Commit 0a6d4e1d authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'sched/latest' of...

Merge branch 'sched/latest' of git://git.kernel.org/pub/scm/linux/kernel/git/ghaskins/linux-2.6-hacks into sched/rt
parents c5976504 1563513d
......@@ -142,6 +142,7 @@ extern struct cred init_cred;
.nr_cpus_allowed = NR_CPUS, \
}, \
.tasks = LIST_HEAD_INIT(tsk.tasks), \
.pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \
.ptraced = LIST_HEAD_INIT(tsk.ptraced), \
.ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \
.real_parent = &tsk, \
......
......@@ -96,6 +96,10 @@ struct plist_node {
# define PLIST_HEAD_LOCK_INIT(_lock)
#endif
#define _PLIST_HEAD_INIT(head) \
.prio_list = LIST_HEAD_INIT((head).prio_list), \
.node_list = LIST_HEAD_INIT((head).node_list)
/**
* PLIST_HEAD_INIT - static struct plist_head initializer
* @head: struct plist_head variable name
......@@ -103,8 +107,7 @@ struct plist_node {
*/
#define PLIST_HEAD_INIT(head, _lock) \
{ \
.prio_list = LIST_HEAD_INIT((head).prio_list), \
.node_list = LIST_HEAD_INIT((head).node_list), \
_PLIST_HEAD_INIT(head), \
PLIST_HEAD_LOCK_INIT(&(_lock)) \
}
......@@ -116,7 +119,7 @@ struct plist_node {
#define PLIST_NODE_INIT(node, __prio) \
{ \
.prio = (__prio), \
.plist = PLIST_HEAD_INIT((node).plist, NULL), \
.plist = { _PLIST_HEAD_INIT((node).plist) }, \
}
/**
......
......@@ -977,6 +977,7 @@ struct sched_class {
struct rq *busiest, struct sched_domain *sd,
enum cpu_idle_type idle);
void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
int (*needs_post_schedule) (struct rq *this_rq);
void (*post_schedule) (struct rq *this_rq);
void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
......@@ -1143,6 +1144,7 @@ struct task_struct {
#endif
struct list_head tasks;
struct plist_node pushable_tasks;
struct mm_struct *mm, *active_mm;
......
......@@ -464,11 +464,15 @@ struct rt_rq {
struct rt_prio_array active;
unsigned long rt_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
int highest_prio; /* highest queued rt task prio */
struct {
int curr; /* highest queued rt task prio */
int next; /* next highest */
} highest_prio;
#endif
#ifdef CONFIG_SMP
unsigned long rt_nr_migratory;
int overloaded;
struct plist_head pushable_tasks;
#endif
int rt_throttled;
u64 rt_time;
......@@ -1607,21 +1611,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
#endif
#ifdef CONFIG_PREEMPT
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
* fair double_lock_balance: Safely acquires both rq->locks in a fair
* way at the expense of forcing extra atomic operations in all
* invocations. This assures that the double_lock is acquired using the
* same underlying policy as the spinlock_t on this architecture, which
* reduces latency compared to the unfair variant below. However, it
* also adds more overhead and therefore may reduce throughput.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
spin_unlock(&this_rq->lock);
double_rq_lock(this_rq, busiest);
return 1;
}
#else
/*
* Unfair double_lock_balance: Optimizes throughput at the expense of
* latency by eliminating extra atomic operations when the locks are
* already in proper order on entry. This favors lower cpu-ids and will
* grant the double lock to lower cpus over higher ids under contention,
* regardless of entry order into the function.
*/
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
......@@ -1634,6 +1659,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
return ret;
}
#endif /* CONFIG_PREEMPT */
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
return _double_lock_balance(this_rq, busiest);
}
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
......@@ -2445,6 +2486,8 @@ void sched_fork(struct task_struct *p, int clone_flags)
/* Want to start with kernel preemption disabled. */
task_thread_info(p)->preempt_count = 1;
#endif
plist_node_init(&p->pushable_tasks, MAX_PRIO);
put_cpu();
}
......@@ -2585,6 +2628,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
{
struct mm_struct *mm = rq->prev_mm;
long prev_state;
#ifdef CONFIG_SMP
int post_schedule = 0;
if (current->sched_class->needs_post_schedule)
post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
rq->prev_mm = NULL;
......@@ -2603,7 +2652,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
finish_arch_switch(prev);
finish_lock_switch(rq, prev);
#ifdef CONFIG_SMP
if (current->sched_class->post_schedule)
if (post_schedule)
current->sched_class->post_schedule(rq);
#endif
......@@ -2984,6 +3033,16 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
pulled++;
rem_load_move -= p->se.load.weight;
#ifdef CONFIG_PREEMPT
/*
* NEWIDLE balancing is a source of latency, so preemptible kernels
* will stop after the first task is pulled to minimize the critical
* section.
*/
if (idle == CPU_NEWLY_IDLE)
goto out;
#endif
/*
* We only want to steal up to the prescribed amount of weighted load.
*/
......@@ -3030,9 +3089,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
sd, idle, all_pinned, &this_best_prio);
class = class->next;
#ifdef CONFIG_PREEMPT
/*
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is pulled to minimize
* the critical section.
*/
if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
break;
#endif
} while (class && max_load_move > total_load_moved);
return total_load_moved > 0;
......@@ -8201,11 +8266,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
__set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
rt_rq->highest_prio = MAX_RT_PRIO;
rt_rq->highest_prio.curr = MAX_RT_PRIO;
rt_rq->highest_prio.next = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
#endif
rt_rq->rt_time = 0;
......
......@@ -49,6 +49,24 @@ static void update_rt_migration(struct rq *rq)
rq->rt.overloaded = 0;
}
}
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
plist_node_init(&p->pushable_tasks, p->prio);
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}
#else
#define enqueue_pushable_task(rq, p) do { } while (0)
#define dequeue_pushable_task(rq, p) do { } while (0)
#endif /* CONFIG_SMP */
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
......@@ -108,7 +126,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
if (rt_rq->rt_nr_running) {
if (rt_se && !on_rt_rq(rt_se))
enqueue_rt_entity(rt_se);
if (rt_rq->highest_prio < curr->prio)
if (rt_rq->highest_prio.curr < curr->prio)
resched_task(curr);
}
}
......@@ -473,7 +491,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq)
return rt_rq->highest_prio;
return rt_rq->highest_prio.curr;
#endif
return rt_task_of(rt_se)->prio;
......@@ -547,33 +565,64 @@ static void update_curr_rt(struct rq *rq)
}
}
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
static inline int next_prio(struct rq *rq)
{
struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
if (next && rt_prio(next->prio))
return next->prio;
else
return MAX_RT_PRIO;
}
#endif
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
int prio = rt_se_prio(rt_se);
#ifdef CONFIG_SMP
struct rq *rq = rq_of_rt_rq(rt_rq);
#endif
rt_rq->highest_prio = rt_se_prio(rt_se);
WARN_ON(!rt_prio(prio));
rt_rq->rt_nr_running++;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
if (prio < rt_rq->highest_prio.curr) {
/*
* If the new task is higher in priority than anything on the
* run-queue, we have a new high that must be published to
* the world. We also know that the previous high becomes
* our next-highest.
*/
rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
rt_rq->highest_prio.curr = prio;
#ifdef CONFIG_SMP
if (rq->online)
cpupri_set(&rq->rd->cpupri, rq->cpu,
rt_se_prio(rt_se));
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
#endif
}
} else if (prio == rt_rq->highest_prio.curr)
/*
* If the next task is equal in priority to the highest on
* the run-queue, then we implicitly know that the next highest
* task cannot be any lower than current
*/
rt_rq->highest_prio.next = prio;
else if (prio < rt_rq->highest_prio.next)
/*
* Otherwise, we need to recompute next-highest
*/
rt_rq->highest_prio.next = next_prio(rq);
#endif
#ifdef CONFIG_SMP
if (rt_se->nr_cpus_allowed > 1) {
struct rq *rq = rq_of_rt_rq(rt_rq);
if (rt_se->nr_cpus_allowed > 1)
rq->rt.rt_nr_migratory++;
}
update_rt_migration(rq_of_rt_rq(rt_rq));
update_rt_migration(rq);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
if (rt_se_boosted(rt_se))
......@@ -590,7 +639,8 @@ static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
#ifdef CONFIG_SMP
int highest_prio = rt_rq->highest_prio;
struct rq *rq = rq_of_rt_rq(rt_rq);
int highest_prio = rt_rq->highest_prio.curr;
#endif
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
......@@ -598,33 +648,34 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
rt_rq->rt_nr_running--;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
if (rt_rq->rt_nr_running) {
struct rt_prio_array *array;
int prio = rt_se_prio(rt_se);
WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
/* recalculate */
array = &rt_rq->active;
rt_rq->highest_prio =
WARN_ON(prio < rt_rq->highest_prio.curr);
/*
* This may have been our highest or next-highest priority
* task and therefore we may have some recomputation to do
*/
if (prio == rt_rq->highest_prio.curr) {
struct rt_prio_array *array = &rt_rq->active;
rt_rq->highest_prio.curr =
sched_find_first_bit(array->bitmap);
} /* otherwise leave rq->highest prio alone */
}
if (prio <= rt_rq->highest_prio.next)
rt_rq->highest_prio.next = next_prio(rq);
} else
rt_rq->highest_prio = MAX_RT_PRIO;
rt_rq->highest_prio.curr = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
if (rt_se->nr_cpus_allowed > 1) {
struct rq *rq = rq_of_rt_rq(rt_rq);
if (rt_se->nr_cpus_allowed > 1)
rq->rt.rt_nr_migratory--;
}
if (rt_rq->highest_prio != highest_prio) {
struct rq *rq = rq_of_rt_rq(rt_rq);
if (rq->online)
cpupri_set(&rq->rd->cpupri, rq->cpu,
rt_rq->highest_prio);
}
if (rq->online && rt_rq->highest_prio.curr != highest_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
update_rt_migration(rq_of_rt_rq(rt_rq));
update_rt_migration(rq);
#endif /* CONFIG_SMP */
#ifdef CONFIG_RT_GROUP_SCHED
if (rt_se_boosted(rt_se))
......@@ -718,6 +769,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
enqueue_rt_entity(rt_se);
if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
inc_cpu_load(rq, p->se.load.weight);
}
......@@ -728,6 +782,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
update_curr_rt(rq);
dequeue_rt_entity(rt_se);
dequeue_pushable_task(rq, p);
dec_cpu_load(rq, p->se.load.weight);
}
......@@ -878,7 +934,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
return next;
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
static struct task_struct *_pick_next_task_rt(struct rq *rq)
{
struct sched_rt_entity *rt_se;
struct task_struct *p;
......@@ -900,6 +956,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq)
p = rt_task_of(rt_se);
p->se.exec_start = rq->clock;
return p;
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct task_struct *p = _pick_next_task_rt(rq);
/* The running task is never eligible for pushing */
if (p)
dequeue_pushable_task(rq, p);
return p;
}
......@@ -907,6 +975,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
p->se.exec_start = 0;
/*
* The previous task needs to be made eligible for pushing
* if it is still active
*/
if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
#ifdef CONFIG_SMP
......@@ -1072,7 +1147,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
}
/* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio > task->prio)
if (lowest_rq->rt.highest_prio.curr > task->prio)
break;
/* try again */
......@@ -1083,6 +1158,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
return lowest_rq;
}
static inline int has_pushable_tasks(struct rq *rq)
{
return !plist_head_empty(&rq->rt.pushable_tasks);
}
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
struct task_struct *p;
if (!has_pushable_tasks(rq))
return NULL;
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
BUG_ON(rq->cpu != task_cpu(p));
BUG_ON(task_current(rq, p));
BUG_ON(p->rt.nr_cpus_allowed <= 1);
BUG_ON(!p->se.on_rq);
BUG_ON(!rt_task(p));
return p;
}
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
......@@ -1092,13 +1192,11 @@ static int push_rt_task(struct rq *rq)
{
struct task_struct *next_task;
struct rq *lowest_rq;
int ret = 0;
int paranoid = RT_MAX_TRIES;
if (!rq->rt.overloaded)
return 0;
next_task = pick_next_highest_task_rt(rq, -1);
next_task = pick_next_pushable_task(rq);
if (!next_task)
return 0;
......@@ -1127,17 +1225,35 @@ static int push_rt_task(struct rq *rq)
struct task_struct *task;
/*
* find lock_lowest_rq releases rq->lock
* so it is possible that next_task has changed.
* If it has, then try again.
* so it is possible that next_task has migrated.
*
* We need to make sure that the task is still on the same
* run-queue and is also still the next task eligible for
* pushing.
*/
task = pick_next_pushable_task(rq);
if (task_cpu(next_task) == rq->cpu && task == next_task) {
/*
* If we get here, the task hasnt moved at all, but
* it has failed to push. We will not try again,
* since the other cpus will pull from us when they
* are ready.
*/
dequeue_pushable_task(rq, next_task);
goto out;
}
if (!task)
/* No more tasks, just exit */
goto out;
/*
* Something has shifted, try again.
*/
task = pick_next_highest_task_rt(rq, -1);
if (unlikely(task != next_task) && task && paranoid--) {
put_task_struct(next_task);
next_task = task;
goto retry;
}
goto out;
}
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
......@@ -1147,23 +1263,12 @@ static int push_rt_task(struct rq *rq)
double_unlock_balance(rq, lowest_rq);
ret = 1;
out:
put_task_struct(next_task);
return ret;
return 1;
}
/*
* TODO: Currently we just use the second highest prio task on
* the queue, and stop when it can't migrate (or there's
* no more RT tasks). There may be a case where a lower
* priority RT task has a different affinity than the
* higher RT task. In this case the lower RT task could
* possibly be able to migrate where as the higher priority
* RT task could not. We currently ignore this issue.
* Enhancements are welcome!
*/
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
......@@ -1174,33 +1279,35 @@ static void push_rt_tasks(struct rq *rq)
static int pull_rt_task(struct rq *this_rq)
{
int this_cpu = this_rq->cpu, ret = 0, cpu;
struct task_struct *p, *next;
struct task_struct *p;
struct rq *src_rq;
if (likely(!rt_overloaded(this_rq)))
return 0;
next = pick_next_task_rt(this_rq);
for_each_cpu(cpu, this_rq->rd->rto_mask) {
if (this_cpu == cpu)
continue;
src_rq = cpu_rq(cpu);
/*
* Don't bother taking the src_rq->lock if the next highest
* task is known to be lower-priority than our current task.
* This may look racy, but if this value is about to go
* logically higher, the src_rq will push this task away.
* And if its going logically lower, we do not care
*/
if (src_rq->rt.highest_prio.next >=
this_rq->rt.highest_prio.curr)
continue;
/*
* We can potentially drop this_rq's lock in
* double_lock_balance, and another CPU could
* steal our next task - hence we must cause
* the caller to recalculate the next task
* in that case:
* alter this_rq
*/
if (double_lock_balance(this_rq, src_rq)) {
struct task_struct *old_next = next;
next = pick_next_task_rt(this_rq);
if (next != old_next)
ret = 1;
}
double_lock_balance(this_rq, src_rq);
/*
* Are there still pullable RT tasks?
......@@ -1214,7 +1321,7 @@ static int pull_rt_task(struct rq *this_rq)
* Do we have an RT task that preempts
* the to-be-scheduled task?
*/
if (p && (!next || (p->prio < next->prio))) {
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
WARN_ON(p == src_rq->curr);
WARN_ON(!p->se.on_rq);
......@@ -1224,12 +1331,9 @@ static int pull_rt_task(struct rq *this_rq)
* This is just that p is wakeing up and hasn't
* had a chance to schedule. We only pull
* p if it is lower in priority than the
* current task on the run queue or
* this_rq next task is lower in prio than
* the current task on that rq.
* current task on the run queue
*/
if (p->prio < src_rq->curr->prio ||
(next && next->prio < src_rq->curr->prio))
if (p->prio < src_rq->curr->prio)
goto skip;
ret = 1;
......@@ -1242,13 +1346,7 @@ static int pull_rt_task(struct rq *this_rq)
* case there's an even higher prio task
* in another runqueue. (low likelyhood
* but possible)
*
* Update next so that we won't pick a task
* on another cpu with a priority lower (or equal)
* than the one we just picked.
*/
next = p;
}
skip:
double_unlock_balance(this_rq, src_rq);
......@@ -1260,24 +1358,27 @@ static int pull_rt_task(struct rq *this_rq)
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
{
/* Try to pull RT tasks here if we lower this rq's prio */
if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
pull_rt_task(rq);
}
/*
* assumes rq->lock is held
*/
static int needs_post_schedule_rt(struct rq *rq)
{
return has_pushable_tasks(rq);
}
static void post_schedule_rt(struct rq *rq)
{
/*
* If we have more than one rt_task queued, then
* see if we can push the other rt_tasks off to other CPUS.
* Note we may release the rq lock, and since
* the lock was owned by prev, we need to release it
* first via finish_lock_switch and then reaquire it here.
* This is only called if needs_post_schedule_rt() indicates that
* we need to push tasks away
*/
if (unlikely(rq->rt.overloaded)) {
spin_lock_irq(&rq->lock);
push_rt_tasks(rq);
spin_unlock_irq(&rq->lock);
}
}
/*
......@@ -1288,7 +1389,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
{
if (!task_running(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
rq->rt.overloaded)
has_pushable_tasks(rq) &&
p->rt.nr_cpus_allowed > 1)
push_rt_tasks(rq);
}
......@@ -1324,6 +1426,24 @@ static void set_cpus_allowed_rt(struct task_struct *p,
if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
struct rq *rq = task_rq(p);
if (!task_current(rq, p)) {
/*
* Make sure we dequeue this task from the pushable list
* before going further. It will either remain off of
* the list because we are no longer pushable, or it
* will be requeued.
*/
if (p->rt.nr_cpus_allowed > 1)
dequeue_pushable_task(rq, p);
/*
* Requeue if our weight is changing and still > 1
*/
if (weight > 1)
enqueue_pushable_task(rq, p);
}
if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
rq->rt.rt_nr_migratory++;
} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
......@@ -1346,7 +1466,7 @@ static void rq_online_rt(struct rq *rq)
__enable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
}
/* Assumes rq->lock is held */
......@@ -1438,7 +1558,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p,
* can release the rq lock and p could migrate.
* Only reschedule if p is still on the same runqueue.
*/
if (p->prio > rq->rt.highest_prio && rq->curr == p)
if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
resched_task(p);
#else
/* For UP simply resched on drop of prio */
......@@ -1509,6 +1629,9 @@ static void set_curr_task_rt(struct rq *rq)
struct task_struct *p = rq->curr;
p->se.exec_start = rq->clock;
/* The running task is never eligible for pushing */
dequeue_pushable_task(rq, p);
}
static const struct sched_class rt_sched_class = {
......@@ -1531,6 +1654,7 @@ static const struct sched_class rt_sched_class = {
.rq_online = rq_online_rt,
.rq_offline = rq_offline_rt,
.pre_schedule = pre_schedule_rt,
.needs_post_schedule = needs_post_schedule_rt,
.post_schedule = post_schedule_rt,
.task_wake_up = task_wake_up_rt,
.switched_from = switched_from_rt,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment