Commit 0bd3fbd4 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

Pull crypto updates from Herbert Xu:
 - New cipher/hash driver for ARM ux500.
 - Code clean-up for aesni-intel.
 - Misc fixes.

Fixed up conflicts in arch/arm/mach-ux500/devices-common.h, where quite
frankly some of it made no sense at all (the pull brought in a
declaration for the dbx500_add_platform_device_noirq() function, which
neither exists nor is used anywhere).

Also some trivial add-add context conflicts in the Kconfig file in
drivers/{char/hw_random,crypto}/

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
  crypto: aesni-intel - move more common code to ablk_init_common
  crypto: aesni-intel - use crypto_[un]register_algs
  crypto: ux500 - Cleanup hardware identification
  crypto: ux500 - Update DMA handling for 3.4
  mach-ux500: crypto - core support for CRYP/HASH module.
  crypto: ux500 - Add driver for HASH hardware
  crypto: ux500 - Add driver for CRYP hardware
  hwrng: Kconfig - modify default state for atmel-rng driver
  hwrng: omap - use devm_request_and_ioremap
  crypto: crypto4xx - move up err_request_irq label
  crypto, xor: Sanitize checksumming function selection output
  crypto: caam - add backward compatible string sec4.0
parents 0b87da68 ef45b834
......@@ -47,6 +47,7 @@
#include <mach/setup.h>
#include <mach/devices.h>
#include <mach/irqs.h>
#include <mach/crypto-ux500.h>
#include "ste-dma40-db8500.h"
#include "devices-db8500.h"
......@@ -417,6 +418,45 @@ static void mop500_prox_deactivate(struct device *dev)
regulator_put(prox_regulator);
}
static struct cryp_platform_data u8500_cryp1_platform_data = {
.mem_to_engine = {
.dir = STEDMA40_MEM_TO_PERIPH,
.src_dev_type = STEDMA40_DEV_SRC_MEMORY,
.dst_dev_type = DB8500_DMA_DEV48_CAC1_TX,
.src_info.data_width = STEDMA40_WORD_WIDTH,
.dst_info.data_width = STEDMA40_WORD_WIDTH,
.mode = STEDMA40_MODE_LOGICAL,
.src_info.psize = STEDMA40_PSIZE_LOG_4,
.dst_info.psize = STEDMA40_PSIZE_LOG_4,
},
.engine_to_mem = {
.dir = STEDMA40_PERIPH_TO_MEM,
.src_dev_type = DB8500_DMA_DEV48_CAC1_RX,
.dst_dev_type = STEDMA40_DEV_DST_MEMORY,
.src_info.data_width = STEDMA40_WORD_WIDTH,
.dst_info.data_width = STEDMA40_WORD_WIDTH,
.mode = STEDMA40_MODE_LOGICAL,
.src_info.psize = STEDMA40_PSIZE_LOG_4,
.dst_info.psize = STEDMA40_PSIZE_LOG_4,
}
};
static struct stedma40_chan_cfg u8500_hash_dma_cfg_tx = {
.dir = STEDMA40_MEM_TO_PERIPH,
.src_dev_type = STEDMA40_DEV_SRC_MEMORY,
.dst_dev_type = DB8500_DMA_DEV50_HAC1_TX,
.src_info.data_width = STEDMA40_WORD_WIDTH,
.dst_info.data_width = STEDMA40_WORD_WIDTH,
.mode = STEDMA40_MODE_LOGICAL,
.src_info.psize = STEDMA40_PSIZE_LOG_16,
.dst_info.psize = STEDMA40_PSIZE_LOG_16,
};
static struct hash_platform_data u8500_hash1_platform_data = {
.mem_to_engine = &u8500_hash_dma_cfg_tx,
.dma_filter = stedma40_filter,
};
/* add any platform devices here - TODO */
static struct platform_device *mop500_platform_devs[] __initdata = {
&mop500_gpio_keys_device,
......@@ -624,6 +664,12 @@ static void __init mop500_uart_init(struct device *parent)
db8500_add_uart2(parent, &uart2_plat);
}
static void __init u8500_cryp1_hash1_init(struct device *parent)
{
db8500_add_cryp1(parent, &u8500_cryp1_platform_data);
db8500_add_hash1(parent, &u8500_hash1_platform_data);
}
static struct platform_device *snowball_platform_devs[] __initdata = {
&snowball_led_dev,
&snowball_key_dev,
......@@ -654,6 +700,8 @@ static void __init mop500_init_machine(void)
mop500_msp_init(parent);
mop500_uart_init(parent);
u8500_cryp1_hash1_init(parent);
i2c0_devs = ARRAY_SIZE(mop500_i2c0_devices);
i2c_register_board_info(0, mop500_i2c0_devices, i2c0_devs);
......
......@@ -381,14 +381,15 @@ static DEFINE_PRCC_CLK(5, usb, 0, 0, NULL);
/* Peripheral Cluster #6 */
/* MTU ID in data */
static DEFINE_PRCC_CLK_CUSTOM(6, mtu1, 8, -1, NULL, clk_mtu_get_rate, 1);
static DEFINE_PRCC_CLK_CUSTOM(6, mtu0, 7, -1, NULL, clk_mtu_get_rate, 0);
static DEFINE_PRCC_CLK(6, cfgreg, 6, 6, NULL);
static DEFINE_PRCC_CLK(6, hash1, 5, -1, NULL);
static DEFINE_PRCC_CLK(6, unipro, 4, 1, &clk_uniproclk);
static DEFINE_PRCC_CLK(6, pka, 3, -1, NULL);
static DEFINE_PRCC_CLK(6, hash0, 2, -1, NULL);
static DEFINE_PRCC_CLK(6, cryp0, 1, -1, NULL);
static DEFINE_PRCC_CLK_CUSTOM(6, mtu1, 9, -1, NULL, clk_mtu_get_rate, 1);
static DEFINE_PRCC_CLK_CUSTOM(6, mtu0, 8, -1, NULL, clk_mtu_get_rate, 0);
static DEFINE_PRCC_CLK(6, cfgreg, 7, 7, NULL);
static DEFINE_PRCC_CLK(6, hash1, 6, -1, NULL);
static DEFINE_PRCC_CLK(6, unipro, 5, 1, &clk_uniproclk);
static DEFINE_PRCC_CLK(6, pka, 4, -1, NULL);
static DEFINE_PRCC_CLK(6, hash0, 3, -1, NULL);
static DEFINE_PRCC_CLK(6, cryp0, 2, -1, NULL);
static DEFINE_PRCC_CLK(6, cryp1, 1, -1, NULL);
static DEFINE_PRCC_CLK(6, rng, 0, 0, &clk_rngclk);
static struct clk clk_dummy_apb_pclk = {
......@@ -430,6 +431,7 @@ static struct clk_lookup u8500_clks[] = {
CLK(pka, "pka", NULL),
CLK(hash0, "hash0", NULL),
CLK(cryp0, "cryp0", NULL),
CLK(cryp1, "cryp1", NULL),
/* PRCMU level clock gating */
......
......@@ -13,6 +13,7 @@
#include <linux/sys_soc.h>
#include <linux/amba/bus.h>
#include <plat/i2c.h>
#include <mach/crypto-ux500.h>
struct spi_master_cntlr;
......@@ -85,6 +86,55 @@ dbx500_add_rtc(struct device *parent, resource_size_t base, int irq)
0, NULL, 0);
}
struct cryp_platform_data;
static inline struct platform_device *
dbx500_add_cryp1(struct device *parent, int id, resource_size_t base, int irq,
struct cryp_platform_data *pdata)
{
struct resource res[] = {
DEFINE_RES_MEM(base, SZ_4K),
DEFINE_RES_IRQ(irq),
};
struct platform_device_info pdevinfo = {
.parent = parent,
.name = "cryp1",
.id = id,
.res = res,
.num_res = ARRAY_SIZE(res),
.data = pdata,
.size_data = sizeof(*pdata),
.dma_mask = DMA_BIT_MASK(32),
};
return platform_device_register_full(&pdevinfo);
}
struct hash_platform_data;
static inline struct platform_device *
dbx500_add_hash1(struct device *parent, int id, resource_size_t base,
struct hash_platform_data *pdata)
{
struct resource res[] = {
DEFINE_RES_MEM(base, SZ_4K),
};
struct platform_device_info pdevinfo = {
.parent = parent,
.name = "hash1",
.id = id,
.res = res,
.num_res = ARRAY_SIZE(res),
.data = pdata,
.size_data = sizeof(*pdata),
.dma_mask = DMA_BIT_MASK(32),
};
return platform_device_register_full(&pdevinfo);
}
struct nmk_gpio_platform_data;
void dbx500_add_gpios(struct device *parent, resource_size_t *base, int num,
......
......@@ -104,6 +104,8 @@ static const dma_addr_t dma40_tx_map[DB8500_DMA_NR_DEV] = {
[DB8500_DMA_DEV14_MSP2_TX] = U8500_MSP2_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV30_MSP1_TX] = U8500_MSP1_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV31_MSP0_TX_SLIM0_CH0_TX] = U8500_MSP0_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV48_CAC1_TX] = U8500_CRYP1_BASE + CRYP1_TX_REG_OFFSET,
[DB8500_DMA_DEV50_HAC1_TX] = U8500_HASH1_BASE + HASH1_TX_REG_OFFSET,
};
/* Mapping between source event lines and physical device address */
......@@ -139,6 +141,7 @@ static const dma_addr_t dma40_rx_map[DB8500_DMA_NR_DEV] = {
[DB8500_DMA_DEV14_MSP2_RX] = U8500_MSP2_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV30_MSP3_RX] = U8500_MSP3_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV31_MSP0_RX_SLIM0_CH0_RX] = U8500_MSP0_BASE + MSP_TX_RX_REG_OFFSET,
[DB8500_DMA_DEV48_CAC1_RX] = U8500_CRYP1_BASE + CRYP1_RX_REG_OFFSET,
};
/* Reserved event lines for memcpy only */
......
......@@ -114,4 +114,8 @@ db8500_add_ssp(struct device *parent, const char *name, resource_size_t base,
dbx500_add_uart(parent, "uart2", U8500_UART2_BASE, \
IRQ_DB8500_UART2, pdata)
#define db8500_add_cryp1(parent, pdata) \
dbx500_add_cryp1(parent, -1, U8500_CRYP1_BASE, IRQ_DB8500_CRYP1, pdata)
#define db8500_add_hash1(parent, pdata) \
dbx500_add_hash1(parent, -1, U8500_HASH1_BASE, pdata)
#endif
/*
* Copyright (C) ST-Ericsson SA 2011
*
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef _CRYPTO_UX500_H
#define _CRYPTO_UX500_H
#include <linux/dmaengine.h>
#include <plat/ste_dma40.h>
struct hash_platform_data {
void *mem_to_engine;
bool (*dma_filter)(struct dma_chan *chan, void *filter_param);
};
struct cryp_platform_data {
struct stedma40_chan_cfg mem_to_engine;
struct stedma40_chan_cfg engine_to_mem;
};
#endif
......@@ -14,6 +14,9 @@ extern struct platform_device u8500_gpio_devs[];
extern struct amba_device ux500_pl031_device;
extern struct platform_device ux500_hash1_device;
extern struct platform_device ux500_cryp1_device;
extern struct platform_device u8500_dma40_device;
extern struct platform_device ux500_ske_keypad_device;
......
......@@ -33,6 +33,9 @@
#include <mach/db8500-regs.h>
#define MSP_TX_RX_REG_OFFSET 0
#define CRYP1_RX_REG_OFFSET 0x10
#define CRYP1_TX_REG_OFFSET 0x8
#define HASH1_TX_REG_OFFSET 0x4
#ifndef __ASSEMBLY__
......
......@@ -222,27 +222,6 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
}
}
static struct crypto_alg aesni_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aesni_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
};
static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
......@@ -257,27 +236,6 @@ static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
aesni_dec(ctx, dst, src);
}
static struct crypto_alg __aesni_alg = {
.cra_name = "__aes-aesni",
.cra_driver_name = "__driver-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(__aesni_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = __aes_encrypt,
.cia_decrypt = __aes_decrypt
}
}
};
static int ecb_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
......@@ -326,28 +284,6 @@ static int ecb_decrypt(struct blkcipher_desc *desc,
return err;
}
static struct crypto_alg blk_ecb_alg = {
.cra_name = "__ecb-aes-aesni",
.cra_driver_name = "__driver-ecb-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(blk_ecb_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
};
static int cbc_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
......@@ -396,28 +332,6 @@ static int cbc_decrypt(struct blkcipher_desc *desc,
return err;
}
static struct crypto_alg blk_cbc_alg = {
.cra_name = "__cbc-aes-aesni",
.cra_driver_name = "__driver-cbc-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(blk_cbc_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
};
#ifdef CONFIG_X86_64
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
struct blkcipher_walk *walk)
......@@ -461,29 +375,6 @@ static int ctr_crypt(struct blkcipher_desc *desc,
return err;
}
static struct crypto_alg blk_ctr_alg = {
.cra_name = "__ctr-aes-aesni",
.cra_driver_name = "__driver-ctr-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(blk_ctr_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
};
#endif
static int ablk_set_key(struct crypto_ablkcipher *tfm, const u8 *key,
......@@ -551,292 +442,76 @@ static void ablk_exit(struct crypto_tfm *tfm)
cryptd_free_ablkcipher(ctx->cryptd_tfm);
}
static void ablk_init_common(struct crypto_tfm *tfm,
struct cryptd_ablkcipher *cryptd_tfm)
static int ablk_init_common(struct crypto_tfm *tfm, const char *drv_name)
{
struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher(drv_name, 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request) +
crypto_ablkcipher_reqsize(&cryptd_tfm->base);
return 0;
}
static int ablk_ecb_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ecb-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
}
static struct crypto_alg ablk_ecb_alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_ecb_alg.cra_list),
.cra_init = ablk_ecb_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
static int ablk_cbc_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("__driver-cbc-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
}
static struct crypto_alg ablk_cbc_alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_cbc_alg.cra_list),
.cra_init = ablk_cbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
#ifdef CONFIG_X86_64
static int ablk_ctr_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ctr-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
}
static struct crypto_alg ablk_ctr_alg = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_ctr_alg.cra_list),
.cra_init = ablk_ctr_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
};
#ifdef HAS_CTR
static int ablk_rfc3686_ctr_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher(
"rfc3686(__driver-ctr-aes-aesni)", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
return ablk_init_common(tfm, "rfc3686(__driver-ctr-aes-aesni)");
}
static struct crypto_alg ablk_rfc3686_ctr_alg = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_rfc3686_ctr_alg.cra_list),
.cra_init = ablk_rfc3686_ctr_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
.geniv = "seqiv",
},
},
};
#endif
#endif
#ifdef HAS_LRW
static int ablk_lrw_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("fpu(lrw(__driver-aes-aesni))",
0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
return ablk_init_common(tfm, "fpu(lrw(__driver-aes-aesni))");
}
static struct crypto_alg ablk_lrw_alg = {
.cra_name = "lrw(aes)",
.cra_driver_name = "lrw-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_lrw_alg.cra_list),
.cra_init = ablk_lrw_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
#endif
#ifdef HAS_PCBC
static int ablk_pcbc_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
}
#endif
#ifdef HAS_XTS
static int ablk_xts_init(struct crypto_tfm *tfm)
{
return ablk_init_common(tfm, "fpu(xts(__driver-aes-aesni))");
}
#endif
cryptd_tfm = cryptd_alloc_ablkcipher("fpu(pcbc(__driver-aes-aesni))",
0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
}
static struct crypto_alg ablk_pcbc_alg = {
.cra_name = "pcbc(aes)",
.cra_driver_name = "pcbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_pcbc_alg.cra_list),
.cra_init = ablk_pcbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
#endif
#ifdef HAS_XTS
static int ablk_xts_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("fpu(xts(__driver-aes-aesni))",
0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
}
static struct crypto_alg ablk_xts_alg = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_xts_alg.cra_list),
.cra_init = ablk_xts_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
#endif
#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_tfm *tfm)
{
struct cryptd_aead *cryptd_tfm;
struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
struct crypto_aead *cryptd_child;
struct aesni_rfc4106_gcm_ctx *child_ctx;
cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_tfm *tfm)
{
struct cryptd_aead *cryptd_tfm;
struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
struct crypto_aead *cryptd_child;
struct aesni_rfc4106_gcm_ctx *child_ctx;
cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
......@@ -1050,32 +725,6 @@ static int rfc4106_decrypt(struct aead_request *req)
}
}
static struct crypto_alg rfc4106_alg = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
.cra_alignmask = 0,
.cra_type = &crypto_nivaead_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(rfc4106_alg.cra_list),
.cra_init = rfc4106_init,
.cra_exit = rfc4106_exit,
.cra_u = {
.aead = {
.setkey = rfc4106_set_key,
.setauthsize = rfc4106_set_authsize,
.encrypt = rfc4106_encrypt,
.decrypt = rfc4106_decrypt,
.geniv = "seqiv",
.ivsize = 8,
.maxauthsize = 16,
},
},
};
static int __driver_rfc4106_encrypt(struct aead_request *req)
{
u8 one_entry_in_sg = 0;
......@@ -1233,26 +882,316 @@ static int __driver_rfc4106_decrypt(struct aead_request *req)
}
return retval;
}
#endif
static struct crypto_alg __rfc4106_alg = {
static struct crypto_alg aesni_algs[] = { {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
}, {
.cra_name = "__aes-aesni",
.cra_driver_name = "__driver-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = __aes_encrypt,
.cia_decrypt = __aes_decrypt
}
}
}, {
.cra_name = "__ecb-aes-aesni",
.cra_driver_name = "__driver-ecb-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "__cbc-aes-aesni",
.cra_driver_name = "__driver-cbc-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_ecb_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_cbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#ifdef CONFIG_X86_64
}, {
.cra_name = "__ctr-aes-aesni",
.cra_driver_name = "__driver-ctr-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_ctr_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
}, {
.cra_name = "__gcm-aes-aesni",
.cra_driver_name = "__driver-gcm-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_AEAD,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) +
AESNI_ALIGN,
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(__rfc4106_alg.cra_list),
.cra_u = {
.aead = {
.encrypt = __driver_rfc4106_encrypt,
.decrypt = __driver_rfc4106_decrypt,
},
},
};
}, {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) +
AESNI_ALIGN,
.cra_alignmask = 0,
.cra_type = &crypto_nivaead_type,
.cra_module = THIS_MODULE,
.cra_init = rfc4106_init,
.cra_exit = rfc4106_exit,
.cra_u = {
.aead = {
.setkey = rfc4106_set_key,
.setauthsize = rfc4106_set_authsize,
.encrypt = rfc4106_encrypt,
.decrypt = rfc4106_decrypt,
.geniv = "seqiv",
.ivsize = 8,
.maxauthsize = 16,
},
},
#ifdef HAS_CTR
}, {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_rfc3686_ctr_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
.geniv = "seqiv",
},
},
#endif
#endif
#ifdef HAS_LRW
}, {
.cra_name = "lrw(aes)",
.cra_driver_name = "lrw-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_lrw_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#endif
#ifdef HAS_PCBC
}, {
.cra_name = "pcbc(aes)",
.cra_driver_name = "pcbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_pcbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#endif
#ifdef HAS_XTS
}, {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_xts_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#endif
} };
static const struct x86_cpu_id aesni_cpu_id[] = {
......@@ -1263,120 +1202,24 @@ MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init aesni_init(void)
{
int err;
int err, i;
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
if ((err = crypto_fpu_init()))
goto fpu_err;
if ((err = crypto_register_alg(&aesni_alg)))
goto aes_err;
if ((err = crypto_register_alg(&__aesni_alg)))
goto __aes_err;
if ((err = crypto_register_alg(&blk_ecb_alg)))
goto blk_ecb_err;
if ((err = crypto_register_alg(&blk_cbc_alg)))
goto blk_cbc_err;
if ((err = crypto_register_alg(&ablk_ecb_alg)))
goto ablk_ecb_err;
if ((err = crypto_register_alg(&ablk_cbc_alg)))
goto ablk_cbc_err;
#ifdef CONFIG_X86_64
if ((err = crypto_register_alg(&blk_ctr_alg)))
goto blk_ctr_err;
if ((err = crypto_register_alg(&ablk_ctr_alg)))
goto ablk_ctr_err;
if ((err = crypto_register_alg(&__rfc4106_alg)))
goto __aead_gcm_err;
if ((err = crypto_register_alg(&rfc4106_alg)))
goto aead_gcm_err;
#ifdef HAS_CTR
if ((err = crypto_register_alg(&ablk_rfc3686_ctr_alg)))
goto ablk_rfc3686_ctr_err;
#endif
#endif
#ifdef HAS_LRW
if ((err = crypto_register_alg(&ablk_lrw_alg)))
goto ablk_lrw_err;
#endif
#ifdef HAS_PCBC
if ((err = crypto_register_alg(&ablk_pcbc_alg)))
goto ablk_pcbc_err;
#endif
#ifdef HAS_XTS
if ((err = crypto_register_alg(&ablk_xts_alg)))
goto ablk_xts_err;
#endif
return err;
err = crypto_fpu_init();
if (err)
return err;
#ifdef HAS_XTS
ablk_xts_err:
#endif
#ifdef HAS_PCBC
crypto_unregister_alg(&ablk_pcbc_alg);
ablk_pcbc_err:
#endif
#ifdef HAS_LRW
crypto_unregister_alg(&ablk_lrw_alg);
ablk_lrw_err:
#endif
#ifdef CONFIG_X86_64
#ifdef HAS_CTR
crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
ablk_rfc3686_ctr_err:
#endif
crypto_unregister_alg(&rfc4106_alg);
aead_gcm_err:
crypto_unregister_alg(&__rfc4106_alg);
__aead_gcm_err:
crypto_unregister_alg(&ablk_ctr_alg);
ablk_ctr_err:
crypto_unregister_alg(&blk_ctr_alg);
blk_ctr_err:
#endif
crypto_unregister_alg(&ablk_cbc_alg);
ablk_cbc_err:
crypto_unregister_alg(&ablk_ecb_alg);
ablk_ecb_err:
crypto_unregister_alg(&blk_cbc_alg);
blk_cbc_err:
crypto_unregister_alg(&blk_ecb_alg);
blk_ecb_err:
crypto_unregister_alg(&__aesni_alg);
__aes_err:
crypto_unregister_alg(&aesni_alg);
aes_err:
fpu_err:
return err;
for (i = 0; i < ARRAY_SIZE(aesni_algs); i++)
INIT_LIST_HEAD(&aesni_algs[i].cra_list);
return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
}
static void __exit aesni_exit(void)
{
#ifdef HAS_XTS
crypto_unregister_alg(&ablk_xts_alg);
#endif
#ifdef HAS_PCBC
crypto_unregister_alg(&ablk_pcbc_alg);
#endif
#ifdef HAS_LRW
crypto_unregister_alg(&ablk_lrw_alg);
#endif
#ifdef CONFIG_X86_64
#ifdef HAS_CTR
crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
#endif
crypto_unregister_alg(&rfc4106_alg);
crypto_unregister_alg(&__rfc4106_alg);
crypto_unregister_alg(&ablk_ctr_alg);
crypto_unregister_alg(&blk_ctr_alg);
#endif
crypto_unregister_alg(&ablk_cbc_alg);
crypto_unregister_alg(&ablk_ecb_alg);
crypto_unregister_alg(&blk_cbc_alg);
crypto_unregister_alg(&blk_ecb_alg);
crypto_unregister_alg(&__aesni_alg);
crypto_unregister_alg(&aesni_alg);
crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
crypto_fpu_exit();
}
......
......@@ -129,9 +129,9 @@ calibrate_xor_blocks(void)
if (fastest) {
printk(KERN_INFO "xor: automatically using best "
"checksumming function: %s\n",
fastest->name);
"checksumming function:\n");
xor_speed(fastest);
goto out;
} else {
printk(KERN_INFO "xor: measuring software checksum speed\n");
XOR_TRY_TEMPLATES;
......@@ -146,6 +146,7 @@ calibrate_xor_blocks(void)
#undef xor_speed
out:
free_pages((unsigned long)b1, 2);
active_template = fastest;
......
......@@ -63,7 +63,7 @@ config HW_RANDOM_AMD
config HW_RANDOM_ATMEL
tristate "Atmel Random Number Generator support"
depends on HW_RANDOM && HAVE_CLK
default HW_RANDOM
default (HW_RANDOM && ARCH_AT91)
---help---
This driver provides kernel-side support for the Random Number
Generator hardware found on Atmel AT91 devices.
......
......@@ -115,22 +115,12 @@ static int __devinit omap_rng_probe(struct platform_device *pdev)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENOENT;
goto err_region;
}
if (!request_mem_region(res->start, resource_size(res), pdev->name)) {
ret = -EBUSY;
goto err_region;
}
dev_set_drvdata(&pdev->dev, res);
rng_base = ioremap(res->start, resource_size(res));
rng_base = devm_request_and_ioremap(&pdev->dev, res);
if (!rng_base) {
ret = -ENOMEM;
goto err_ioremap;
}
dev_set_drvdata(&pdev->dev, res);
ret = hwrng_register(&omap_rng_ops);
if (ret)
......@@ -145,11 +135,8 @@ static int __devinit omap_rng_probe(struct platform_device *pdev)
return 0;
err_register:
iounmap(rng_base);
rng_base = NULL;
err_ioremap:
release_mem_region(res->start, resource_size(res));
err_region:
if (cpu_is_omap24xx()) {
clk_disable(rng_ick);
clk_put(rng_ick);
......@@ -159,20 +146,15 @@ static int __devinit omap_rng_probe(struct platform_device *pdev)
static int __exit omap_rng_remove(struct platform_device *pdev)
{
struct resource *res = dev_get_drvdata(&pdev->dev);
hwrng_unregister(&omap_rng_ops);
omap_rng_write_reg(RNG_MASK_REG, 0x0);
iounmap(rng_base);
if (cpu_is_omap24xx()) {
clk_disable(rng_ick);
clk_put(rng_ick);
}
release_mem_region(res->start, resource_size(res));
rng_base = NULL;
return 0;
......
......@@ -314,4 +314,15 @@ config CRYPTO_DEV_NX
module supports acceleration for AES and SHA2 algorithms. If you
choose 'M' here, this module will be called nx_crypto.
config CRYPTO_DEV_UX500
tristate "Driver for ST-Ericsson UX500 crypto hardware acceleration"
depends on ARCH_U8500
select CRYPTO_ALGAPI
help
Driver for ST-Ericsson UX500 crypto engine.
if CRYPTO_DEV_UX500
source "drivers/crypto/ux500/Kconfig"
endif # if CRYPTO_DEV_UX500
endif # CRYPTO_HW
......@@ -14,3 +14,4 @@ obj-$(CONFIG_CRYPTO_DEV_OMAP_AES) += omap-aes.o
obj-$(CONFIG_CRYPTO_DEV_PICOXCELL) += picoxcell_crypto.o
obj-$(CONFIG_CRYPTO_DEV_S5P) += s5p-sss.o
obj-$(CONFIG_CRYPTO_DEV_TEGRA_AES) += tegra-aes.o
obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
\ No newline at end of file
......@@ -1244,9 +1244,9 @@ static int __init crypto4xx_probe(struct platform_device *ofdev)
iounmap(core_dev->dev->ce_base);
err_iomap:
free_irq(core_dev->irq, dev);
err_request_irq:
irq_dispose_mapping(core_dev->irq);
tasklet_kill(&core_dev->tasklet);
err_request_irq:
crypto4xx_destroy_sdr(core_dev->dev);
err_build_sdr:
crypto4xx_destroy_gdr(core_dev->dev);
......
......@@ -2267,8 +2267,11 @@ static void __exit caam_algapi_exit(void)
int i, err;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return;
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev)
......@@ -2350,8 +2353,11 @@ static int __init caam_algapi_init(void)
int i = 0, err = 0;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return -ENODEV;
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev)
......
......@@ -98,6 +98,12 @@ static int caam_probe(struct platform_device *pdev)
rspec = 0;
for_each_compatible_node(np, NULL, "fsl,sec-v4.0-job-ring")
rspec++;
if (!rspec) {
/* for backward compatible with device trees */
for_each_compatible_node(np, NULL, "fsl,sec4.0-job-ring")
rspec++;
}
ctrlpriv->jrdev = kzalloc(sizeof(struct device *) * rspec, GFP_KERNEL);
if (ctrlpriv->jrdev == NULL) {
iounmap(&topregs->ctrl);
......@@ -111,6 +117,13 @@ static int caam_probe(struct platform_device *pdev)
ctrlpriv->total_jobrs++;
ring++;
}
if (!ring) {
for_each_compatible_node(np, NULL, "fsl,sec4.0-job-ring") {
caam_jr_probe(pdev, np, ring);
ctrlpriv->total_jobrs++;
ring++;
}
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present = !!(rd_reg64(&topregs->ctrl.perfmon.comp_parms) &
......@@ -226,6 +239,9 @@ static struct of_device_id caam_match[] = {
{
.compatible = "fsl,sec-v4.0",
},
{
.compatible = "fsl,sec4.0",
},
{},
};
MODULE_DEVICE_TABLE(of, caam_match);
......
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
# License terms: GNU General Public License (GPL) version 2
#
config CRYPTO_DEV_UX500_CRYP
tristate "UX500 crypto driver for CRYP block"
depends on CRYPTO_DEV_UX500
select CRYPTO_DES
help
This selects the crypto driver for the UX500_CRYP hardware. It supports
AES-ECB, CBC and CTR with keys sizes of 128, 192 and 256 bit sizes.
config CRYPTO_DEV_UX500_HASH
tristate "UX500 crypto driver for HASH block"
depends on CRYPTO_DEV_UX500
select CRYPTO_HASH
select CRYPTO_HMAC
help
This selects the hash driver for the UX500_HASH hardware.
Depends on UX500/STM DMA if running in DMA mode.
config CRYPTO_DEV_UX500_DEBUG
bool "Activate ux500 platform debug-mode for crypto and hash block"
depends on CRYPTO_DEV_UX500_CRYP || CRYPTO_DEV_UX500_HASH
default n
help
Say Y if you want to add debug prints to ux500_hash and
ux500_cryp devices.
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
# License terms: GNU General Public License (GPL) version 2
#
obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += hash/
obj-$(CONFIG_CRYPTO_DEV_UX500_CRYP) += cryp/
#/*
# * Copyright (C) ST-Ericsson SA 2010
# * Author: shujuan.chen@stericsson.com for ST-Ericsson.
# * License terms: GNU General Public License (GPL) version 2 */
ifdef CONFIG_CRYPTO_DEV_UX500_DEBUG
CFLAGS_cryp_core.o := -DDEBUG -O0
CFLAGS_cryp.o := -DDEBUG -O0
CFLAGS_cryp_irq.o := -DDEBUG -O0
endif
obj-$(CONFIG_CRYPTO_DEV_UX500_CRYP) += ux500_cryp.o
ux500_cryp-objs := cryp.o cryp_irq.o cryp_core.o
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <mach/hardware.h>
#include "cryp_p.h"
#include "cryp.h"
/**
* cryp_wait_until_done - wait until the device logic is not busy
*/
void cryp_wait_until_done(struct cryp_device_data *device_data)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
}
/**
* cryp_check - This routine checks Peripheral and PCell Id
* @device_data: Pointer to the device data struct for base address.
*/
int cryp_check(struct cryp_device_data *device_data)
{
int peripheralid2 = 0;
if (NULL == device_data)
return -EINVAL;
peripheralid2 = readl_relaxed(&device_data->base->periphId2);
if (peripheralid2 != CRYP_PERIPHERAL_ID2_DB8500)
return -EPERM;
/* Check Peripheral and Pcell Id Register for CRYP */
if ((CRYP_PERIPHERAL_ID0 ==
readl_relaxed(&device_data->base->periphId0))
&& (CRYP_PERIPHERAL_ID1 ==
readl_relaxed(&device_data->base->periphId1))
&& (CRYP_PERIPHERAL_ID3 ==
readl_relaxed(&device_data->base->periphId3))
&& (CRYP_PCELL_ID0 ==
readl_relaxed(&device_data->base->pcellId0))
&& (CRYP_PCELL_ID1 ==
readl_relaxed(&device_data->base->pcellId1))
&& (CRYP_PCELL_ID2 ==
readl_relaxed(&device_data->base->pcellId2))
&& (CRYP_PCELL_ID3 ==
readl_relaxed(&device_data->base->pcellId3))) {
return 0;
}
return -EPERM;
}
/**
* cryp_activity - This routine enables/disable the cryptography function.
* @device_data: Pointer to the device data struct for base address.
* @cryp_crypen: Enable/Disable functionality
*/
void cryp_activity(struct cryp_device_data *device_data,
enum cryp_crypen cryp_crypen)
{
CRYP_PUT_BITS(&device_data->base->cr,
cryp_crypen,
CRYP_CR_CRYPEN_POS,
CRYP_CR_CRYPEN_MASK);
}
/**
* cryp_flush_inoutfifo - Resets both the input and the output FIFOs
* @device_data: Pointer to the device data struct for base address.
*/
void cryp_flush_inoutfifo(struct cryp_device_data *device_data)
{
/*
* We always need to disble the hardware before trying to flush the
* FIFO. This is something that isn't written in the design
* specification, but we have been informed by the hardware designers
* that this must be done.
*/
cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
cryp_wait_until_done(device_data);
CRYP_SET_BITS(&device_data->base->cr, CRYP_CR_FFLUSH_MASK);
/*
* CRYP_SR_INFIFO_READY_MASK is the expected value on the status
* register when starting a new calculation, which means Input FIFO is
* not full and input FIFO is empty.
*/
while (readl_relaxed(&device_data->base->sr) !=
CRYP_SR_INFIFO_READY_MASK)
cpu_relax();
}
/**
* cryp_set_configuration - This routine set the cr CRYP IP
* @device_data: Pointer to the device data struct for base address.
* @cryp_config: Pointer to the configuration parameter
* @control_register: The control register to be written later on.
*/
int cryp_set_configuration(struct cryp_device_data *device_data,
struct cryp_config *cryp_config,
u32 *control_register)
{
u32 cr_for_kse;
if (NULL == device_data || NULL == cryp_config)
return -EINVAL;
*control_register |= (cryp_config->keysize << CRYP_CR_KEYSIZE_POS);
/* Prepare key for decryption in AES_ECB and AES_CBC mode. */
if ((CRYP_ALGORITHM_DECRYPT == cryp_config->algodir) &&
((CRYP_ALGO_AES_ECB == cryp_config->algomode) ||
(CRYP_ALGO_AES_CBC == cryp_config->algomode))) {
cr_for_kse = *control_register;
/*
* This seems a bit odd, but it is indeed needed to set this to
* encrypt even though it is a decryption that we are doing. It
* also mentioned in the design spec that you need to do this.
* After the keyprepartion for decrypting is done you should set
* algodir back to decryption, which is done outside this if
* statement.
*
* According to design specification we should set mode ECB
* during key preparation even though we might be running CBC
* when enter this function.
*
* Writing to KSE_ENABLED will drop CRYPEN when key preparation
* is done. Therefore we need to set CRYPEN again outside this
* if statement when running decryption.
*/
cr_for_kse |= ((CRYP_ALGORITHM_ENCRYPT << CRYP_CR_ALGODIR_POS) |
(CRYP_ALGO_AES_ECB << CRYP_CR_ALGOMODE_POS) |
(CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS) |
(KSE_ENABLED << CRYP_CR_KSE_POS));
writel_relaxed(cr_for_kse, &device_data->base->cr);
cryp_wait_until_done(device_data);
}
*control_register |=
((cryp_config->algomode << CRYP_CR_ALGOMODE_POS) |
(cryp_config->algodir << CRYP_CR_ALGODIR_POS));
return 0;
}
/**
* cryp_configure_protection - set the protection bits in the CRYP logic.
* @device_data: Pointer to the device data struct for base address.
* @p_protect_config: Pointer to the protection mode and
* secure mode configuration
*/
int cryp_configure_protection(struct cryp_device_data *device_data,
struct cryp_protection_config *p_protect_config)
{
if (NULL == p_protect_config)
return -EINVAL;
CRYP_WRITE_BIT(&device_data->base->cr,
(u32) p_protect_config->secure_access,
CRYP_CR_SECURE_MASK);
CRYP_PUT_BITS(&device_data->base->cr,
p_protect_config->privilege_access,
CRYP_CR_PRLG_POS,
CRYP_CR_PRLG_MASK);
return 0;
}
/**
* cryp_is_logic_busy - returns the busy status of the CRYP logic
* @device_data: Pointer to the device data struct for base address.
*/
int cryp_is_logic_busy(struct cryp_device_data *device_data)
{
return CRYP_TEST_BITS(&device_data->base->sr,
CRYP_SR_BUSY_MASK);
}
/**
* cryp_configure_for_dma - configures the CRYP IP for DMA operation
* @device_data: Pointer to the device data struct for base address.
* @dma_req: Specifies the DMA request type value.
*/
void cryp_configure_for_dma(struct cryp_device_data *device_data,
enum cryp_dma_req_type dma_req)
{
CRYP_SET_BITS(&device_data->base->dmacr,
(u32) dma_req);
}
/**
* cryp_configure_key_values - configures the key values for CRYP operations
* @device_data: Pointer to the device data struct for base address.
* @key_reg_index: Key value index register
* @key_value: The key value struct
*/
int cryp_configure_key_values(struct cryp_device_data *device_data,
enum cryp_key_reg_index key_reg_index,
struct cryp_key_value key_value)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
switch (key_reg_index) {
case CRYP_KEY_REG_1:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_1_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_1_r);
break;
case CRYP_KEY_REG_2:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_2_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_2_r);
break;
case CRYP_KEY_REG_3:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_3_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_3_r);
break;
case CRYP_KEY_REG_4:
writel_relaxed(key_value.key_value_left,
&device_data->base->key_4_l);
writel_relaxed(key_value.key_value_right,
&device_data->base->key_4_r);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* cryp_configure_init_vector - configures the initialization vector register
* @device_data: Pointer to the device data struct for base address.
* @init_vector_index: Specifies the index of the init vector.
* @init_vector_value: Specifies the value for the init vector.
*/
int cryp_configure_init_vector(struct cryp_device_data *device_data,
enum cryp_init_vector_index
init_vector_index,
struct cryp_init_vector_value
init_vector_value)
{
while (cryp_is_logic_busy(device_data))
cpu_relax();
switch (init_vector_index) {
case CRYP_INIT_VECTOR_INDEX_0:
writel_relaxed(init_vector_value.init_value_left,
&device_data->base->init_vect_0_l);
writel_relaxed(init_vector_value.init_value_right,
&device_data->base->init_vect_0_r);
break;
case CRYP_INIT_VECTOR_INDEX_1:
writel_relaxed(init_vector_value.init_value_left,
&device_data->base->init_vect_1_l);
writel_relaxed(init_vector_value.init_value_right,
&device_data->base->init_vect_1_r);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* cryp_save_device_context - Store hardware registers and
* other device context parameter
* @device_data: Pointer to the device data struct for base address.
* @ctx: Crypto device context
*/
void cryp_save_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx,
int cryp_mode)
{
enum cryp_algo_mode algomode;
struct cryp_register *src_reg = device_data->base;
struct cryp_config *config =
(struct cryp_config *)device_data->current_ctx;
/*
* Always start by disable the hardware and wait for it to finish the
* ongoing calculations before trying to reprogram it.
*/
cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
cryp_wait_until_done(device_data);
if (cryp_mode == CRYP_MODE_DMA)
cryp_configure_for_dma(device_data, CRYP_DMA_DISABLE_BOTH);
if (CRYP_TEST_BITS(&src_reg->sr, CRYP_SR_IFEM_MASK) == 0)
ctx->din = readl_relaxed(&src_reg->din);
ctx->cr = readl_relaxed(&src_reg->cr) & CRYP_CR_CONTEXT_SAVE_MASK;
switch (config->keysize) {
case CRYP_KEY_SIZE_256:
ctx->key_4_l = readl_relaxed(&src_reg->key_4_l);
ctx->key_4_r = readl_relaxed(&src_reg->key_4_r);
case CRYP_KEY_SIZE_192:
ctx->key_3_l = readl_relaxed(&src_reg->key_3_l);
ctx->key_3_r = readl_relaxed(&src_reg->key_3_r);
case CRYP_KEY_SIZE_128:
ctx->key_2_l = readl_relaxed(&src_reg->key_2_l);
ctx->key_2_r = readl_relaxed(&src_reg->key_2_r);
default:
ctx->key_1_l = readl_relaxed(&src_reg->key_1_l);
ctx->key_1_r = readl_relaxed(&src_reg->key_1_r);
}
/* Save IV for CBC mode for both AES and DES. */
algomode = ((ctx->cr & CRYP_CR_ALGOMODE_MASK) >> CRYP_CR_ALGOMODE_POS);
if (algomode == CRYP_ALGO_TDES_CBC ||
algomode == CRYP_ALGO_DES_CBC ||
algomode == CRYP_ALGO_AES_CBC) {
ctx->init_vect_0_l = readl_relaxed(&src_reg->init_vect_0_l);
ctx->init_vect_0_r = readl_relaxed(&src_reg->init_vect_0_r);
ctx->init_vect_1_l = readl_relaxed(&src_reg->init_vect_1_l);
ctx->init_vect_1_r = readl_relaxed(&src_reg->init_vect_1_r);
}
}
/**
* cryp_restore_device_context - Restore hardware registers and
* other device context parameter
* @device_data: Pointer to the device data struct for base address.
* @ctx: Crypto device context
*/
void cryp_restore_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx)
{
struct cryp_register *reg = device_data->base;
struct cryp_config *config =
(struct cryp_config *)device_data->current_ctx;
/*
* Fall through for all items in switch statement. DES is captured in
* the default.
*/
switch (config->keysize) {
case CRYP_KEY_SIZE_256:
writel_relaxed(ctx->key_4_l, &reg->key_4_l);
writel_relaxed(ctx->key_4_r, &reg->key_4_r);
case CRYP_KEY_SIZE_192:
writel_relaxed(ctx->key_3_l, &reg->key_3_l);
writel_relaxed(ctx->key_3_r, &reg->key_3_r);
case CRYP_KEY_SIZE_128:
writel_relaxed(ctx->key_2_l, &reg->key_2_l);
writel_relaxed(ctx->key_2_r, &reg->key_2_r);
default:
writel_relaxed(ctx->key_1_l, &reg->key_1_l);
writel_relaxed(ctx->key_1_r, &reg->key_1_r);
}
/* Restore IV for CBC mode for AES and DES. */
if (config->algomode == CRYP_ALGO_TDES_CBC ||
config->algomode == CRYP_ALGO_DES_CBC ||
config->algomode == CRYP_ALGO_AES_CBC) {
writel_relaxed(ctx->init_vect_0_l, &reg->init_vect_0_l);
writel_relaxed(ctx->init_vect_0_r, &reg->init_vect_0_r);
writel_relaxed(ctx->init_vect_1_l, &reg->init_vect_1_l);
writel_relaxed(ctx->init_vect_1_r, &reg->init_vect_1_r);
}
}
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef _CRYP_H_
#define _CRYP_H_
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/klist.h>
#include <linux/mutex.h>
#define DEV_DBG_NAME "crypX crypX:"
/* CRYP enable/disable */
enum cryp_crypen {
CRYP_CRYPEN_DISABLE = 0,
CRYP_CRYPEN_ENABLE = 1
};
/* CRYP Start Computation enable/disable */
enum cryp_start {
CRYP_START_DISABLE = 0,
CRYP_START_ENABLE = 1
};
/* CRYP Init Signal enable/disable */
enum cryp_init {
CRYP_INIT_DISABLE = 0,
CRYP_INIT_ENABLE = 1
};
/* Cryp State enable/disable */
enum cryp_state {
CRYP_STATE_DISABLE = 0,
CRYP_STATE_ENABLE = 1
};
/* Key preparation bit enable */
enum cryp_key_prep {
KSE_DISABLED = 0,
KSE_ENABLED = 1
};
/* Key size for AES */
#define CRYP_KEY_SIZE_128 (0)
#define CRYP_KEY_SIZE_192 (1)
#define CRYP_KEY_SIZE_256 (2)
/* AES modes */
enum cryp_algo_mode {
CRYP_ALGO_TDES_ECB,
CRYP_ALGO_TDES_CBC,
CRYP_ALGO_DES_ECB,
CRYP_ALGO_DES_CBC,
CRYP_ALGO_AES_ECB,
CRYP_ALGO_AES_CBC,
CRYP_ALGO_AES_CTR,
CRYP_ALGO_AES_XTS
};
/* Cryp Encryption or Decryption */
enum cryp_algorithm_dir {
CRYP_ALGORITHM_ENCRYPT,
CRYP_ALGORITHM_DECRYPT
};
/* Hardware access method */
enum cryp_mode {
CRYP_MODE_POLLING,
CRYP_MODE_INTERRUPT,
CRYP_MODE_DMA
};
/**
* struct cryp_config -
* @keysize: Key size for AES
* @algomode: AES modes
* @algodir: Cryp Encryption or Decryption
*
* CRYP configuration structure to be passed to set configuration
*/
struct cryp_config {
int keysize;
enum cryp_algo_mode algomode;
enum cryp_algorithm_dir algodir;
};
/**
* struct cryp_protection_config -
* @privilege_access: Privileged cryp state enable/disable
* @secure_access: Secure cryp state enable/disable
*
* Protection configuration structure for setting privilage access
*/
struct cryp_protection_config {
enum cryp_state privilege_access;
enum cryp_state secure_access;
};
/* Cryp status */
enum cryp_status_id {
CRYP_STATUS_BUSY = 0x10,
CRYP_STATUS_OUTPUT_FIFO_FULL = 0x08,
CRYP_STATUS_OUTPUT_FIFO_NOT_EMPTY = 0x04,
CRYP_STATUS_INPUT_FIFO_NOT_FULL = 0x02,
CRYP_STATUS_INPUT_FIFO_EMPTY = 0x01
};
/* Cryp DMA interface */
enum cryp_dma_req_type {
CRYP_DMA_DISABLE_BOTH,
CRYP_DMA_ENABLE_IN_DATA,
CRYP_DMA_ENABLE_OUT_DATA,
CRYP_DMA_ENABLE_BOTH_DIRECTIONS
};
enum cryp_dma_channel {
CRYP_DMA_RX = 0,
CRYP_DMA_TX
};
/* Key registers */
enum cryp_key_reg_index {
CRYP_KEY_REG_1,
CRYP_KEY_REG_2,
CRYP_KEY_REG_3,
CRYP_KEY_REG_4
};
/* Key register left and right */
struct cryp_key_value {
u32 key_value_left;
u32 key_value_right;
};
/* Cryp Initialization structure */
enum cryp_init_vector_index {
CRYP_INIT_VECTOR_INDEX_0,
CRYP_INIT_VECTOR_INDEX_1
};
/* struct cryp_init_vector_value -
* @init_value_left
* @init_value_right
* */
struct cryp_init_vector_value {
u32 init_value_left;
u32 init_value_right;
};
/**
* struct cryp_device_context - structure for a cryp context.
* @cr: control register
* @dmacr: DMA control register
* @imsc: Interrupt mask set/clear register
* @key_1_l: Key 1l register
* @key_1_r: Key 1r register
* @key_2_l: Key 2l register
* @key_2_r: Key 2r register
* @key_3_l: Key 3l register
* @key_3_r: Key 3r register
* @key_4_l: Key 4l register
* @key_4_r: Key 4r register
* @init_vect_0_l: Initialization vector 0l register
* @init_vect_0_r: Initialization vector 0r register
* @init_vect_1_l: Initialization vector 1l register
* @init_vect_1_r: Initialization vector 0r register
* @din: Data in register
* @dout: Data out register
*
* CRYP power management specifc structure.
*/
struct cryp_device_context {
u32 cr;
u32 dmacr;
u32 imsc;
u32 key_1_l;
u32 key_1_r;
u32 key_2_l;
u32 key_2_r;
u32 key_3_l;
u32 key_3_r;
u32 key_4_l;
u32 key_4_r;
u32 init_vect_0_l;
u32 init_vect_0_r;
u32 init_vect_1_l;
u32 init_vect_1_r;
u32 din;
u32 dout;
};
struct cryp_dma {
dma_cap_mask_t mask;
struct completion cryp_dma_complete;
struct dma_chan *chan_cryp2mem;
struct dma_chan *chan_mem2cryp;
struct stedma40_chan_cfg *cfg_cryp2mem;
struct stedma40_chan_cfg *cfg_mem2cryp;
int sg_src_len;
int sg_dst_len;
struct scatterlist *sg_src;
struct scatterlist *sg_dst;
int nents_src;
int nents_dst;
};
/**
* struct cryp_device_data - structure for a cryp device.
* @base: Pointer to the hardware base address.
* @dev: Pointer to the devices dev structure.
* @clk: Pointer to the device's clock control.
* @pwr_regulator: Pointer to the device's power control.
* @power_status: Current status of the power.
* @ctx_lock: Lock for current_ctx.
* @current_ctx: Pointer to the currently allocated context.
* @list_node: For inclusion into a klist.
* @dma: The dma structure holding channel configuration.
* @power_state: TRUE = power state on, FALSE = power state off.
* @power_state_spinlock: Spinlock for power_state.
* @restore_dev_ctx: TRUE = saved ctx, FALSE = no saved ctx.
*/
struct cryp_device_data {
struct cryp_register __iomem *base;
struct device *dev;
struct clk *clk;
struct regulator *pwr_regulator;
int power_status;
struct spinlock ctx_lock;
struct cryp_ctx *current_ctx;
struct klist_node list_node;
struct cryp_dma dma;
bool power_state;
struct spinlock power_state_spinlock;
bool restore_dev_ctx;
};
void cryp_wait_until_done(struct cryp_device_data *device_data);
/* Initialization functions */
int cryp_check(struct cryp_device_data *device_data);
void cryp_activity(struct cryp_device_data *device_data,
enum cryp_crypen cryp_crypen);
void cryp_flush_inoutfifo(struct cryp_device_data *device_data);
int cryp_set_configuration(struct cryp_device_data *device_data,
struct cryp_config *cryp_config,
u32 *control_register);
void cryp_configure_for_dma(struct cryp_device_data *device_data,
enum cryp_dma_req_type dma_req);
int cryp_configure_key_values(struct cryp_device_data *device_data,
enum cryp_key_reg_index key_reg_index,
struct cryp_key_value key_value);
int cryp_configure_init_vector(struct cryp_device_data *device_data,
enum cryp_init_vector_index
init_vector_index,
struct cryp_init_vector_value
init_vector_value);
int cryp_configure_protection(struct cryp_device_data *device_data,
struct cryp_protection_config *p_protect_config);
/* Power management funtions */
void cryp_save_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx,
int cryp_mode);
void cryp_restore_device_context(struct cryp_device_data *device_data,
struct cryp_device_context *ctx);
/* Data transfer and status bits. */
int cryp_is_logic_busy(struct cryp_device_data *device_data);
int cryp_get_status(struct cryp_device_data *device_data);
/**
* cryp_write_indata - This routine writes 32 bit data into the data input
* register of the cryptography IP.
* @device_data: Pointer to the device data struct for base address.
* @write_data: Data to write.
*/
int cryp_write_indata(struct cryp_device_data *device_data, u32 write_data);
/**
* cryp_read_outdata - This routine reads the data from the data output
* register of the CRYP logic
* @device_data: Pointer to the device data struct for base address.
* @read_data: Read the data from the output FIFO.
*/
int cryp_read_outdata(struct cryp_device_data *device_data, u32 *read_data);
#endif /* _CRYP_H_ */
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/crypto.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqreturn.h>
#include <linux/klist.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/semaphore.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/ctr.h>
#include <crypto/des.h>
#include <crypto/scatterwalk.h>
#include <plat/ste_dma40.h>
#include <mach/crypto-ux500.h>
#include <mach/hardware.h>
#include "cryp_p.h"
#include "cryp.h"
#define CRYP_MAX_KEY_SIZE 32
#define BYTES_PER_WORD 4
static int cryp_mode;
static atomic_t session_id;
static struct stedma40_chan_cfg *mem_to_engine;
static struct stedma40_chan_cfg *engine_to_mem;
/**
* struct cryp_driver_data - data specific to the driver.
*
* @device_list: A list of registered devices to choose from.
* @device_allocation: A semaphore initialized with number of devices.
*/
struct cryp_driver_data {
struct klist device_list;
struct semaphore device_allocation;
};
/**
* struct cryp_ctx - Crypto context
* @config: Crypto mode.
* @key[CRYP_MAX_KEY_SIZE]: Key.
* @keylen: Length of key.
* @iv: Pointer to initialization vector.
* @indata: Pointer to indata.
* @outdata: Pointer to outdata.
* @datalen: Length of indata.
* @outlen: Length of outdata.
* @blocksize: Size of blocks.
* @updated: Updated flag.
* @dev_ctx: Device dependent context.
* @device: Pointer to the device.
*/
struct cryp_ctx {
struct cryp_config config;
u8 key[CRYP_MAX_KEY_SIZE];
u32 keylen;
u8 *iv;
const u8 *indata;
u8 *outdata;
u32 datalen;
u32 outlen;
u32 blocksize;
u8 updated;
struct cryp_device_context dev_ctx;
struct cryp_device_data *device;
u32 session_id;
};
static struct cryp_driver_data driver_data;
/**
* uint8p_to_uint32_be - 4*uint8 to uint32 big endian
* @in: Data to convert.
*/
static inline u32 uint8p_to_uint32_be(u8 *in)
{
u32 *data = (u32 *)in;
return cpu_to_be32p(data);
}
/**
* swap_bits_in_byte - mirror the bits in a byte
* @b: the byte to be mirrored
*
* The bits are swapped the following way:
* Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
* nibble 2 (n2) bits 4-7.
*
* Nibble 1 (n1):
* (The "old" (moved) bit is replaced with a zero)
* 1. Move bit 6 and 7, 4 positions to the left.
* 2. Move bit 3 and 5, 2 positions to the left.
* 3. Move bit 1-4, 1 position to the left.
*
* Nibble 2 (n2):
* 1. Move bit 0 and 1, 4 positions to the right.
* 2. Move bit 2 and 4, 2 positions to the right.
* 3. Move bit 3-6, 1 position to the right.
*
* Combine the two nibbles to a complete and swapped byte.
*/
static inline u8 swap_bits_in_byte(u8 b)
{
#define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
#define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
right shift 2 */
#define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
right shift 1 */
#define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
#define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
left shift 2 */
#define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
left shift 1 */
u8 n1;
u8 n2;
/* Swap most significant nibble */
/* Right shift 4, bits 6 and 7 */
n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
/* Right shift 2, bits 3 and 5 */
n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
/* Right shift 1, bits 1-4 */
n1 = (n1 & R_SHIFT_1_MASK) >> 1;
/* Swap least significant nibble */
/* Left shift 4, bits 0 and 1 */
n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
/* Left shift 2, bits 2 and 4 */
n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
/* Left shift 1, bits 3-6 */
n2 = (n2 & L_SHIFT_1_MASK) << 1;
return n1 | n2;
}
static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
u8 *out, u32 len)
{
unsigned int i = 0;
int j;
int index = 0;
j = len - BYTES_PER_WORD;
while (j >= 0) {
for (i = 0; i < BYTES_PER_WORD; i++) {
index = len - j - BYTES_PER_WORD + i;
out[j + i] =
swap_bits_in_byte(in[index]);
}
j -= BYTES_PER_WORD;
}
}
static void add_session_id(struct cryp_ctx *ctx)
{
/*
* We never want 0 to be a valid value, since this is the default value
* for the software context.
*/
if (unlikely(atomic_inc_and_test(&session_id)))
atomic_inc(&session_id);
ctx->session_id = atomic_read(&session_id);
}
static irqreturn_t cryp_interrupt_handler(int irq, void *param)
{
struct cryp_ctx *ctx;
int i;
struct cryp_device_data *device_data;
if (param == NULL) {
BUG_ON(!param);
return IRQ_HANDLED;
}
/* The device is coming from the one found in hw_crypt_noxts. */
device_data = (struct cryp_device_data *)param;
ctx = device_data->current_ctx;
if (ctx == NULL) {
BUG_ON(!ctx);
return IRQ_HANDLED;
}
dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
"out" : "in");
if (cryp_pending_irq_src(device_data,
CRYP_IRQ_SRC_OUTPUT_FIFO)) {
if (ctx->outlen / ctx->blocksize > 0) {
for (i = 0; i < ctx->blocksize / 4; i++) {
*(ctx->outdata) = readl_relaxed(
&device_data->base->dout);
ctx->outdata += 4;
ctx->outlen -= 4;
}
if (ctx->outlen == 0) {
cryp_disable_irq_src(device_data,
CRYP_IRQ_SRC_OUTPUT_FIFO);
}
}
} else if (cryp_pending_irq_src(device_data,
CRYP_IRQ_SRC_INPUT_FIFO)) {
if (ctx->datalen / ctx->blocksize > 0) {
for (i = 0 ; i < ctx->blocksize / 4; i++) {
writel_relaxed(ctx->indata,
&device_data->base->din);
ctx->indata += 4;
ctx->datalen -= 4;
}
if (ctx->datalen == 0)
cryp_disable_irq_src(device_data,
CRYP_IRQ_SRC_INPUT_FIFO);
if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
CRYP_PUT_BITS(&device_data->base->cr,
CRYP_START_ENABLE,
CRYP_CR_START_POS,
CRYP_CR_START_MASK);
cryp_wait_until_done(device_data);
}
}
}
return IRQ_HANDLED;
}
static int mode_is_aes(enum cryp_algo_mode mode)
{
return CRYP_ALGO_AES_ECB == mode ||
CRYP_ALGO_AES_CBC == mode ||
CRYP_ALGO_AES_CTR == mode ||
CRYP_ALGO_AES_XTS == mode;
}
static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
enum cryp_init_vector_index index)
{
struct cryp_init_vector_value vector_value;
dev_dbg(device_data->dev, "[%s]", __func__);
vector_value.init_value_left = left;
vector_value.init_value_right = right;
return cryp_configure_init_vector(device_data,
index,
vector_value);
}
static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
{
int i;
int status = 0;
int num_of_regs = ctx->blocksize / 8;
u32 iv[AES_BLOCK_SIZE / 4];
dev_dbg(device_data->dev, "[%s]", __func__);
/*
* Since we loop on num_of_regs we need to have a check in case
* someone provides an incorrect blocksize which would force calling
* cfg_iv with i greater than 2 which is an error.
*/
if (num_of_regs > 2) {
dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
__func__, ctx->blocksize);
return -EINVAL;
}
for (i = 0; i < ctx->blocksize / 4; i++)
iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
for (i = 0; i < num_of_regs; i++) {
status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
(enum cryp_init_vector_index) i);
if (status != 0)
return status;
}
return status;
}
static int set_key(struct cryp_device_data *device_data,
u32 left_key,
u32 right_key,
enum cryp_key_reg_index index)
{
struct cryp_key_value key_value;
int cryp_error;
dev_dbg(device_data->dev, "[%s]", __func__);
key_value.key_value_left = left_key;
key_value.key_value_right = right_key;
cryp_error = cryp_configure_key_values(device_data,
index,
key_value);
if (cryp_error != 0)
dev_err(device_data->dev, "[%s]: "
"cryp_configure_key_values() failed!", __func__);
return cryp_error;
}
static int cfg_keys(struct cryp_ctx *ctx)
{
int i;
int num_of_regs = ctx->keylen / 8;
u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
int cryp_error = 0;
dev_dbg(ctx->device->dev, "[%s]", __func__);
if (mode_is_aes(ctx->config.algomode)) {
swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
(u8 *)swapped_key,
ctx->keylen);
} else {
for (i = 0; i < ctx->keylen / 4; i++)
swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
}
for (i = 0; i < num_of_regs; i++) {
cryp_error = set_key(ctx->device,
*(((u32 *)swapped_key)+i*2),
*(((u32 *)swapped_key)+i*2+1),
(enum cryp_key_reg_index) i);
if (cryp_error != 0) {
dev_err(ctx->device->dev, "[%s]: set_key() failed!",
__func__);
return cryp_error;
}
}
return cryp_error;
}
static int cryp_setup_context(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
u32 control_register = CRYP_CR_DEFAULT;
switch (cryp_mode) {
case CRYP_MODE_INTERRUPT:
writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
break;
case CRYP_MODE_DMA:
writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
break;
default:
break;
}
if (ctx->updated == 0) {
cryp_flush_inoutfifo(device_data);
if (cfg_keys(ctx) != 0) {
dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
__func__);
return -EINVAL;
}
if (ctx->iv &&
CRYP_ALGO_AES_ECB != ctx->config.algomode &&
CRYP_ALGO_DES_ECB != ctx->config.algomode &&
CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
if (cfg_ivs(device_data, ctx) != 0)
return -EPERM;
}
cryp_set_configuration(device_data, &ctx->config,
&control_register);
add_session_id(ctx);
} else if (ctx->updated == 1 &&
ctx->session_id != atomic_read(&session_id)) {
cryp_flush_inoutfifo(device_data);
cryp_restore_device_context(device_data, &ctx->dev_ctx);
add_session_id(ctx);
control_register = ctx->dev_ctx.cr;
} else
control_register = ctx->dev_ctx.cr;
writel(control_register |
(CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
&device_data->base->cr);
return 0;
}
static int cryp_get_device_data(struct cryp_ctx *ctx,
struct cryp_device_data **device_data)
{
int ret;
struct klist_iter device_iterator;
struct klist_node *device_node;
struct cryp_device_data *local_device_data = NULL;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
/* Wait until a device is available */
ret = down_interruptible(&driver_data.device_allocation);
if (ret)
return ret; /* Interrupted */
/* Select a device */
klist_iter_init(&driver_data.device_list, &device_iterator);
device_node = klist_next(&device_iterator);
while (device_node) {
local_device_data = container_of(device_node,
struct cryp_device_data, list_node);
spin_lock(&local_device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (local_device_data->current_ctx) {
device_node = klist_next(&device_iterator);
} else {
local_device_data->current_ctx = ctx;
ctx->device = local_device_data;
spin_unlock(&local_device_data->ctx_lock);
break;
}
spin_unlock(&local_device_data->ctx_lock);
}
klist_iter_exit(&device_iterator);
if (!device_node) {
/**
* No free device found.
* Since we allocated a device with down_interruptible, this
* should not be able to happen.
* Number of available devices, which are contained in
* device_allocation, is therefore decremented by not doing
* an up(device_allocation).
*/
return -EBUSY;
}
*device_data = local_device_data;
return 0;
}
static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
struct device *dev)
{
dma_cap_zero(device_data->dma.mask);
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
device_data->dma.cfg_mem2cryp = mem_to_engine;
device_data->dma.chan_mem2cryp =
dma_request_channel(device_data->dma.mask,
stedma40_filter,
device_data->dma.cfg_mem2cryp);
device_data->dma.cfg_cryp2mem = engine_to_mem;
device_data->dma.chan_cryp2mem =
dma_request_channel(device_data->dma.mask,
stedma40_filter,
device_data->dma.cfg_cryp2mem);
init_completion(&device_data->dma.cryp_dma_complete);
}
static void cryp_dma_out_callback(void *data)
{
struct cryp_ctx *ctx = (struct cryp_ctx *) data;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
complete(&ctx->device->dma.cryp_dma_complete);
}
static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
struct scatterlist *sg,
int len,
enum dma_data_direction direction)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = NULL;
dma_cookie_t cookie;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
"aligned! Addr: 0x%08x", __func__, (u32)sg);
return -EFAULT;
}
switch (direction) {
case DMA_TO_DEVICE:
channel = ctx->device->dma.chan_mem2cryp;
ctx->device->dma.sg_src = sg;
ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg_src,
ctx->device->dma.nents_src,
direction);
if (!ctx->device->dma.sg_src_len) {
dev_dbg(ctx->device->dev,
"[%s]: Could not map the sg list (TO_DEVICE)",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
"(TO_DEVICE)", __func__);
desc = channel->device->device_prep_slave_sg(channel,
ctx->device->dma.sg_src,
ctx->device->dma.sg_src_len,
direction, DMA_CTRL_ACK, NULL);
break;
case DMA_FROM_DEVICE:
channel = ctx->device->dma.chan_cryp2mem;
ctx->device->dma.sg_dst = sg;
ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg_dst,
ctx->device->dma.nents_dst,
direction);
if (!ctx->device->dma.sg_dst_len) {
dev_dbg(ctx->device->dev,
"[%s]: Could not map the sg list (FROM_DEVICE)",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
"(FROM_DEVICE)", __func__);
desc = channel->device->device_prep_slave_sg(channel,
ctx->device->dma.sg_dst,
ctx->device->dma.sg_dst_len,
direction,
DMA_CTRL_ACK |
DMA_PREP_INTERRUPT, NULL);
desc->callback = cryp_dma_out_callback;
desc->callback_param = ctx;
break;
default:
dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
__func__);
return -EFAULT;
}
cookie = desc->tx_submit(desc);
dma_async_issue_pending(channel);
return 0;
}
static void cryp_dma_done(struct cryp_ctx *ctx)
{
struct dma_chan *chan;
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
chan = ctx->device->dma.chan_mem2cryp;
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
chan = ctx->device->dma.chan_cryp2mem;
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
}
static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
int len)
{
int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
dev_dbg(ctx->device->dev, "[%s]: ", __func__);
if (error) {
dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
"failed", __func__);
return error;
}
return len;
}
static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
{
int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
if (error) {
dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
"failed", __func__);
return error;
}
return len;
}
static void cryp_polling_mode(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
int len = ctx->blocksize / BYTES_PER_WORD;
int remaining_length = ctx->datalen;
u32 *indata = (u32 *)ctx->indata;
u32 *outdata = (u32 *)ctx->outdata;
while (remaining_length > 0) {
writesl(&device_data->base->din, indata, len);
indata += len;
remaining_length -= (len * BYTES_PER_WORD);
cryp_wait_until_done(device_data);
readsl(&device_data->base->dout, outdata, len);
outdata += len;
cryp_wait_until_done(device_data);
}
}
static int cryp_disable_power(struct device *dev,
struct cryp_device_data *device_data,
bool save_device_context)
{
int ret = 0;
dev_dbg(dev, "[%s]", __func__);
spin_lock(&device_data->power_state_spinlock);
if (!device_data->power_state)
goto out;
spin_lock(&device_data->ctx_lock);
if (save_device_context && device_data->current_ctx) {
cryp_save_device_context(device_data,
&device_data->current_ctx->dev_ctx,
cryp_mode);
device_data->restore_dev_ctx = true;
}
spin_unlock(&device_data->ctx_lock);
clk_disable(device_data->clk);
ret = regulator_disable(device_data->pwr_regulator);
if (ret)
dev_err(dev, "[%s]: "
"regulator_disable() failed!",
__func__);
device_data->power_state = false;
out:
spin_unlock(&device_data->power_state_spinlock);
return ret;
}
static int cryp_enable_power(
struct device *dev,
struct cryp_device_data *device_data,
bool restore_device_context)
{
int ret = 0;
dev_dbg(dev, "[%s]", __func__);
spin_lock(&device_data->power_state_spinlock);
if (!device_data->power_state) {
ret = regulator_enable(device_data->pwr_regulator);
if (ret) {
dev_err(dev, "[%s]: regulator_enable() failed!",
__func__);
goto out;
}
ret = clk_enable(device_data->clk);
if (ret) {
dev_err(dev, "[%s]: clk_enable() failed!",
__func__);
regulator_disable(device_data->pwr_regulator);
goto out;
}
device_data->power_state = true;
}
if (device_data->restore_dev_ctx) {
spin_lock(&device_data->ctx_lock);
if (restore_device_context && device_data->current_ctx) {
device_data->restore_dev_ctx = false;
cryp_restore_device_context(device_data,
&device_data->current_ctx->dev_ctx);
}
spin_unlock(&device_data->ctx_lock);
}
out:
spin_unlock(&device_data->power_state_spinlock);
return ret;
}
static int hw_crypt_noxts(struct cryp_ctx *ctx,
struct cryp_device_data *device_data)
{
int ret = 0;
const u8 *indata = ctx->indata;
u8 *outdata = ctx->outdata;
u32 datalen = ctx->datalen;
u32 outlen = datalen;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->outlen = ctx->datalen;
if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
"0x%08x", __func__, (u32)indata);
return -EINVAL;
}
ret = cryp_setup_context(ctx, device_data);
if (ret)
goto out;
if (cryp_mode == CRYP_MODE_INTERRUPT) {
cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
CRYP_IRQ_SRC_OUTPUT_FIFO);
/*
* ctx->outlen is decremented in the cryp_interrupt_handler
* function. We had to add cpu_relax() (barrier) to make sure
* that gcc didn't optimze away this variable.
*/
while (ctx->outlen > 0)
cpu_relax();
} else if (cryp_mode == CRYP_MODE_POLLING ||
cryp_mode == CRYP_MODE_DMA) {
/*
* The reason for having DMA in this if case is that if we are
* running cryp_mode = 2, then we separate DMA routines for
* handling cipher/plaintext > blocksize, except when
* running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
* the polling mode. Overhead of doing DMA setup eats up the
* benefits using it.
*/
cryp_polling_mode(ctx, device_data);
} else {
dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
__func__);
ret = -EPERM;
goto out;
}
cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
ctx->updated = 1;
out:
ctx->indata = indata;
ctx->outdata = outdata;
ctx->datalen = datalen;
ctx->outlen = outlen;
return ret;
}
static int get_nents(struct scatterlist *sg, int nbytes)
{
int nents = 0;
while (nbytes > 0) {
nbytes -= sg->length;
sg = scatterwalk_sg_next(sg);
nents++;
}
return nents;
}
static int ablk_dma_crypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct cryp_device_data *device_data;
int bytes_written = 0;
int bytes_read = 0;
int ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->datalen = areq->nbytes;
ctx->outlen = areq->nbytes;
ret = cryp_get_device_data(ctx, &device_data);
if (ret)
return ret;
ret = cryp_setup_context(ctx, device_data);
if (ret)
goto out;
/* We have the device now, so store the nents in the dma struct. */
ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
/* Enable DMA in- and output. */
cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
wait_for_completion(&ctx->device->dma.cryp_dma_complete);
cryp_dma_done(ctx);
cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
ctx->updated = 1;
out:
spin_lock(&device_data->ctx_lock);
device_data->current_ctx = NULL;
ctx->device = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
if (unlikely(bytes_written != bytes_read))
return -EPERM;
return 0;
}
static int ablk_crypt(struct ablkcipher_request *areq)
{
struct ablkcipher_walk walk;
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
struct cryp_device_data *device_data;
unsigned long src_paddr;
unsigned long dst_paddr;
int ret;
int nbytes;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ret = cryp_get_device_data(ctx, &device_data);
if (ret)
goto out;
ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
ret = ablkcipher_walk_phys(areq, &walk);
if (ret) {
pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
__func__);
goto out;
}
while ((nbytes = walk.nbytes) > 0) {
ctx->iv = walk.iv;
src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
ctx->indata = phys_to_virt(src_paddr);
dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
ctx->outdata = phys_to_virt(dst_paddr);
ctx->datalen = nbytes - (nbytes % ctx->blocksize);
ret = hw_crypt_noxts(ctx, device_data);
if (ret)
goto out;
nbytes -= ctx->datalen;
ret = ablkcipher_walk_done(areq, &walk, nbytes);
if (ret)
goto out;
}
ablkcipher_walk_complete(&walk);
out:
/* Release the device */
spin_lock(&device_data->ctx_lock);
device_data->current_ctx = NULL;
ctx->device = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
return ret;
}
static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->config.keysize = CRYP_KEY_SIZE_128;
break;
case AES_KEYSIZE_192:
ctx->config.keysize = CRYP_KEY_SIZE_192;
break;
case AES_KEYSIZE_256:
ctx->config.keysize = CRYP_KEY_SIZE_256;
break;
default:
pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
u32 tmp[DES_EXPKEY_WORDS];
int ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
if (keylen != DES_KEY_SIZE) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
__func__);
return -EINVAL;
}
ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
__func__);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
u32 *flags = &cipher->base.crt_flags;
const u32 *K = (const u32 *)key;
u32 tmp[DES3_EDE_EXPKEY_WORDS];
int i, ret;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
if (keylen != DES3_EDE_KEY_SIZE) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
__func__);
return -EINVAL;
}
/* Checking key interdependency for weak key detection. */
if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
!((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
(*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
__func__);
return -EINVAL;
}
for (i = 0; i < 3; i++) {
ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
pr_debug(DEV_DBG_NAME " [%s]: "
"CRYPTO_TFM_REQ_WEAK_KEY", __func__);
return -EINVAL;
}
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->updated = 0;
return 0;
}
static int cryp_blk_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
/*
* DMA does not work for DES due to a hw bug */
if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
return ablk_dma_crypt(areq);
/* For everything except DMA, we run the non DMA version. */
return ablk_crypt(areq);
}
static int cryp_blk_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
pr_debug(DEV_DBG_NAME " [%s]", __func__);
ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
/* DMA does not work for DES due to a hw bug */
if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
return ablk_dma_crypt(areq);
/* For everything except DMA, we run the non DMA version. */
return ablk_crypt(areq);
}
struct cryp_algo_template {
enum cryp_algo_mode algomode;
struct crypto_alg crypto;
};
static int cryp_cra_init(struct crypto_tfm *tfm)
{
struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct cryp_algo_template *cryp_alg = container_of(alg,
struct cryp_algo_template,
crypto);
ctx->config.algomode = cryp_alg->algomode;
ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
return 0;
}
static struct cryp_algo_template cryp_algs[] = {
{
.algomode = CRYP_ALGO_AES_ECB,
.crypto = {
.cra_name = "aes",
.cra_driver_name = "aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_AES_ECB,
.crypto = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_AES_CBC,
.crypto = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = AES_BLOCK_SIZE,
}
}
}
},
{
.algomode = CRYP_ALGO_AES_CTR,
.crypto = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = AES_BLOCK_SIZE,
}
}
}
},
{
.algomode = CRYP_ALGO_DES_ECB,
.crypto = {
.cra_name = "des",
.cra_driver_name = "des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_ECB,
.crypto = {
.cra_name = "des3_ede",
.cra_driver_name = "des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt
}
}
}
},
{
.algomode = CRYP_ALGO_DES_ECB,
.crypto = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_ECB,
.crypto = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des3_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_DES_CBC,
.crypto = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = des_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
}
}
}
},
{
.algomode = CRYP_ALGO_TDES_CBC,
.crypto = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-ux500",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cryp_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = cryp_cra_init,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = des3_ablkcipher_setkey,
.encrypt = cryp_blk_encrypt,
.decrypt = cryp_blk_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
}
}
}
}
};
/**
* cryp_algs_register_all -
*/
static int cryp_algs_register_all(void)
{
int ret;
int i;
int count;
pr_debug("[%s]", __func__);
for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
ret = crypto_register_alg(&cryp_algs[i].crypto);
if (ret) {
count = i;
pr_err("[%s] alg registration failed",
cryp_algs[i].crypto.cra_driver_name);
goto unreg;
}
}
return 0;
unreg:
for (i = 0; i < count; i++)
crypto_unregister_alg(&cryp_algs[i].crypto);
return ret;
}
/**
* cryp_algs_unregister_all -
*/
static void cryp_algs_unregister_all(void)
{
int i;
pr_debug(DEV_DBG_NAME " [%s]", __func__);
for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
crypto_unregister_alg(&cryp_algs[i].crypto);
}
static int ux500_cryp_probe(struct platform_device *pdev)
{
int ret;
int cryp_error = 0;
struct resource *res = NULL;
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
struct cryp_protection_config prot = {
.privilege_access = CRYP_STATE_ENABLE
};
struct device *dev = &pdev->dev;
dev_dbg(dev, "[%s]", __func__);
device_data = kzalloc(sizeof(struct cryp_device_data), GFP_ATOMIC);
if (!device_data) {
dev_err(dev, "[%s]: kzalloc() failed!", __func__);
ret = -ENOMEM;
goto out;
}
device_data->dev = dev;
device_data->current_ctx = NULL;
/* Grab the DMA configuration from platform data. */
mem_to_engine = &((struct cryp_platform_data *)
dev->platform_data)->mem_to_engine;
engine_to_mem = &((struct cryp_platform_data *)
dev->platform_data)->engine_to_mem;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "[%s]: platform_get_resource() failed",
__func__);
ret = -ENODEV;
goto out_kfree;
}
res = request_mem_region(res->start, resource_size(res), pdev->name);
if (res == NULL) {
dev_err(dev, "[%s]: request_mem_region() failed",
__func__);
ret = -EBUSY;
goto out_kfree;
}
device_data->base = ioremap(res->start, resource_size(res));
if (!device_data->base) {
dev_err(dev, "[%s]: ioremap failed!", __func__);
ret = -ENOMEM;
goto out_free_mem;
}
spin_lock_init(&device_data->ctx_lock);
spin_lock_init(&device_data->power_state_spinlock);
/* Enable power for CRYP hardware block */
device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
if (IS_ERR(device_data->pwr_regulator)) {
dev_err(dev, "[%s]: could not get cryp regulator", __func__);
ret = PTR_ERR(device_data->pwr_regulator);
device_data->pwr_regulator = NULL;
goto out_unmap;
}
/* Enable the clk for CRYP hardware block */
device_data->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(device_data->clk)) {
dev_err(dev, "[%s]: clk_get() failed!", __func__);
ret = PTR_ERR(device_data->clk);
goto out_regulator;
}
/* Enable device power (and clock) */
ret = cryp_enable_power(device_data->dev, device_data, false);
if (ret) {
dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
goto out_clk;
}
cryp_error = cryp_check(device_data);
if (cryp_error != 0) {
dev_err(dev, "[%s]: cryp_init() failed!", __func__);
ret = -EINVAL;
goto out_power;
}
cryp_error = cryp_configure_protection(device_data, &prot);
if (cryp_error != 0) {
dev_err(dev, "[%s]: cryp_configure_protection() failed!",
__func__);
ret = -EINVAL;
goto out_power;
}
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq) {
dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
__func__);
goto out_power;
}
ret = request_irq(res_irq->start,
cryp_interrupt_handler,
0,
"cryp1",
device_data);
if (ret) {
dev_err(dev, "[%s]: Unable to request IRQ", __func__);
goto out_power;
}
if (cryp_mode == CRYP_MODE_DMA)
cryp_dma_setup_channel(device_data, dev);
platform_set_drvdata(pdev, device_data);
/* Put the new device into the device list... */
klist_add_tail(&device_data->list_node, &driver_data.device_list);
/* ... and signal that a new device is available. */
up(&driver_data.device_allocation);
atomic_set(&session_id, 1);
ret = cryp_algs_register_all();
if (ret) {
dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
__func__);
goto out_power;
}
return 0;
out_power:
cryp_disable_power(device_data->dev, device_data, false);
out_clk:
clk_put(device_data->clk);
out_regulator:
regulator_put(device_data->pwr_regulator);
out_unmap:
iounmap(device_data->base);
out_free_mem:
release_mem_region(res->start, resource_size(res));
out_kfree:
kfree(device_data);
out:
return ret;
}
static int ux500_cryp_remove(struct platform_device *pdev)
{
struct resource *res = NULL;
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
dev_dbg(&pdev->dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
/* Try to decrease the number of available devices. */
if (down_trylock(&driver_data.device_allocation))
return -EBUSY;
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (device_data->current_ctx) {
/* The device is busy */
spin_unlock(&device_data->ctx_lock);
/* Return the device to the pool. */
up(&driver_data.device_allocation);
return -EBUSY;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
cryp_algs_unregister_all();
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
__func__);
else {
disable_irq(res_irq->start);
free_irq(res_irq->start, device_data);
}
if (cryp_disable_power(&pdev->dev, device_data, false))
dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
__func__);
clk_put(device_data->clk);
regulator_put(device_data->pwr_regulator);
iounmap(device_data->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, res->end - res->start + 1);
kfree(device_data);
return 0;
}
static void ux500_cryp_shutdown(struct platform_device *pdev)
{
struct resource *res_irq = NULL;
struct cryp_device_data *device_data;
dev_dbg(&pdev->dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return;
}
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (!device_data->current_ctx) {
if (down_trylock(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
"Shutting down anyway...", __func__);
/**
* (Allocate the device)
* Need to set this to non-null (dummy) value,
* to avoid usage if context switching.
*/
device_data->current_ctx++;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
cryp_algs_unregister_all();
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
__func__);
else {
disable_irq(res_irq->start);
free_irq(res_irq->start, device_data);
}
if (cryp_disable_power(&pdev->dev, device_data, false))
dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
__func__);
}
static int ux500_cryp_suspend(struct platform_device *pdev, pm_message_t state)
{
int ret;
struct cryp_device_data *device_data;
struct resource *res_irq;
struct cryp_ctx *temp_ctx = NULL;
dev_dbg(&pdev->dev, "[%s]", __func__);
/* Handle state? */
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res_irq)
dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
__func__);
else
disable_irq(res_irq->start);
spin_lock(&device_data->ctx_lock);
if (!device_data->current_ctx)
device_data->current_ctx++;
spin_unlock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx) {
if (down_interruptible(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "[%s]: down_interruptible() "
"failed", __func__);
ret = cryp_disable_power(&pdev->dev, device_data, false);
} else
ret = cryp_disable_power(&pdev->dev, device_data, true);
if (ret)
dev_err(&pdev->dev, "[%s]: cryp_disable_power()", __func__);
return ret;
}
static int ux500_cryp_resume(struct platform_device *pdev)
{
int ret = 0;
struct cryp_device_data *device_data;
struct resource *res_irq;
struct cryp_ctx *temp_ctx = NULL;
dev_dbg(&pdev->dev, "[%s]", __func__);
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx)
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
if (!device_data->current_ctx)
up(&driver_data.device_allocation);
else
ret = cryp_enable_power(&pdev->dev, device_data, true);
if (ret)
dev_err(&pdev->dev, "[%s]: cryp_enable_power() failed!",
__func__);
else {
res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res_irq)
enable_irq(res_irq->start);
}
return ret;
}
static struct platform_driver cryp_driver = {
.probe = ux500_cryp_probe,
.remove = ux500_cryp_remove,
.shutdown = ux500_cryp_shutdown,
.suspend = ux500_cryp_suspend,
.resume = ux500_cryp_resume,
.driver = {
.owner = THIS_MODULE,
.name = "cryp1"
}
};
static int __init ux500_cryp_mod_init(void)
{
pr_debug("[%s] is called!", __func__);
klist_init(&driver_data.device_list, NULL, NULL);
/* Initialize the semaphore to 0 devices (locked state) */
sema_init(&driver_data.device_allocation, 0);
return platform_driver_register(&cryp_driver);
}
static void __exit ux500_cryp_mod_fini(void)
{
pr_debug("[%s] is called!", __func__);
platform_driver_unregister(&cryp_driver);
return;
}
module_init(ux500_cryp_mod_init);
module_exit(ux500_cryp_mod_fini);
module_param(cryp_mode, int, 0);
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
MODULE_ALIAS("aes-all");
MODULE_ALIAS("des-all");
MODULE_LICENSE("GPL");
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2.
*/
#include <linux/kernel.h>
#include <linux/bitmap.h>
#include <linux/device.h>
#include "cryp.h"
#include "cryp_p.h"
#include "cryp_irq.h"
#include "cryp_irqp.h"
void cryp_enable_irq_src(struct cryp_device_data *device_data, u32 irq_src)
{
u32 i;
dev_dbg(device_data->dev, "[%s]", __func__);
i = readl_relaxed(&device_data->base->imsc);
i = i | irq_src;
writel_relaxed(i, &device_data->base->imsc);
}
void cryp_disable_irq_src(struct cryp_device_data *device_data, u32 irq_src)
{
u32 i;
dev_dbg(device_data->dev, "[%s]", __func__);
i = readl_relaxed(&device_data->base->imsc);
i = i & ~irq_src;
writel_relaxed(i, &device_data->base->imsc);
}
bool cryp_pending_irq_src(struct cryp_device_data *device_data, u32 irq_src)
{
return (readl_relaxed(&device_data->base->mis) & irq_src) > 0;
}
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef _CRYP_IRQ_H_
#define _CRYP_IRQ_H_
#include "cryp.h"
enum cryp_irq_src_id {
CRYP_IRQ_SRC_INPUT_FIFO = 0x1,
CRYP_IRQ_SRC_OUTPUT_FIFO = 0x2,
CRYP_IRQ_SRC_ALL = 0x3
};
/**
* M0 Funtions
*/
void cryp_enable_irq_src(struct cryp_device_data *device_data, u32 irq_src);
void cryp_disable_irq_src(struct cryp_device_data *device_data, u32 irq_src);
bool cryp_pending_irq_src(struct cryp_device_data *device_data, u32 irq_src);
#endif /* _CRYP_IRQ_H_ */
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef __CRYP_IRQP_H_
#define __CRYP_IRQP_H_
#include "cryp_irq.h"
/**
*
* CRYP Registers - Offset mapping
* +-----------------+
* 00h | CRYP_CR | Configuration register
* +-----------------+
* 04h | CRYP_SR | Status register
* +-----------------+
* 08h | CRYP_DIN | Data In register
* +-----------------+
* 0ch | CRYP_DOUT | Data out register
* +-----------------+
* 10h | CRYP_DMACR | DMA control register
* +-----------------+
* 14h | CRYP_IMSC | IMSC
* +-----------------+
* 18h | CRYP_RIS | Raw interrupt status
* +-----------------+
* 1ch | CRYP_MIS | Masked interrupt status.
* +-----------------+
* Key registers
* IVR registers
* Peripheral
* Cell IDs
*
* Refer data structure for other register map
*/
/**
* struct cryp_register
* @cr - Configuration register
* @status - Status register
* @din - Data input register
* @din_size - Data input size register
* @dout - Data output register
* @dout_size - Data output size register
* @dmacr - Dma control register
* @imsc - Interrupt mask set/clear register
* @ris - Raw interrupt status
* @mis - Masked interrupt statu register
* @key_1_l - Key register 1 L
* @key_1_r - Key register 1 R
* @key_2_l - Key register 2 L
* @key_2_r - Key register 2 R
* @key_3_l - Key register 3 L
* @key_3_r - Key register 3 R
* @key_4_l - Key register 4 L
* @key_4_r - Key register 4 R
* @init_vect_0_l - init vector 0 L
* @init_vect_0_r - init vector 0 R
* @init_vect_1_l - init vector 1 L
* @init_vect_1_r - init vector 1 R
* @cryp_unused1 - unused registers
* @itcr - Integration test control register
* @itip - Integration test input register
* @itop - Integration test output register
* @cryp_unused2 - unused registers
* @periphId0 - FE0 CRYP Peripheral Identication Register
* @periphId1 - FE4
* @periphId2 - FE8
* @periphId3 - FEC
* @pcellId0 - FF0 CRYP PCell Identication Register
* @pcellId1 - FF4
* @pcellId2 - FF8
* @pcellId3 - FFC
*/
struct cryp_register {
u32 cr; /* Configuration register */
u32 sr; /* Status register */
u32 din; /* Data input register */
u32 din_size; /* Data input size register */
u32 dout; /* Data output register */
u32 dout_size; /* Data output size register */
u32 dmacr; /* Dma control register */
u32 imsc; /* Interrupt mask set/clear register */
u32 ris; /* Raw interrupt status */
u32 mis; /* Masked interrupt statu register */
u32 key_1_l; /*Key register 1 L */
u32 key_1_r; /*Key register 1 R */
u32 key_2_l; /*Key register 2 L */
u32 key_2_r; /*Key register 2 R */
u32 key_3_l; /*Key register 3 L */
u32 key_3_r; /*Key register 3 R */
u32 key_4_l; /*Key register 4 L */
u32 key_4_r; /*Key register 4 R */
u32 init_vect_0_l; /*init vector 0 L */
u32 init_vect_0_r; /*init vector 0 R */
u32 init_vect_1_l; /*init vector 1 L */
u32 init_vect_1_r; /*init vector 1 R */
u32 cryp_unused1[(0x80 - 0x58) / sizeof(u32)]; /* unused registers */
u32 itcr; /*Integration test control register */
u32 itip; /*Integration test input register */
u32 itop; /*Integration test output register */
u32 cryp_unused2[(0xFE0 - 0x8C) / sizeof(u32)]; /* unused registers */
u32 periphId0; /* FE0 CRYP Peripheral Identication Register */
u32 periphId1; /* FE4 */
u32 periphId2; /* FE8 */
u32 periphId3; /* FEC */
u32 pcellId0; /* FF0 CRYP PCell Identication Register */
u32 pcellId1; /* FF4 */
u32 pcellId2; /* FF8 */
u32 pcellId3; /* FFC */
};
#endif
/**
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
* Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef _CRYP_P_H_
#define _CRYP_P_H_
#include <linux/io.h>
#include <linux/bitops.h>
#include "cryp.h"
#include "cryp_irqp.h"
/**
* Generic Macros
*/
#define CRYP_SET_BITS(reg_name, mask) \
writel_relaxed((readl_relaxed(reg_name) | mask), reg_name)
#define CRYP_WRITE_BIT(reg_name, val, mask) \
writel_relaxed(((readl_relaxed(reg_name) & ~(mask)) |\
((val) & (mask))), reg_name)
#define CRYP_TEST_BITS(reg_name, val) \
(readl_relaxed(reg_name) & (val))
#define CRYP_PUT_BITS(reg, val, shift, mask) \
writel_relaxed(((readl_relaxed(reg) & ~(mask)) | \
(((u32)val << shift) & (mask))), reg)
/**
* CRYP specific Macros
*/
#define CRYP_PERIPHERAL_ID0 0xE3
#define CRYP_PERIPHERAL_ID1 0x05
#define CRYP_PERIPHERAL_ID2_DB8500 0x28
#define CRYP_PERIPHERAL_ID3 0x00
#define CRYP_PCELL_ID0 0x0D
#define CRYP_PCELL_ID1 0xF0
#define CRYP_PCELL_ID2 0x05
#define CRYP_PCELL_ID3 0xB1
/**
* CRYP register default values
*/
#define MAX_DEVICE_SUPPORT 2
/* Priv set, keyrden set and datatype 8bits swapped set as default. */
#define CRYP_CR_DEFAULT 0x0482
#define CRYP_DMACR_DEFAULT 0x0
#define CRYP_IMSC_DEFAULT 0x0
#define CRYP_DIN_DEFAULT 0x0
#define CRYP_DOUT_DEFAULT 0x0
#define CRYP_KEY_DEFAULT 0x0
#define CRYP_INIT_VECT_DEFAULT 0x0
/**
* CRYP Control register specific mask
*/
#define CRYP_CR_SECURE_MASK BIT(0)
#define CRYP_CR_PRLG_MASK BIT(1)
#define CRYP_CR_ALGODIR_MASK BIT(2)
#define CRYP_CR_ALGOMODE_MASK (BIT(5) | BIT(4) | BIT(3))
#define CRYP_CR_DATATYPE_MASK (BIT(7) | BIT(6))
#define CRYP_CR_KEYSIZE_MASK (BIT(9) | BIT(8))
#define CRYP_CR_KEYRDEN_MASK BIT(10)
#define CRYP_CR_KSE_MASK BIT(11)
#define CRYP_CR_START_MASK BIT(12)
#define CRYP_CR_INIT_MASK BIT(13)
#define CRYP_CR_FFLUSH_MASK BIT(14)
#define CRYP_CR_CRYPEN_MASK BIT(15)
#define CRYP_CR_CONTEXT_SAVE_MASK (CRYP_CR_SECURE_MASK |\
CRYP_CR_PRLG_MASK |\
CRYP_CR_ALGODIR_MASK |\
CRYP_CR_ALGOMODE_MASK |\
CRYP_CR_DATATYPE_MASK |\
CRYP_CR_KEYSIZE_MASK |\
CRYP_CR_KEYRDEN_MASK |\
CRYP_CR_DATATYPE_MASK)
#define CRYP_SR_INFIFO_READY_MASK (BIT(0) | BIT(1))
#define CRYP_SR_IFEM_MASK BIT(0)
#define CRYP_SR_BUSY_MASK BIT(4)
/**
* Bit position used while setting bits in register
*/
#define CRYP_CR_PRLG_POS 1
#define CRYP_CR_ALGODIR_POS 2
#define CRYP_CR_ALGOMODE_POS 3
#define CRYP_CR_DATATYPE_POS 6
#define CRYP_CR_KEYSIZE_POS 8
#define CRYP_CR_KEYRDEN_POS 10
#define CRYP_CR_KSE_POS 11
#define CRYP_CR_START_POS 12
#define CRYP_CR_INIT_POS 13
#define CRYP_CR_CRYPEN_POS 15
#define CRYP_SR_BUSY_POS 4
/**
* CRYP PCRs------PC_NAND control register
* BIT_MASK
*/
#define CRYP_DMA_REQ_MASK (BIT(1) | BIT(0))
#define CRYP_DMA_REQ_MASK_POS 0
struct cryp_system_context {
/* CRYP Register structure */
struct cryp_register *p_cryp_reg[MAX_DEVICE_SUPPORT];
};
#endif
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
# License terms: GNU General Public License (GPL) version 2
#
ifdef CONFIG_CRYPTO_DEV_UX500_DEBUG
CFLAGS_hash_core.o := -DDEBUG -O0
endif
obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += ux500_hash.o
ux500_hash-objs := hash_core.o
/*
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen (shujuan.chen@stericsson.com)
* Author: Joakim Bech (joakim.xx.bech@stericsson.com)
* Author: Berne Hebark (berne.hebark@stericsson.com))
* License terms: GNU General Public License (GPL) version 2
*/
#ifndef _HASH_ALG_H
#define _HASH_ALG_H
#include <linux/bitops.h>
#define HASH_BLOCK_SIZE 64
#define HASH_DMA_ALIGN_SIZE 4
#define HASH_DMA_PERFORMANCE_MIN_SIZE 1024
#define HASH_BYTES_PER_WORD 4
/* Maximum value of the length's high word */
#define HASH_HIGH_WORD_MAX_VAL 0xFFFFFFFFUL
/* Power on Reset values HASH registers */
#define HASH_RESET_CR_VALUE 0x0
#define HASH_RESET_STR_VALUE 0x0
/* Number of context swap registers */
#define HASH_CSR_COUNT 52
#define HASH_RESET_CSRX_REG_VALUE 0x0
#define HASH_RESET_CSFULL_REG_VALUE 0x0
#define HASH_RESET_CSDATAIN_REG_VALUE 0x0
#define HASH_RESET_INDEX_VAL 0x0
#define HASH_RESET_BIT_INDEX_VAL 0x0
#define HASH_RESET_BUFFER_VAL 0x0
#define HASH_RESET_LEN_HIGH_VAL 0x0
#define HASH_RESET_LEN_LOW_VAL 0x0
/* Control register bitfields */
#define HASH_CR_RESUME_MASK 0x11FCF
#define HASH_CR_SWITCHON_POS 31
#define HASH_CR_SWITCHON_MASK BIT(31)
#define HASH_CR_EMPTYMSG_POS 20
#define HASH_CR_EMPTYMSG_MASK BIT(20)
#define HASH_CR_DINF_POS 12
#define HASH_CR_DINF_MASK BIT(12)
#define HASH_CR_NBW_POS 8
#define HASH_CR_NBW_MASK 0x00000F00UL
#define HASH_CR_LKEY_POS 16
#define HASH_CR_LKEY_MASK BIT(16)
#define HASH_CR_ALGO_POS 7
#define HASH_CR_ALGO_MASK BIT(7)
#define HASH_CR_MODE_POS 6
#define HASH_CR_MODE_MASK BIT(6)
#define HASH_CR_DATAFORM_POS 4
#define HASH_CR_DATAFORM_MASK (BIT(4) | BIT(5))
#define HASH_CR_DMAE_POS 3
#define HASH_CR_DMAE_MASK BIT(3)
#define HASH_CR_INIT_POS 2
#define HASH_CR_INIT_MASK BIT(2)
#define HASH_CR_PRIVN_POS 1
#define HASH_CR_PRIVN_MASK BIT(1)
#define HASH_CR_SECN_POS 0
#define HASH_CR_SECN_MASK BIT(0)
/* Start register bitfields */
#define HASH_STR_DCAL_POS 8
#define HASH_STR_DCAL_MASK BIT(8)
#define HASH_STR_DEFAULT 0x0
#define HASH_STR_NBLW_POS 0
#define HASH_STR_NBLW_MASK 0x0000001FUL
#define HASH_NBLW_MAX_VAL 0x1F
/* PrimeCell IDs */
#define HASH_P_ID0 0xE0
#define HASH_P_ID1 0x05
#define HASH_P_ID2 0x38
#define HASH_P_ID3 0x00
#define HASH_CELL_ID0 0x0D
#define HASH_CELL_ID1 0xF0
#define HASH_CELL_ID2 0x05
#define HASH_CELL_ID3 0xB1
#define HASH_SET_BITS(reg_name, mask) \
writel_relaxed((readl_relaxed(reg_name) | mask), reg_name)
#define HASH_CLEAR_BITS(reg_name, mask) \
writel_relaxed((readl_relaxed(reg_name) & ~mask), reg_name)
#define HASH_PUT_BITS(reg, val, shift, mask) \
writel_relaxed(((readl(reg) & ~(mask)) | \
(((u32)val << shift) & (mask))), reg)
#define HASH_SET_DIN(val, len) writesl(&device_data->base->din, (val), (len))
#define HASH_INITIALIZE \
HASH_PUT_BITS( \
&device_data->base->cr, \
0x01, HASH_CR_INIT_POS, \
HASH_CR_INIT_MASK)
#define HASH_SET_DATA_FORMAT(data_format) \
HASH_PUT_BITS( \
&device_data->base->cr, \
(u32) (data_format), HASH_CR_DATAFORM_POS, \
HASH_CR_DATAFORM_MASK)
#define HASH_SET_NBLW(val) \
HASH_PUT_BITS( \
&device_data->base->str, \
(u32) (val), HASH_STR_NBLW_POS, \
HASH_STR_NBLW_MASK)
#define HASH_SET_DCAL \
HASH_PUT_BITS( \
&device_data->base->str, \
0x01, HASH_STR_DCAL_POS, \
HASH_STR_DCAL_MASK)
/* Hardware access method */
enum hash_mode {
HASH_MODE_CPU,
HASH_MODE_DMA
};
/**
* struct uint64 - Structure to handle 64 bits integers.
* @high_word: Most significant bits.
* @low_word: Least significant bits.
*
* Used to handle 64 bits integers.
*/
struct uint64 {
u32 high_word;
u32 low_word;
};
/**
* struct hash_register - Contains all registers in ux500 hash hardware.
* @cr: HASH control register (0x000).
* @din: HASH data input register (0x004).
* @str: HASH start register (0x008).
* @hx: HASH digest register 0..7 (0x00c-0x01C).
* @padding0: Reserved (0x02C).
* @itcr: Integration test control register (0x080).
* @itip: Integration test input register (0x084).
* @itop: Integration test output register (0x088).
* @padding1: Reserved (0x08C).
* @csfull: HASH context full register (0x0F8).
* @csdatain: HASH context swap data input register (0x0FC).
* @csrx: HASH context swap register 0..51 (0x100-0x1CC).
* @padding2: Reserved (0x1D0).
* @periphid0: HASH peripheral identification register 0 (0xFE0).
* @periphid1: HASH peripheral identification register 1 (0xFE4).
* @periphid2: HASH peripheral identification register 2 (0xFE8).
* @periphid3: HASH peripheral identification register 3 (0xFEC).
* @cellid0: HASH PCell identification register 0 (0xFF0).
* @cellid1: HASH PCell identification register 1 (0xFF4).
* @cellid2: HASH PCell identification register 2 (0xFF8).
* @cellid3: HASH PCell identification register 3 (0xFFC).
*
* The device communicates to the HASH via 32-bit-wide control registers
* accessible via the 32-bit width AMBA rev. 2.0 AHB Bus. Below is a structure
* with the registers used.
*/
struct hash_register {
u32 cr;
u32 din;
u32 str;
u32 hx[8];
u32 padding0[(0x080 - 0x02C) / sizeof(u32)];
u32 itcr;
u32 itip;
u32 itop;
u32 padding1[(0x0F8 - 0x08C) / sizeof(u32)];
u32 csfull;
u32 csdatain;
u32 csrx[HASH_CSR_COUNT];
u32 padding2[(0xFE0 - 0x1D0) / sizeof(u32)];
u32 periphid0;
u32 periphid1;
u32 periphid2;
u32 periphid3;
u32 cellid0;
u32 cellid1;
u32 cellid2;
u32 cellid3;
};
/**
* struct hash_state - Hash context state.
* @temp_cr: Temporary HASH Control Register.
* @str_reg: HASH Start Register.
* @din_reg: HASH Data Input Register.
* @csr[52]: HASH Context Swap Registers 0-39.
* @csfull: HASH Context Swap Registers 40 ie Status flags.
* @csdatain: HASH Context Swap Registers 41 ie Input data.
* @buffer: Working buffer for messages going to the hardware.
* @length: Length of the part of message hashed so far (floor(N/64) * 64).
* @index: Valid number of bytes in buffer (N % 64).
* @bit_index: Valid number of bits in buffer (N % 8).
*
* This structure is used between context switches, i.e. when ongoing jobs are
* interupted with new jobs. When this happens we need to store intermediate
* results in software.
*
* WARNING: "index" is the member of the structure, to be sure that "buffer"
* is aligned on a 4-bytes boundary. This is highly implementation dependent
* and MUST be checked whenever this code is ported on new platforms.
*/
struct hash_state {
u32 temp_cr;
u32 str_reg;
u32 din_reg;
u32 csr[52];
u32 csfull;
u32 csdatain;
u32 buffer[HASH_BLOCK_SIZE / sizeof(u32)];
struct uint64 length;
u8 index;
u8 bit_index;
};
/**
* enum hash_device_id - HASH device ID.
* @HASH_DEVICE_ID_0: Hash hardware with ID 0
* @HASH_DEVICE_ID_1: Hash hardware with ID 1
*/
enum hash_device_id {
HASH_DEVICE_ID_0 = 0,
HASH_DEVICE_ID_1 = 1
};
/**
* enum hash_data_format - HASH data format.
* @HASH_DATA_32_BITS: 32 bits data format
* @HASH_DATA_16_BITS: 16 bits data format
* @HASH_DATA_8_BITS: 8 bits data format.
* @HASH_DATA_1_BITS: 1 bit data format.
*/
enum hash_data_format {
HASH_DATA_32_BITS = 0x0,
HASH_DATA_16_BITS = 0x1,
HASH_DATA_8_BITS = 0x2,
HASH_DATA_1_BIT = 0x3
};
/**
* enum hash_algo - Enumeration for selecting between SHA1 or SHA2 algorithm.
* @HASH_ALGO_SHA1: Indicates that SHA1 is used.
* @HASH_ALGO_SHA2: Indicates that SHA2 (SHA256) is used.
*/
enum hash_algo {
HASH_ALGO_SHA1 = 0x0,
HASH_ALGO_SHA256 = 0x1
};
/**
* enum hash_op - Enumeration for selecting between HASH or HMAC mode.
* @HASH_OPER_MODE_HASH: Indicates usage of normal HASH mode.
* @HASH_OPER_MODE_HMAC: Indicates usage of HMAC.
*/
enum hash_op {
HASH_OPER_MODE_HASH = 0x0,
HASH_OPER_MODE_HMAC = 0x1
};
/**
* struct hash_config - Configuration data for the hardware.
* @data_format: Format of data entered into the hash data in register.
* @algorithm: Algorithm selection bit.
* @oper_mode: Operating mode selection bit.
*/
struct hash_config {
int data_format;
int algorithm;
int oper_mode;
};
/**
* struct hash_dma - Structure used for dma.
* @mask: DMA capabilities bitmap mask.
* @complete: Used to maintain state for a "completion".
* @chan_mem2hash: DMA channel.
* @cfg_mem2hash: DMA channel configuration.
* @sg_len: Scatterlist length.
* @sg: Scatterlist.
* @nents: Number of sg entries.
*/
struct hash_dma {
dma_cap_mask_t mask;
struct completion complete;
struct dma_chan *chan_mem2hash;
void *cfg_mem2hash;
int sg_len;
struct scatterlist *sg;
int nents;
};
/**
* struct hash_ctx - The context used for hash calculations.
* @key: The key used in the operation.
* @keylen: The length of the key.
* @state: The state of the current calculations.
* @config: The current configuration.
* @digestsize: The size of current digest.
* @device: Pointer to the device structure.
*/
struct hash_ctx {
u8 *key;
u32 keylen;
struct hash_config config;
int digestsize;
struct hash_device_data *device;
};
/**
* struct hash_ctx - The request context used for hash calculations.
* @state: The state of the current calculations.
* @dma_mode: Used in special cases (workaround), e.g. need to change to
* cpu mode, if not supported/working in dma mode.
* @updated: Indicates if hardware is initialized for new operations.
*/
struct hash_req_ctx {
struct hash_state state;
bool dma_mode;
u8 updated;
};
/**
* struct hash_device_data - structure for a hash device.
* @base: Pointer to the hardware base address.
* @list_node: For inclusion in klist.
* @dev: Pointer to the device dev structure.
* @ctx_lock: Spinlock for current_ctx.
* @current_ctx: Pointer to the currently allocated context.
* @power_state: TRUE = power state on, FALSE = power state off.
* @power_state_lock: Spinlock for power_state.
* @regulator: Pointer to the device's power control.
* @clk: Pointer to the device's clock control.
* @restore_dev_state: TRUE = saved state, FALSE = no saved state.
* @dma: Structure used for dma.
*/
struct hash_device_data {
struct hash_register __iomem *base;
struct klist_node list_node;
struct device *dev;
struct spinlock ctx_lock;
struct hash_ctx *current_ctx;
bool power_state;
struct spinlock power_state_lock;
struct regulator *regulator;
struct clk *clk;
bool restore_dev_state;
struct hash_state state; /* Used for saving and resuming state */
struct hash_dma dma;
};
int hash_check_hw(struct hash_device_data *device_data);
int hash_setconfiguration(struct hash_device_data *device_data,
struct hash_config *config);
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx);
void hash_get_digest(struct hash_device_data *device_data,
u8 *digest, int algorithm);
int hash_hw_update(struct ahash_request *req);
int hash_save_state(struct hash_device_data *device_data,
struct hash_state *state);
int hash_resume_state(struct hash_device_data *device_data,
const struct hash_state *state);
#endif
/*
* Cryptographic API.
* Support for Nomadik hardware crypto engine.
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/klist.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/crypto.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/bitops.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <mach/crypto-ux500.h>
#include <mach/hardware.h>
#include "hash_alg.h"
#define DEV_DBG_NAME "hashX hashX:"
static int hash_mode;
module_param(hash_mode, int, 0);
MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
/**
* Pre-calculated empty message digests.
*/
static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
0xaf, 0xd8, 0x07, 0x09
};
static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
/* HMAC-SHA1, no key */
static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
0x70, 0x69, 0x0e, 0x1d
};
/* HMAC-SHA256, no key */
static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
};
/**
* struct hash_driver_data - data specific to the driver.
*
* @device_list: A list of registered devices to choose from.
* @device_allocation: A semaphore initialized with number of devices.
*/
struct hash_driver_data {
struct klist device_list;
struct semaphore device_allocation;
};
static struct hash_driver_data driver_data;
/* Declaration of functions */
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message
* @index_bytes: The number of bytes in the last message
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes);
/**
* release_hash_device - Releases a previously allocated hash device.
* @device_data: Structure for the hash device.
*
*/
static void release_hash_device(struct hash_device_data *device_data)
{
spin_lock(&device_data->ctx_lock);
device_data->current_ctx->device = NULL;
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
}
static void hash_dma_setup_channel(struct hash_device_data *device_data,
struct device *dev)
{
struct hash_platform_data *platform_data = dev->platform_data;
dma_cap_zero(device_data->dma.mask);
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
device_data->dma.chan_mem2hash =
dma_request_channel(device_data->dma.mask,
platform_data->dma_filter,
device_data->dma.cfg_mem2hash);
init_completion(&device_data->dma.complete);
}
static void hash_dma_callback(void *data)
{
struct hash_ctx *ctx = (struct hash_ctx *) data;
complete(&ctx->device->dma.complete);
}
static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
int len, enum dma_data_direction direction)
{
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *channel = NULL;
dma_cookie_t cookie;
if (direction != DMA_TO_DEVICE) {
dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
__func__);
return -EFAULT;
}
sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
channel = ctx->device->dma.chan_mem2hash;
ctx->device->dma.sg = sg;
ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg, ctx->device->dma.nents,
direction);
if (!ctx->device->dma.sg_len) {
dev_err(ctx->device->dev,
"[%s]: Could not map the sg list (TO_DEVICE)",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
"(TO_DEVICE)", __func__);
desc = channel->device->device_prep_slave_sg(channel,
ctx->device->dma.sg, ctx->device->dma.sg_len,
direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
if (!desc) {
dev_err(ctx->device->dev,
"[%s]: device_prep_slave_sg() failed!", __func__);
return -EFAULT;
}
desc->callback = hash_dma_callback;
desc->callback_param = ctx;
cookie = desc->tx_submit(desc);
dma_async_issue_pending(channel);
return 0;
}
static void hash_dma_done(struct hash_ctx *ctx)
{
struct dma_chan *chan;
chan = ctx->device->dma.chan_mem2hash;
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
ctx->device->dma.sg_len, DMA_TO_DEVICE);
}
static int hash_dma_write(struct hash_ctx *ctx,
struct scatterlist *sg, int len)
{
int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
if (error) {
dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
"failed", __func__);
return error;
}
return len;
}
/**
* get_empty_message_digest - Returns a pre-calculated digest for
* the empty message.
* @device_data: Structure for the hash device.
* @zero_hash: Buffer to return the empty message digest.
* @zero_hash_size: Hash size of the empty message digest.
* @zero_digest: True if zero_digest returned.
*/
static int get_empty_message_digest(
struct hash_device_data *device_data,
u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
{
int ret = 0;
struct hash_ctx *ctx = device_data->current_ctx;
*zero_digest = false;
/**
* Caller responsible for ctx != NULL.
*/
if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hash_sha1[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 ==
ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hash_sha256[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "[%s] "
"Incorrect algorithm!"
, __func__);
ret = -EINVAL;
goto out;
}
} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
if (!ctx->keylen) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha1[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha256[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "[%s] "
"Incorrect algorithm!"
, __func__);
ret = -EINVAL;
goto out;
}
} else {
dev_dbg(device_data->dev, "[%s] Continue hash "
"calculation, since hmac key avalable",
__func__);
}
}
out:
return ret;
}
/**
* hash_disable_power - Request to disable power and clock.
* @device_data: Structure for the hash device.
* @save_device_state: If true, saves the current hw state.
*
* This function request for disabling power (regulator) and clock,
* and could also save current hw state.
*/
static int hash_disable_power(
struct hash_device_data *device_data,
bool save_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state)
goto out;
if (save_device_state) {
hash_save_state(device_data,
&device_data->state);
device_data->restore_dev_state = true;
}
clk_disable(device_data->clk);
ret = regulator_disable(device_data->regulator);
if (ret)
dev_err(dev, "[%s] regulator_disable() failed!", __func__);
device_data->power_state = false;
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_enable_power - Request to enable power and clock.
* @device_data: Structure for the hash device.
* @restore_device_state: If true, restores a previous saved hw state.
*
* This function request for enabling power (regulator) and clock,
* and could also restore a previously saved hw state.
*/
static int hash_enable_power(
struct hash_device_data *device_data,
bool restore_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state) {
ret = regulator_enable(device_data->regulator);
if (ret) {
dev_err(dev, "[%s]: regulator_enable() failed!",
__func__);
goto out;
}
ret = clk_enable(device_data->clk);
if (ret) {
dev_err(dev, "[%s]: clk_enable() failed!",
__func__);
ret = regulator_disable(
device_data->regulator);
goto out;
}
device_data->power_state = true;
}
if (device_data->restore_dev_state) {
if (restore_device_state) {
device_data->restore_dev_state = false;
hash_resume_state(device_data,
&device_data->state);
}
}
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_get_device_data - Checks for an available hash device and return it.
* @hash_ctx: Structure for the hash context.
* @device_data: Structure for the hash device.
*
* This function check for an available hash device and return it to
* the caller.
* Note! Caller need to release the device, calling up().
*/
static int hash_get_device_data(struct hash_ctx *ctx,
struct hash_device_data **device_data)
{
int ret;
struct klist_iter device_iterator;
struct klist_node *device_node;
struct hash_device_data *local_device_data = NULL;
/* Wait until a device is available */
ret = down_interruptible(&driver_data.device_allocation);
if (ret)
return ret; /* Interrupted */
/* Select a device */
klist_iter_init(&driver_data.device_list, &device_iterator);
device_node = klist_next(&device_iterator);
while (device_node) {
local_device_data = container_of(device_node,
struct hash_device_data, list_node);
spin_lock(&local_device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (local_device_data->current_ctx) {
device_node = klist_next(&device_iterator);
} else {
local_device_data->current_ctx = ctx;
ctx->device = local_device_data;
spin_unlock(&local_device_data->ctx_lock);
break;
}
spin_unlock(&local_device_data->ctx_lock);
}
klist_iter_exit(&device_iterator);
if (!device_node) {
/**
* No free device found.
* Since we allocated a device with down_interruptible, this
* should not be able to happen.
* Number of available devices, which are contained in
* device_allocation, is therefore decremented by not doing
* an up(device_allocation).
*/
return -EBUSY;
}
*device_data = local_device_data;
return 0;
}
/**
* hash_hw_write_key - Writes the key to the hardware registries.
*
* @device_data: Structure for the hash device.
* @key: Key to be written.
* @keylen: The lengt of the key.
*
* Note! This function DOES NOT write to the NBLW registry, even though
* specified in the the hw design spec. Either due to incorrect info in the
* spec or due to a bug in the hw.
*/
static void hash_hw_write_key(struct hash_device_data *device_data,
const u8 *key, unsigned int keylen)
{
u32 word = 0;
int nwords = 1;
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
while (keylen >= 4) {
u32 *key_word = (u32 *)key;
HASH_SET_DIN(key_word, nwords);
keylen -= 4;
key += 4;
}
/* Take care of the remaining bytes in the last word */
if (keylen) {
word = 0;
while (keylen) {
word |= (key[keylen - 1] << (8 * (keylen - 1)));
keylen--;
}
HASH_SET_DIN(&word, nwords);
}
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
HASH_SET_DCAL;
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* init_hash_hw - Initialise the hash hardware for a new calculation.
* @device_data: Structure for the hash device.
* @ctx: The hash context.
*
* This function will enable the bits needed to clear and start a new
* calculation.
*/
static int init_hash_hw(struct hash_device_data *device_data,
struct hash_ctx *ctx)
{
int ret = 0;
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev, "[%s] hash_setconfiguration() "
"failed!", __func__);
return ret;
}
hash_begin(device_data, ctx);
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
return ret;
}
/**
* hash_get_nents - Return number of entries (nents) in scatterlist (sg).
*
* @sg: Scatterlist.
* @size: Size in bytes.
* @aligned: True if sg data aligned to work in DMA mode.
*
*/
static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
{
int nents = 0;
bool aligned_data = true;
while (size > 0 && sg) {
nents++;
size -= sg->length;
/* hash_set_dma_transfer will align last nent */
if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
|| (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
size > 0))
aligned_data = false;
sg = sg_next(sg);
}
if (aligned)
*aligned = aligned_data;
if (size != 0)
return -EFAULT;
return nents;
}
/**
* hash_dma_valid_data - checks for dma valid sg data.
* @sg: Scatterlist.
* @datasize: Datasize in bytes.
*
* NOTE! This function checks for dma valid sg data, since dma
* only accept datasizes of even wordsize.
*/
static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
{
bool aligned;
/* Need to include at least one nent, else error */
if (hash_get_nents(sg, datasize, &aligned) < 1)
return false;
return aligned;
}
/**
* hash_init - Common hash init function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*
* Initialize structures.
*/
static int hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (!ctx->key)
ctx->keylen = 0;
memset(&req_ctx->state, 0, sizeof(struct hash_state));
req_ctx->updated = 0;
if (hash_mode == HASH_MODE_DMA) {
if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
req_ctx->dma_mode = false; /* Don't use DMA */
pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
"to CPU mode for data size < %d",
__func__, HASH_DMA_ALIGN_SIZE);
} else {
if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
hash_dma_valid_data(req->src,
req->nbytes)) {
req_ctx->dma_mode = true;
} else {
req_ctx->dma_mode = false;
pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
" CPU mode for datalength < %d"
" or non-aligned data, except "
"in last nent", __func__,
HASH_DMA_PERFORMANCE_MIN_SIZE);
}
}
}
return 0;
}
/**
* hash_processblock - This function processes a single block of 512 bits (64
* bytes), word aligned, starting at message.
* @device_data: Structure for the hash device.
* @message: Block (512 bits) of message to be written to
* the HASH hardware.
*
*/
static void hash_processblock(
struct hash_device_data *device_data,
const u32 *message, int length)
{
int len = length / HASH_BYTES_PER_WORD;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/*
* Write message data to the HASH_DIN register.
*/
HASH_SET_DIN(message, len);
}
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message.
* @index_bytes: The number of bytes in the last message.
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes)
{
int nwords = 1;
/*
* Clear hash str register, only clear NBLW
* since DCAL will be reset by hardware.
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/* Main loop */
while (index_bytes >= 4) {
HASH_SET_DIN(message, nwords);
index_bytes -= 4;
message++;
}
if (index_bytes)
HASH_SET_DIN(message, nwords);
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
HASH_SET_NBLW(index_bytes * 8);
dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
readl_relaxed(&device_data->base->din),
(int)(readl_relaxed(&device_data->base->str) &
HASH_STR_NBLW_MASK));
HASH_SET_DCAL;
dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
__func__, readl_relaxed(&device_data->base->din),
(int)(readl_relaxed(&device_data->base->str) &
HASH_STR_NBLW_MASK));
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* hash_incrementlength - Increments the length of the current message.
* @ctx: Hash context
* @incr: Length of message processed already
*
* Overflow cannot occur, because conditions for overflow are checked in
* hash_hw_update.
*/
static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
{
ctx->state.length.low_word += incr;
/* Check for wrap-around */
if (ctx->state.length.low_word < incr)
ctx->state.length.high_word++;
}
/**
* hash_setconfiguration - Sets the required configuration for the hash
* hardware.
* @device_data: Structure for the hash device.
* @config: Pointer to a configuration structure.
*/
int hash_setconfiguration(struct hash_device_data *device_data,
struct hash_config *config)
{
int ret = 0;
if (config->algorithm != HASH_ALGO_SHA1 &&
config->algorithm != HASH_ALGO_SHA256)
return -EPERM;
/*
* DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
* to be written to HASH_DIN is considered as 32 bits.
*/
HASH_SET_DATA_FORMAT(config->data_format);
/*
* ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
*/
switch (config->algorithm) {
case HASH_ALGO_SHA1:
HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
case HASH_ALGO_SHA256:
HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
default:
dev_err(device_data->dev, "[%s] Incorrect algorithm.",
__func__);
return -EPERM;
}
/*
* MODE bit. This bit selects between HASH or HMAC mode for the
* selected algorithm. 0b0 = HASH and 0b1 = HMAC.
*/
if (HASH_OPER_MODE_HASH == config->oper_mode)
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_MODE_MASK);
else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_MODE_MASK);
if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
/* Truncate key to blocksize */
dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
} else {
dev_dbg(device_data->dev, "[%s] LKEY cleared",
__func__);
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
}
} else { /* Wrong hash mode */
ret = -EPERM;
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
__func__);
}
return ret;
}
/**
* hash_begin - This routine resets some globals and initializes the hash
* hardware.
* @device_data: Structure for the hash device.
* @ctx: Hash context.
*/
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
{
/* HW and SW initializations */
/* Note: there is no need to initialize buffer and digest members */
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
}
int hash_process_data(
struct hash_device_data *device_data,
struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
{
int ret = 0;
u32 count;
do {
if ((*index + msg_length) < HASH_BLOCK_SIZE) {
for (count = 0; count < msg_length; count++) {
buffer[*index + count] =
*(data_buffer + count);
}
*index += msg_length;
msg_length = 0;
} else {
if (req_ctx->updated) {
ret = hash_resume_state(device_data,
&device_data->state);
memmove(req_ctx->state.buffer,
device_data->state.buffer,
HASH_BLOCK_SIZE / sizeof(u32));
if (ret) {
dev_err(device_data->dev, "[%s] "
"hash_resume_state()"
" failed!", __func__);
goto out;
}
} else {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev, "[%s] "
"init_hash_hw()"
" failed!", __func__);
goto out;
}
req_ctx->updated = 1;
}
/*
* If 'data_buffer' is four byte aligned and
* local buffer does not have any data, we can
* write data directly from 'data_buffer' to
* HW peripheral, otherwise we first copy data
* to a local buffer
*/
if ((0 == (((u32)data_buffer) % 4))
&& (0 == *index))
hash_processblock(device_data,
(const u32 *)
data_buffer, HASH_BLOCK_SIZE);
else {
for (count = 0; count <
(u32)(HASH_BLOCK_SIZE -
*index);
count++) {
buffer[*index + count] =
*(data_buffer + count);
}
hash_processblock(device_data,
(const u32 *)buffer,
HASH_BLOCK_SIZE);
}
hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
data_buffer += (HASH_BLOCK_SIZE - *index);
msg_length -= (HASH_BLOCK_SIZE - *index);
*index = 0;
ret = hash_save_state(device_data,
&device_data->state);
memmove(device_data->state.buffer,
req_ctx->state.buffer,
HASH_BLOCK_SIZE / sizeof(u32));
if (ret) {
dev_err(device_data->dev, "[%s] "
"hash_save_state()"
" failed!", __func__);
goto out;
}
}
} while (msg_length != 0);
out:
return ret;
}
/**
* hash_dma_final - The hash dma final function for SHA1/SHA256.
* @req: The hash request for the job.
*/
static int hash_dma_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
int bytes_written = 0;
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev, "[%s] hash_resume_state() "
"failed!", __func__);
goto out;
}
}
if (!req_ctx->updated) {
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev, "[%s] "
"hash_setconfiguration() failed!",
__func__);
goto out;
}
/* Enable DMA input */
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
} else {
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_PRIVN_MASK);
}
HASH_INITIALIZE;
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
/* Number of bits in last word = (nbytes * 8) % 32 */
HASH_SET_NBLW((req->nbytes * 8) % 32);
req_ctx->updated = 1;
}
/* Store the nents in the dma struct. */
ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
if (!ctx->device->dma.nents) {
dev_err(device_data->dev, "[%s] "
"ctx->device->dma.nents = 0", __func__);
goto out;
}
bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
if (bytes_written != req->nbytes) {
dev_err(device_data->dev, "[%s] "
"hash_dma_write() failed!", __func__);
goto out;
}
wait_for_completion(&ctx->device->dma.complete);
hash_dma_done(ctx);
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_final - The final hash calculation function
* @req: The hash request for the job.
*/
int hash_hw_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev, "[%s] hash_resume_state() "
"failed!", __func__);
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen == 0) {
u8 zero_hash[SHA256_DIGEST_SIZE];
u32 zero_hash_size = 0;
bool zero_digest = false;
/**
* Use a pre-calculated empty message digest
* (workaround since hw return zeroes, hw bug!?)
*/
ret = get_empty_message_digest(device_data, &zero_hash[0],
&zero_hash_size, &zero_digest);
if (!ret && likely(zero_hash_size == ctx->digestsize) &&
zero_digest) {
memcpy(req->result, &zero_hash[0], ctx->digestsize);
goto out;
} else if (!ret && !zero_digest) {
dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
"key, continue...", __func__);
} else {
dev_err(device_data->dev, "[%s] ret=%d, or wrong "
"digest size? %s", __func__, ret,
(zero_hash_size == ctx->digestsize) ?
"true" : "false");
/* Return error */
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen > 0) {
dev_err(device_data->dev, "[%s] Empty message with "
"keylength > 0, NOT supported.", __func__);
goto out;
}
if (!req_ctx->updated) {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev, "[%s] init_hash_hw() "
"failed!", __func__);
goto out;
}
}
if (req_ctx->state.index) {
hash_messagepad(device_data, req_ctx->state.buffer,
req_ctx->state.index);
} else {
HASH_SET_DCAL;
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
}
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_update - Updates current HASH computation hashing another part of
* the message.
* @req: Byte array containing the message to be hashed (caller
* allocated).
*/
int hash_hw_update(struct ahash_request *req)
{
int ret = 0;
u8 index = 0;
u8 *buffer;
struct hash_device_data *device_data;
u8 *data_buffer;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_hash_walk walk;
int msg_length = crypto_hash_walk_first(req, &walk);
/* Empty message ("") is correct indata */
if (msg_length == 0)
return ret;
index = req_ctx->state.index;
buffer = (u8 *)req_ctx->state.buffer;
/* Check if ctx->state.length + msg_length
overflows */
if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
HASH_HIGH_WORD_MAX_VAL ==
req_ctx->state.length.high_word) {
pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
__func__);
return -EPERM;
}
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
/* Main loop */
while (0 != msg_length) {
data_buffer = walk.data;
ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
data_buffer, buffer, &index);
if (ret) {
dev_err(device_data->dev, "[%s] hash_internal_hw_"
"update() failed!", __func__);
goto out;
}
msg_length = crypto_hash_walk_done(&walk, 0);
}
req_ctx->state.index = index;
dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
__func__, req_ctx->state.index,
req_ctx->state.bit_index);
out:
release_hash_device(device_data);
return ret;
}
/**
* hash_resume_state - Function that resumes the state of an calculation.
* @device_data: Pointer to the device structure.
* @device_state: The state to be restored in the hash hardware
*/
int hash_resume_state(struct hash_device_data *device_data,
const struct hash_state *device_state)
{
u32 temp_cr;
s32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
__func__);
return -EPERM;
}
/* Check correctness of index and length members */
if (device_state->index > HASH_BLOCK_SIZE
|| (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
__func__);
return -EPERM;
}
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
temp_cr = device_state->temp_cr;
writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
if (device_data->base->cr & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
writel_relaxed(device_state->csr[count],
&device_data->base->csrx[count]);
}
writel_relaxed(device_state->csfull, &device_data->base->csfull);
writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
writel_relaxed(device_state->str_reg, &device_data->base->str);
writel_relaxed(temp_cr, &device_data->base->cr);
return 0;
}
/**
* hash_save_state - Function that saves the state of hardware.
* @device_data: Pointer to the device structure.
* @device_state: The strucure where the hardware state should be saved.
*/
int hash_save_state(struct hash_device_data *device_data,
struct hash_state *device_state)
{
u32 temp_cr;
u32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
__func__);
return -ENOTSUPP;
}
/* Write dummy value to force digest intermediate calculation. This
* actually makes sure that there isn't any ongoing calculation in the
* hardware.
*/
while (device_data->base->str & HASH_STR_DCAL_MASK)
cpu_relax();
temp_cr = readl_relaxed(&device_data->base->cr);
device_state->str_reg = readl_relaxed(&device_data->base->str);
device_state->din_reg = readl_relaxed(&device_data->base->din);
if (device_data->base->cr & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
device_state->csr[count] =
readl_relaxed(&device_data->base->csrx[count]);
}
device_state->csfull = readl_relaxed(&device_data->base->csfull);
device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
device_state->temp_cr = temp_cr;
return 0;
}
/**
* hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
* @device_data:
*
*/
int hash_check_hw(struct hash_device_data *device_data)
{
/* Checking Peripheral Ids */
if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
&& HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
&& HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
&& HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
&& HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
&& HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
&& HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
&& HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
) {
return 0;
}
dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
__func__);
return -ENOTSUPP;
}
/**
* hash_get_digest - Gets the digest.
* @device_data: Pointer to the device structure.
* @digest: User allocated byte array for the calculated digest.
* @algorithm: The algorithm in use.
*/
void hash_get_digest(struct hash_device_data *device_data,
u8 *digest, int algorithm)
{
u32 temp_hx_val, count;
int loop_ctr;
if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
__func__, algorithm);
return;
}
if (algorithm == HASH_ALGO_SHA1)
loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
else
loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
__func__, (u32) digest);
/* Copy result into digest array */
for (count = 0; count < loop_ctr; count++) {
temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
}
}
/**
* hash_update - The hash update function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_update(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
ret = hash_hw_update(req);
/* Skip update for DMA, all data will be passed to DMA in final */
if (ret) {
pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
__func__);
}
return ret;
}
/**
* hash_final - The hash final function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_final(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
ret = hash_dma_final(req);
else
ret = hash_hw_final(req);
if (ret) {
pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
__func__);
}
return ret;
}
static int hash_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen, int alg)
{
int ret = 0;
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
/**
* Freed in final.
*/
ctx->key = kmalloc(keylen, GFP_KERNEL);
if (!ctx->key) {
pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
"for %d\n", __func__, alg);
return -ENOMEM;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return ret;
}
static int ahash_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA1_DIGEST_SIZE;
return hash_init(req);
}
static int ahash_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA256_DIGEST_SIZE;
return hash_init(req);
}
static int ahash_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int ahash_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA1_DIGEST_SIZE;
return hash_init(req);
}
static int hmac_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA256_DIGEST_SIZE;
return hash_init(req);
}
static int hmac_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha1_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
}
static int hmac_sha256_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
}
struct hash_algo_template {
struct hash_config conf;
struct ahash_alg hash;
};
static int hash_cra_init(struct crypto_tfm *tfm)
{
struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct hash_algo_template *hash_alg;
hash_alg = container_of(__crypto_ahash_alg(alg),
struct hash_algo_template,
hash);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct hash_req_ctx));
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = hash_alg->conf.algorithm;
ctx->config.oper_mode = hash_alg->conf.oper_mode;
ctx->digestsize = hash_alg->hash.halg.digestsize;
return 0;
}
static struct hash_algo_template hash_algs[] = {
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha1_digest,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ux500",
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha256_digest,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ux500",
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha1_digest,
.setkey = hmac_sha1_setkey,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-ux500",
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha256_digest,
.setkey = hmac_sha256_setkey,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-ux500",
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_type = &crypto_ahash_type,
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
}
};
/**
* hash_algs_register_all -
*/
static int ahash_algs_register_all(struct hash_device_data *device_data)
{
int ret;
int i;
int count;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
ret = crypto_register_ahash(&hash_algs[i].hash);
if (ret) {
count = i;
dev_err(device_data->dev, "[%s] alg registration failed",
hash_algs[i].hash.halg.base.cra_driver_name);
goto unreg;
}
}
return 0;
unreg:
for (i = 0; i < count; i++)
crypto_unregister_ahash(&hash_algs[i].hash);
return ret;
}
/**
* hash_algs_unregister_all -
*/
static void ahash_algs_unregister_all(struct hash_device_data *device_data)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
crypto_unregister_ahash(&hash_algs[i].hash);
}
/**
* ux500_hash_probe - Function that probes the hash hardware.
* @pdev: The platform device.
*/
static int ux500_hash_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res = NULL;
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
if (!device_data) {
dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
ret = -ENOMEM;
goto out;
}
device_data->dev = dev;
device_data->current_ctx = NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
ret = -ENODEV;
goto out_kfree;
}
res = request_mem_region(res->start, resource_size(res), pdev->name);
if (res == NULL) {
dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
ret = -EBUSY;
goto out_kfree;
}
device_data->base = ioremap(res->start, resource_size(res));
if (!device_data->base) {
dev_err(dev, "[%s] ioremap() failed!",
__func__);
ret = -ENOMEM;
goto out_free_mem;
}
spin_lock_init(&device_data->ctx_lock);
spin_lock_init(&device_data->power_state_lock);
/* Enable power for HASH1 hardware block */
device_data->regulator = regulator_get(dev, "v-ape");
if (IS_ERR(device_data->regulator)) {
dev_err(dev, "[%s] regulator_get() failed!", __func__);
ret = PTR_ERR(device_data->regulator);
device_data->regulator = NULL;
goto out_unmap;
}
/* Enable the clock for HASH1 hardware block */
device_data->clk = clk_get(dev, NULL);
if (IS_ERR(device_data->clk)) {
dev_err(dev, "[%s] clk_get() failed!", __func__);
ret = PTR_ERR(device_data->clk);
goto out_regulator;
}
/* Enable device power (and clock) */
ret = hash_enable_power(device_data, false);
if (ret) {
dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
goto out_clk;
}
ret = hash_check_hw(device_data);
if (ret) {
dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
goto out_power;
}
if (hash_mode == HASH_MODE_DMA)
hash_dma_setup_channel(device_data, dev);
platform_set_drvdata(pdev, device_data);
/* Put the new device into the device list... */
klist_add_tail(&device_data->list_node, &driver_data.device_list);
/* ... and signal that a new device is available. */
up(&driver_data.device_allocation);
ret = ahash_algs_register_all(device_data);
if (ret) {
dev_err(dev, "[%s] ahash_algs_register_all() "
"failed!", __func__);
goto out_power;
}
dev_info(dev, "[%s] successfully probed\n", __func__);
return 0;
out_power:
hash_disable_power(device_data, false);
out_clk:
clk_put(device_data->clk);
out_regulator:
regulator_put(device_data->regulator);
out_unmap:
iounmap(device_data->base);
out_free_mem:
release_mem_region(res->start, resource_size(res));
out_kfree:
kfree(device_data);
out:
return ret;
}
/**
* ux500_hash_remove - Function that removes the hash device from the platform.
* @pdev: The platform device.
*/
static int ux500_hash_remove(struct platform_device *pdev)
{
struct resource *res;
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(dev, "[%s]: platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
/* Try to decrease the number of available devices. */
if (down_trylock(&driver_data.device_allocation))
return -EBUSY;
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (device_data->current_ctx) {
/* The device is busy */
spin_unlock(&device_data->ctx_lock);
/* Return the device to the pool. */
up(&driver_data.device_allocation);
return -EBUSY;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
if (hash_disable_power(device_data, false))
dev_err(dev, "[%s]: hash_disable_power() failed",
__func__);
clk_put(device_data->clk);
regulator_put(device_data->regulator);
iounmap(device_data->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
kfree(device_data);
return 0;
}
/**
* ux500_hash_shutdown - Function that shutdown the hash device.
* @pdev: The platform device
*/
static void ux500_hash_shutdown(struct platform_device *pdev)
{
struct resource *res = NULL;
struct hash_device_data *device_data;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
__func__);
return;
}
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (!device_data->current_ctx) {
if (down_trylock(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
"Shutting down anyway...", __func__);
/**
* (Allocate the device)
* Need to set this to non-null (dummy) value,
* to avoid usage if context switching.
*/
device_data->current_ctx++;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
iounmap(device_data->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
if (hash_disable_power(device_data, false))
dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
__func__);
}
/**
* ux500_hash_suspend - Function that suspends the hash device.
* @pdev: The platform device.
* @state: -
*/
static int ux500_hash_suspend(struct platform_device *pdev, pm_message_t state)
{
int ret;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (!device_data->current_ctx)
device_data->current_ctx++;
spin_unlock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx) {
if (down_interruptible(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "[%s]: down_interruptible() "
"failed", __func__);
ret = hash_disable_power(device_data, false);
} else
ret = hash_disable_power(device_data, true);
if (ret)
dev_err(&pdev->dev, "[%s]: hash_disable_power()", __func__);
return ret;
}
/**
* ux500_hash_resume - Function that resume the hash device.
* @pdev: The platform device.
*/
static int ux500_hash_resume(struct platform_device *pdev)
{
int ret = 0;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
__func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx)
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
if (!device_data->current_ctx)
up(&driver_data.device_allocation);
else
ret = hash_enable_power(device_data, true);
if (ret)
dev_err(&pdev->dev, "[%s]: hash_enable_power() failed!",
__func__);
return ret;
}
static struct platform_driver hash_driver = {
.probe = ux500_hash_probe,
.remove = ux500_hash_remove,
.shutdown = ux500_hash_shutdown,
.suspend = ux500_hash_suspend,
.resume = ux500_hash_resume,
.driver = {
.owner = THIS_MODULE,
.name = "hash1",
}
};
/**
* ux500_hash_mod_init - The kernel module init function.
*/
static int __init ux500_hash_mod_init(void)
{
klist_init(&driver_data.device_list, NULL, NULL);
/* Initialize the semaphore to 0 devices (locked state) */
sema_init(&driver_data.device_allocation, 0);
return platform_driver_register(&hash_driver);
}
/**
* ux500_hash_mod_fini - The kernel module exit function.
*/
static void __exit ux500_hash_mod_fini(void)
{
platform_driver_unregister(&hash_driver);
return;
}
module_init(ux500_hash_mod_init);
module_exit(ux500_hash_mod_fini);
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("sha1-all");
MODULE_ALIAS("sha256-all");
MODULE_ALIAS("hmac-sha1-all");
MODULE_ALIAS("hmac-sha256-all");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment