Commit 0a31bc97 authored by Johannes Weiner's avatar Johannes Weiner Committed by Linus Torvalds

mm: memcontrol: rewrite uncharge API

The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: default avatarJet Chen <jet.chen@intel.com>
Acked-by: default avatarMichal Hocko <mhocko@suse.cz>
Tested-by: default avatarFelipe Balbi <balbi@ti.com>
Signed-off-by: default avatarVladimir Davydov <vdavydov@parallels.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 00501b53
...@@ -29,28 +29,13 @@ Please note that implementation details can be changed. ...@@ -29,28 +29,13 @@ Please note that implementation details can be changed.
2. Uncharge 2. Uncharge
a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
mem_cgroup_uncharge_page() mem_cgroup_uncharge()
Called when an anonymous page is fully unmapped. I.e., mapcount goes Called when a page's refcount goes down to 0.
to 0. If the page is SwapCache, uncharge is delayed until
mem_cgroup_uncharge_swapcache().
mem_cgroup_uncharge_cache_page()
Called when a page-cache is deleted from radix-tree. If the page is
SwapCache, uncharge is delayed until mem_cgroup_uncharge_swapcache().
mem_cgroup_uncharge_swapcache()
Called when SwapCache is removed from radix-tree. The charge itself
is moved to swap_cgroup. (If mem+swap controller is disabled, no
charge to swap occurs.)
mem_cgroup_uncharge_swap() mem_cgroup_uncharge_swap()
Called when swp_entry's refcnt goes down to 0. A charge against swap Called when swp_entry's refcnt goes down to 0. A charge against swap
disappears. disappears.
mem_cgroup_end_migration(old, new)
At success of migration old is uncharged (if necessary), a charge
to new page is committed. At failure, charge to old page is committed.
3. charge-commit-cancel 3. charge-commit-cancel
Memcg pages are charged in two steps: Memcg pages are charged in two steps:
mem_cgroup_try_charge() mem_cgroup_try_charge()
...@@ -69,18 +54,6 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. ...@@ -69,18 +54,6 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
Anonymous page is newly allocated at Anonymous page is newly allocated at
- page fault into MAP_ANONYMOUS mapping. - page fault into MAP_ANONYMOUS mapping.
- Copy-On-Write. - Copy-On-Write.
It is charged right after it's allocated before doing any page table
related operations. Of course, it's uncharged when another page is used
for the fault address.
At freeing anonymous page (by exit() or munmap()), zap_pte() is called
and pages for ptes are freed one by one.(see mm/memory.c). Uncharges
are done at page_remove_rmap() when page_mapcount() goes down to 0.
Another page freeing is by page-reclaim (vmscan.c) and anonymous
pages are swapped out. In this case, the page is marked as
PageSwapCache(). uncharge() routine doesn't uncharge the page marked
as SwapCache(). It's delayed until __delete_from_swap_cache().
4.1 Swap-in. 4.1 Swap-in.
At swap-in, the page is taken from swap-cache. There are 2 cases. At swap-in, the page is taken from swap-cache. There are 2 cases.
...@@ -89,41 +62,6 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. ...@@ -89,41 +62,6 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
(b) If the SwapCache has been mapped by processes, it has been (b) If the SwapCache has been mapped by processes, it has been
charged already. charged already.
This swap-in is one of the most complicated work. In do_swap_page(),
following events occur when pte is unchanged.
(1) the page (SwapCache) is looked up.
(2) lock_page()
(3) try_charge_swapin()
(4) reuse_swap_page() (may call delete_swap_cache())
(5) commit_charge_swapin()
(6) swap_free().
Considering following situation for example.
(A) The page has not been charged before (2) and reuse_swap_page()
doesn't call delete_from_swap_cache().
(B) The page has not been charged before (2) and reuse_swap_page()
calls delete_from_swap_cache().
(C) The page has been charged before (2) and reuse_swap_page() doesn't
call delete_from_swap_cache().
(D) The page has been charged before (2) and reuse_swap_page() calls
delete_from_swap_cache().
memory.usage/memsw.usage changes to this page/swp_entry will be
Case (A) (B) (C) (D)
Event
Before (2) 0/ 1 0/ 1 1/ 1 1/ 1
===========================================
(3) +1/+1 +1/+1 +1/+1 +1/+1
(4) - 0/ 0 - -1/ 0
(5) 0/-1 0/ 0 -1/-1 0/ 0
(6) - 0/-1 - 0/-1
===========================================
Result 1/ 1 1/ 1 1/ 1 1/ 1
In any cases, charges to this page should be 1/ 1.
4.2 Swap-out. 4.2 Swap-out.
At swap-out, typical state transition is below. At swap-out, typical state transition is below.
...@@ -136,28 +74,20 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. ...@@ -136,28 +74,20 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
swp_entry's refcnt -= 1. swp_entry's refcnt -= 1.
At (b), the page is marked as SwapCache and not uncharged.
At (d), the page is removed from SwapCache and a charge in page_cgroup
is moved to swap_cgroup.
Finally, at task exit, Finally, at task exit,
(e) zap_pte() is called and swp_entry's refcnt -=1 -> 0. (e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
Here, a charge in swap_cgroup disappears.
5. Page Cache 5. Page Cache
Page Cache is charged at Page Cache is charged at
- add_to_page_cache_locked(). - add_to_page_cache_locked().
uncharged at
- __remove_from_page_cache().
The logic is very clear. (About migration, see below) The logic is very clear. (About migration, see below)
Note: __remove_from_page_cache() is called by remove_from_page_cache() Note: __remove_from_page_cache() is called by remove_from_page_cache()
and __remove_mapping(). and __remove_mapping().
6. Shmem(tmpfs) Page Cache 6. Shmem(tmpfs) Page Cache
Memcg's charge/uncharge have special handlers of shmem. The best way The best way to understand shmem's page state transition is to read
to understand shmem's page state transition is to read mm/shmem.c. mm/shmem.c.
But brief explanation of the behavior of memcg around shmem will be But brief explanation of the behavior of memcg around shmem will be
helpful to understand the logic. helpful to understand the logic.
...@@ -170,56 +100,10 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. ...@@ -170,56 +100,10 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
It's charged when... It's charged when...
- A new page is added to shmem's radix-tree. - A new page is added to shmem's radix-tree.
- A swp page is read. (move a charge from swap_cgroup to page_cgroup) - A swp page is read. (move a charge from swap_cgroup to page_cgroup)
It's uncharged when
- A page is removed from radix-tree and not SwapCache.
- When SwapCache is removed, a charge is moved to swap_cgroup.
- When swp_entry's refcnt goes down to 0, a charge in swap_cgroup
disappears.
7. Page Migration 7. Page Migration
One of the most complicated functions is page-migration-handler.
Memcg has 2 routines. Assume that we are migrating a page's contents mem_cgroup_migrate()
from OLDPAGE to NEWPAGE.
Usual migration logic is..
(a) remove the page from LRU.
(b) allocate NEWPAGE (migration target)
(c) lock by lock_page().
(d) unmap all mappings.
(e-1) If necessary, replace entry in radix-tree.
(e-2) move contents of a page.
(f) map all mappings again.
(g) pushback the page to LRU.
(-) OLDPAGE will be freed.
Before (g), memcg should complete all necessary charge/uncharge to
NEWPAGE/OLDPAGE.
The point is....
- If OLDPAGE is anonymous, all charges will be dropped at (d) because
try_to_unmap() drops all mapcount and the page will not be
SwapCache.
- If OLDPAGE is SwapCache, charges will be kept at (g) because
__delete_from_swap_cache() isn't called at (e-1)
- If OLDPAGE is page-cache, charges will be kept at (g) because
remove_from_swap_cache() isn't called at (e-1)
memcg provides following hooks.
- mem_cgroup_prepare_migration(OLDPAGE)
Called after (b) to account a charge (usage += PAGE_SIZE) against
memcg which OLDPAGE belongs to.
- mem_cgroup_end_migration(OLDPAGE, NEWPAGE)
Called after (f) before (g).
If OLDPAGE is used, commit OLDPAGE again. If OLDPAGE is already
charged, a charge by prepare_migration() is automatically canceled.
If NEWPAGE is used, commit NEWPAGE and uncharge OLDPAGE.
But zap_pte() (by exit or munmap) can be called while migration,
we have to check if OLDPAGE/NEWPAGE is a valid page after commit().
8. LRU 8. LRU
Each memcg has its own private LRU. Now, its handling is under global Each memcg has its own private LRU. Now, its handling is under global
......
...@@ -60,15 +60,17 @@ void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, ...@@ -60,15 +60,17 @@ void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
bool lrucare); bool lrucare);
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); void mem_cgroup_uncharge(struct page *page);
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
/* Batched uncharging */
void mem_cgroup_uncharge_start(void);
void mem_cgroup_uncharge_end(void);
/* For coalescing uncharge for reducing memcg' overhead*/ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
extern void mem_cgroup_uncharge_start(void); bool lrucare);
extern void mem_cgroup_uncharge_end(void);
extern void mem_cgroup_uncharge_page(struct page *page); struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
extern void mem_cgroup_uncharge_cache_page(struct page *page); struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
struct mem_cgroup *memcg); struct mem_cgroup *memcg);
...@@ -96,12 +98,6 @@ bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) ...@@ -96,12 +98,6 @@ bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
extern void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
struct mem_cgroup **memcgp);
extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok);
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *, struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *); struct mem_cgroup_reclaim_cookie *);
...@@ -116,8 +112,6 @@ unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); ...@@ -116,8 +112,6 @@ unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
struct task_struct *p); struct task_struct *p);
extern void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage);
static inline void mem_cgroup_oom_enable(void) static inline void mem_cgroup_oom_enable(void)
{ {
...@@ -235,19 +229,21 @@ static inline void mem_cgroup_cancel_charge(struct page *page, ...@@ -235,19 +229,21 @@ static inline void mem_cgroup_cancel_charge(struct page *page,
{ {
} }
static inline void mem_cgroup_uncharge_start(void) static inline void mem_cgroup_uncharge(struct page *page)
{ {
} }
static inline void mem_cgroup_uncharge_end(void) static inline void mem_cgroup_uncharge_start(void)
{ {
} }
static inline void mem_cgroup_uncharge_page(struct page *page) static inline void mem_cgroup_uncharge_end(void)
{ {
} }
static inline void mem_cgroup_uncharge_cache_page(struct page *page) static inline void mem_cgroup_migrate(struct page *oldpage,
struct page *newpage,
bool lrucare)
{ {
} }
...@@ -286,17 +282,6 @@ static inline struct cgroup_subsys_state ...@@ -286,17 +282,6 @@ static inline struct cgroup_subsys_state
return NULL; return NULL;
} }
static inline void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
struct mem_cgroup **memcgp)
{
}
static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
}
static inline struct mem_cgroup * static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root, mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev, struct mem_cgroup *prev,
...@@ -392,10 +377,6 @@ static inline ...@@ -392,10 +377,6 @@ static inline
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{ {
} }
static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage)
{
}
#endif /* CONFIG_MEMCG */ #endif /* CONFIG_MEMCG */
#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
......
...@@ -3,9 +3,9 @@ ...@@ -3,9 +3,9 @@
enum { enum {
/* flags for mem_cgroup */ /* flags for mem_cgroup */
PCG_LOCK, /* Lock for pc->mem_cgroup and following bits. */ PCG_USED = 0x01, /* This page is charged to a memcg */
PCG_USED, /* this object is in use. */ PCG_MEM = 0x02, /* This page holds a memory charge */
PCG_MIGRATION, /* under page migration */ PCG_MEMSW = 0x04, /* This page holds a memory+swap charge */
__NR_PCG_FLAGS, __NR_PCG_FLAGS,
}; };
...@@ -44,42 +44,9 @@ static inline void __init page_cgroup_init(void) ...@@ -44,42 +44,9 @@ static inline void __init page_cgroup_init(void)
struct page_cgroup *lookup_page_cgroup(struct page *page); struct page_cgroup *lookup_page_cgroup(struct page *page);
struct page *lookup_cgroup_page(struct page_cgroup *pc); struct page *lookup_cgroup_page(struct page_cgroup *pc);
#define TESTPCGFLAG(uname, lname) \ static inline int PageCgroupUsed(struct page_cgroup *pc)
static inline int PageCgroup##uname(struct page_cgroup *pc) \
{ return test_bit(PCG_##lname, &pc->flags); }
#define SETPCGFLAG(uname, lname) \
static inline void SetPageCgroup##uname(struct page_cgroup *pc)\
{ set_bit(PCG_##lname, &pc->flags); }
#define CLEARPCGFLAG(uname, lname) \
static inline void ClearPageCgroup##uname(struct page_cgroup *pc) \
{ clear_bit(PCG_##lname, &pc->flags); }
#define TESTCLEARPCGFLAG(uname, lname) \
static inline int TestClearPageCgroup##uname(struct page_cgroup *pc) \
{ return test_and_clear_bit(PCG_##lname, &pc->flags); }
TESTPCGFLAG(Used, USED)
CLEARPCGFLAG(Used, USED)
SETPCGFLAG(Used, USED)
SETPCGFLAG(Migration, MIGRATION)
CLEARPCGFLAG(Migration, MIGRATION)
TESTPCGFLAG(Migration, MIGRATION)
static inline void lock_page_cgroup(struct page_cgroup *pc)
{
/*
* Don't take this lock in IRQ context.
* This lock is for pc->mem_cgroup, USED, MIGRATION
*/
bit_spin_lock(PCG_LOCK, &pc->flags);
}
static inline void unlock_page_cgroup(struct page_cgroup *pc)
{ {
bit_spin_unlock(PCG_LOCK, &pc->flags); return !!(pc->flags & PCG_USED);
} }
#else /* CONFIG_MEMCG */ #else /* CONFIG_MEMCG */
......
...@@ -381,9 +381,13 @@ static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) ...@@ -381,9 +381,13 @@ static inline int mem_cgroup_swappiness(struct mem_cgroup *mem)
} }
#endif #endif
#ifdef CONFIG_MEMCG_SWAP #ifdef CONFIG_MEMCG_SWAP
extern void mem_cgroup_uncharge_swap(swp_entry_t ent); extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry);
extern void mem_cgroup_uncharge_swap(swp_entry_t entry);
#else #else
static inline void mem_cgroup_uncharge_swap(swp_entry_t ent) static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
}
static inline void mem_cgroup_uncharge_swap(swp_entry_t entry)
{ {
} }
#endif #endif
...@@ -443,7 +447,7 @@ extern void swap_shmem_alloc(swp_entry_t); ...@@ -443,7 +447,7 @@ extern void swap_shmem_alloc(swp_entry_t);
extern int swap_duplicate(swp_entry_t); extern int swap_duplicate(swp_entry_t);
extern int swapcache_prepare(swp_entry_t); extern int swapcache_prepare(swp_entry_t);
extern void swap_free(swp_entry_t); extern void swap_free(swp_entry_t);
extern void swapcache_free(swp_entry_t, struct page *page); extern void swapcache_free(swp_entry_t);
extern int free_swap_and_cache(swp_entry_t); extern int free_swap_and_cache(swp_entry_t);
extern int swap_type_of(dev_t, sector_t, struct block_device **); extern int swap_type_of(dev_t, sector_t, struct block_device **);
extern unsigned int count_swap_pages(int, int); extern unsigned int count_swap_pages(int, int);
...@@ -507,7 +511,7 @@ static inline void swap_free(swp_entry_t swp) ...@@ -507,7 +511,7 @@ static inline void swap_free(swp_entry_t swp)
{ {
} }
static inline void swapcache_free(swp_entry_t swp, struct page *page) static inline void swapcache_free(swp_entry_t swp)
{ {
} }
......
...@@ -234,7 +234,6 @@ void delete_from_page_cache(struct page *page) ...@@ -234,7 +234,6 @@ void delete_from_page_cache(struct page *page)
spin_lock_irq(&mapping->tree_lock); spin_lock_irq(&mapping->tree_lock);
__delete_from_page_cache(page, NULL); __delete_from_page_cache(page, NULL);
spin_unlock_irq(&mapping->tree_lock); spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
if (freepage) if (freepage)
freepage(page); freepage(page);
...@@ -490,8 +489,7 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) ...@@ -490,8 +489,7 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
if (PageSwapBacked(new)) if (PageSwapBacked(new))
__inc_zone_page_state(new, NR_SHMEM); __inc_zone_page_state(new, NR_SHMEM);
spin_unlock_irq(&mapping->tree_lock); spin_unlock_irq(&mapping->tree_lock);
/* mem_cgroup codes must not be called under tree_lock */ mem_cgroup_migrate(old, new, true);
mem_cgroup_replace_page_cache(old, new);
radix_tree_preload_end(); radix_tree_preload_end();
if (freepage) if (freepage)
freepage(old); freepage(old);
......
...@@ -754,9 +754,11 @@ static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, ...@@ -754,9 +754,11 @@ static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz) struct mem_cgroup_tree_per_zone *mctz)
{ {
spin_lock(&mctz->lock); unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
__mem_cgroup_remove_exceeded(mz, mctz); __mem_cgroup_remove_exceeded(mz, mctz);
spin_unlock(&mctz->lock); spin_unlock_irqrestore(&mctz->lock, flags);
} }
...@@ -779,7 +781,9 @@ static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) ...@@ -779,7 +781,9 @@ static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
* mem is over its softlimit. * mem is over its softlimit.
*/ */
if (excess || mz->on_tree) { if (excess || mz->on_tree) {
spin_lock(&mctz->lock); unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
/* if on-tree, remove it */ /* if on-tree, remove it */
if (mz->on_tree) if (mz->on_tree)
__mem_cgroup_remove_exceeded(mz, mctz); __mem_cgroup_remove_exceeded(mz, mctz);
...@@ -788,7 +792,7 @@ static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) ...@@ -788,7 +792,7 @@ static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
* If excess is 0, no tree ops. * If excess is 0, no tree ops.
*/ */
__mem_cgroup_insert_exceeded(mz, mctz, excess); __mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock(&mctz->lock); spin_unlock_irqrestore(&mctz->lock, flags);
} }
} }
} }
...@@ -839,9 +843,9 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) ...@@ -839,9 +843,9 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{ {
struct mem_cgroup_per_zone *mz; struct mem_cgroup_per_zone *mz;
spin_lock(&mctz->lock); spin_lock_irq(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz); mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock(&mctz->lock); spin_unlock_irq(&mctz->lock);
return mz; return mz;
} }
...@@ -882,13 +886,6 @@ static long mem_cgroup_read_stat(struct mem_cgroup *memcg, ...@@ -882,13 +886,6 @@ static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
return val; return val;
} }
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
bool charge)
{
int val = (charge) ? 1 : -1;
this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
}
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx) enum mem_cgroup_events_index idx)
{ {
...@@ -909,13 +906,13 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, ...@@ -909,13 +906,13 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
struct page *page, struct page *page,
bool anon, int nr_pages) int nr_pages)
{ {
/* /*
* Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
* counted as CACHE even if it's on ANON LRU. * counted as CACHE even if it's on ANON LRU.
*/ */
if (anon) if (PageAnon(page))
__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
nr_pages); nr_pages);
else else
...@@ -1013,7 +1010,6 @@ static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, ...@@ -1013,7 +1010,6 @@ static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
*/ */
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
{ {
preempt_disable();
/* threshold event is triggered in finer grain than soft limit */ /* threshold event is triggered in finer grain than soft limit */
if (unlikely(mem_cgroup_event_ratelimit(memcg, if (unlikely(mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_THRESH))) { MEM_CGROUP_TARGET_THRESH))) {
...@@ -1026,8 +1022,6 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) ...@@ -1026,8 +1022,6 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
do_numainfo = mem_cgroup_event_ratelimit(memcg, do_numainfo = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_NUMAINFO); MEM_CGROUP_TARGET_NUMAINFO);
#endif #endif
preempt_enable();
mem_cgroup_threshold(memcg); mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit)) if (unlikely(do_softlimit))
mem_cgroup_update_tree(memcg, page); mem_cgroup_update_tree(memcg, page);
...@@ -1035,8 +1029,7 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) ...@@ -1035,8 +1029,7 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
if (unlikely(do_numainfo)) if (unlikely(do_numainfo))
atomic_inc(&memcg->numainfo_events); atomic_inc(&memcg->numainfo_events);
#endif #endif
} else }
preempt_enable();
} }
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
...@@ -1347,20 +1340,6 @@ struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, ...@@ -1347,20 +1340,6 @@ struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
return lruvec; return lruvec;
} }
/*
* Following LRU functions are allowed to be used without PCG_LOCK.
* Operations are called by routine of global LRU independently from memcg.
* What we have to take care of here is validness of pc->mem_cgroup.
*
* Changes to pc->mem_cgroup happens when
* 1. charge
* 2. moving account
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
* It is added to LRU before charge.
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
* When moving account, the page is not on LRU. It's isolated.
*/
/** /**
* mem_cgroup_page_lruvec - return lruvec for adding an lru page * mem_cgroup_page_lruvec - return lruvec for adding an lru page
* @page: the page * @page: the page
...@@ -2261,22 +2240,14 @@ bool mem_cgroup_oom_synchronize(bool handle) ...@@ -2261,22 +2240,14 @@ bool mem_cgroup_oom_synchronize(bool handle)
* *
* Notes: Race condition * Notes: Race condition
* *
* We usually use lock_page_cgroup() for accessing page_cgroup member but * Charging occurs during page instantiation, while the page is
* it tends to be costly. But considering some conditions, we doesn't need * unmapped and locked in page migration, or while the page table is
* to do so _always_. * locked in THP migration. No race is possible.
* *
* Considering "charge", lock_page_cgroup() is not required because all * Uncharge happens to pages with zero references, no race possible.
* file-stat operations happen after a page is attached to radix-tree. There
* are no race with "charge".
* *
* Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup * Charge moving between groups is protected by checking mm->moving
* at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even * account and taking the move_lock in the slowpath.
* if there are race with "uncharge". Statistics itself is properly handled
* by flags.
*
* Considering "move", this is an only case we see a race. To make the race
* small, we check memcg->moving_account and detect there are possibility
* of race or not. If there is, we take a lock.
*/ */
void __mem_cgroup_begin_update_page_stat(struct page *page, void __mem_cgroup_begin_update_page_stat(struct page *page,
...@@ -2689,6 +2660,16 @@ static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) ...@@ -2689,6 +2660,16 @@ static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
return mem_cgroup_from_id(id); return mem_cgroup_from_id(id);
} }
/*
* try_get_mem_cgroup_from_page - look up page's memcg association
* @page: the page
*
* Look up, get a css reference, and return the memcg that owns @page.
*
* The page must be locked to prevent racing with swap-in and page
* cache charges. If coming from an unlocked page table, the caller
* must ensure the page is on the LRU or this can race with charging.
*/
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{ {
struct mem_cgroup *memcg = NULL; struct mem_cgroup *memcg = NULL;
...@@ -2699,7 +2680,6 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) ...@@ -2699,7 +2680,6 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageLocked(page), page);
pc = lookup_page_cgroup(page); pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) { if (PageCgroupUsed(pc)) {
memcg = pc->mem_cgroup; memcg = pc->mem_cgroup;
if (memcg && !css_tryget_online(&memcg->css)) if (memcg && !css_tryget_online(&memcg->css))
...@@ -2713,19 +2693,46 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) ...@@ -2713,19 +2693,46 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
memcg = NULL; memcg = NULL;
rcu_read_unlock(); rcu_read_unlock();
} }
unlock_page_cgroup(pc);
return memcg; return memcg;
} }
static void lock_page_lru(struct page *page, int *isolated)
{
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
if (PageLRU(page)) {
struct lruvec *lruvec;
lruvec = mem_cgroup_page_lruvec(page, zone);
ClearPageLRU(page);
del_page_from_lru_list(page, lruvec, page_lru(page));
*isolated = 1;
} else
*isolated = 0;
}
static void unlock_page_lru(struct page *page, int isolated)
{
struct zone *zone = page_zone(page);
if (isolated) {
struct lruvec *lruvec;
lruvec = mem_cgroup_page_lruvec(page, zone);
VM_BUG_ON_PAGE(PageLRU(page), page);
SetPageLRU(page);
add_page_to_lru_list(page, lruvec, page_lru(page));
}
spin_unlock_irq(&zone->lru_lock);
}
static void commit_charge(struct page *page, struct mem_cgroup *memcg, static void commit_charge(struct page *page, struct mem_cgroup *memcg,
unsigned int nr_pages, bool anon, bool lrucare) unsigned int nr_pages, bool lrucare)
{ {
struct page_cgroup *pc = lookup_page_cgroup(page); struct page_cgroup *pc = lookup_page_cgroup(page);
struct zone *uninitialized_var(zone); int isolated;
struct lruvec *lruvec;
bool was_on_lru = false;
lock_page_cgroup(pc);
VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
/* /*
* we don't need page_cgroup_lock about tail pages, becase they are not * we don't need page_cgroup_lock about tail pages, becase they are not
...@@ -2736,39 +2743,38 @@ static void commit_charge(struct page *page, struct mem_cgroup *memcg, ...@@ -2736,39 +2743,38 @@ static void commit_charge(struct page *page, struct mem_cgroup *memcg,
* In some cases, SwapCache and FUSE(splice_buf->radixtree), the page * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
* may already be on some other mem_cgroup's LRU. Take care of it. * may already be on some other mem_cgroup's LRU. Take care of it.
*/ */
if (lrucare) { if (lrucare)
zone = page_zone(page); lock_page_lru(page, &isolated);
spin_lock_irq(&zone->lru_lock);
if (PageLRU(page)) {
lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
ClearPageLRU(page);
del_page_from_lru_list(page, lruvec, page_lru(page));
was_on_lru = true;
}
}
/*
* Nobody should be changing or seriously looking at
* pc->mem_cgroup and pc->flags at this point:
*
* - the page is uncharged
*
* - the page is off-LRU
*
* - an anonymous fault has exclusive page access, except for
* a locked page table
*
* - a page cache insertion, a swapin fault, or a migration
* have the page locked
*/
pc->mem_cgroup = memcg; pc->mem_cgroup = memcg;
SetPageCgroupUsed(pc); pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
if (lrucare) {
if (was_on_lru) {
lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
VM_BUG_ON_PAGE(PageLRU(page), page);
SetPageLRU(page);
add_page_to_lru_list(page, lruvec, page_lru(page));
}
spin_unlock_irq(&zone->lru_lock);
}
mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); if (lrucare)
unlock_page_cgroup(pc); unlock_page_lru(page, isolated);
local_irq_disable();
mem_cgroup_charge_statistics(memcg, page, nr_pages);
/* /*
* "charge_statistics" updated event counter. Then, check it. * "charge_statistics" updated event counter. Then, check it.
* Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
* if they exceeds softlimit. * if they exceeds softlimit.
*/ */
memcg_check_events(memcg, page); memcg_check_events(memcg, page);
local_irq_enable();
} }
static DEFINE_MUTEX(set_limit_mutex); static DEFINE_MUTEX(set_limit_mutex);
...@@ -3395,7 +3401,6 @@ static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) ...@@ -3395,7 +3401,6 @@ static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
/* /*
* Because tail pages are not marked as "used", set it. We're under * Because tail pages are not marked as "used", set it. We're under
* zone->lru_lock, 'splitting on pmd' and compound_lock. * zone->lru_lock, 'splitting on pmd' and compound_lock.
...@@ -3416,7 +3421,7 @@ void mem_cgroup_split_huge_fixup(struct page *head) ...@@ -3416,7 +3421,7 @@ void mem_cgroup_split_huge_fixup(struct page *head)
for (i = 1; i < HPAGE_PMD_NR; i++) { for (i = 1; i < HPAGE_PMD_NR; i++) {
pc = head_pc + i; pc = head_pc + i;
pc->mem_cgroup = memcg; pc->mem_cgroup = memcg;
pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; pc->flags = head_pc->flags;
} }
__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
HPAGE_PMD_NR); HPAGE_PMD_NR);
...@@ -3446,7 +3451,6 @@ static int mem_cgroup_move_account(struct page *page, ...@@ -3446,7 +3451,6 @@ static int mem_cgroup_move_account(struct page *page,
{ {
unsigned long flags; unsigned long flags;
int ret; int ret;
bool anon = PageAnon(page);
VM_BUG_ON(from == to); VM_BUG_ON(from == to);
VM_BUG_ON_PAGE(PageLRU(page), page); VM_BUG_ON_PAGE(PageLRU(page), page);
...@@ -3460,15 +3464,21 @@ static int mem_cgroup_move_account(struct page *page, ...@@ -3460,15 +3464,21 @@ static int mem_cgroup_move_account(struct page *page,
if (nr_pages > 1 && !PageTransHuge(page)) if (nr_pages > 1 && !PageTransHuge(page))
goto out; goto out;
lock_page_cgroup(pc); /*
* Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
* of its source page while we change it: page migration takes
* both pages off the LRU, but page cache replacement doesn't.
*/
if (!trylock_page(page))
goto out;
ret = -EINVAL; ret = -EINVAL;
if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
goto unlock; goto out_unlock;
move_lock_mem_cgroup(from, &flags); move_lock_mem_cgroup(from, &flags);
if (!anon && page_mapped(page)) { if (!PageAnon(page) && page_mapped(page)) {
__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
nr_pages); nr_pages);
__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
...@@ -3482,20 +3492,25 @@ static int mem_cgroup_move_account(struct page *page, ...@@ -3482,20 +3492,25 @@ static int mem_cgroup_move_account(struct page *page,
nr_pages); nr_pages);
} }
mem_cgroup_charge_statistics(from, page, anon, -nr_pages); /*
* It is safe to change pc->mem_cgroup here because the page
* is referenced, charged, and isolated - we can't race with
* uncharging, charging, migration, or LRU putback.
*/
/* caller should have done css_get */ /* caller should have done css_get */
pc->mem_cgroup = to; pc->mem_cgroup = to;
mem_cgroup_charge_statistics(to, page, anon, nr_pages);
move_unlock_mem_cgroup(from, &flags); move_unlock_mem_cgroup(from, &flags);
ret = 0; ret = 0;
unlock:
unlock_page_cgroup(pc); local_irq_disable();
/* mem_cgroup_charge_statistics(to, page, nr_pages);
* check events
*/
memcg_check_events(to, page); memcg_check_events(to, page);
mem_cgroup_charge_statistics(from, page, -nr_pages);
memcg_check_events(from, page); memcg_check_events(from, page);
local_irq_enable();
out_unlock:
unlock_page(page);
out: out:
return ret; return ret;
} }
...@@ -3566,193 +3581,6 @@ static int mem_cgroup_move_parent(struct page *page, ...@@ -3566,193 +3581,6 @@ static int mem_cgroup_move_parent(struct page *page,
return ret; return ret;
} }
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
unsigned int nr_pages,
const enum charge_type ctype)
{
struct memcg_batch_info *batch = NULL;
bool uncharge_memsw = true;
/* If swapout, usage of swap doesn't decrease */
if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
uncharge_memsw = false;
batch = &current->memcg_batch;
/*
* In usual, we do css_get() when we remember memcg pointer.
* But in this case, we keep res->usage until end of a series of
* uncharges. Then, it's ok to ignore memcg's refcnt.
*/
if (!batch->memcg)
batch->memcg = memcg;
/*
* do_batch > 0 when unmapping pages or inode invalidate/truncate.
* In those cases, all pages freed continuously can be expected to be in
* the same cgroup and we have chance to coalesce uncharges.
* But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
* because we want to do uncharge as soon as possible.
*/
if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
goto direct_uncharge;
if (nr_pages > 1)
goto direct_uncharge;
/*
* In typical case, batch->memcg == mem. This means we can
* merge a series of uncharges to an uncharge of res_counter.
* If not, we uncharge res_counter ony by one.
*/
if (batch->memcg != memcg)
goto direct_uncharge;
/* remember freed charge and uncharge it later */
batch->nr_pages++;
if (uncharge_memsw)
batch->memsw_nr_pages++;
return;
direct_uncharge:
res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
if (uncharge_memsw)
res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
if (unlikely(batch->memcg != memcg))
memcg_oom_recover(memcg);
}
/*
* uncharge if !page_mapped(page)
*/
static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
bool end_migration)
{
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
bool anon;
if (mem_cgroup_disabled())
return NULL;
if (PageTransHuge(page)) {
nr_pages <<= compound_order(page);
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
}
/*
* Check if our page_cgroup is valid
*/
pc = lookup_page_cgroup(page);
if (unlikely(!PageCgroupUsed(pc)))
return NULL;
lock_page_cgroup(pc);
memcg = pc->mem_cgroup;
if (!PageCgroupUsed(pc))
goto unlock_out;
anon = PageAnon(page);
switch (ctype) {
case MEM_CGROUP_CHARGE_TYPE_ANON:
/*
* Generally PageAnon tells if it's the anon statistics to be
* updated; but sometimes e.g. mem_cgroup_uncharge_page() is
* used before page reached the stage of being marked PageAnon.
*/
anon = true;
/* fallthrough */
case MEM_CGROUP_CHARGE_TYPE_DROP:
/* See mem_cgroup_prepare_migration() */
if (page_mapped(page))
goto unlock_out;
/*
* Pages under migration may not be uncharged. But
* end_migration() /must/ be the one uncharging the
* unused post-migration page and so it has to call
* here with the migration bit still set. See the
* res_counter handling below.
*/
if (!end_migration && PageCgroupMigration(pc))
goto unlock_out;
break;
case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
if (!PageAnon(page)) { /* Shared memory */
if (page->mapping && !page_is_file_cache(page))
goto unlock_out;
} else if (page_mapped(page)) /* Anon */
goto unlock_out;
break;
default:
break;
}
mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
ClearPageCgroupUsed(pc);
/*
* pc->mem_cgroup is not cleared here. It will be accessed when it's
* freed from LRU. This is safe because uncharged page is expected not
* to be reused (freed soon). Exception is SwapCache, it's handled by
* special functions.
*/
unlock_page_cgroup(pc);
/*
* even after unlock, we have memcg->res.usage here and this memcg
* will never be freed, so it's safe to call css_get().
*/
memcg_check_events(memcg, page);
if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
mem_cgroup_swap_statistics(memcg, true);
css_get(&memcg->css);
}
/*
* Migration does not charge the res_counter for the
* replacement page, so leave it alone when phasing out the
* page that is unused after the migration.
*/
if (!end_migration)
mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
return memcg;
unlock_out:
unlock_page_cgroup(pc);
return NULL;
}
void mem_cgroup_uncharge_page(struct page *page)
{
/* early check. */
if (page_mapped(page))
return;
VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
/*
* If the page is in swap cache, uncharge should be deferred
* to the swap path, which also properly accounts swap usage
* and handles memcg lifetime.
*
* Note that this check is not stable and reclaim may add the
* page to swap cache at any time after this. However, if the
* page is not in swap cache by the time page->mapcount hits
* 0, there won't be any page table references to the swap
* slot, and reclaim will free it and not actually write the
* page to disk.
*/
if (PageSwapCache(page))
return;
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
}
void mem_cgroup_uncharge_cache_page(struct page *page)
{
VM_BUG_ON_PAGE(page_mapped(page), page);
VM_BUG_ON_PAGE(page->mapping, page);
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
}
/* /*
* Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
* In that cases, pages are freed continuously and we can expect pages * In that cases, pages are freed continuously and we can expect pages
...@@ -3763,6 +3591,9 @@ void mem_cgroup_uncharge_cache_page(struct page *page) ...@@ -3763,6 +3591,9 @@ void mem_cgroup_uncharge_cache_page(struct page *page)
void mem_cgroup_uncharge_start(void) void mem_cgroup_uncharge_start(void)
{ {
unsigned long flags;
local_irq_save(flags);
current->memcg_batch.do_batch++; current->memcg_batch.do_batch++;
/* We can do nest. */ /* We can do nest. */
if (current->memcg_batch.do_batch == 1) { if (current->memcg_batch.do_batch == 1) {
...@@ -3770,21 +3601,18 @@ void mem_cgroup_uncharge_start(void) ...@@ -3770,21 +3601,18 @@ void mem_cgroup_uncharge_start(void)
current->memcg_batch.nr_pages = 0; current->memcg_batch.nr_pages = 0;
current->memcg_batch.memsw_nr_pages = 0; current->memcg_batch.memsw_nr_pages = 0;
} }
local_irq_restore(flags);
} }
void mem_cgroup_uncharge_end(void) void mem_cgroup_uncharge_end(void)
{ {
struct memcg_batch_info *batch = &current->memcg_batch; struct memcg_batch_info *batch = &current->memcg_batch;
unsigned long flags;
if (!batch->do_batch) local_irq_save(flags);
return; VM_BUG_ON(!batch->do_batch);
if (--batch->do_batch) /* If stacked, do nothing */
batch->do_batch--; goto out;
if (batch->do_batch) /* If stacked, do nothing. */
return;
if (!batch->memcg)
return;
/* /*
* This "batch->memcg" is valid without any css_get/put etc... * This "batch->memcg" is valid without any css_get/put etc...
* bacause we hide charges behind us. * bacause we hide charges behind us.
...@@ -3796,61 +3624,16 @@ void mem_cgroup_uncharge_end(void) ...@@ -3796,61 +3624,16 @@ void mem_cgroup_uncharge_end(void)
res_counter_uncharge(&batch->memcg->memsw, res_counter_uncharge(&batch->memcg->memsw,
batch->memsw_nr_pages * PAGE_SIZE); batch->memsw_nr_pages * PAGE_SIZE);
memcg_oom_recover(batch->memcg); memcg_oom_recover(batch->memcg);
/* forget this pointer (for sanity check) */ out:
batch->memcg = NULL; local_irq_restore(flags);
} }
#ifdef CONFIG_SWAP
/*
* called after __delete_from_swap_cache() and drop "page" account.
* memcg information is recorded to swap_cgroup of "ent"
*/
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
{
struct mem_cgroup *memcg;
int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
if (!swapout) /* this was a swap cache but the swap is unused ! */
ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
memcg = __mem_cgroup_uncharge_common(page, ctype, false);
/*
* record memcg information, if swapout && memcg != NULL,
* css_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
swap_cgroup_record(ent, mem_cgroup_id(memcg));
}
#endif
#ifdef CONFIG_MEMCG_SWAP #ifdef CONFIG_MEMCG_SWAP
/* static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
* called from swap_entry_free(). remove record in swap_cgroup and bool charge)
* uncharge "memsw" account.
*/
void mem_cgroup_uncharge_swap(swp_entry_t ent)
{ {
struct mem_cgroup *memcg; int val = (charge) ? 1 : -1;
unsigned short id; this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
if (!do_swap_account)
return;
id = swap_cgroup_record(ent, 0);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg) {
/*
* We uncharge this because swap is freed. This memcg can
* be obsolete one. We avoid calling css_tryget_online().
*/
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
mem_cgroup_swap_statistics(memcg, false);
css_put(&memcg->css);
}
rcu_read_unlock();
} }
/** /**
...@@ -3902,169 +3685,6 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry, ...@@ -3902,169 +3685,6 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
} }
#endif #endif
/*
* Before starting migration, account PAGE_SIZE to mem_cgroup that the old
* page belongs to.
*/
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
struct mem_cgroup **memcgp)
{
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = 1;
struct page_cgroup *pc;
*memcgp = NULL;
if (mem_cgroup_disabled())
return;
if (PageTransHuge(page))
nr_pages <<= compound_order(page);
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
memcg = pc->mem_cgroup;
css_get(&memcg->css);
/*
* At migrating an anonymous page, its mapcount goes down
* to 0 and uncharge() will be called. But, even if it's fully
* unmapped, migration may fail and this page has to be
* charged again. We set MIGRATION flag here and delay uncharge
* until end_migration() is called
*
* Corner Case Thinking
* A)
* When the old page was mapped as Anon and it's unmap-and-freed
* while migration was ongoing.
* If unmap finds the old page, uncharge() of it will be delayed
* until end_migration(). If unmap finds a new page, it's
* uncharged when it make mapcount to be 1->0. If unmap code
* finds swap_migration_entry, the new page will not be mapped
* and end_migration() will find it(mapcount==0).
*
* B)
* When the old page was mapped but migraion fails, the kernel
* remaps it. A charge for it is kept by MIGRATION flag even
* if mapcount goes down to 0. We can do remap successfully
* without charging it again.
*
* C)
* The "old" page is under lock_page() until the end of
* migration, so, the old page itself will not be swapped-out.
* If the new page is swapped out before end_migraton, our
* hook to usual swap-out path will catch the event.
*/
if (PageAnon(page))
SetPageCgroupMigration(pc);
}
unlock_page_cgroup(pc);
/*
* If the page is not charged at this point,
* we return here.
*/
if (!memcg)
return;
*memcgp = memcg;
/*
* We charge new page before it's used/mapped. So, even if unlock_page()
* is called before end_migration, we can catch all events on this new
* page. In the case new page is migrated but not remapped, new page's
* mapcount will be finally 0 and we call uncharge in end_migration().
*/
/*
* The page is committed to the memcg, but it's not actually
* charged to the res_counter since we plan on replacing the
* old one and only one page is going to be left afterwards.
*/
commit_charge(newpage, memcg, nr_pages, PageAnon(page), false);
}
/* remove redundant charge if migration failed*/
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
struct page *used, *unused;
struct page_cgroup *pc;
bool anon;
if (!memcg)
return;
if (!migration_ok) {
used = oldpage;
unused = newpage;
} else {
used = newpage;
unused = oldpage;
}
anon = PageAnon(used);
__mem_cgroup_uncharge_common(unused,
anon ? MEM_CGROUP_CHARGE_TYPE_ANON
: MEM_CGROUP_CHARGE_TYPE_CACHE,
true);
css_put(&memcg->css);
/*
* We disallowed uncharge of pages under migration because mapcount
* of the page goes down to zero, temporarly.
* Clear the flag and check the page should be charged.
*/
pc = lookup_page_cgroup(oldpage);
lock_page_cgroup(pc);
ClearPageCgroupMigration(pc);
unlock_page_cgroup(pc);
/*
* If a page is a file cache, radix-tree replacement is very atomic
* and we can skip this check. When it was an Anon page, its mapcount
* goes down to 0. But because we added MIGRATION flage, it's not
* uncharged yet. There are several case but page->mapcount check
* and USED bit check in mem_cgroup_uncharge_page() will do enough
* check. (see prepare_charge() also)
*/
if (anon)
mem_cgroup_uncharge_page(used);
}
/*
* At replace page cache, newpage is not under any memcg but it's on
* LRU. So, this function doesn't touch res_counter but handles LRU
* in correct way. Both pages are locked so we cannot race with uncharge.
*/
void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage)
{
struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(oldpage);
/* fix accounting on old pages */
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
memcg = pc->mem_cgroup;
mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
ClearPageCgroupUsed(pc);
}
unlock_page_cgroup(pc);
/*
* When called from shmem_replace_page(), in some cases the
* oldpage has already been charged, and in some cases not.
*/
if (!memcg)
return;
/*
* Even if newpage->mapping was NULL before starting replacement,
* the newpage may be on LRU(or pagevec for LRU) already. We lock
* LRU while we overwrite pc->mem_cgroup.
*/
commit_charge(newpage, memcg, 1, false, true);
}
#ifdef CONFIG_DEBUG_VM #ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page) static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{ {
...@@ -4263,7 +3883,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, ...@@ -4263,7 +3883,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_mask, &nr_scanned); gfp_mask, &nr_scanned);
nr_reclaimed += reclaimed; nr_reclaimed += reclaimed;
*total_scanned += nr_scanned; *total_scanned += nr_scanned;
spin_lock(&mctz->lock); spin_lock_irq(&mctz->lock);
/* /*
* If we failed to reclaim anything from this memory cgroup * If we failed to reclaim anything from this memory cgroup
...@@ -4303,7 +3923,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, ...@@ -4303,7 +3923,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
*/ */
/* If excess == 0, no tree ops */ /* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz, mctz, excess); __mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock(&mctz->lock); spin_unlock_irq(&mctz->lock);
css_put(&mz->memcg->css); css_put(&mz->memcg->css);
loop++; loop++;
/* /*
...@@ -6265,9 +5885,9 @@ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, ...@@ -6265,9 +5885,9 @@ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
if (page) { if (page) {
pc = lookup_page_cgroup(page); pc = lookup_page_cgroup(page);
/* /*
* Do only loose check w/o page_cgroup lock. * Do only loose check w/o serialization.
* mem_cgroup_move_account() checks the pc is valid or not under * mem_cgroup_move_account() checks the pc is valid or
* the lock. * not under LRU exclusion.
*/ */
if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE; ret = MC_TARGET_PAGE;
...@@ -6729,6 +6349,67 @@ static void __init enable_swap_cgroup(void) ...@@ -6729,6 +6349,67 @@ static void __init enable_swap_cgroup(void)
} }
#endif #endif
#ifdef CONFIG_MEMCG_SWAP
/**
* mem_cgroup_swapout - transfer a memsw charge to swap
* @page: page whose memsw charge to transfer
* @entry: swap entry to move the charge to
*
* Transfer the memsw charge of @page to @entry.
*/
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
struct page_cgroup *pc;
unsigned short oldid;
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page), page);
if (!do_swap_account)
return;
pc = lookup_page_cgroup(page);
/* Readahead page, never charged */
if (!PageCgroupUsed(pc))
return;
VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
VM_BUG_ON_PAGE(oldid, page);
pc->flags &= ~PCG_MEMSW;
css_get(&pc->mem_cgroup->css);
mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}
/**
* mem_cgroup_uncharge_swap - uncharge a swap entry
* @entry: swap entry to uncharge
*
* Drop the memsw charge associated with @entry.
*/
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
struct mem_cgroup *memcg;
unsigned short id;
if (!do_swap_account)
return;
id = swap_cgroup_record(entry, 0);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg) {
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
mem_cgroup_swap_statistics(memcg, false);
css_put(&memcg->css);
}
rcu_read_unlock();
}
#endif
/** /**
* mem_cgroup_try_charge - try charging a page * mem_cgroup_try_charge - try charging a page
* @page: page to charge * @page: page to charge
...@@ -6831,7 +6512,7 @@ void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, ...@@ -6831,7 +6512,7 @@ void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
VM_BUG_ON_PAGE(!PageTransHuge(page), page); VM_BUG_ON_PAGE(!PageTransHuge(page), page);
} }
commit_charge(page, memcg, nr_pages, PageAnon(page), lrucare); commit_charge(page, memcg, nr_pages, lrucare);
if (do_swap_account && PageSwapCache(page)) { if (do_swap_account && PageSwapCache(page)) {
swp_entry_t entry = { .val = page_private(page) }; swp_entry_t entry = { .val = page_private(page) };
...@@ -6873,6 +6554,139 @@ void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) ...@@ -6873,6 +6554,139 @@ void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
cancel_charge(memcg, nr_pages); cancel_charge(memcg, nr_pages);
} }
/**
* mem_cgroup_uncharge - uncharge a page
* @page: page to uncharge
*
* Uncharge a page previously charged with mem_cgroup_try_charge() and
* mem_cgroup_commit_charge().
*/
void mem_cgroup_uncharge(struct page *page)
{
struct memcg_batch_info *batch;
unsigned int nr_pages = 1;
struct mem_cgroup *memcg;
struct page_cgroup *pc;
unsigned long pc_flags;
unsigned long flags;
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page), page);
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/* Every final put_page() ends up here */
if (!PageCgroupUsed(pc))
return;
if (PageTransHuge(page)) {
nr_pages <<= compound_order(page);
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
}
/*
* Nobody should be changing or seriously looking at
* pc->mem_cgroup and pc->flags at this point, we have fully
* exclusive access to the page.
*/
memcg = pc->mem_cgroup;
pc_flags = pc->flags;
pc->flags = 0;
local_irq_save(flags);
if (nr_pages > 1)
goto direct;
if (unlikely(test_thread_flag(TIF_MEMDIE)))
goto direct;
batch = &current->memcg_batch;
if (!batch->do_batch)
goto direct;
if (batch->memcg && batch->memcg != memcg)
goto direct;
if (!batch->memcg)
batch->memcg = memcg;
if (pc_flags & PCG_MEM)
batch->nr_pages++;
if (pc_flags & PCG_MEMSW)
batch->memsw_nr_pages++;
goto out;
direct:
if (pc_flags & PCG_MEM)
res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
if (pc_flags & PCG_MEMSW)
res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
memcg_oom_recover(memcg);
out:
mem_cgroup_charge_statistics(memcg, page, -nr_pages);
memcg_check_events(memcg, page);
local_irq_restore(flags);
}
/**
* mem_cgroup_migrate - migrate a charge to another page
* @oldpage: currently charged page
* @newpage: page to transfer the charge to
* @lrucare: both pages might be on the LRU already
*
* Migrate the charge from @oldpage to @newpage.
*
* Both pages must be locked, @newpage->mapping must be set up.
*/
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
bool lrucare)
{
unsigned int nr_pages = 1;
struct page_cgroup *pc;
int isolated;
VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
if (mem_cgroup_disabled())
return;
/* Page cache replacement: new page already charged? */
pc = lookup_page_cgroup(newpage);
if (PageCgroupUsed(pc))
return;
/* Re-entrant migration: old page already uncharged? */
pc = lookup_page_cgroup(oldpage);
if (!PageCgroupUsed(pc))
return;
VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
if (PageTransHuge(oldpage)) {
nr_pages <<= compound_order(oldpage);
VM_BUG_ON_PAGE(!PageTransHuge(oldpage), oldpage);
VM_BUG_ON_PAGE(!PageTransHuge(newpage), newpage);
}
if (lrucare)
lock_page_lru(oldpage, &isolated);
pc->flags = 0;
if (lrucare)
unlock_page_lru(oldpage, isolated);
local_irq_disable();
mem_cgroup_charge_statistics(pc->mem_cgroup, oldpage, -nr_pages);
memcg_check_events(pc->mem_cgroup, oldpage);
local_irq_enable();
commit_charge(newpage, pc->mem_cgroup, nr_pages, lrucare);
}
/* /*
* subsys_initcall() for memory controller. * subsys_initcall() for memory controller.
* *
......
...@@ -1292,7 +1292,6 @@ static void unmap_page_range(struct mmu_gather *tlb, ...@@ -1292,7 +1292,6 @@ static void unmap_page_range(struct mmu_gather *tlb,
details = NULL; details = NULL;
BUG_ON(addr >= end); BUG_ON(addr >= end);
mem_cgroup_uncharge_start();
tlb_start_vma(tlb, vma); tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr); pgd = pgd_offset(vma->vm_mm, addr);
do { do {
...@@ -1302,7 +1301,6 @@ static void unmap_page_range(struct mmu_gather *tlb, ...@@ -1302,7 +1301,6 @@ static void unmap_page_range(struct mmu_gather *tlb,
next = zap_pud_range(tlb, vma, pgd, addr, next, details); next = zap_pud_range(tlb, vma, pgd, addr, next, details);
} while (pgd++, addr = next, addr != end); } while (pgd++, addr = next, addr != end);
tlb_end_vma(tlb, vma); tlb_end_vma(tlb, vma);
mem_cgroup_uncharge_end();
} }
......
...@@ -780,6 +780,7 @@ static int move_to_new_page(struct page *newpage, struct page *page, ...@@ -780,6 +780,7 @@ static int move_to_new_page(struct page *newpage, struct page *page,
if (rc != MIGRATEPAGE_SUCCESS) { if (rc != MIGRATEPAGE_SUCCESS) {
newpage->mapping = NULL; newpage->mapping = NULL;
} else { } else {
mem_cgroup_migrate(page, newpage, false);
if (remap_swapcache) if (remap_swapcache)
remove_migration_ptes(page, newpage); remove_migration_ptes(page, newpage);
page->mapping = NULL; page->mapping = NULL;
...@@ -795,7 +796,6 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -795,7 +796,6 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
{ {
int rc = -EAGAIN; int rc = -EAGAIN;
int remap_swapcache = 1; int remap_swapcache = 1;
struct mem_cgroup *mem;
struct anon_vma *anon_vma = NULL; struct anon_vma *anon_vma = NULL;
if (!trylock_page(page)) { if (!trylock_page(page)) {
...@@ -821,9 +821,6 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -821,9 +821,6 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
lock_page(page); lock_page(page);
} }
/* charge against new page */
mem_cgroup_prepare_migration(page, newpage, &mem);
if (PageWriteback(page)) { if (PageWriteback(page)) {
/* /*
* Only in the case of a full synchronous migration is it * Only in the case of a full synchronous migration is it
...@@ -833,10 +830,10 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -833,10 +830,10 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
*/ */
if (mode != MIGRATE_SYNC) { if (mode != MIGRATE_SYNC) {
rc = -EBUSY; rc = -EBUSY;
goto uncharge; goto out_unlock;
} }
if (!force) if (!force)
goto uncharge; goto out_unlock;
wait_on_page_writeback(page); wait_on_page_writeback(page);
} }
/* /*
...@@ -872,7 +869,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -872,7 +869,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
*/ */
remap_swapcache = 0; remap_swapcache = 0;
} else { } else {
goto uncharge; goto out_unlock;
} }
} }
...@@ -885,7 +882,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -885,7 +882,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
* the page migration right away (proteced by page lock). * the page migration right away (proteced by page lock).
*/ */
rc = balloon_page_migrate(newpage, page, mode); rc = balloon_page_migrate(newpage, page, mode);
goto uncharge; goto out_unlock;
} }
/* /*
...@@ -904,7 +901,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -904,7 +901,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
VM_BUG_ON_PAGE(PageAnon(page), page); VM_BUG_ON_PAGE(PageAnon(page), page);
if (page_has_private(page)) { if (page_has_private(page)) {
try_to_free_buffers(page); try_to_free_buffers(page);
goto uncharge; goto out_unlock;
} }
goto skip_unmap; goto skip_unmap;
} }
...@@ -923,10 +920,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, ...@@ -923,10 +920,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage,
if (anon_vma) if (anon_vma)
put_anon_vma(anon_vma); put_anon_vma(anon_vma);
uncharge: out_unlock:
mem_cgroup_end_migration(mem, page, newpage,
(rc == MIGRATEPAGE_SUCCESS ||
rc == MIGRATEPAGE_BALLOON_SUCCESS));
unlock_page(page); unlock_page(page);
out: out:
return rc; return rc;
...@@ -1786,7 +1780,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm, ...@@ -1786,7 +1780,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
pg_data_t *pgdat = NODE_DATA(node); pg_data_t *pgdat = NODE_DATA(node);
int isolated = 0; int isolated = 0;
struct page *new_page = NULL; struct page *new_page = NULL;
struct mem_cgroup *memcg = NULL;
int page_lru = page_is_file_cache(page); int page_lru = page_is_file_cache(page);
unsigned long mmun_start = address & HPAGE_PMD_MASK; unsigned long mmun_start = address & HPAGE_PMD_MASK;
unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
...@@ -1852,15 +1845,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm, ...@@ -1852,15 +1845,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
goto out_unlock; goto out_unlock;
} }
/*
* Traditional migration needs to prepare the memcg charge
* transaction early to prevent the old page from being
* uncharged when installing migration entries. Here we can
* save the potential rollback and start the charge transfer
* only when migration is already known to end successfully.
*/
mem_cgroup_prepare_migration(page, new_page, &memcg);
orig_entry = *pmd; orig_entry = *pmd;
entry = mk_pmd(new_page, vma->vm_page_prot); entry = mk_pmd(new_page, vma->vm_page_prot);
entry = pmd_mkhuge(entry); entry = pmd_mkhuge(entry);
...@@ -1888,14 +1872,10 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm, ...@@ -1888,14 +1872,10 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
goto fail_putback; goto fail_putback;
} }
mem_cgroup_migrate(page, new_page, false);
page_remove_rmap(page); page_remove_rmap(page);
/*
* Finish the charge transaction under the page table lock to
* prevent split_huge_page() from dividing up the charge
* before it's fully transferred to the new page.
*/
mem_cgroup_end_migration(memcg, page, new_page, true);
spin_unlock(ptl); spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
......
...@@ -1089,7 +1089,6 @@ void page_remove_rmap(struct page *page) ...@@ -1089,7 +1089,6 @@ void page_remove_rmap(struct page *page)
if (unlikely(PageHuge(page))) if (unlikely(PageHuge(page)))
goto out; goto out;
if (anon) { if (anon) {
mem_cgroup_uncharge_page(page);
if (PageTransHuge(page)) if (PageTransHuge(page))
__dec_zone_page_state(page, __dec_zone_page_state(page,
NR_ANON_TRANSPARENT_HUGEPAGES); NR_ANON_TRANSPARENT_HUGEPAGES);
......
...@@ -419,7 +419,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, ...@@ -419,7 +419,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
pvec.pages, indices); pvec.pages, indices);
if (!pvec.nr) if (!pvec.nr)
break; break;
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -447,7 +446,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, ...@@ -447,7 +446,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
cond_resched(); cond_resched();
index++; index++;
} }
...@@ -495,7 +493,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, ...@@ -495,7 +493,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
index = start; index = start;
continue; continue;
} }
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -531,7 +528,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, ...@@ -531,7 +528,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
index++; index++;
} }
...@@ -835,7 +831,7 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc) ...@@ -835,7 +831,7 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc)
} }
mutex_unlock(&shmem_swaplist_mutex); mutex_unlock(&shmem_swaplist_mutex);
swapcache_free(swap, NULL); swapcache_free(swap);
redirty: redirty:
set_page_dirty(page); set_page_dirty(page);
if (wbc->for_reclaim) if (wbc->for_reclaim)
...@@ -1008,7 +1004,7 @@ static int shmem_replace_page(struct page **pagep, gfp_t gfp, ...@@ -1008,7 +1004,7 @@ static int shmem_replace_page(struct page **pagep, gfp_t gfp,
*/ */
oldpage = newpage; oldpage = newpage;
} else { } else {
mem_cgroup_replace_page_cache(oldpage, newpage); mem_cgroup_migrate(oldpage, newpage, false);
lru_cache_add_anon(newpage); lru_cache_add_anon(newpage);
*pagep = newpage; *pagep = newpage;
} }
......
...@@ -62,6 +62,7 @@ static void __page_cache_release(struct page *page) ...@@ -62,6 +62,7 @@ static void __page_cache_release(struct page *page)
del_page_from_lru_list(page, lruvec, page_off_lru(page)); del_page_from_lru_list(page, lruvec, page_off_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags); spin_unlock_irqrestore(&zone->lru_lock, flags);
} }
mem_cgroup_uncharge(page);
} }
static void __put_single_page(struct page *page) static void __put_single_page(struct page *page)
...@@ -907,6 +908,8 @@ void release_pages(struct page **pages, int nr, bool cold) ...@@ -907,6 +908,8 @@ void release_pages(struct page **pages, int nr, bool cold)
struct lruvec *lruvec; struct lruvec *lruvec;
unsigned long uninitialized_var(flags); unsigned long uninitialized_var(flags);
mem_cgroup_uncharge_start();
for (i = 0; i < nr; i++) { for (i = 0; i < nr; i++) {
struct page *page = pages[i]; struct page *page = pages[i];
...@@ -938,6 +941,7 @@ void release_pages(struct page **pages, int nr, bool cold) ...@@ -938,6 +941,7 @@ void release_pages(struct page **pages, int nr, bool cold)
__ClearPageLRU(page); __ClearPageLRU(page);
del_page_from_lru_list(page, lruvec, page_off_lru(page)); del_page_from_lru_list(page, lruvec, page_off_lru(page));
} }
mem_cgroup_uncharge(page);
/* Clear Active bit in case of parallel mark_page_accessed */ /* Clear Active bit in case of parallel mark_page_accessed */
__ClearPageActive(page); __ClearPageActive(page);
...@@ -947,6 +951,8 @@ void release_pages(struct page **pages, int nr, bool cold) ...@@ -947,6 +951,8 @@ void release_pages(struct page **pages, int nr, bool cold)
if (zone) if (zone)
spin_unlock_irqrestore(&zone->lru_lock, flags); spin_unlock_irqrestore(&zone->lru_lock, flags);
mem_cgroup_uncharge_end();
free_hot_cold_page_list(&pages_to_free, cold); free_hot_cold_page_list(&pages_to_free, cold);
} }
EXPORT_SYMBOL(release_pages); EXPORT_SYMBOL(release_pages);
......
...@@ -176,7 +176,7 @@ int add_to_swap(struct page *page, struct list_head *list) ...@@ -176,7 +176,7 @@ int add_to_swap(struct page *page, struct list_head *list)
if (unlikely(PageTransHuge(page))) if (unlikely(PageTransHuge(page)))
if (unlikely(split_huge_page_to_list(page, list))) { if (unlikely(split_huge_page_to_list(page, list))) {
swapcache_free(entry, NULL); swapcache_free(entry);
return 0; return 0;
} }
...@@ -202,7 +202,7 @@ int add_to_swap(struct page *page, struct list_head *list) ...@@ -202,7 +202,7 @@ int add_to_swap(struct page *page, struct list_head *list)
* add_to_swap_cache() doesn't return -EEXIST, so we can safely * add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag. * clear SWAP_HAS_CACHE flag.
*/ */
swapcache_free(entry, NULL); swapcache_free(entry);
return 0; return 0;
} }
} }
...@@ -225,7 +225,7 @@ void delete_from_swap_cache(struct page *page) ...@@ -225,7 +225,7 @@ void delete_from_swap_cache(struct page *page)
__delete_from_swap_cache(page); __delete_from_swap_cache(page);
spin_unlock_irq(&address_space->tree_lock); spin_unlock_irq(&address_space->tree_lock);
swapcache_free(entry, page); swapcache_free(entry);
page_cache_release(page); page_cache_release(page);
} }
...@@ -386,7 +386,7 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, ...@@ -386,7 +386,7 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
* add_to_swap_cache() doesn't return -EEXIST, so we can safely * add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag. * clear SWAP_HAS_CACHE flag.
*/ */
swapcache_free(entry, NULL); swapcache_free(entry);
} while (err != -ENOMEM); } while (err != -ENOMEM);
if (new_page) if (new_page)
......
...@@ -843,16 +843,13 @@ void swap_free(swp_entry_t entry) ...@@ -843,16 +843,13 @@ void swap_free(swp_entry_t entry)
/* /*
* Called after dropping swapcache to decrease refcnt to swap entries. * Called after dropping swapcache to decrease refcnt to swap entries.
*/ */
void swapcache_free(swp_entry_t entry, struct page *page) void swapcache_free(swp_entry_t entry)
{ {
struct swap_info_struct *p; struct swap_info_struct *p;
unsigned char count;
p = swap_info_get(entry); p = swap_info_get(entry);
if (p) { if (p) {
count = swap_entry_free(p, entry, SWAP_HAS_CACHE); swap_entry_free(p, entry, SWAP_HAS_CACHE);
if (page)
mem_cgroup_uncharge_swapcache(page, entry, count != 0);
spin_unlock(&p->lock); spin_unlock(&p->lock);
} }
} }
......
...@@ -281,7 +281,6 @@ void truncate_inode_pages_range(struct address_space *mapping, ...@@ -281,7 +281,6 @@ void truncate_inode_pages_range(struct address_space *mapping,
while (index < end && pagevec_lookup_entries(&pvec, mapping, index, while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE), min(end - index, (pgoff_t)PAGEVEC_SIZE),
indices)) { indices)) {
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -307,7 +306,6 @@ void truncate_inode_pages_range(struct address_space *mapping, ...@@ -307,7 +306,6 @@ void truncate_inode_pages_range(struct address_space *mapping,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
cond_resched(); cond_resched();
index++; index++;
} }
...@@ -369,7 +367,6 @@ void truncate_inode_pages_range(struct address_space *mapping, ...@@ -369,7 +367,6 @@ void truncate_inode_pages_range(struct address_space *mapping,
pagevec_release(&pvec); pagevec_release(&pvec);
break; break;
} }
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -394,7 +391,6 @@ void truncate_inode_pages_range(struct address_space *mapping, ...@@ -394,7 +391,6 @@ void truncate_inode_pages_range(struct address_space *mapping,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
index++; index++;
} }
cleancache_invalidate_inode(mapping); cleancache_invalidate_inode(mapping);
...@@ -493,7 +489,6 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping, ...@@ -493,7 +489,6 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping,
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
indices)) { indices)) {
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -522,7 +517,6 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping, ...@@ -522,7 +517,6 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
cond_resched(); cond_resched();
index++; index++;
} }
...@@ -553,7 +547,6 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) ...@@ -553,7 +547,6 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page)
BUG_ON(page_has_private(page)); BUG_ON(page_has_private(page));
__delete_from_page_cache(page, NULL); __delete_from_page_cache(page, NULL);
spin_unlock_irq(&mapping->tree_lock); spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
if (mapping->a_ops->freepage) if (mapping->a_ops->freepage)
mapping->a_ops->freepage(page); mapping->a_ops->freepage(page);
...@@ -602,7 +595,6 @@ int invalidate_inode_pages2_range(struct address_space *mapping, ...@@ -602,7 +595,6 @@ int invalidate_inode_pages2_range(struct address_space *mapping,
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
indices)) { indices)) {
mem_cgroup_uncharge_start();
for (i = 0; i < pagevec_count(&pvec); i++) { for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i]; struct page *page = pvec.pages[i];
...@@ -655,7 +647,6 @@ int invalidate_inode_pages2_range(struct address_space *mapping, ...@@ -655,7 +647,6 @@ int invalidate_inode_pages2_range(struct address_space *mapping,
} }
pagevec_remove_exceptionals(&pvec); pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec); pagevec_release(&pvec);
mem_cgroup_uncharge_end();
cond_resched(); cond_resched();
index++; index++;
} }
......
...@@ -577,9 +577,10 @@ static int __remove_mapping(struct address_space *mapping, struct page *page, ...@@ -577,9 +577,10 @@ static int __remove_mapping(struct address_space *mapping, struct page *page,
if (PageSwapCache(page)) { if (PageSwapCache(page)) {
swp_entry_t swap = { .val = page_private(page) }; swp_entry_t swap = { .val = page_private(page) };
mem_cgroup_swapout(page, swap);
__delete_from_swap_cache(page); __delete_from_swap_cache(page);
spin_unlock_irq(&mapping->tree_lock); spin_unlock_irq(&mapping->tree_lock);
swapcache_free(swap, page); swapcache_free(swap);
} else { } else {
void (*freepage)(struct page *); void (*freepage)(struct page *);
void *shadow = NULL; void *shadow = NULL;
...@@ -600,7 +601,6 @@ static int __remove_mapping(struct address_space *mapping, struct page *page, ...@@ -600,7 +601,6 @@ static int __remove_mapping(struct address_space *mapping, struct page *page,
shadow = workingset_eviction(mapping, page); shadow = workingset_eviction(mapping, page);
__delete_from_page_cache(page, shadow); __delete_from_page_cache(page, shadow);
spin_unlock_irq(&mapping->tree_lock); spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
if (freepage != NULL) if (freepage != NULL)
freepage(page); freepage(page);
...@@ -1103,6 +1103,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, ...@@ -1103,6 +1103,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
*/ */
__clear_page_locked(page); __clear_page_locked(page);
free_it: free_it:
mem_cgroup_uncharge(page);
nr_reclaimed++; nr_reclaimed++;
/* /*
...@@ -1132,12 +1133,13 @@ static unsigned long shrink_page_list(struct list_head *page_list, ...@@ -1132,12 +1133,13 @@ static unsigned long shrink_page_list(struct list_head *page_list,
list_add(&page->lru, &ret_pages); list_add(&page->lru, &ret_pages);
VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
} }
mem_cgroup_uncharge_end();
free_hot_cold_page_list(&free_pages, true); free_hot_cold_page_list(&free_pages, true);
list_splice(&ret_pages, page_list); list_splice(&ret_pages, page_list);
count_vm_events(PGACTIVATE, pgactivate); count_vm_events(PGACTIVATE, pgactivate);
mem_cgroup_uncharge_end();
*ret_nr_dirty += nr_dirty; *ret_nr_dirty += nr_dirty;
*ret_nr_congested += nr_congested; *ret_nr_congested += nr_congested;
*ret_nr_unqueued_dirty += nr_unqueued_dirty; *ret_nr_unqueued_dirty += nr_unqueued_dirty;
...@@ -1435,6 +1437,8 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) ...@@ -1435,6 +1437,8 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
__ClearPageActive(page); __ClearPageActive(page);
del_page_from_lru_list(page, lruvec, lru); del_page_from_lru_list(page, lruvec, lru);
mem_cgroup_uncharge(page);
if (unlikely(PageCompound(page))) { if (unlikely(PageCompound(page))) {
spin_unlock_irq(&zone->lru_lock); spin_unlock_irq(&zone->lru_lock);
(*get_compound_page_dtor(page))(page); (*get_compound_page_dtor(page))(page);
...@@ -1656,6 +1660,8 @@ static void move_active_pages_to_lru(struct lruvec *lruvec, ...@@ -1656,6 +1660,8 @@ static void move_active_pages_to_lru(struct lruvec *lruvec,
__ClearPageActive(page); __ClearPageActive(page);
del_page_from_lru_list(page, lruvec, lru); del_page_from_lru_list(page, lruvec, lru);
mem_cgroup_uncharge(page);
if (unlikely(PageCompound(page))) { if (unlikely(PageCompound(page))) {
spin_unlock_irq(&zone->lru_lock); spin_unlock_irq(&zone->lru_lock);
(*get_compound_page_dtor(page))(page); (*get_compound_page_dtor(page))(page);
......
...@@ -507,7 +507,7 @@ static int zswap_get_swap_cache_page(swp_entry_t entry, ...@@ -507,7 +507,7 @@ static int zswap_get_swap_cache_page(swp_entry_t entry,
* add_to_swap_cache() doesn't return -EEXIST, so we can safely * add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag. * clear SWAP_HAS_CACHE flag.
*/ */
swapcache_free(entry, NULL); swapcache_free(entry);
} while (err != -ENOMEM); } while (err != -ENOMEM);
if (new_page) if (new_page)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment