
list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
struct css_set *cset = link->cset;
struct task_struct *task;
int count = 0;
seq_printf(seq, "css_set %p\n", cset);
list_for_each_entry(task, &cset->tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
list_for_each_entry(task, &cset->mg_tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
continue;
overflow:
seq_puts(seq, " ...\n");
}
spin_unlock_irq(&css_set_lock);
return 0;
}
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
return (!cgroup_is_populated(css->cgroup) &&
!css_has_online_children(&css->cgroup->self));
}
static struct cftype debug_files[] = {
{
.name = "taskcount",
.read_u64 = debug_taskcount_read,
},
{
.name = "current_css_set",
.read_u64 = current_css_set_read,
},
{
.name = "current_css_set_refcount",
.read_u64 = current_css_set_refcount_read,
},
{
.name = "current_css_set_cg_links",
.seq_show = current_css_set_cg_links_read,
},
{
.name = "cgroup_css_links",
.seq_show = cgroup_css_links_read,
},
{
.name = "releasable",
.read_u64 = releasable_read,
},
{ } /* terminate */
};
struct cgroup_subsys debug_cgrp_subsys = {
.css_alloc = debug_css_alloc,
.css_free = debug_css_free,
.legacy_cftypes = debug_files,
};
#endif /* CONFIG_CGROUP_DEBUG */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment