Commit 13a9930d authored by Wolfram Sang's avatar Wolfram Sang Committed by Greg Kroah-Hartman

staging: ks7010: add driver from Nanonote extra-repository

See the TODO for details where this driver came from. Only a few minor
changes were made to make the driver suitable for staging:

* updated Kconfig help text and dependencies
* added TODO
* removed two __DATE__ and __TIME__ printouts to allow reproducible builds
* added to staging main Kconfig + Makefile

Tested on a Renesas Salvator-X board with a Spectec SDW-823 card. I
could connect to a WPA-protected network.
Signed-off-by: default avatarWolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent e3c9078a
...@@ -102,4 +102,6 @@ source "drivers/staging/most/Kconfig" ...@@ -102,4 +102,6 @@ source "drivers/staging/most/Kconfig"
source "drivers/staging/i4l/Kconfig" source "drivers/staging/i4l/Kconfig"
source "drivers/staging/ks7010/Kconfig"
endif # STAGING endif # STAGING
...@@ -40,3 +40,4 @@ obj-$(CONFIG_FSL_MC_BUS) += fsl-mc/ ...@@ -40,3 +40,4 @@ obj-$(CONFIG_FSL_MC_BUS) += fsl-mc/
obj-$(CONFIG_WILC1000) += wilc1000/ obj-$(CONFIG_WILC1000) += wilc1000/
obj-$(CONFIG_MOST) += most/ obj-$(CONFIG_MOST) += most/
obj-$(CONFIG_ISDN_I4L) += i4l/ obj-$(CONFIG_ISDN_I4L) += i4l/
obj-$(CONFIG_KS7010) += ks7010/
config KS7010
tristate "KeyStream KS7010 SDIO support"
depends on MMC && WIRELESS
select WIRELESS_EXT
select WEXT_PRIV
help
This is a driver for KeyStream KS7010 based SDIO WIFI cards. It is
found on at least later Spectec SDW-821 (FCC-ID "S2Y-WLAN-11G-K" only,
sadly not FCC-ID "S2Y-WLAN-11B-G") and Spectec SDW-823 microSD cards.
obj-$(CONFIG_KS7010) += ks7010.o
ccflags-y += -D_SDIO_ -DKS_WLAN_DEBUG=0
ks7010-y := michael_mic.o ks_hostif.o ks_wlan_net.o ks_debug.o \
ks7010_sdio.o ks7010_config.o
KS7010 Linux driver
===================
This driver is based on source code from the Ben Nanonote extra repository [1]
which is based on the original v007 release from Renesas [2]. Some more
background info about the chipset can be found here [3] and here [4]. Thank
you to all which already participated in cleaning up the driver so far!
[1] http://projects.qi-hardware.com/index.php/p/openwrt-packages/source/tree/master/ks7010/src
[2] http://downloads.qi-hardware.com/software/ks7010_sdio_v007.tar.bz2
[3] http://en.qi-hardware.com/wiki/Ben_NanoNote_Wi-Fi
[4] https://wikidevi.com/wiki/Renesas
TODO
----
First a few words what not to do (at least not blindly):
- don't be overly strict with the 80 char limit. Only if it REALLY makes the
code more readable
- No '#if 0/1' removal unless the surrounding code is understood and removal is
really OK. There might be some hints hidden there.
Now the TODOs:
- fix codechecker warnings (checkpatch, sparse, smatch). But PLEASE make sure
that you are not only silencing the warning but really fixing code. You
should understand the change you submit.
- drop using a config file and use an upstream technique for configuration
- fix the 'card removal' event when card is inserted when booting
- driver crashes when removing the card
- check what other upstream wireless mechanisms can be used instead of the
custom ones here
Please send any patches to:
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Wolfram Sang <wsa@the-dreams.de>
Linux Driver Project Developer List <driverdev-devel@linuxdriverproject.org>
/*
*
* eap_packet.h
* $Id: eap_packet.h 991 2009-09-14 01:38:58Z sekine $
*
*/
#ifndef EAP_PACKET_H
#define EAP_PACKET_H
#define WBIT(n) (1 << (n))
#ifndef ETH_ALEN
#define ETH_ALEN 6
#endif
struct ether_hdr {
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
unsigned char h_source[ETH_ALEN]; /* source ether addr */
unsigned char h_dest_snap;
unsigned char h_source_snap;
unsigned char h_command;
unsigned char h_vendor_id[3];
unsigned short h_proto; /* packet type ID field */
#define ETHER_PROTOCOL_TYPE_EAP 0x888e
#define ETHER_PROTOCOL_TYPE_IP 0x0800
#define ETHER_PROTOCOL_TYPE_ARP 0x0806
/* followed by length octets of data */
} __attribute__ ((packed));
struct ieee802_1x_hdr {
unsigned char version;
unsigned char type;
unsigned short length;
/* followed by length octets of data */
} __attribute__ ((packed));
#define EAPOL_VERSION 2
enum { IEEE802_1X_TYPE_EAP_PACKET = 0,
IEEE802_1X_TYPE_EAPOL_START = 1,
IEEE802_1X_TYPE_EAPOL_LOGOFF = 2,
IEEE802_1X_TYPE_EAPOL_KEY = 3,
IEEE802_1X_TYPE_EAPOL_ENCAPSULATED_ASF_ALERT = 4
};
enum { EAPOL_KEY_TYPE_RC4 = 1, EAPOL_KEY_TYPE_RSN = 2,
EAPOL_KEY_TYPE_WPA = 254 };
#define IEEE8021X_REPLAY_COUNTER_LEN 8
#define IEEE8021X_KEY_SIGN_LEN 16
#define IEEE8021X_KEY_IV_LEN 16
#define IEEE8021X_KEY_INDEX_FLAG 0x80
#define IEEE8021X_KEY_INDEX_MASK 0x03
struct ieee802_1x_eapol_key {
unsigned char type;
unsigned short key_length;
/* does not repeat within the life of the keying material used to
* encrypt the Key field; 64-bit NTP timestamp MAY be used here */
unsigned char replay_counter[IEEE8021X_REPLAY_COUNTER_LEN];
unsigned char key_iv[IEEE8021X_KEY_IV_LEN]; /* cryptographically random number */
unsigned char key_index; /* key flag in the most significant bit:
* 0 = broadcast (default key),
* 1 = unicast (key mapping key); key index is in the
* 7 least significant bits */
/* HMAC-MD5 message integrity check computed with MS-MPPE-Send-Key as
* the key */
unsigned char key_signature[IEEE8021X_KEY_SIGN_LEN];
/* followed by key: if packet body length = 44 + key length, then the
* key field (of key_length bytes) contains the key in encrypted form;
* if packet body length = 44, key field is absent and key_length
* represents the number of least significant octets from
* MS-MPPE-Send-Key attribute to be used as the keying material;
* RC4 key used in encryption = Key-IV + MS-MPPE-Recv-Key */
} __attribute__ ((packed));
#define WPA_NONCE_LEN 32
#define WPA_REPLAY_COUNTER_LEN 8
struct wpa_eapol_key {
unsigned char type;
unsigned short key_info;
unsigned short key_length;
unsigned char replay_counter[WPA_REPLAY_COUNTER_LEN];
unsigned char key_nonce[WPA_NONCE_LEN];
unsigned char key_iv[16];
unsigned char key_rsc[8];
unsigned char key_id[8]; /* Reserved in IEEE 802.11i/RSN */
unsigned char key_mic[16];
unsigned short key_data_length;
/* followed by key_data_length bytes of key_data */
} __attribute__ ((packed));
#define WPA_KEY_INFO_TYPE_MASK (WBIT(0) | WBIT(1) | WBIT(2))
#define WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 WBIT(0)
#define WPA_KEY_INFO_TYPE_HMAC_SHA1_AES WBIT(1)
#define WPA_KEY_INFO_KEY_TYPE WBIT(3) /* 1 = Pairwise, 0 = Group key */
/* bit4..5 is used in WPA, but is reserved in IEEE 802.11i/RSN */
#define WPA_KEY_INFO_KEY_INDEX_MASK (WBIT(4) | WBIT(5))
#define WPA_KEY_INFO_KEY_INDEX_SHIFT 4
#define WPA_KEY_INFO_INSTALL WBIT(6) /* pairwise */
#define WPA_KEY_INFO_TXRX WBIT(6) /* group */
#define WPA_KEY_INFO_ACK WBIT(7)
#define WPA_KEY_INFO_MIC WBIT(8)
#define WPA_KEY_INFO_SECURE WBIT(9)
#define WPA_KEY_INFO_ERROR WBIT(10)
#define WPA_KEY_INFO_REQUEST WBIT(11)
#define WPA_KEY_INFO_ENCR_KEY_DATA WBIT(12) /* IEEE 802.11i/RSN only */
#define WPA_CAPABILITY_PREAUTH WBIT(0)
#define GENERIC_INFO_ELEM 0xdd
#define RSN_INFO_ELEM 0x30
enum {
REASON_UNSPECIFIED = 1,
REASON_DEAUTH_LEAVING = 3,
REASON_INVALID_IE = 13,
REASON_MICHAEL_MIC_FAILURE = 14,
REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
REASON_GROUP_KEY_UPDATE_TIMEOUT = 16,
REASON_IE_IN_4WAY_DIFFERS = 17,
REASON_GROUP_CIPHER_NOT_VALID = 18,
REASON_PAIRWISE_CIPHER_NOT_VALID = 19,
REASON_AKMP_NOT_VALID = 20,
REASON_UNSUPPORTED_RSN_IE_VERSION = 21,
REASON_INVALID_RSN_IE_CAPAB = 22,
REASON_IEEE_802_1X_AUTH_FAILED = 23,
REASON_CIPHER_SUITE_REJECTED = 24
};
#endif /* EAP_PACKET_H */
#include <linux/kernel.h>
#include <linux/mmc/sdio_func.h>
#include "ks_wlan.h"
#include "ks_hostif.h"
#include "ks_wlan_ioctl.h"
#include "ks_debug.h"
static int wep_on_off;
#define WEP_OFF 0
#define WEP_ON_64BIT 1
#define WEP_ON_128BIT 2
static int wep_type;
#define WEP_KEY_CHARACTER 0
#define WEP_KEY_HEX 1
static
void analyze_character_wep_key(struct ks_wlan_parameter *param, int wep_key_index, char *value)
{
int i;
unsigned char wep_key[26], key_length;
key_length = (wep_on_off == WEP_ON_64BIT) ? 5 : 13;
/* 64bit key_length = 5; 128bit key_length = 13; */
for (i=0; i<key_length; i++) {
wep_key[i] = value[i];
}
if(wep_key_index < 0 || wep_key_index > 3)
return;
param->wep_key[wep_key_index].size = key_length;
for (i=0; i<(param->wep_key[wep_key_index].size); i++) {
param->wep_key[wep_key_index].val[i] = wep_key[i];
}
}
static
void analyze_hex_wep_key(struct ks_wlan_parameter *param, int wep_key_index, char *value)
{
unsigned char wep_end[26], i, j, key_length;
key_length = (wep_on_off == WEP_ON_64BIT) ? 10 : 26;
/* 64bit key_length = 10; 128bit key_length = 26; */
for (i=0; i<key_length; i++) {
wep_end[i] = value[i];
if (i % 2) {
/* Odd */
for (j=0x00; j<0x10; j++) {
if (j<0x0a) {
if (wep_end[i] == j+0x30)
wep_end[i] = j;
} else {
if ((wep_end[i] == j+0x37) | (wep_end[i] == j+0x57))
wep_end[i] = j;
}
}
} else {
/* Even */
for (j=0x00; j<0x10; j++) {
if (j<0x0a) {
if (wep_end[i] == j+0x30) {
wep_end[i] = j*16;
}
} else {
if ((wep_end[i] == j+0x37) | (wep_end[i] == j+0x57))
wep_end[i] = j*16;
}
}
}
}
for (i=0; i<key_length/2; i++) {
wep_end[i] = wep_end[i*2] + wep_end[(i*2)+1];
}
if(wep_key_index < 0 || wep_key_index > 3)
return ;
param->wep_key[wep_key_index].size = key_length/2;
for (i=0; i<(param->wep_key[wep_key_index].size); i++) {
param->wep_key[wep_key_index].val[i] = wep_end[i];
}
}
static
int rate_set_configuration(ks_wlan_private *priv, char *value)
{
int rc=0;
priv->reg.tx_rate = TX_RATE_FIXED;
priv->reg.rate_set.size = 1;
switch(*value){
case '1': /* 1M 11M 12M 18M */
if(*(value+1) == '8'){
priv->reg.rate_set.body[0] = TX_RATE_18M;
}
else if(*(value+1) == '2'){
priv->reg.rate_set.body[0] = TX_RATE_12M|BASIC_RATE;
}
else if(*(value+1) == '1'){
priv->reg.rate_set.body[0] = TX_RATE_11M|BASIC_RATE;
}
else{
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
}
break;
case '2': /* 2M 24M */
if(*(value+1) == '4'){
priv->reg.rate_set.body[0] = TX_RATE_24M|BASIC_RATE;
}
else{
priv->reg.rate_set.body[0] = TX_RATE_2M|BASIC_RATE;
}
break;
case '3': /* 36M */
priv->reg.rate_set.body[0] = TX_RATE_36M;
break;
case '4': /* 48M */
priv->reg.rate_set.body[0] = TX_RATE_48M;
break;
case '5': /* 5.5M 54M */
if(*(value+1) == '4'){
priv->reg.rate_set.body[0] = TX_RATE_54M;
}
else{
priv->reg.rate_set.body[0] = TX_RATE_5M|BASIC_RATE;
}
break;
case '6': /* 6M */
priv->reg.rate_set.body[0] = TX_RATE_6M|BASIC_RATE;
break;
case '9': /* 9M */
priv->reg.rate_set.body[0] = TX_RATE_9M;
break;
case 'K':
priv->reg.rate_set.body[6] = TX_RATE_36M;
priv->reg.rate_set.body[5] = TX_RATE_18M;
priv->reg.rate_set.body[4] = TX_RATE_24M|BASIC_RATE;
priv->reg.rate_set.body[3] = TX_RATE_12M|BASIC_RATE;
priv->reg.rate_set.body[2] = TX_RATE_6M|BASIC_RATE;
priv->reg.rate_set.body[1] = TX_RATE_11M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_2M|BASIC_RATE;
priv->reg.tx_rate = TX_RATE_FULL_AUTO;
priv->reg.rate_set.size = 7;
break;
default:
priv->reg.rate_set.body[11] = TX_RATE_54M;
priv->reg.rate_set.body[10] = TX_RATE_48M;
priv->reg.rate_set.body[9] = TX_RATE_36M;
priv->reg.rate_set.body[8] = TX_RATE_18M;
priv->reg.rate_set.body[7] = TX_RATE_9M;
priv->reg.rate_set.body[6] = TX_RATE_24M|BASIC_RATE;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE;
priv->reg.rate_set.body[2] = TX_RATE_5M|BASIC_RATE;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.tx_rate = TX_RATE_FULL_AUTO;
priv->reg.rate_set.size = 12;
break;
}
return rc;
}
#ifndef NO_FIRMWARE_CLASS
#include <linux/firmware.h>
#else
#define MAX_CONFIG_FILE_SIZE (1024*10)
#endif
int ks_wlan_read_config_file(ks_wlan_private *priv)
{
struct {
const int key_len;
const char *key;
const char *val;
} cfg_tbl[] = {
{15,"BeaconLostCount", "20"}, /* 0 */
{7,"Channel", "1"}, /* 1 */
{17,"FragmentThreshold","2346"}, /* 2 */
{13,"OperationMode","Infrastructure"}, /* 3 */
{19,"PowerManagementMode","ACTIVE"}, /* 4 */
{12,"RTSThreshold","2347"}, /* 5 */
{4,"SSID","default"}, /* 6 */
{6,"TxRate","Auto"}, /* 7 */
{23,"AuthenticationAlgorithm",""}, /* 8 */
{12,"WepKeyValue1",""}, /* 9 */
{12,"WepKeyValue2",""}, /* 10 */
{12,"WepKeyValue3",""}, /* 11 */
{12,"WepKeyValue4",""}, /* 12 */
{8,"WepIndex","1"}, /* 13 */
{7,"WepType","STRING"}, /* 14 */
{3,"Wep","OFF"}, /* 15 */
{13,"PREAMBLE_TYPE","SHORT"}, /* 16 */
{8,"ScanType","ACTIVE_SCAN"}, /* 17 */
{8,"ROM_FILE", ROM_FILE}, /* 18 */
{7,"PhyType", "BG_MODE"}, /* 19 */
{7,"CtsMode", "FALSE"}, /* 20 */
{19,"PhyInformationTimer", "0"}, /* 21 */
{0,"",""},
};
#ifndef NO_FIRMWARE_CLASS
const struct firmware *fw_entry;
struct device *dev = NULL;
int retval;
#else
struct file *srcf;
int nr_read ;
int retval;
char *cfg_buf=NULL;
int orgfsuid, orgfsgid;
mm_segment_t orgfs;
#endif
char cfg_file[]=CFG_FILE;
char *cur_p, *end_p;
char wk_buff[256], *wk_p;
/* Initialize Variable */
priv->reg.operation_mode = MODE_INFRASTRUCTURE; /* Infrastructure */
priv->reg.channel = 10; /* 10 */
memset(priv->reg.bssid, 0x0, ETH_ALEN); /* BSSID */
priv->reg.ssid.body[0] = '\0'; /* SSID */
priv->reg.ssid.size = 0; /* SSID size */
priv->reg.tx_rate = TX_RATE_AUTO; /* TxRate Fully Auto */
priv->reg.preamble = SHORT_PREAMBLE; /* Preamble = SHORT */
priv->reg.powermgt = POWMGT_ACTIVE_MODE; /* POWMGT_ACTIVE_MODE */
priv->reg.scan_type = ACTIVE_SCAN; /* Active */
priv->reg.beacon_lost_count = 20; /* Beacon Lost Count */
priv->reg.rts = 2347UL; /* RTS Threashold */
priv->reg.fragment = 2346UL; /* Fragmentation Threashold */
strcpy(&priv->reg.rom_file[0], ROM_FILE);
priv->skb = NULL;
priv->reg.authenticate_type = AUTH_TYPE_OPEN_SYSTEM; /* AuthenticationAlgorithm */
priv->reg.privacy_invoked = 0x00; /* WEP */
priv->reg.wep_index=0;
memset(&priv->reg.wep_key[0],0,sizeof(priv->reg.wep_key[0]));
memset(&priv->reg.wep_key[1],0,sizeof(priv->reg.wep_key[0]));
memset(&priv->reg.wep_key[2],0,sizeof(priv->reg.wep_key[0]));
memset(&priv->reg.wep_key[3],0,sizeof(priv->reg.wep_key[0]));
priv->reg.phy_type = D_11BG_COMPATIBLE_MODE;
priv->reg.cts_mode = CTS_MODE_FALSE;
priv->reg.phy_info_timer = 0;
priv->reg.rate_set.body[11] = TX_RATE_54M;
priv->reg.rate_set.body[10] = TX_RATE_48M;
priv->reg.rate_set.body[9] = TX_RATE_36M;
priv->reg.rate_set.body[8] = TX_RATE_18M;
priv->reg.rate_set.body[7] = TX_RATE_9M;
priv->reg.rate_set.body[6] = TX_RATE_24M|BASIC_RATE;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE;
priv->reg.rate_set.body[2] = TX_RATE_5M|BASIC_RATE;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.tx_rate = TX_RATE_FULL_AUTO;
priv->reg.rate_set.size = 12;
#ifndef NO_FIRMWARE_CLASS
#if (defined _PCMCIA_)
dev = &priv->ks_wlan_hw.pcmcia_dev->dev;
#elif (defined _PCI_)
dev = &priv->ks_wlan_hw.pci_dev->dev;
#elif (defined _SDIO_)
dev = &priv->ks_wlan_hw.sdio_card->func->dev;
#endif
if((retval = request_firmware(&fw_entry, cfg_file, dev)) !=0 ){
DPRINTK(1, "error request_firmware() file=%s ret=%d\n", cfg_file, retval);
return 1;
}
DPRINTK(4, "success request_firmware() file=%s size=%d\n", cfg_file, fw_entry->size);
cur_p = fw_entry->data;
end_p = cur_p + fw_entry->size;
#else
orgfsuid=current->fsuid;
orgfsgid=current->fsgid;
orgfs=get_fs();
set_fs(KERNEL_DS);
srcf = filp_open(cfg_file, O_RDONLY, 0);
if (IS_ERR(srcf)) {
printk(KERN_ERR "error %ld opening %s\n", -PTR_ERR(srcf),cfg_file);
goto no_config_file;
}
if (!(srcf->f_op && srcf->f_op->read)) {
printk(KERN_ERR "%s does not have a read method\n", cfg_file);
goto no_config_file;
}
cfg_buf = (char *)kzalloc(MAX_CONFIG_FILE_SIZE, GFP_ATOMIC);
if (!cfg_buf) {
printk(KERN_ERR "%s does not read : out of memory \n", cfg_file);
goto no_config_file;
}
nr_read = srcf->f_op->read(srcf, (unsigned char *)cfg_buf, MAX_CONFIG_FILE_SIZE, &srcf->f_pos);
DPRINTK(1, "read retval=%d file=%s\n", nr_read, priv->reg.cfg_file);
retval=filp_close(srcf ,NULL);
if (retval)
DPRINTK(1, "error %d closing %s\n", -retval,priv->reg.cfg_file);
if (nr_read < 1) {
printk(KERN_ERR "%s does not read : file is empty num=%d\n", cfg_file, nr_read);
goto no_config_file;
}else if(nr_read > MAX_CONFIG_FILE_SIZE){
printk(KERN_ERR "%s does not read : file is too big \n", cfg_file);
goto no_config_file;
}
cur_p = cfg_buf;
end_p = cur_p + nr_read;
#endif
*end_p = '\0';
while (cur_p < end_p) {
int i, j, len;
len = end_p - cur_p;
for (i=0; cfg_tbl[i].key_len != 0; i++) {
if (*cur_p == '#') {
break;
}
if (len < cfg_tbl[i].key_len) {
continue;
}
if (!strncmp(cfg_tbl[i].key, cur_p, cfg_tbl[i].key_len)) {
break;
}
}
if ((*cur_p == '#') || (cfg_tbl[i].key_len == 0)) {
while (*cur_p != '\n') {
if (cur_p >= end_p) {
break;
}
cur_p++;
}
cur_p++;
} else {
cur_p += cfg_tbl[i].key_len;
if (*cur_p != '=') {
while (*cur_p != '\n') {
if (cur_p >= end_p) {
break;
}
cur_p++;
}
continue;
}
cur_p++;
for (j=0,wk_p=cur_p; *wk_p != '\n' && wk_p < end_p; j++,wk_p++) {
wk_buff[j] = *wk_p;
}
wk_buff[j] = '\0';
cur_p = wk_p;
DPRINTK(4,"%s=%s\n",cfg_tbl[i].key, wk_buff);
wk_p = wk_buff;
switch (i) {
case 0: /* "BeaconLostCount", "10" */
priv->reg.beacon_lost_count = simple_strtol(wk_buff, NULL, 10);
break;
case 1: /* "Channel", "1" */
priv->reg.channel = simple_strtol(wk_buff, NULL, 10);
break;
case 2: /* "FragmentThreshold","2346" */
j = simple_strtol(wk_buff, NULL, 10);
priv->reg.fragment = (unsigned long)j;
break;
case 3: /* "OperationMode","Infrastructure" */
switch (*wk_buff) {
case 'P':
priv->reg.operation_mode = MODE_PSEUDO_ADHOC;
break;
case 'I':
priv->reg.operation_mode = MODE_INFRASTRUCTURE;
break;
case '8':
priv->reg.operation_mode = MODE_ADHOC;
break;
default:
priv->reg.operation_mode = MODE_INFRASTRUCTURE;
}
break;
case 4: /* "PowerManagementMode","POWER_ACTIVE" */
if (!strncmp(wk_buff, "SAVE1", 5)) {
priv->reg.powermgt = POWMGT_SAVE1_MODE;
} else if (!strncmp(wk_buff, "SAVE2", 5)){
priv->reg.powermgt = POWMGT_SAVE2_MODE;
} else {
priv->reg.powermgt = POWMGT_ACTIVE_MODE;
}
break;
case 5: /* "RTSThreshold","2347" */
j = simple_strtol(wk_buff, NULL, 10);
priv->reg.rts = (unsigned long)j;
break;
case 6: /* "SSID","" */
if (*wk_p != '"')
break;
wk_p++;
for (j=0; *wk_p != '"'; j++) {
if (wk_p == '\0') {
break;
}
priv->reg.ssid.body[j] = *wk_p++;
}
priv->reg.ssid.body[j] = '\0';
priv->reg.ssid.size = j;
wk_p++;
break;
case 7: /* "TxRate","Auto" */
rate_set_configuration(priv, wk_p);
break;
case 8: /* "AuthenticationAlgorithm","OPEN_SYSTEM" */
switch (*wk_p) {
case 'O': /* Authenticate System : Open System */
priv->reg.authenticate_type = AUTH_TYPE_OPEN_SYSTEM;
break;
case 'S': /* Authenticate System : Shared Key */
priv->reg.authenticate_type = AUTH_TYPE_SHARED_KEY;
break;
}
break;
case 9: /* "WepKeyValue1","" */
case 10: /* "WepKeyValue2","" */
case 11: /* "WepKeyValue3","" */
case 12: /* "WepKeyValue4","" */
if (wep_on_off != WEP_OFF) {
switch (wep_type) {
case WEP_KEY_CHARACTER:
analyze_character_wep_key(&priv->reg, (i-9), wk_p);
break;
case WEP_KEY_HEX:
analyze_hex_wep_key(&priv->reg, (i-9), wk_p);
break;
}
}
break;
case 13: /* "WepIndex","1"->0 (So, Zero Origin) */
priv->reg.wep_index = simple_strtol(wk_buff, NULL, 10) - 1;
break;
case 14: /* "WepType","STRING" */
if (!strncmp(wk_buff, "STRING", 6)) {
wep_type = WEP_KEY_CHARACTER;
} else {
wep_type = WEP_KEY_HEX;
}
break;
case 15: /* "Wep","OFF" */
if (!strncmp(wk_buff, "OFF", 3)) {
priv->reg.privacy_invoked = 0x00;
wep_on_off = WEP_OFF;
} else { /* 64bit or 128bit */
priv->reg.privacy_invoked = 0x01;
if (*wk_buff == '6') { /* 64bit */
wep_on_off = WEP_ON_64BIT;
} else { /* 128bit */
wep_on_off = WEP_ON_128BIT;
}
}
break;
case 16: /* "PREAMBLE_TYPE","LONG" */
if (!strncmp(wk_buff, "SHORT", 5)) {
priv->reg.preamble = SHORT_PREAMBLE;
} else { /* "LONG" */
priv->reg.preamble = LONG_PREAMBLE;
}
break;
case 17: /* "ScanType","ACTIVE_SCAN" */
if (!strncmp(wk_buff, "PASSIVE_SCAN", 12)) {
priv->reg.scan_type = PASSIVE_SCAN;
} else { /* "ACTIVE_SCAN" */
priv->reg.scan_type = ACTIVE_SCAN;
}
break;
case 18: // "ROM_FILE",ROMFILE
if (*wk_p != '"')
break;
wk_p++;
for (j=0; *wk_p != '"'; j++) {
if (wk_p == '\0') {
break;
}
priv->reg.rom_file[j] = *wk_p++;
}
priv->reg.rom_file[j] = '\0';
wk_p++;
break;
case 19: /*"PhyType", "BG_MODE" */
if (!strncmp(wk_buff, "B_MODE", 6)) {
priv->reg.phy_type = D_11B_ONLY_MODE;
} else if (!strncmp(wk_buff, "G_MODE", 6)) {
priv->reg.phy_type = D_11G_ONLY_MODE;
} else {
priv->reg.phy_type = D_11BG_COMPATIBLE_MODE;
}
break;
case 20: /* "CtsMode", "FALSE" */
if (!strncmp(wk_buff, "TRUE", 4)) {
priv->reg.cts_mode = CTS_MODE_TRUE;
} else {
priv->reg.cts_mode = CTS_MODE_FALSE;
}
break;
case 21: /* "PhyInformationTimer", "0" */
j = simple_strtol(wk_buff, NULL, 10);
priv->reg.phy_info_timer = (uint16_t)j;
break;
default:
break;
}
if (cur_p >= end_p) {
break;
}
cur_p++;
}
}
#ifndef NO_FIRMWARE_CLASS
release_firmware(fw_entry);
#else
no_config_file:
kfree(cfg_buf);
set_fs(orgfs);
current->fsuid=orgfsuid;
current->fsgid=orgfsgid;
#endif
DPRINTK(3,"\n operation_mode = %d\n channel = %d\n ssid = %s\n tx_rate = %d\n \
preamble = %d\n powermgt = %d\n scan_type = %d\n beacon_lost_count = %d\n rts = %d\n \
fragment = %d\n privacy_invoked = %d\n wep_type = %d\n wep_on_off = %d\n wep_index = %d\n romfile = %s\n",
priv->reg.operation_mode,priv->reg.channel,&priv->reg.ssid.body[0],priv->reg.tx_rate,
priv->reg.preamble,priv->reg.powermgt,priv->reg.scan_type,priv->reg.beacon_lost_count,
priv->reg.rts,priv->reg.fragment,priv->reg.privacy_invoked,wep_type,wep_on_off,priv->reg.wep_index,
&priv->reg.rom_file[0]
);
DPRINTK(3,"\n phy_type = %d\n cts_mode = %d\n tx_rate = %d\n phy_info_timer = %d\n",
priv->reg.phy_type,priv->reg.cts_mode,priv->reg.tx_rate,priv->reg.phy_info_timer );
return(0);
}
/*
* Driver for KeyStream, KS7010 based SDIO cards.
*
* ks7010_sdio.c
* $Id: ks7010_sdio.c 996 2009-09-14 02:54:21Z sekine $
*
* Copyright (C) 2006-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#include <linux/workqueue.h>
#include <asm/atomic.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio_func.h>
#include "ks_wlan.h"
#include "ks_wlan_ioctl.h"
#include "ks_debug.h"
#include "ks_hostif.h"
#include "ks7010_sdio.h"
#define KS7010_FUNC_NUM 1
#define KS7010_IO_BLOCK_SIZE 512
#define KS7010_MAX_CLOCK 25000000
static int reg_net = 0;
static const struct sdio_device_id if_sdio_ids[] = {
{ SDIO_DEVICE(SDIO_VENDOR_ID_KS_CODE_A, SDIO_DEVICE_ID_KS_7010) },
{ SDIO_DEVICE(SDIO_VENDOR_ID_KS_CODE_B, SDIO_DEVICE_ID_KS_7010) },
{ /* all zero */ }
};
struct ks_sdio_model {
int model;
const char *firmware;
};
static struct ks_sdio_model ks_sdio_models[] = {
{
/* ks7010 */
.model = 0x10,
.firmware = "ks7010sd.rom",
},
};
static int ks7910_sdio_probe(struct sdio_func *function, const struct sdio_device_id *device);
static void ks7910_sdio_remove(struct sdio_func *function);
static void ks7010_rw_function(struct work_struct *work);
static int ks7010_sdio_read( ks_wlan_private *priv, unsigned int address,
unsigned char *buffer, int length );
static int ks7010_sdio_write( ks_wlan_private *priv, unsigned int address,
unsigned char *buffer, int length );
#ifdef NO_FIRMWARE_CLASS
static char *romfile = ROM_FILE;
module_param(romfile, charp, S_IRUGO);
#endif
/* macro */
#define inc_txqhead(priv) \
( priv->tx_dev.qhead = (priv->tx_dev.qhead + 1) % TX_DEVICE_BUFF_SIZE )
#define inc_txqtail(priv) \
( priv->tx_dev.qtail = (priv->tx_dev.qtail + 1) % TX_DEVICE_BUFF_SIZE )
#define cnt_txqbody(priv) \
(((priv->tx_dev.qtail + TX_DEVICE_BUFF_SIZE) - (priv->tx_dev.qhead)) % TX_DEVICE_BUFF_SIZE )
#define inc_rxqhead(priv) \
( priv->rx_dev.qhead = (priv->rx_dev.qhead + 1) % RX_DEVICE_BUFF_SIZE )
#define inc_rxqtail(priv) \
( priv->rx_dev.qtail = (priv->rx_dev.qtail + 1) % RX_DEVICE_BUFF_SIZE )
#define cnt_rxqbody(priv) \
(((priv->rx_dev.qtail + RX_DEVICE_BUFF_SIZE) - (priv->rx_dev.qhead)) % RX_DEVICE_BUFF_SIZE )
void ks_wlan_hw_sleep_doze_request(ks_wlan_private *priv)
{
unsigned char rw_data;
int retval;
DPRINTK(4, "\n");
/* clear request */
atomic_set(&priv->sleepstatus.doze_request,0);
if( atomic_read(&priv->sleepstatus.status) == 0){
rw_data = GCR_B_DOZE;
retval = ks7010_sdio_write(priv, GCR_B, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : GCR_B=%02X\n", rw_data);
goto out;
}
DPRINTK(4, "PMG SET!! : GCR_B=%02X\n", rw_data);
DPRINTK(3,"sleep_mode=SLP_SLEEP\n");
atomic_set(&priv->sleepstatus.status, 1);
priv->last_doze = jiffies;
}
else{
DPRINTK(1,"sleep_mode=%d\n",priv->sleep_mode);
}
out:
priv->sleep_mode = atomic_read(&priv->sleepstatus.status);
return;
}
void ks_wlan_hw_sleep_wakeup_request(ks_wlan_private *priv)
{
unsigned char rw_data;
int retval;
DPRINTK(4, "\n");
/* clear request */
atomic_set(&priv->sleepstatus.wakeup_request,0);
if( atomic_read(&priv->sleepstatus.status) == 1){
rw_data = WAKEUP_REQ;
retval = ks7010_sdio_write(priv, WAKEUP, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : WAKEUP=%02X\n", rw_data);
goto out;
}
DPRINTK(4, "wake up : WAKEUP=%02X\n", rw_data);
atomic_set(&priv->sleepstatus.status, 0);
priv->last_wakeup = jiffies;
++priv->wakeup_count;
}
else{
DPRINTK(1,"sleep_mode=%d\n",priv->sleep_mode);
}
out:
priv->sleep_mode = atomic_read(&priv->sleepstatus.status);
return;
}
void ks_wlan_hw_wakeup_request(ks_wlan_private *priv)
{
unsigned char rw_data;
int retval;
DPRINTK(4, "\n");
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE){
rw_data = WAKEUP_REQ;
retval = ks7010_sdio_write(priv, WAKEUP, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : WAKEUP=%02X\n", rw_data);
}
DPRINTK(4, "wake up : WAKEUP=%02X\n", rw_data);
priv->last_wakeup = jiffies;
++priv->wakeup_count;
}
else{
DPRINTK(1,"psstatus=%d\n",atomic_read(&priv->psstatus.status));
}
}
int _ks_wlan_hw_power_save(ks_wlan_private *priv)
{
int rc=0;
unsigned char rw_data;
int retval;
if(priv->reg.powermgt == POWMGT_ACTIVE_MODE)
return rc;
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE &&
(priv->connect_status & CONNECT_STATUS_MASK)== CONNECT_STATUS){
//DPRINTK(1,"psstatus.status=%d\n",atomic_read(&priv->psstatus.status));
if (priv->dev_state == DEVICE_STATE_SLEEP) {
switch(atomic_read(&priv->psstatus.status)){
case PS_SNOOZE: /* 4 */
break;
default:
DPRINTK(5,"\n\
psstatus.status=%d\n\
psstatus.confirm_wait=%d\n\
psstatus.snooze_guard=%d\n\
cnt_txqbody=%d\n",
atomic_read(&priv->psstatus.status),
atomic_read(&priv->psstatus.confirm_wait),
atomic_read(&priv->psstatus.snooze_guard),
cnt_txqbody(priv));
if(!atomic_read(&priv->psstatus.confirm_wait)&&
!atomic_read(&priv->psstatus.snooze_guard)&&
!cnt_txqbody(priv)){
retval = ks7010_sdio_read(priv, INT_PENDING, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : INT_PENDING=%02X\n", rw_data);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
break;
}
if(!rw_data){
rw_data = GCR_B_DOZE;
retval = ks7010_sdio_write(priv, GCR_B, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : GCR_B=%02X\n", rw_data);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
break;
}
DPRINTK(4, "PMG SET!! : GCR_B=%02X\n", rw_data);
atomic_set(&priv->psstatus.status, PS_SNOOZE);
DPRINTK(3,"psstatus.status=PS_SNOOZE\n");
}
else{
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
}
}
else{
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 0);
}
break;
}
}
}
return rc;
}
int ks_wlan_hw_power_save(ks_wlan_private *priv)
{
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
return 0;
}
static int ks7010_sdio_read(ks_wlan_private *priv, unsigned int address,
unsigned char *buffer, int length)
{
int rc = -1;
struct ks_sdio_card *card;
card = priv->ks_wlan_hw.sdio_card;
if (length == 1) /* CMD52 */
*buffer = sdio_readb(card->func, address, &rc);
else /* CMD53 multi-block transfer */
rc = sdio_memcpy_fromio(card->func, buffer, address, length);
if(rc != 0){
printk("sdio error erorr=%d size=%d\n", rc, length);
++priv->sdio_error_count;
}else{
priv->sdio_error_count=0;
}
return rc;
}
static int ks7010_sdio_write(ks_wlan_private *priv, unsigned int address,
unsigned char *buffer, int length)
{
int rc = -1;
struct ks_sdio_card *card;
card = priv->ks_wlan_hw.sdio_card;
if (length == 1) /* CMD52 */
sdio_writeb(card->func, *buffer, (unsigned int) address, &rc);
else /* CMD53 */
rc = sdio_memcpy_toio(card->func, (unsigned int) address, buffer, length);
if(rc != 0){
printk("sdio error erorr=%d size=%d\n", rc, length);
++priv->sdio_error_count;
}else{
priv->sdio_error_count=0;
}
return rc;
}
static int enqueue_txdev(ks_wlan_private *priv, unsigned char *p, unsigned long size,
void (*complete_handler)(void *arg1, void *arg2),
void *arg1, void *arg2 )
{
struct tx_device_buffer *sp;
if (priv->dev_state < DEVICE_STATE_BOOT) {
kfree(p);
if (complete_handler != NULL)
(*complete_handler)(arg1, arg2);
return 1;
}
if ((TX_DEVICE_BUFF_SIZE - 1) <= cnt_txqbody(priv)) {
/* in case of buffer overflow */
DPRINTK(1,"tx buffer overflow\n");
kfree(p);
if (complete_handler != NULL)
(*complete_handler)(arg1, arg2);
return 1;
}
sp = &priv->tx_dev.tx_dev_buff[priv->tx_dev.qtail];
sp->sendp = p;
sp->size = size;
sp->complete_handler = complete_handler;
sp->arg1 = arg1;
sp->arg2 = arg2;
inc_txqtail(priv);
return 0;
}
/* write data */
static int write_to_device(ks_wlan_private *priv, unsigned char *buffer, unsigned long size )
{
int rc,retval;
unsigned char rw_data;
struct hostif_hdr *hdr;
hdr = (struct hostif_hdr *)buffer;
rc=0;
DPRINTK(4,"size=%d\n", hdr->size);
if(hdr->event < HIF_DATA_REQ || HIF_REQ_MAX < hdr->event){
DPRINTK(1,"unknown event=%04X\n",hdr->event);
return 0;
}
retval = ks7010_sdio_write(priv, DATA_WINDOW, buffer, size);
if(retval){
DPRINTK(1, " write error : retval=%d\n", retval);
return -4;
}
rw_data = WRITE_STATUS_BUSY;
retval = ks7010_sdio_write(priv, WRITE_STATUS, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : WRITE_STATUS=%02X\n", rw_data);
return -3;
}
return 0;
}
static void tx_device_task(void *dev)
{
ks_wlan_private *priv = (ks_wlan_private *)dev;
struct tx_device_buffer *sp;
int rc = 0;
DPRINTK(4, "\n");
if(cnt_txqbody(priv)>0 && atomic_read(&priv->psstatus.status) != PS_SNOOZE){
sp = &priv->tx_dev.tx_dev_buff[priv->tx_dev.qhead];
if(priv->dev_state >= DEVICE_STATE_BOOT){
rc = write_to_device(priv, sp->sendp, sp->size);
if(rc){
DPRINTK(1, "write_to_device error !!(%d)\n", rc);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
return;
}
}
kfree(sp->sendp); /* allocated memory free */
if(sp->complete_handler != NULL) /* TX Complete */
(*sp->complete_handler)(sp->arg1, sp->arg2);
inc_txqhead(priv);
if(cnt_txqbody(priv)>0){
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 0);
}
}
return;
}
int ks_wlan_hw_tx( ks_wlan_private *priv, void *p, unsigned long size,
void (*complete_handler)(void *arg1, void *arg2),
void *arg1, void *arg2 )
{
int result=0;
struct hostif_hdr *hdr;
hdr = (struct hostif_hdr *)p;
if(hdr->event < HIF_DATA_REQ || HIF_REQ_MAX < hdr->event){
DPRINTK(1,"unknown event=%04X\n",hdr->event);
return 0;
}
/* add event to hostt buffer */
priv->hostt.buff[priv->hostt.qtail] = hdr->event;
priv->hostt.qtail = (priv->hostt.qtail + 1) % SME_EVENT_BUFF_SIZE;
DPRINTK(4, "event=%04X\n",hdr->event);
spin_lock(&priv->tx_dev.tx_dev_lock);
result = enqueue_txdev(priv, p, size, complete_handler, arg1, arg2);
spin_unlock(&priv->tx_dev.tx_dev_lock);
if(cnt_txqbody(priv)>0){
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 0);
}
return result;
}
static void rx_event_task(unsigned long dev)
{
ks_wlan_private *priv = (ks_wlan_private *)dev;
struct rx_device_buffer *rp;
DPRINTK(4,"\n");
if(cnt_rxqbody(priv) > 0 && priv->dev_state >= DEVICE_STATE_BOOT){
rp = &priv->rx_dev.rx_dev_buff[priv->rx_dev.qhead];
hostif_receive(priv, rp->data, rp->size);
inc_rxqhead(priv);
if(cnt_rxqbody(priv) > 0){
tasklet_schedule(&priv->ks_wlan_hw.rx_bh_task);
}
}
return;
}
static void ks_wlan_hw_rx(void *dev, uint16_t size)
{
ks_wlan_private *priv = (ks_wlan_private *)dev;
int retval;
struct rx_device_buffer *rx_buffer;
struct hostif_hdr *hdr;
unsigned char read_status;
unsigned short event=0;
DPRINTK(4,"\n");
/* receive data */
if (cnt_rxqbody(priv) >= (RX_DEVICE_BUFF_SIZE-1)) {
/* in case of buffer overflow */
DPRINTK(1,"rx buffer overflow \n");
goto error_out;
}
rx_buffer = &priv->rx_dev.rx_dev_buff[priv->rx_dev.qtail];
retval = ks7010_sdio_read(priv, DATA_WINDOW, &rx_buffer->data[0], hif_align_size(size));
if(retval){
goto error_out;
}
/* length check */
if(size > 2046 || size == 0){
DPRINTK(5,"-INVAILED DATA dump\n");
print_buffer(&rx_buffer->data[0],32);
/* rx_status update */
read_status = READ_STATUS_IDLE;
retval = ks7010_sdio_write(priv, READ_STATUS, &read_status, sizeof(read_status));
if(retval){
DPRINTK(1, " error : READ_STATUS=%02X\n", read_status);
}
goto error_out;
}
hdr = (struct hostif_hdr *)&rx_buffer->data[0];
rx_buffer->size = le16_to_cpu(hdr->size) + sizeof(hdr->size);
event = hdr->event;
inc_rxqtail(priv);
/* read status update */
read_status = READ_STATUS_IDLE;
retval = ks7010_sdio_write(priv, READ_STATUS, &read_status, sizeof(read_status));
if(retval){
DPRINTK(1, " error : READ_STATUS=%02X\n", read_status);
}
DPRINTK(4, "READ_STATUS=%02X\n", read_status);
if(atomic_read(&priv->psstatus.confirm_wait)){
if(IS_HIF_CONF(event)){
DPRINTK(4, "IS_HIF_CONF true !!\n");
atomic_dec(&priv->psstatus.confirm_wait);
}
}
/* rx_event_task((void *)priv); */
tasklet_schedule(&priv->ks_wlan_hw.rx_bh_task);
error_out:
return;
}
static void ks7010_rw_function(struct work_struct *work)
{
struct hw_info_t *hw;
struct ks_wlan_private *priv;
unsigned char rw_data;
int retval;
hw = container_of(work, struct hw_info_t, rw_wq.work);
priv = container_of(hw, struct ks_wlan_private, ks_wlan_hw);
DPRINTK(4,"\n");
/* wiat after DOZE */
if(time_after(priv->last_doze + ((30*HZ)/1000), jiffies )){
DPRINTK(4, "wait after DOZE \n");
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
return;
}
/* wiat after WAKEUP */
while(time_after(priv->last_wakeup + ((30*HZ)/1000), jiffies )){
DPRINTK(4, "wait after WAKEUP \n");
/* queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq,
(priv->last_wakeup + ((30*HZ)/1000) - jiffies));*/
printk("wake: %lu %lu\n", priv->last_wakeup + (30* HZ)/1000, jiffies);
msleep(30);
}
sdio_claim_host(priv->ks_wlan_hw.sdio_card->func);
/* power save wakeup */
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE){
if(cnt_txqbody(priv)>0){
ks_wlan_hw_wakeup_request(priv);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
}
goto err_out;
}
/* sleep mode doze */
if(atomic_read(&priv->sleepstatus.doze_request)==1){
ks_wlan_hw_sleep_doze_request(priv);
goto err_out;
}
/* sleep mode wakeup */
if(atomic_read(&priv->sleepstatus.wakeup_request)==1){
ks_wlan_hw_sleep_wakeup_request(priv);
goto err_out;
}
/* read (WriteStatus/ReadDataSize FN1:00_0014) */
retval = ks7010_sdio_read(priv, WSTATUS_RSIZE, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : WSTATUS_RSIZE=%02X psstatus=%d\n", rw_data,atomic_read(&priv->psstatus.status));
goto err_out;
}
DPRINTK(4, "WSTATUS_RSIZE=%02X\n", rw_data);
if(rw_data&RSIZE_MASK){ /* Read schedule */
ks_wlan_hw_rx((void *)priv, (uint16_t)(((rw_data&RSIZE_MASK)<<4)));
}
if((rw_data&WSTATUS_MASK)){
tx_device_task((void *)priv);
}
_ks_wlan_hw_power_save(priv);
err_out:
sdio_release_host(priv->ks_wlan_hw.sdio_card->func);
return;
}
static void ks_sdio_interrupt(struct sdio_func *func)
{
int retval;
struct ks_sdio_card *card;
ks_wlan_private *priv;
unsigned char status, rsize, rw_data;
card = sdio_get_drvdata(func);
priv = card->priv;
DPRINTK(4, "\n");
if(priv->dev_state >= DEVICE_STATE_BOOT){
retval = ks7010_sdio_read(priv, INT_PENDING, &status, sizeof(status));
if(retval){
DPRINTK(1, "read INT_PENDING Failed!!(%d)\n",retval);
goto intr_out;
}
DPRINTK(4, "INT_PENDING=%02X\n", rw_data);
/* schedule task for interrupt status */
/* bit7 -> Write General Communication B register */
/* read (General Communication B register) */
/* bit5 -> Write Status Idle */
/* bit2 -> Read Status Busy */
if(status&INT_GCR_B || atomic_read(&priv->psstatus.status)==PS_SNOOZE){
retval = ks7010_sdio_read(priv, GCR_B, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : GCR_B=%02X\n", rw_data);
goto intr_out;
}
/* DPRINTK(1, "GCR_B=%02X\n", rw_data); */
if(rw_data == GCR_B_ACTIVE){
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE){
atomic_set(&priv->psstatus.status, PS_WAKEUP);
priv->wakeup_count=0;
}
complete(&priv->psstatus.wakeup_wait);
}
}
do{
/* read (WriteStatus/ReadDataSize FN1:00_0014) */
retval = ks7010_sdio_read(priv, WSTATUS_RSIZE, &rw_data, sizeof(rw_data));
if(retval){
DPRINTK(1, " error : WSTATUS_RSIZE=%02X\n", rw_data);
goto intr_out;
}
DPRINTK(4, "WSTATUS_RSIZE=%02X\n", rw_data);
rsize=rw_data&RSIZE_MASK;
if(rsize){ /* Read schedule */
ks_wlan_hw_rx((void *)priv, (uint16_t)(((rsize)<<4)));
}
if(rw_data&WSTATUS_MASK){
#if 0
if(status&INT_WRITE_STATUS && !cnt_txqbody(priv)){
/* dummy write for interrupt clear */
rw_data =0;
retval = ks7010_sdio_write(priv, DATA_WINDOW, &rw_data, sizeof(rw_data));
if (retval) {
DPRINTK(1, "write DATA_WINDOW Failed!!(%d)\n",retval);
}
status &= ~INT_WRITE_STATUS;
}
else{
#endif
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE){
if(cnt_txqbody(priv)){
ks_wlan_hw_wakeup_request(priv);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq, &priv->ks_wlan_hw.rw_wq, 1);
return;
}
}
else{
tx_device_task((void *)priv);
}
// }
}
}while(rsize);
}
intr_out:
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 0);
return;
}
static int trx_device_init( ks_wlan_private *priv )
{
/* initialize values (tx) */
priv->tx_dev.qtail = priv->tx_dev.qhead = 0;
/* initialize values (rx) */
priv->rx_dev.qtail = priv->rx_dev.qhead = 0;
/* initialize spinLock (tx,rx) */
spin_lock_init(&priv->tx_dev.tx_dev_lock);
spin_lock_init(&priv->rx_dev.rx_dev_lock);
tasklet_init(&priv->ks_wlan_hw.rx_bh_task, rx_event_task, (unsigned long)priv);
return 0;
}
static void trx_device_exit( ks_wlan_private *priv )
{
struct tx_device_buffer *sp;
/* tx buffer clear */
while (cnt_txqbody(priv)>0) {
sp = &priv->tx_dev.tx_dev_buff[priv->tx_dev.qhead];
kfree(sp->sendp); /* allocated memory free */
if (sp->complete_handler != NULL) /* TX Complete */
(*sp->complete_handler)(sp->arg1, sp->arg2);
inc_txqhead(priv);
}
tasklet_kill(&priv->ks_wlan_hw.rx_bh_task);
return;
}
static int ks7010_sdio_update_index(ks_wlan_private *priv, u32 index)
{
int rc=0;
int retval;
unsigned char *data_buf;
data_buf = NULL;
data_buf = kmalloc(sizeof(u32), GFP_KERNEL);
if(!data_buf){ rc = 1; goto error_out; }
memcpy(data_buf, &index, sizeof(index));
retval = ks7010_sdio_write(priv, WRITE_INDEX, data_buf, sizeof(index));
if(retval){ rc = 2; goto error_out; }
retval = ks7010_sdio_write(priv, READ_INDEX, data_buf, sizeof(index));
if(retval){ rc = 3; goto error_out; }
error_out:
if(data_buf) kfree(data_buf);
return rc;
}
#define ROM_BUFF_SIZE (64*1024)
static int ks7010_sdio_data_compare(ks_wlan_private *priv, u32 address,
unsigned char *data, unsigned int size)
{
int rc=0;
int retval;
unsigned char *read_buf;
read_buf = NULL;
read_buf = kmalloc(ROM_BUFF_SIZE, GFP_KERNEL);
if(!read_buf){ rc = 1; goto error_out; }
retval = ks7010_sdio_read(priv, address, read_buf, size);
if(retval){ rc = 2; goto error_out; }
retval = memcmp(data, read_buf, size);
if(retval){
DPRINTK(0, "data compare error (%d) \n",retval); rc = 3; goto error_out;
}
error_out:
if(read_buf) kfree(read_buf);
return rc;
}
#ifndef NO_FIRMWARE_CLASS
#include <linux/firmware.h>
#endif
static int ks79xx_upload_firmware(ks_wlan_private *priv, struct ks_sdio_card *card)
{
unsigned int size, offset, n = 0;
unsigned char *rom_buf;
unsigned char rw_data =0;
int retval, rc=0;
#ifndef NO_FIRMWARE_CLASS
int length;
const struct firmware *fw_entry = NULL;
#else
int orgfsuid, orgfsgid;
struct file *srcf;
mm_segment_t orgfs;
#endif
rom_buf = NULL;
/* buffer allocate */
rom_buf = kmalloc(ROM_BUFF_SIZE, GFP_KERNEL);
if(!rom_buf){ rc = 3; goto error_out0; }
sdio_claim_host(card->func);
/* Firmware running ? */
retval = ks7010_sdio_read(priv, GCR_A, &rw_data, sizeof(rw_data));
if(rw_data == GCR_A_RUN){
DPRINTK( 0, "MAC firmware running ...\n");
rc = 0;
goto error_out0;
}
#ifndef NO_FIRMWARE_CLASS
if(request_firmware(&fw_entry, priv->reg.rom_file, &priv->ks_wlan_hw.sdio_card->func->dev)!=0){
DPRINTK(1,"error request_firmware() file=%s\n", priv->reg.rom_file);
return 1;
}
DPRINTK(4,"success request_firmware() file=%s size=%d\n", priv->reg.rom_file, fw_entry->size);
length = fw_entry->size;
#else
orgfsuid=current->fsuid;
orgfsgid=current->fsgid;
current->fsuid=current->fsgid=0;
orgfs=get_fs();
set_fs(KERNEL_DS);
srcf = filp_open(romfile, O_RDONLY, 0);
if (IS_ERR(srcf)) {
DPRINTK(1, "error %ld opening %s\n", -PTR_ERR(srcf),romfile);
rc = 1;
goto error_out1;
}
if (!(srcf->f_op && srcf->f_op->read)) {
DPRINTK(1, "%s does not have a read method\n", romfile);
rc = 2;
goto error_out2;
}
#endif
/* Load Program */
n = 0;
do {
#ifndef NO_FIRMWARE_CLASS
if(length >= ROM_BUFF_SIZE){
size = ROM_BUFF_SIZE;
length = length - ROM_BUFF_SIZE;
}
else{
size=length;
length=0;
}
DPRINTK(4, "size = %d\n",size);
if(size == 0) break;
memcpy(rom_buf,fw_entry->data+n,size);
#else
/* The object must have a read method */
size = srcf->f_op->read(srcf, rom_buf, ROM_BUFF_SIZE, &srcf->f_pos);
if (size < 0) {
DPRINTK(1, "Read %s error %d\n", priv->reg.rom_file, -retval);
rc = 5;
goto error_out2;
}
else if (size == 0) break;
#endif
/* Update write index */
offset = n;
retval = ks7010_sdio_update_index(priv, KS7010_IRAM_ADDRESS+offset);
if(retval){ rc = 6; goto error_out1; }
/* Write data */
retval = ks7010_sdio_write(priv, DATA_WINDOW, rom_buf, size);
if(retval){ rc = 8; goto error_out1; }
/* compare */
retval = ks7010_sdio_data_compare(priv, DATA_WINDOW, rom_buf, size);
if(retval){ rc = 9; goto error_out1; }
n += size;
}while(size);
/* Remap request */
rw_data = GCR_A_REMAP;
retval = ks7010_sdio_write(priv, GCR_A, &rw_data, sizeof(rw_data));
if(retval){
rc = 11;
goto error_out1;
}
DPRINTK( 4, " REMAP Request : GCR_A=%02X\n", rw_data);
/* Firmware running check */
for (n = 0; n < 50; ++n) {
mdelay(10);/* wait_ms(10); */
retval = ks7010_sdio_read(priv, GCR_A, &rw_data, sizeof(rw_data));
if(retval){ rc = 11; goto error_out1; }
if(rw_data == GCR_A_RUN) break;
}
DPRINTK(4, "firmware wakeup (%d)!!!!\n",n);
if ((50) <= n) {
DPRINTK(1, "firmware can't start\n");
rc = 12;
goto error_out1;
}
rc = 0;
#ifdef NO_FIRMWARE_CLASS
error_out2:
retval=filp_close(srcf ,NULL);
if (retval)
DPRINTK(1, "error %d closing %s\n", -retval,priv->reg.rom_file);
error_out1:
set_fs(orgfs);
current->fsuid=orgfsuid;
current->fsgid=orgfsgid;
#else
error_out1:
release_firmware(fw_entry);
#endif
error_out0:
sdio_release_host(card->func);
if(rom_buf)
kfree(rom_buf);
return rc;
}
static void card_init_task(struct work_struct *work)
{
struct hw_info_t *hw;
struct ks_wlan_private *priv;
hw = container_of(work, struct hw_info_t, init_task);
priv = container_of(hw, struct ks_wlan_private, ks_wlan_hw);
DPRINTK(5,"\ncard_init_task()\n");
/* init_waitqueue_head(&priv->confirm_wait); */
init_completion(&priv->confirm_wait);
DPRINTK(5,"init_completion()\n");
/* get mac address & firmware version */
hostif_sme_enqueue(priv, SME_START);
DPRINTK(5,"hostif_sme_enqueu()\n");
if(!wait_for_completion_interruptible_timeout(&priv->confirm_wait,5*HZ)){
DPRINTK(1,"wait time out!! SME_START\n");
}
if(priv->mac_address_valid && priv->version_size){
priv->dev_state = DEVICE_STATE_PREINIT;
}
hostif_sme_enqueue(priv, SME_GET_EEPROM_CKSUM);
/* load initial wireless parameter */
hostif_sme_enqueue(priv, SME_STOP_REQUEST);
hostif_sme_enqueue(priv, SME_RTS_THRESHOLD_REQUEST);
hostif_sme_enqueue(priv, SME_FRAGMENTATION_THRESHOLD_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_INDEX_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_KEY1_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_KEY2_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_KEY3_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_KEY4_REQUEST);
hostif_sme_enqueue(priv, SME_WEP_FLAG_REQUEST);
hostif_sme_enqueue(priv, SME_RSN_ENABLED_REQUEST);
hostif_sme_enqueue(priv, SME_MODE_SET_REQUEST);
hostif_sme_enqueue(priv, SME_START_REQUEST);
if(!wait_for_completion_interruptible_timeout(&priv->confirm_wait,5*HZ)){
DPRINTK(1,"wait time out!! wireless parameter set\n");
}
if(priv->dev_state >= DEVICE_STATE_PREINIT){
DPRINTK(1, "DEVICE READY!!\n");
priv->dev_state = DEVICE_STATE_READY;
reg_net = register_netdev (priv->net_dev);
DPRINTK(3, "register_netdev=%d\n",reg_net);
}
else {
DPRINTK(1, "dev_state=%d\n",priv->dev_state);
}
}
static struct sdio_driver ks7010_sdio_driver = {
.name = "ks7910_sdio",
.id_table = if_sdio_ids,
.probe = ks7910_sdio_probe,
.remove = ks7910_sdio_remove,
};
extern int ks_wlan_net_start(struct net_device *dev);
extern int ks_wlan_net_stop(struct net_device *dev);
static int ks7910_sdio_probe(struct sdio_func *func, const struct sdio_device_id *device)
{
ks_wlan_private *priv;
struct ks_sdio_card *card;
struct net_device *netdev;
unsigned char rw_data;
int i=0, ret;
DPRINTK(5, "ks7910_sdio_probe()\n");
priv = NULL;
netdev=NULL;
/* initilize ks_sdio_card */
card = kzalloc(sizeof(struct ks_sdio_card), GFP_KERNEL);
if (!card)
return -ENOMEM;
card->func = func;
card->model = 0x10;
spin_lock_init(&card->lock);
/* select model */
for (i = 0;i < ARRAY_SIZE(ks_sdio_models);i++) {
if (card->model == ks_sdio_models[i].model)
break;
}
if (i == ARRAY_SIZE(ks_sdio_models)) {
DPRINTK(5, "unkown card model 0x%x\n", card->model);
goto error;
}
card->firmware = ks_sdio_models[i].firmware;
/*** Initialize SDIO ***/
sdio_claim_host(func);
/* bus setting */
/* Issue config request to override clock rate */
/* function blocksize set */
ret = sdio_set_block_size(func, KS7010_IO_BLOCK_SIZE);
DPRINTK(5, "multi_block=%d sdio_set_block_size()=%d %d\n", func->card->cccr.multi_block, func->cur_blksize, ret);
/* Allocate the slot current */
/* function enable */
ret = sdio_enable_func(func);
DPRINTK(5, "sdio_enable_func() %d\n", ret);
if (ret)
goto error_free_card;
/* interrupt disable */
sdio_writeb(func, 0, INT_ENABLE, &ret);
if (ret)
goto error_free_card;
sdio_writeb(func, 0xff, INT_PENDING, &ret);
if (ret)
goto error_disable_func;
/* setup interrupt handler */
ret = sdio_claim_irq(func, ks_sdio_interrupt);
if (ret)
goto error_disable_func;
sdio_release_host(func);
sdio_set_drvdata(func, card);
DPRINTK(5, "class = 0x%X, vendor = 0x%X, "
"device = 0x%X\n",
func->class, func->vendor, func->device);
/* private memory allocate */
netdev = alloc_etherdev(sizeof(*priv));
if (netdev == NULL) {
printk (KERN_ERR "ks79xx : Unable to alloc new net device\n");
goto error_release_irq;
}
if (dev_alloc_name(netdev, netdev->name) < 0) {
printk (KERN_ERR "ks79xx : Couldn't get name!\n");
goto error_free_netdev;
}
priv = netdev_priv(netdev);
card->priv = priv;
SET_NETDEV_DEV(netdev, &card->func->dev); /* for create sysfs symlinks */
/* private memory initialize */
priv->ks_wlan_hw.sdio_card = card;
init_completion(&priv->ks_wlan_hw.ks7010_sdio_wait);
priv->ks_wlan_hw.read_buf = NULL;
priv->ks_wlan_hw.read_buf = kmalloc(RX_DATA_SIZE, GFP_KERNEL);
if(!priv->ks_wlan_hw.read_buf){
goto error_free_netdev;
}
priv->dev_state = DEVICE_STATE_PREBOOT;
priv->net_dev = netdev;
priv->firmware_version[0] = '\0';
priv->version_size = 0;
priv->last_doze = jiffies; /* set current jiffies */
priv->last_wakeup = jiffies;
memset(&priv->nstats, 0, sizeof(priv->nstats));
memset(&priv->wstats, 0, sizeof(priv->wstats));
/* sleep mode */
atomic_set(&priv->sleepstatus.doze_request,0);
atomic_set(&priv->sleepstatus.wakeup_request,0);
atomic_set(&priv->sleepstatus.wakeup_request,0);
trx_device_init(priv);
hostif_init(priv);
ks_wlan_net_start(netdev);
/* Read config file */
ret = ks_wlan_read_config_file(priv);
if (ret) {
printk(KERN_ERR "ks79xx: read configuration file failed !! retern code = %d\n", ret);
goto error_free_read_buf;
}
/* Upload firmware */
ret = ks79xx_upload_firmware(priv, card); /* firmware load */
if(ret){
printk(KERN_ERR "ks79xx: firmware load failed !! retern code = %d\n", ret);
goto error_free_read_buf;
}
/* interrupt setting */
/* clear Interrupt status write (ARMtoSD_InterruptPending FN1:00_0024) */
rw_data = 0xff;
sdio_claim_host(func);
ret = ks7010_sdio_write(priv, INT_PENDING, &rw_data, sizeof(rw_data));
sdio_release_host(func);
if(ret){
DPRINTK(1, " error : INT_PENDING=%02X\n", rw_data);
}
DPRINTK(4, " clear Interrupt : INT_PENDING=%02X\n", rw_data);
/* enable ks7010sdio interrupt (INT_GCR_B|INT_READ_STATUS|INT_WRITE_STATUS) */
rw_data = (INT_GCR_B|INT_READ_STATUS|INT_WRITE_STATUS);
sdio_claim_host(func);
ret = ks7010_sdio_write(priv, INT_ENABLE, &rw_data, sizeof(rw_data));
sdio_release_host(func);
if(ret){
DPRINTK(1, " error : INT_ENABLE=%02X\n", rw_data);
}
DPRINTK(4, " enable Interrupt : INT_ENABLE=%02X\n", rw_data);
priv->dev_state = DEVICE_STATE_BOOT;
priv->ks_wlan_hw.ks7010sdio_wq = create_workqueue("ks7010sdio_wq");
if(!priv->ks_wlan_hw.ks7010sdio_wq){
DPRINTK(1, "create_workqueue failed !!\n");
goto error_free_read_buf;
}
priv->ks_wlan_hw.ks7010sdio_init = create_singlethread_workqueue("ks7010sdio_init");
if(!priv->ks_wlan_hw.ks7010sdio_init){
DPRINTK(1, "create_workqueue failed !!\n");
goto error_free_sdio_wq;
}
INIT_WORK(&priv->ks_wlan_hw.init_task, card_init_task);
INIT_DELAYED_WORK(&priv->ks_wlan_hw.rw_wq, ks7010_rw_function);
queue_work(priv->ks_wlan_hw.ks7010sdio_init, &priv->ks_wlan_hw.init_task);
return 0;
error_free_sdio_wq:
flush_workqueue(priv->ks_wlan_hw.ks7010sdio_wq);
destroy_workqueue(priv->ks_wlan_hw.ks7010sdio_wq);
priv->ks_wlan_hw.ks7010sdio_wq = NULL;
error_free_read_buf:
kfree(priv->ks_wlan_hw.read_buf);
priv->ks_wlan_hw.read_buf = NULL;
error_free_netdev:
free_netdev(priv->net_dev);
card->priv = NULL;
error_release_irq:
sdio_claim_host(func);
sdio_release_irq(func);
error_disable_func:
sdio_disable_func(func);
error_free_card:
sdio_release_host(func);
sdio_set_drvdata(func, NULL);
kfree(card);
error:
return -ENODEV;
}
static void ks7910_sdio_remove(struct sdio_func *func)
{
int ret;
struct ks_sdio_card *card;
struct ks_wlan_private *priv;
struct net_device *netdev;
DPRINTK(1, "ks7910_sdio_remove()\n");
card = sdio_get_drvdata(func);
if(card == NULL)
return;
DPRINTK(1, "priv = card->priv\n");
priv = card->priv;
netdev = priv->net_dev;
if(priv){
ks_wlan_net_stop(netdev);
DPRINTK(1, "ks_wlan_net_stop\n");
/* interrupt disable */
sdio_claim_host(func);
sdio_writeb(func, 0, INT_ENABLE, &ret);
sdio_writeb(func, 0xff, INT_PENDING, &ret);
sdio_release_host(func);
DPRINTK(1, "interrupt disable\n");
/* send stop request to MAC */
{
struct hostif_stop_request_t *pp;
pp = (struct hostif_stop_request_t *)kzalloc(hif_align_size(sizeof(*pp)), GFP_KERNEL );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return; /* to do goto ni suru*/
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_STOP_REQ);
sdio_claim_host(func);
write_to_device(priv, (unsigned char *) pp, hif_align_size(sizeof(*pp)));
sdio_release_host(func);
kfree(pp);
}
DPRINTK(1, "STOP Req\n");
if(priv->ks_wlan_hw.ks7010sdio_wq){
flush_workqueue(priv->ks_wlan_hw.ks7010sdio_wq);
destroy_workqueue(priv->ks_wlan_hw.ks7010sdio_wq);
}
DPRINTK(1, "destroy_workqueue(priv->ks_wlan_hw.ks7010sdio_wq);\n");
if(priv->ks_wlan_hw.ks7010sdio_init){
flush_workqueue(priv->ks_wlan_hw.ks7010sdio_init);
destroy_workqueue(priv->ks_wlan_hw.ks7010sdio_init);
}
DPRINTK(1, "destroy_workqueue(priv->ks_wlan_hw.ks7010sdio_init);\n");
hostif_exit(priv);
DPRINTK(1, "hostif_exit\n");
if(!reg_net)
unregister_netdev(netdev);
DPRINTK(1, "unregister_netdev\n");
trx_device_exit(priv);
if(priv->ks_wlan_hw.read_buf){
kfree(priv->ks_wlan_hw.read_buf);
}
free_netdev(priv->net_dev);
card->priv = NULL;
}
sdio_claim_host(func);
sdio_release_irq(func);
DPRINTK(1, "sdio_release_irq()\n");
sdio_disable_func(func);
DPRINTK(1, "sdio_disable_func()\n");
sdio_release_host(func);
sdio_set_drvdata(func, NULL);
kfree(card);
DPRINTK(1, "kfree()\n");
DPRINTK(5," Bye !!\n");
return;
}
static int __init ks7010_sdio_init( void )
{
int status;
/* register with bus driver core */
status = sdio_register_driver(&ks7010_sdio_driver);
if(status != 0){
DPRINTK(1,"ks79xx_sdio : failed to register with bus driver, %d\n", status );
}
return status;
}
static void __exit ks7010_sdio_exit( void )
{
DPRINTK(5," \n");
sdio_unregister_driver(&ks7010_sdio_driver);
return;
}
module_init(ks7010_sdio_init);
module_exit(ks7010_sdio_exit);
MODULE_AUTHOR("Qi-Hardware based on KeyStream driver");
MODULE_DESCRIPTION("Driver for KeyStream, KS7010 based SDIO cards. ");
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif
MODULE_SUPPORTED_DEVICE("KS7910");
/*
*
* Driver for KeyStream, KS7010 based SDIO cards.
*
* ks7010_sdio.h
* $Id: ks7010_sdio.h 1019 2009-09-28 05:41:07Z sekine $
*
* Copyright (C) 2006-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#ifndef _KS7010_SDIO_H
#define _KS7010_SDIO_H
#ifdef DEVICE_ALIGNMENT
#undef DEVICE_ALIGNMENT
#endif
#define DEVICE_ALIGNMENT 32
/* SDIO KeyStream vendor and device */
#define SDIO_VENDOR_ID_KS_CODE_A 0x005b
#define SDIO_VENDOR_ID_KS_CODE_B 0x0023
#define SDIO_DEVICE_ID_KS_7010 0x7910
/* Read Status Register */
#define READ_STATUS 0x000000
#define READ_STATUS_BUSY 0
#define READ_STATUS_IDLE 1
/* Read Index Register */
#define READ_INDEX 0x000004
/* Read Data Size Register */
#define READ_DATA_SIZE 0x000008
/* Write Status Register */
#define WRITE_STATUS 0x00000C
#define WRITE_STATUS_BUSY 0
#define WRITE_STATUS_IDLE 1
/* Write Index Register */
#define WRITE_INDEX 0x000010
/* Write Status/Read Data Size Register
* for network packet (less than 2048 bytes data)
*/
#define WSTATUS_RSIZE 0x000014
#define WSTATUS_MASK 0x80 /* Write Status Register value */
#define RSIZE_MASK 0x7F /* Read Data Size Register value [10:4] */
/* ARM to SD interrupt Enable */
#define INT_ENABLE 0x000020
/* ARM to SD interrupt Pending */
#define INT_PENDING 0x000024
#define INT_GCR_B (1<<7)
#define INT_GCR_A (1<<6)
#define INT_WRITE_STATUS (1<<5)
#define INT_WRITE_INDEX (1<<4)
#define INT_WRITE_SIZE (1<<3)
#define INT_READ_STATUS (1<<2)
#define INT_READ_INDEX (1<<1)
#define INT_READ_SIZE (1<<0)
/* General Communication Register A */
#define GCR_A 0x000028
#define GCR_A_INIT 0
#define GCR_A_REMAP 1
#define GCR_A_RUN 2
/* General Communication Register B */
#define GCR_B 0x00002C
#define GCR_B_ACTIVE 0
#define GCR_B_DOZE 1
/* Wakeup Register */
/* #define WAKEUP 0x008104 */
/* #define WAKEUP_REQ 0x00 */
#define WAKEUP 0x008018
#define WAKEUP_REQ 0x5a
/* AHB Data Window 0x010000-0x01FFFF */
#define DATA_WINDOW 0x010000
#define WINDOW_SIZE 64*1024
#define KS7010_IRAM_ADDRESS 0x06000000
/*
* struct define
*/
struct hw_info_t {
struct ks_sdio_card *sdio_card;
struct completion ks7010_sdio_wait;
struct workqueue_struct *ks7010sdio_wq;
struct workqueue_struct *ks7010sdio_init;
struct work_struct init_task;
struct delayed_work rw_wq;
unsigned char *read_buf;
struct tasklet_struct rx_bh_task;
};
struct ks_sdio_packet {
struct ks_sdio_packet *next;
u16 nb;
u8 buffer[0] __attribute__((aligned(4)));
};
struct ks_sdio_card {
struct sdio_func *func;
struct ks_wlan_private *priv;
int model;
const char *firmware;
spinlock_t lock;
};
/* Tx Device struct */
#define TX_DEVICE_BUFF_SIZE 1024
struct tx_device_buffer {
unsigned char *sendp; /* pointer of send req data */
unsigned int size;
void (*complete_handler)(void *arg1, void *arg2);
void *arg1;
void *arg2;
};
struct tx_device{
struct tx_device_buffer tx_dev_buff[TX_DEVICE_BUFF_SIZE];
unsigned int qhead; /* tx buffer queue first pointer */
unsigned int qtail; /* tx buffer queue last pointer */
spinlock_t tx_dev_lock;
};
/* Rx Device struct */
#define RX_DATA_SIZE (2 + 2 + 2347 + 1)
#define RX_DEVICE_BUFF_SIZE 32
struct rx_device_buffer {
unsigned char data[RX_DATA_SIZE];
unsigned int size;
};
struct rx_device{
struct rx_device_buffer rx_dev_buff[RX_DEVICE_BUFF_SIZE];
unsigned int qhead; /* rx buffer queue first pointer */
unsigned int qtail; /* rx buffer queue last pointer */
spinlock_t rx_dev_lock;
};
#ifndef NO_FIRMWARE_CLASS
#define ROM_FILE "ks7010sd.rom"
#define CFG_FILE "ks79xx.cfg"
#else
#define ROM_FILE "/lib/firmware/ks7010sd.rom"
#define CFG_FILE "/lib/firmware/ks79xx.cfg"
#endif
#define KS_WLAN_DRIVER_VERSION_INFO "ks7010 sdio linux 007"
#endif /* _KS7010_SDIO_H */
/*
* Driver for KeyStream 11b/g wireless LAN cards.
*
* ks_debug.c
* $Id: ks_debug.c 991 2009-09-14 01:38:58Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#include "ks_wlan.h"
#include "ks_debug.h"
void print_buffer(unsigned char *p, int length)
{
#ifdef KS_WLAN_DEBUG
int i;
#define HEX_OFFSET "\
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F"
printk(HEX_OFFSET);
for (i=0; i<length; i++) {
if (i % 16 == 0) printk("\n%04X-%04X:", i, i+15);
printk(" %02X", *(p+i));
}
printk("\n");
#endif
}
/*
* Driver for KeyStream 11b/g wireless LAN cards.
*
* ks_debug.h
* $Id: ks_debug.h 991 2009-09-14 01:38:58Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#ifndef _KS_DEBUG_H
#define _KS_DEBUG_H
#include <linux/kernel.h>
#ifdef KS_WLAN_DEBUG
#define DPRINTK(n, fmt, args...) \
if (KS_WLAN_DEBUG>(n)) printk(KERN_NOTICE "%s: "fmt, __FUNCTION__, ## args)
#else
#define DPRINTK(n, fmt, args...)
#endif
extern void print_buffer(unsigned char *p, int size);
#endif /* _KS_DEBUG_H */
/*
* Driver for KeyStream wireless LAN cards.
*
* ks_hostif.c
* $Id: ks_hostif.c 996 2009-09-14 02:54:21Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#include "ks_wlan.h"
#include "ks_debug.h"
#include "ks_hostif.h"
#include "eap_packet.h"
#include "michael_mic.h"
#include <linux/if_ether.h>
#include <linux/if_arp.h>
/* Include Wireless Extension definition and check version */
#ifndef WIRELESS_EXT
#include <linux/wireless.h>
#endif /* WIRELESS_EXT */
#if WIRELESS_EXT > 12
#include <net/iw_handler.h> /* New driver API */
#endif /* WIRELESS_EXT > 12 */
extern int ks_wlan_hw_tx(ks_wlan_private *priv, void *p, unsigned long size,
void (*complete_handler)(void *arg1, void *arg2),
void *arg1, void *arg2 );
extern void send_packet_complete(void *, void *);
extern void ks_wlan_hw_wakeup_request(ks_wlan_private *priv);
extern int ks_wlan_hw_power_save(ks_wlan_private *priv);
/* macro */
#define inc_smeqhead(priv) \
( priv->sme_i.qhead = (priv->sme_i.qhead + 1) % SME_EVENT_BUFF_SIZE )
#define inc_smeqtail(priv) \
( priv->sme_i.qtail = (priv->sme_i.qtail + 1) % SME_EVENT_BUFF_SIZE )
#define cnt_smeqbody(priv) \
(((priv->sme_i.qtail + SME_EVENT_BUFF_SIZE) - (priv->sme_i.qhead)) % SME_EVENT_BUFF_SIZE )
#define KS_WLAN_MEM_FLAG (GFP_ATOMIC)
static
inline u8 get_BYTE(ks_wlan_private *priv)
{
u8 data;
data = *(priv->rxp)++;
/* length check in advance ! */
--(priv->rx_size);
return data;
}
static
inline u16 get_WORD(ks_wlan_private *priv)
{
u16 data;
data = (get_BYTE(priv) & 0xff);
data |= ((get_BYTE(priv) << 8) & 0xff00);
return data;
}
static
inline u32 get_DWORD(ks_wlan_private *priv)
{
u32 data;
data = (get_BYTE(priv) & 0xff);
data |= ((get_BYTE(priv) << 8) & 0x0000ff00);
data |= ((get_BYTE(priv) << 16) & 0x00ff0000);
data |= ((get_BYTE(priv) << 24) & 0xff000000);
return data;
}
void ks_wlan_hw_wakeup_task(struct work_struct *work)
{
ks_wlan_private *priv = container_of(work, struct ks_wlan_private, ks_wlan_wakeup_task);
int ps_status = atomic_read(&priv->psstatus.status);
if(ps_status==PS_SNOOZE){
ks_wlan_hw_wakeup_request(priv);
if(!wait_for_completion_interruptible_timeout(&priv->psstatus.wakeup_wait,HZ/50)){ /* 20ms timeout */
DPRINTK(1,"wake up timeout !!!\n");
schedule_work(&priv->ks_wlan_wakeup_task);
return;
}
}
else{
DPRINTK(1,"ps_status=%d\n",ps_status);
}
/* power save */
if(atomic_read(&priv->sme_task.count) > 0){
DPRINTK(4,"sme task enable.\n");
tasklet_enable(&priv->sme_task);
}
}
static
int ks_wlan_do_power_save(ks_wlan_private *priv)
{
int rc=0;
DPRINTK(4,"psstatus.status=%d\n",atomic_read(&priv->psstatus.status));
#ifdef _SDIO_
if((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS){
hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST);
}
else{
priv->dev_state = DEVICE_STATE_READY;
}
#else
if((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS){
switch(atomic_read(&priv->psstatus.status)){
case PS_ACTIVE_SET:
case PS_WAKEUP:
case PS_SAVE_SET:
case PS_SNOOZE:
break;
case PS_CONF_WAIT:
atomic_set(&priv->psstatus.confirm_wait,0);
break;
case PS_NONE:
default:
hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST);
break;
}
}
else{
switch(atomic_read(&priv->psstatus.status)){
case PS_ACTIVE_SET:
case PS_WAKEUP:
case PS_SAVE_SET:
break;
case PS_CONF_WAIT:
atomic_set(&priv->psstatus.confirm_wait,0);
atomic_set(&priv->psstatus.status, PS_WAKEUP);
break;
case PS_SNOOZE:
ks_wlan_hw_power_save(priv);
break;
case PS_NONE:
default:
hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST);
break;
}
}
#endif
return rc;
}
static
int get_current_ap(ks_wlan_private *priv, struct link_ap_info_t *ap_info)
{
struct local_ap_t *ap;
#if WIRELESS_EXT > 13
union iwreq_data wrqu;
struct net_device *netdev=priv->net_dev;
#endif /* WIRELESS_EXT > 13 */
int rc=0;
DPRINTK(3,"\n");
ap = &(priv->current_ap);
if((priv->connect_status & CONNECT_STATUS_MASK)== DISCONNECT_STATUS){
memset(ap,0,sizeof(struct local_ap_t));
return 1;
}
/* bssid */
memcpy(&(ap->bssid[0]),&(ap_info->bssid[0]),ETH_ALEN);
/* essid */
memcpy(&(ap->ssid.body[0]),&(priv->reg.ssid.body[0]),priv->reg.ssid.size);
ap->ssid.size = priv->reg.ssid.size;
/* rate_set */
memcpy(&(ap->rate_set.body[0]),&(ap_info->rate_set.body[0]),ap_info->rate_set.size);
ap->rate_set.size = ap_info->rate_set.size;
if(ap_info->ext_rate_set.size){
/* rate_set */
memcpy(&(ap->rate_set.body[ap->rate_set.size]),
&(ap_info->ext_rate_set.body[0]),
ap_info->ext_rate_set.size);
ap->rate_set.size += ap_info->ext_rate_set.size;
}
/* channel */
ap->channel = ap_info->ds_parameter.channel;
/* rssi */
ap->rssi = ap_info->rssi;
/* sq */
ap->sq = ap_info->sq;
/* noise */
ap->noise = ap_info->noise;
/* capability */
ap->capability = ap_info->capability;
/* rsn */
if((ap_info->rsn_mode & RSN_MODE_WPA2) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)){
ap->rsn_ie.id = 0x30;
if(ap_info->rsn.size <= RSN_IE_BODY_MAX){
ap->rsn_ie.size = ap_info->rsn.size;
memcpy(&(ap->rsn_ie.body[0]),&(ap_info->rsn.body[0]),ap_info->rsn.size);
}
else{
ap->rsn_ie.size = RSN_IE_BODY_MAX;
memcpy(&(ap->rsn_ie.body[0]),&(ap_info->rsn.body[0]),RSN_IE_BODY_MAX);
}
}
else if((ap_info->rsn_mode & RSN_MODE_WPA) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA)){
ap->wpa_ie.id = 0xdd;
if(ap_info->rsn.size <= RSN_IE_BODY_MAX){
ap->wpa_ie.size = ap_info->rsn.size;
memcpy(&(ap->wpa_ie.body[0]),&(ap_info->rsn.body[0]),ap_info->rsn.size);
}
else{
ap->wpa_ie.size = RSN_IE_BODY_MAX;
memcpy(&(ap->wpa_ie.body[0]),&(ap_info->rsn.body[0]),RSN_IE_BODY_MAX);
}
}
else{
ap->rsn_ie.id = 0;
ap->rsn_ie.size = 0;
ap->wpa_ie.id = 0;
ap->wpa_ie.size = 0;
}
#if WIRELESS_EXT > 13
wrqu.data.length = 0;
wrqu.data.flags = 0;
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
if((priv->connect_status & CONNECT_STATUS_MASK)==CONNECT_STATUS){
memcpy(wrqu.ap_addr.sa_data,
&(priv->current_ap.bssid[0]), ETH_ALEN);
DPRINTK(3,"IWEVENT: connect bssid=%02x:%02x:%02x:%02x:%02x:%02x\n",
(unsigned char)wrqu.ap_addr.sa_data[0],(unsigned char)wrqu.ap_addr.sa_data[1],
(unsigned char)wrqu.ap_addr.sa_data[2],(unsigned char)wrqu.ap_addr.sa_data[3],
(unsigned char)wrqu.ap_addr.sa_data[4],(unsigned char)wrqu.ap_addr.sa_data[5]);
wireless_send_event(netdev, SIOCGIWAP, &wrqu, NULL);
}
#endif
DPRINTK(4,"\n Link AP\n");
DPRINTK(4," bssid=%02X:%02X:%02X:%02X:%02X:%02X\n \
essid=%s\n rate_set=%02X,%02X,%02X,%02X,%02X,%02X,%02X,%02X\n channel=%d\n \
rssi=%d\n sq=%d\n capability=%04X\n",
ap->bssid[0],ap->bssid[1],ap->bssid[2],ap->bssid[3],ap->bssid[4],
ap->bssid[5],&(ap->ssid.body[0]),ap->rate_set.body[0],ap->rate_set.body[1],
ap->rate_set.body[2],ap->rate_set.body[3],ap->rate_set.body[4],
ap->rate_set.body[5],ap->rate_set.body[6],ap->rate_set.body[7],
ap->channel,ap->rssi,ap->sq,ap->capability);
DPRINTK(4,"\n Link AP\n rsn.mode=%d\n rsn.size=%d\n",
ap_info->rsn_mode,ap_info->rsn.size);
DPRINTK(4,"\n ext_rate_set_size=%d\n rate_set_size=%d\n",
ap_info->ext_rate_set.size,ap_info->rate_set.size);
return rc;
}
static
int get_ap_information(ks_wlan_private *priv, struct ap_info_t *ap_info, struct local_ap_t *ap)
{
unsigned char *bp;
int bsize,offset;
int rc=0;
DPRINTK(3,"\n");
memset(ap,0,sizeof(struct local_ap_t));
/* bssid */
memcpy(&(ap->bssid[0]),&(ap_info->bssid[0]),ETH_ALEN);
/* rssi */
ap->rssi = ap_info->rssi;
/* sq */
ap->sq = ap_info->sq;
/* noise */
ap->noise = ap_info->noise;
/* capability */
ap->capability = ap_info->capability;
/* channel */
ap->channel = ap_info->ch_info;
bp = &(ap_info->body[0]);
bsize = ap_info->body_size;
offset = 0;
while(bsize > offset){
/* DPRINTK(4, "Element ID=%d \n",*bp); */
switch(*bp){
case 0: /* ssid */
if(*(bp+1) <= SSID_MAX_SIZE){
ap->ssid.size = *(bp+1);
}
else {
DPRINTK(1, "size over :: ssid size=%d \n",*(bp+1));
ap->ssid.size = SSID_MAX_SIZE;
}
memcpy(&(ap->ssid.body[0]),bp+2,ap->ssid.size);
break;
case 1: /* rate */
case 50: /* ext rate */
if((*(bp+1) + ap->rate_set.size) <= RATE_SET_MAX_SIZE){
memcpy(&(ap->rate_set.body[ap->rate_set.size]),bp+2,*(bp+1));
ap->rate_set.size += *(bp+1);
}
else{
DPRINTK(1, "size over :: rate size=%d \n",
(*(bp+1) + ap->rate_set.size));
memcpy(&(ap->rate_set.body[ap->rate_set.size]),bp+2,
RATE_SET_MAX_SIZE - ap->rate_set.size);
ap->rate_set.size += (RATE_SET_MAX_SIZE - ap->rate_set.size);
}
break;
case 3: /* DS parameter */
break;
case 48: /* RSN(WPA2) */
ap->rsn_ie.id = *bp;
if(*(bp+1) <= RSN_IE_BODY_MAX){
ap->rsn_ie.size = *(bp+1);
}else{
DPRINTK(1, "size over :: rsn size=%d \n",*(bp+1));
ap->rsn_ie.size = RSN_IE_BODY_MAX;
}
memcpy(&(ap->rsn_ie.body[0]),bp+2,ap->rsn_ie.size);
break;
case 221: /* WPA */
if(!memcmp(bp+2, "\x00\x50\xf2\x01", 4)){ /* WPA OUI check */
ap->wpa_ie.id = *bp;
if(*(bp+1) <= RSN_IE_BODY_MAX){
ap->wpa_ie.size = *(bp+1);
}else{
DPRINTK(1, "size over :: wpa size=%d \n",*(bp+1));
ap->wpa_ie.size = RSN_IE_BODY_MAX;
}
memcpy(&(ap->wpa_ie.body[0]),bp+2,ap->wpa_ie.size);
}
break;
case 2: /* FH parameter */
case 4: /* CF parameter */
case 5: /* TIM */
case 6: /* IBSS parameter */
case 7: /* Country */
case 42: /* ERP information */
case 47: /* Reserve ID 47 Broadcom AP */
break;
default:
DPRINTK(4, "unknown Element ID=%d \n",*bp);
break;
}
offset += 2; /* id & size field */
offset += *(bp+1); /* +size offset */
bp += (*(bp+1) + 2); /* pointer update */
}
return rc;
}
static
void hostif_data_indication(ks_wlan_private *priv)
{
unsigned int rx_ind_size; /* indicate data size */
struct sk_buff *skb;
unsigned short auth_type;
unsigned char temp[256];
unsigned char RecvMIC[8];
char buf[128];
struct ether_hdr *eth_hdr;
unsigned short eth_proto;
unsigned long now;
struct mic_failure_t *mic_failure;
struct ieee802_1x_hdr *aa1x_hdr;
struct wpa_eapol_key *eap_key;
struct michel_mic_t michel_mic;
#if WIRELESS_EXT > 14
union iwreq_data wrqu;
#endif /* WIRELESS_EXT > 14 */
DPRINTK(3,"\n");
/* min length check */
if (priv->rx_size <= ETH_HLEN) {
DPRINTK(3,"rx_size = %d\n", priv->rx_size);
priv->nstats.rx_errors++;
return;
}
auth_type = get_WORD(priv); /* AuthType */
get_WORD(priv); /* Reserve Area */
eth_hdr = (struct ether_hdr *)(priv->rxp);
eth_proto = ntohs(eth_hdr->h_proto);
DPRINTK(3,"ether protocol = %04X\n", eth_proto);
/* source address check */
if (!memcmp(&priv->eth_addr[0],eth_hdr->h_source, ETH_ALEN)){
DPRINTK(1, "invalid : source is own mac address !!\n");
DPRINTK(1, "eth_hdrernet->h_dest=%02X:%02X:%02X:%02X:%02X:%02X\n",
eth_hdr->h_source[0],eth_hdr->h_source[1],eth_hdr->h_source[2],
eth_hdr->h_source[3],eth_hdr->h_source[4],eth_hdr->h_source[5]);
priv->nstats.rx_errors++;
return;
}
/* for WPA */
if (auth_type != TYPE_DATA && priv->wpa.rsn_enabled){
if(memcmp(&eth_hdr->h_source[0],&priv->eth_addr[0],ETH_ALEN)){ /* source address check */
if (eth_hdr->h_dest_snap != eth_hdr->h_source_snap){
DPRINTK(1,"invalid data format\n");
priv->nstats.rx_errors++;
return;
}
if(((auth_type==TYPE_PMK1 && priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP)||
(auth_type==TYPE_GMK1 && priv->wpa.group_suite == IW_AUTH_CIPHER_TKIP)||
(auth_type==TYPE_GMK2 && priv->wpa.group_suite == IW_AUTH_CIPHER_TKIP))
&& priv->wpa.key[auth_type-1].key_len){
DPRINTK(4,"TKIP: protocol=%04X: size=%u\n", eth_proto, priv->rx_size);
/* MIC save */
memcpy(&RecvMIC[0], (priv->rxp)+((priv->rx_size)-8), 8);
priv->rx_size = priv->rx_size - 8;
if(auth_type > 0 && auth_type < 4){ /* auth_type check */
MichaelMICFunction(&michel_mic,
(uint8_t*)priv->wpa.key[auth_type-1].rx_mic_key,
(uint8_t*)priv->rxp,
(int)priv->rx_size,
(uint8_t)0, /* priority */
(uint8_t*)michel_mic.Result);
}
if(memcmp(michel_mic.Result, RecvMIC, 8)){
now = jiffies;
mic_failure = &priv->wpa.mic_failure;
/* MIC FAILURE */
if(mic_failure->last_failure_time &&
(now - mic_failure->last_failure_time)/HZ >= 60){
mic_failure->failure=0;
}
DPRINTK(4,"MIC FAILURE \n");
if(mic_failure->failure==0){
mic_failure->failure=1;
mic_failure->counter=0;
}else if(mic_failure->failure==1){
mic_failure->failure=2;
mic_failure->counter =
(uint16_t)((now - mic_failure->last_failure_time)/HZ);
if(!mic_failure->counter) /* mic_failure counter value range 1-60 */
mic_failure->counter = 1;
}
priv->wpa.mic_failure.last_failure_time = now;
#if WIRELESS_EXT > 14
/* needed parameters: count, keyid, key type, TSC */
sprintf(buf, "MLME-MICHAELMICFAILURE.indication(keyid=%d %scast addr="
"%02x:%02x:%02x:%02x:%02x:%02x)",
auth_type-1, eth_hdr->h_dest[0] & 0x01 ? "broad" : "uni",
eth_hdr->h_source[0],eth_hdr->h_source[1],
eth_hdr->h_source[2],eth_hdr->h_source[3],
eth_hdr->h_source[4],eth_hdr->h_source[5]);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
DPRINTK(4,"IWEVENT:MICHAELMICFAILURE\n");
wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf);
#endif /* WIRELESS_EXT > 14 */
return;
}
}
}
}
if((priv->connect_status & FORCE_DISCONNECT)||
priv->wpa.mic_failure.failure==2){
return;
}
/* check 13th byte at rx data */
switch (*(priv->rxp+12)) {
case 0xAA: /* SNAP */
rx_ind_size = priv->rx_size - 6;
skb = dev_alloc_skb (rx_ind_size);
DPRINTK(4,"SNAP, rx_ind_size = %d\n", rx_ind_size);
if(skb) {
memcpy(skb_put(skb,12),priv->rxp,12); /* 8802/FDDI MAC copy */
/* (SNAP+UI..) skip */
memcpy(skb_put(skb,rx_ind_size-12),priv->rxp+18,rx_ind_size-12); /* copy after Type */
aa1x_hdr=(struct ieee802_1x_hdr *)(priv->rxp+20);
if(aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY && priv->wpa.rsn_enabled){
eap_key = (struct wpa_eapol_key *)(aa1x_hdr+1);
atomic_set(&priv->psstatus.snooze_guard, 1);
}
/* rx indication */
skb->dev = priv->net_dev;
skb->protocol = eth_type_trans (skb, skb->dev);
priv->nstats.rx_packets++;
priv->nstats.rx_bytes += rx_ind_size;
skb->dev->last_rx = jiffies;
netif_rx (skb);
} else {
printk (KERN_WARNING"%s: Memory squeeze, dropping packet.\n",skb->dev->name);
priv->nstats.rx_dropped++;
}
break;
case 0xF0: /* NETBEUI/NetBIOS */
rx_ind_size = (priv->rx_size + 2);
skb = dev_alloc_skb (rx_ind_size);
DPRINTK(3,"NETBEUI/NetBIOS rx_ind_size=%d\n", rx_ind_size);
if(skb) {
memcpy(skb_put(skb,12),priv->rxp,12); /* 8802/FDDI MAC copy */
temp[0] = (((rx_ind_size-12) >> 8) & 0xff); /* NETBEUI size add */
temp[1] = ((rx_ind_size-12) & 0xff);
memcpy(skb_put(skb,2),temp,2);
memcpy(skb_put(skb,rx_ind_size-14),priv->rxp+12,rx_ind_size-14); /* copy after Type */
aa1x_hdr=(struct ieee802_1x_hdr *)(priv->rxp+14);
if(aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY && priv->wpa.rsn_enabled){
eap_key = (struct wpa_eapol_key *)(aa1x_hdr+1);
atomic_set(&priv->psstatus.snooze_guard, 1);
}
/* rx indication */
skb->dev = priv->net_dev;
skb->protocol = eth_type_trans (skb, skb->dev);
priv->nstats.rx_packets++;
priv->nstats.rx_bytes += rx_ind_size;
skb->dev->last_rx = jiffies;
netif_rx (skb);
} else {
printk (KERN_WARNING"%s: Memory squeeze, dropping packet.\n",skb->dev->name);
priv->nstats.rx_dropped++;
}
break;
default: /* other rx data */
DPRINTK(2,"invalid data format\n");
priv->nstats.rx_errors++;
}
}
static
void hostif_mib_get_confirm(ks_wlan_private *priv)
{
struct net_device *dev=priv->net_dev;
uint32_t mib_status;
uint32_t mib_attribute;
uint16_t mib_val_size;
uint16_t mib_val_type;
DPRINTK(3, "\n");
mib_status = get_DWORD(priv); /* MIB status */
mib_attribute = get_DWORD(priv); /* MIB atttibute */
mib_val_size = get_WORD(priv); /* MIB value size */
mib_val_type = get_WORD(priv); /* MIB value type */
if (mib_status != 0) {
/* in case of error */
DPRINTK(1, "attribute=%08X, status=%08X\n", mib_attribute, mib_status);
return;
}
switch (mib_attribute) {
case DOT11_MAC_ADDRESS:
/* MAC address */
DPRINTK(3," mib_attribute=DOT11_MAC_ADDRESS\n");
hostif_sme_enqueue(priv, SME_GET_MAC_ADDRESS);
memcpy(priv->eth_addr, priv->rxp, ETH_ALEN);
priv->mac_address_valid = 1;
dev->dev_addr[0] = priv->eth_addr[0];
dev->dev_addr[1] = priv->eth_addr[1];
dev->dev_addr[2] = priv->eth_addr[2];
dev->dev_addr[3] = priv->eth_addr[3];
dev->dev_addr[4] = priv->eth_addr[4];
dev->dev_addr[5] = priv->eth_addr[5];
dev->dev_addr[6] = 0x00;
dev->dev_addr[7] = 0x00;
printk(KERN_INFO "ks_wlan: MAC ADDRESS = %02x:%02x:%02x:%02x:%02x:%02x\n",
priv->eth_addr[0],priv->eth_addr[1],priv->eth_addr[2],
priv->eth_addr[3],priv->eth_addr[4],priv->eth_addr[5]);
break;
case DOT11_PRODUCT_VERSION:
/* firmware version */
DPRINTK(3," mib_attribute=DOT11_PRODUCT_VERSION\n");
priv->version_size = priv->rx_size;
memcpy(priv->firmware_version, priv->rxp, priv->rx_size);
priv->firmware_version[priv->rx_size] = '\0';
printk(KERN_INFO "ks_wlan: firmware ver. = %s\n",priv->firmware_version);
hostif_sme_enqueue(priv, SME_GET_PRODUCT_VERSION);
/* wake_up_interruptible_all(&priv->confirm_wait); */
complete(&priv->confirm_wait);
break;
case LOCAL_GAIN:
memcpy(&priv->gain, priv->rxp, sizeof(priv->gain));
DPRINTK(3, "TxMode=%d, RxMode=%d, TxGain=%d, RxGain=%d\n",
priv->gain.TxMode, priv->gain.RxMode, priv->gain.TxGain, priv->gain.RxGain);
break;
case LOCAL_EEPROM_SUM:
memcpy(&priv->eeprom_sum, priv->rxp, sizeof(priv->eeprom_sum));
DPRINTK(1, "eeprom_sum.type=%x, eeprom_sum.result=%x\n", priv->eeprom_sum.type, priv->eeprom_sum.result);
if(priv->eeprom_sum.type == 0){
priv->eeprom_checksum = EEPROM_CHECKSUM_NONE;
}else if(priv->eeprom_sum.type == 1){
if(priv->eeprom_sum.result == 0){
priv->eeprom_checksum = EEPROM_NG;
printk("LOCAL_EEPROM_SUM NG\n");
}else if(priv->eeprom_sum.result == 1){
priv->eeprom_checksum = EEPROM_OK;
}
}else{
printk("LOCAL_EEPROM_SUM error!\n");
}
break;
default:
DPRINTK(1,"mib_attribute=%08x\n",(unsigned int)mib_attribute);
break;
}
}
static
void hostif_mib_set_confirm(ks_wlan_private *priv)
{
uint32_t mib_status; /* +04 MIB Status */
uint32_t mib_attribute; /* +08 MIB attribute */
DPRINTK(3,"\n");
mib_status = get_DWORD(priv); /* MIB Status */
mib_attribute = get_DWORD(priv); /* MIB attribute */
if (mib_status != 0) {
/* in case of error */
DPRINTK(1, "error :: attribute=%08X, status=%08X\n", mib_attribute, mib_status);
}
switch (mib_attribute) {
case DOT11_RTS_THRESHOLD:
hostif_sme_enqueue(priv, SME_RTS_THRESHOLD_CONFIRM);
break;
case DOT11_FRAGMENTATION_THRESHOLD:
hostif_sme_enqueue(priv, SME_FRAGMENTATION_THRESHOLD_CONFIRM);
break;
case DOT11_WEP_DEFAULT_KEY_ID:
if(!priv->wpa.wpa_enabled)
hostif_sme_enqueue(priv, SME_WEP_INDEX_CONFIRM);
break;
case DOT11_WEP_DEFAULT_KEY_VALUE1:
DPRINTK(2,"DOT11_WEP_DEFAULT_KEY_VALUE1:mib_status=%d\n",(int)mib_status);
if(priv->wpa.rsn_enabled)
hostif_sme_enqueue(priv, SME_SET_PMK_TSC);
else
hostif_sme_enqueue(priv, SME_WEP_KEY1_CONFIRM);
break;
case DOT11_WEP_DEFAULT_KEY_VALUE2:
DPRINTK(2,"DOT11_WEP_DEFAULT_KEY_VALUE2:mib_status=%d\n",(int)mib_status);
if(priv->wpa.rsn_enabled)
hostif_sme_enqueue(priv, SME_SET_GMK1_TSC);
else
hostif_sme_enqueue(priv, SME_WEP_KEY2_CONFIRM);
break;
case DOT11_WEP_DEFAULT_KEY_VALUE3:
DPRINTK(2,"DOT11_WEP_DEFAULT_KEY_VALUE3:mib_status=%d\n",(int)mib_status);
if(priv->wpa.rsn_enabled)
hostif_sme_enqueue(priv, SME_SET_GMK2_TSC);
else
hostif_sme_enqueue(priv, SME_WEP_KEY3_CONFIRM);
break;
case DOT11_WEP_DEFAULT_KEY_VALUE4:
DPRINTK(2,"DOT11_WEP_DEFAULT_KEY_VALUE4:mib_status=%d\n",(int)mib_status);
if(!priv->wpa.rsn_enabled)
hostif_sme_enqueue(priv, SME_WEP_KEY4_CONFIRM);
break;
case DOT11_PRIVACY_INVOKED:
if(!priv->wpa.rsn_enabled)
hostif_sme_enqueue(priv, SME_WEP_FLAG_CONFIRM);
break;
case DOT11_RSN_ENABLED:
DPRINTK(2,"DOT11_RSN_ENABLED:mib_status=%d\n",(int)mib_status);
hostif_sme_enqueue(priv, SME_RSN_ENABLED_CONFIRM);
break;
case LOCAL_RSN_MODE:
hostif_sme_enqueue(priv, SME_RSN_MODE_CONFIRM);
break;
case LOCAL_MULTICAST_ADDRESS:
hostif_sme_enqueue(priv, SME_MULTICAST_REQUEST);
break;
case LOCAL_MULTICAST_FILTER:
hostif_sme_enqueue(priv, SME_MULTICAST_CONFIRM);
break;
case LOCAL_CURRENTADDRESS:
priv->mac_address_valid = 1;
break;
case DOT11_RSN_CONFIG_MULTICAST_CIPHER:
DPRINTK(2,"DOT11_RSN_CONFIG_MULTICAST_CIPHER:mib_status=%d\n",(int)mib_status);
hostif_sme_enqueue(priv, SME_RSN_MCAST_CONFIRM);
break;
case DOT11_RSN_CONFIG_UNICAST_CIPHER:
DPRINTK(2,"DOT11_RSN_CONFIG_UNICAST_CIPHER:mib_status=%d\n",(int)mib_status);
hostif_sme_enqueue(priv, SME_RSN_UCAST_CONFIRM);
break;
case DOT11_RSN_CONFIG_AUTH_SUITE:
DPRINTK(2,"DOT11_RSN_CONFIG_AUTH_SUITE:mib_status=%d\n",(int)mib_status);
hostif_sme_enqueue(priv, SME_RSN_AUTH_CONFIRM);
break;
case DOT11_PMK_TSC:
DPRINTK(2,"DOT11_PMK_TSC:mib_status=%d\n",(int)mib_status);
break;
case DOT11_GMK1_TSC:
DPRINTK(2,"DOT11_GMK1_TSC:mib_status=%d\n",(int)mib_status);
if(atomic_read(&priv->psstatus.snooze_guard)){
atomic_set(&priv->psstatus.snooze_guard, 0);
}
break;
case DOT11_GMK2_TSC:
DPRINTK(2,"DOT11_GMK2_TSC:mib_status=%d\n",(int)mib_status);
if(atomic_read(&priv->psstatus.snooze_guard)){
atomic_set(&priv->psstatus.snooze_guard, 0);
}
break;
case LOCAL_PMK:
DPRINTK(2,"LOCAL_PMK:mib_status=%d\n",(int)mib_status);
break;
case LOCAL_GAIN:
DPRINTK(2,"LOCAL_GAIN:mib_status=%d\n",(int)mib_status);
break;
#ifdef WPS
case LOCAL_WPS_ENABLE:
DPRINTK(2,"LOCAL_WPS_ENABLE:mib_status=%d\n",(int)mib_status);
break;
case LOCAL_WPS_PROBE_REQ:
DPRINTK(2,"LOCAL_WPS_PROBE_REQ:mib_status=%d\n",(int)mib_status);
break;
#endif /* WPS */
case LOCAL_REGION:
DPRINTK(2,"LOCAL_REGION:mib_status=%d\n",(int)mib_status);
default :
break;
}
}
static
void hostif_power_mngmt_confirm(ks_wlan_private *priv)
{
DPRINTK(3,"\n");
if(priv->reg.powermgt > POWMGT_ACTIVE_MODE &&
priv->reg.operation_mode == MODE_INFRASTRUCTURE){
#if !defined(_SDIO_)
atomic_set(&priv->psstatus.status,PS_SAVE_SET);
#endif
atomic_set(&priv->psstatus.confirm_wait, 0);
priv->dev_state = DEVICE_STATE_SLEEP;
ks_wlan_hw_power_save(priv);
}else{
priv->dev_state = DEVICE_STATE_READY;
#if !defined(_SDIO_)
atomic_set(&priv->psstatus.status,PS_ACTIVE_SET);
#endif
}
}
static
void hostif_sleep_confirm(ks_wlan_private *priv)
{
DPRINTK(3,"\n");
atomic_set(&priv->sleepstatus.doze_request,1);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
}
static
void hostif_start_confirm(ks_wlan_private *priv)
{
#ifdef WPS
union iwreq_data wrqu;
wrqu.data.length = 0;
wrqu.data.flags = 0;
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
if((priv->connect_status & CONNECT_STATUS_MASK)== CONNECT_STATUS){
memset(wrqu.ap_addr.sa_data, '\0', ETH_ALEN);
DPRINTK(3,"IWEVENT: disconnect\n");
wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
}
#endif
DPRINTK(3," scan_ind_count=%d\n",priv->scan_ind_count);
hostif_sme_enqueue(priv, SME_START_CONFIRM);
}
static
void hostif_connect_indication(ks_wlan_private *priv)
{
unsigned short connect_code;
unsigned int tmp=0;
unsigned int old_status=priv->connect_status;
struct net_device *netdev=priv->net_dev;
#if WIRELESS_EXT > 13
union iwreq_data wrqu0;
#endif /* WIRELESS_EXT > 13 */
connect_code = get_WORD(priv);
switch(connect_code){
case RESULT_CONNECT: /* connect */
DPRINTK(3,"connect :: scan_ind_count=%d\n",priv->scan_ind_count);
if(!(priv->connect_status & FORCE_DISCONNECT))
netif_carrier_on(netdev);
tmp = FORCE_DISCONNECT & priv->connect_status;
priv->connect_status = tmp + CONNECT_STATUS;
break;
case RESULT_DISCONNECT: /* disconnect */
DPRINTK(3,"disconnect :: scan_ind_count=%d\n",priv->scan_ind_count);
netif_carrier_off(netdev);
tmp = FORCE_DISCONNECT & priv->connect_status;
priv->connect_status = tmp + DISCONNECT_STATUS;
break;
default:
DPRINTK(1,"unknown connect_code=%d :: scan_ind_count=%d\n",
connect_code,priv->scan_ind_count);
netif_carrier_off(netdev);
tmp = FORCE_DISCONNECT & priv->connect_status;
priv->connect_status = tmp + DISCONNECT_STATUS;
break;
}
get_current_ap(priv, (struct link_ap_info_t *)priv->rxp);
if((priv->connect_status & CONNECT_STATUS_MASK)== CONNECT_STATUS &&
(old_status & CONNECT_STATUS_MASK)==DISCONNECT_STATUS ){
/* for power save */
atomic_set(&priv->psstatus.snooze_guard, 0);
atomic_set(&priv->psstatus.confirm_wait,0);
#if !defined(_SDIO_)
atomic_set(&priv->psstatus.status, PS_NONE);
#endif
}
ks_wlan_do_power_save(priv);
#if WIRELESS_EXT > 13
wrqu0.data.length = 0;
wrqu0.data.flags = 0;
wrqu0.ap_addr.sa_family = ARPHRD_ETHER;
if((priv->connect_status & CONNECT_STATUS_MASK)== DISCONNECT_STATUS &&
(old_status & CONNECT_STATUS_MASK)==CONNECT_STATUS ){
memset(wrqu0.ap_addr.sa_data, '\0', ETH_ALEN);
DPRINTK(3,"IWEVENT: disconnect\n");
DPRINTK(3,"disconnect :: scan_ind_count=%d\n",priv->scan_ind_count);
wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL);
}
#endif /* WIRELESS_EXT > 13 */
priv->scan_ind_count=0;
}
static
void hostif_scan_indication(ks_wlan_private *priv)
{
int i;
struct ap_info_t *ap_info;
DPRINTK(3,"scan_ind_count = %d\n", priv->scan_ind_count);
ap_info = (struct ap_info_t *)(priv->rxp);
if(priv->scan_ind_count!=0){
for(i=0;i<priv->aplist.size;i++){ /* bssid check */
if(!memcmp(&(ap_info->bssid[0]),&(priv->aplist.ap[i].bssid[0]),ETH_ALEN)){
if(ap_info->frame_type == FRAME_TYPE_PROBE_RESP)
get_ap_information(priv,ap_info,&(priv->aplist.ap[i]));
return;
}
}
}
priv->scan_ind_count++;
if(priv->scan_ind_count < LOCAL_APLIST_MAX+1){
DPRINTK(4," scan_ind_count=%d :: aplist.size=%d\n", priv->scan_ind_count, priv->aplist.size);
get_ap_information(priv,(struct ap_info_t *)(priv->rxp),&(priv->aplist.ap[priv->scan_ind_count-1]));
priv->aplist.size = priv->scan_ind_count;
}
else{
DPRINTK(4," count over :: scan_ind_count=%d\n", priv->scan_ind_count);
}
}
static
void hostif_stop_confirm(ks_wlan_private *priv)
{
unsigned int tmp=0;
unsigned int old_status=priv->connect_status;
struct net_device *netdev=priv->net_dev;
union iwreq_data wrqu0;
DPRINTK(3,"\n");
#ifdef _SDIO_
if(priv->dev_state == DEVICE_STATE_SLEEP)
priv->dev_state = DEVICE_STATE_READY;
#endif
/* disconnect indication */
if( (priv->connect_status & CONNECT_STATUS_MASK)== CONNECT_STATUS){
netif_carrier_off(netdev);
tmp = FORCE_DISCONNECT & priv->connect_status;
priv->connect_status = tmp | DISCONNECT_STATUS;
printk("IWEVENT: disconnect\n");
wrqu0.data.length = 0;
wrqu0.data.flags = 0;
wrqu0.ap_addr.sa_family = ARPHRD_ETHER;
if((priv->connect_status & CONNECT_STATUS_MASK)== DISCONNECT_STATUS &&
(old_status & CONNECT_STATUS_MASK)==CONNECT_STATUS ){
memset(wrqu0.ap_addr.sa_data, '\0', ETH_ALEN);
DPRINTK(3,"IWEVENT: disconnect\n");
printk("IWEVENT: disconnect\n");
DPRINTK(3,"disconnect :: scan_ind_count=%d\n",priv->scan_ind_count);
wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL);
}
priv->scan_ind_count=0;
}
hostif_sme_enqueue(priv, SME_STOP_CONFIRM);
}
static
void hostif_ps_adhoc_set_confirm(ks_wlan_private *priv)
{
DPRINTK(3,"\n");
priv->infra_status = 0; /* infrastructure mode cancel */
hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM);
}
static
void hostif_infrastructure_set_confirm(ks_wlan_private *priv)
{
uint16_t result_code;
DPRINTK(3,"\n");
result_code = get_WORD(priv);
DPRINTK(3,"result code = %d\n",result_code);
priv->infra_status = 1; /* infrastructure mode set */
hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM);
}
static
void hostif_adhoc_set_confirm(ks_wlan_private *priv)
{
DPRINTK(3,"\n");
priv->infra_status = 1; /* infrastructure mode set */
hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM);
}
static
void hostif_associate_indication(ks_wlan_private *priv)
{
#if WIRELESS_EXT > 14
struct association_request_t *assoc_req;
struct association_response_t *assoc_resp;
unsigned char *pb;
union iwreq_data wrqu;
char buf[IW_CUSTOM_MAX];
char *pbuf = &buf[0];
int i;
static const char associnfo_leader0[] = "ASSOCINFO(ReqIEs=";
static const char associnfo_leader1[] = " RespIEs=";
DPRINTK(3,"\n");
assoc_req = (struct association_request_t *)(priv->rxp);
assoc_resp = (struct association_response_t *)(assoc_req+1);
pb = (unsigned char *)(assoc_resp+1);
memset(&wrqu, 0, sizeof(wrqu));
memcpy(pbuf,associnfo_leader0,sizeof(associnfo_leader0)-1);
wrqu.data.length += sizeof(associnfo_leader0)-1;
pbuf += sizeof(associnfo_leader0)-1;
for (i = 0; i < assoc_req->reqIEs_size; i++)
pbuf += sprintf(pbuf, "%02x", *(pb+i));
wrqu.data.length += (assoc_req->reqIEs_size)*2;
memcpy(pbuf,associnfo_leader1,sizeof(associnfo_leader1)-1);
wrqu.data.length += sizeof(associnfo_leader1)-1;
pbuf += sizeof(associnfo_leader1)-1;
pb += assoc_req->reqIEs_size;
for (i = 0; i < assoc_resp->respIEs_size; i++)
pbuf += sprintf(pbuf, "%02x", *(pb+i));
wrqu.data.length += (assoc_resp->respIEs_size)*2;
pbuf += sprintf(pbuf, ")");
wrqu.data.length += 1;
DPRINTK(3,"IWEVENT:ASSOCINFO\n");
wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf);
#endif /* WIRELESS_EXT > 14 */
}
static
void hostif_bss_scan_confirm(ks_wlan_private *priv)
{
unsigned int result_code;
#if WIRELESS_EXT > 13
struct net_device *dev = priv->net_dev;
union iwreq_data wrqu;
#endif /* WIRELESS_EXT > 13 */
result_code = get_DWORD(priv);
DPRINTK(2,"result=%d :: scan_ind_count=%d\n", result_code, priv->scan_ind_count);
priv->sme_i.sme_flag &= ~SME_AP_SCAN;
hostif_sme_enqueue(priv, SME_BSS_SCAN_CONFIRM);
#if WIRELESS_EXT > 13
wrqu.data.length = 0;
wrqu.data.flags = 0;
DPRINTK(3,"IWEVENT: SCAN CONFIRM\n");
wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
#endif /* WIRELESS_EXT > 13 */
priv->scan_ind_count=0;
}
static
void hostif_phy_information_confirm(ks_wlan_private *priv)
{
struct iw_statistics *wstats = &priv->wstats;
unsigned char rssi,signal,noise;
unsigned char LinkSpeed;
unsigned int TransmittedFrameCount, ReceivedFragmentCount;
unsigned int FailedCount, FCSErrorCount;
DPRINTK(3,"\n");
rssi = get_BYTE(priv);
signal = get_BYTE(priv);
noise = get_BYTE(priv);
LinkSpeed = get_BYTE(priv);
TransmittedFrameCount = get_DWORD(priv);
ReceivedFragmentCount = get_DWORD(priv);
FailedCount = get_DWORD(priv);
FCSErrorCount = get_DWORD(priv);
DPRINTK(4, "phyinfo confirm rssi=%d signal=%d\n", rssi, signal);
priv->current_rate = (LinkSpeed & RATE_MASK);
wstats->qual.qual = signal;
wstats->qual.level = 256 - rssi;
wstats->qual.noise = 0; /* invalid noise value */
wstats->qual.updated = IW_QUAL_ALL_UPDATED | IW_QUAL_DBM;
DPRINTK(3,"\n rssi=%u\n signal=%u\n LinkSpeed=%ux500Kbps\n \
TransmittedFrameCount=%u\n ReceivedFragmentCount=%u\n FailedCount=%u\n \
FCSErrorCount=%u\n",
rssi,signal,LinkSpeed,TransmittedFrameCount,
ReceivedFragmentCount,FailedCount,FCSErrorCount);
/* wake_up_interruptible_all(&priv->confirm_wait); */
complete(&priv->confirm_wait);
}
static
void hostif_mic_failure_confirm(ks_wlan_private *priv)
{
DPRINTK(3,"mic_failure=%u\n",priv->wpa.mic_failure.failure);
hostif_sme_enqueue(priv, SME_MIC_FAILURE_CONFIRM);
}
static
void hostif_event_check(ks_wlan_private *priv)
{
unsigned short event;
DPRINTK(4, "\n");
event = get_WORD(priv); /* get event */
switch (event) {
case HIF_DATA_IND:
hostif_data_indication(priv);
break;
case HIF_MIB_GET_CONF:
hostif_mib_get_confirm(priv);
break;
case HIF_MIB_SET_CONF:
hostif_mib_set_confirm(priv);
break;
case HIF_POWERMGT_CONF:
hostif_power_mngmt_confirm(priv);
break;
case HIF_SLEEP_CONF:
hostif_sleep_confirm(priv);
break;
case HIF_START_CONF:
hostif_start_confirm(priv);
break;
case HIF_CONNECT_IND:
hostif_connect_indication(priv);
break;
case HIF_STOP_CONF:
hostif_stop_confirm(priv);
break;
case HIF_PS_ADH_SET_CONF:
hostif_ps_adhoc_set_confirm(priv);
break;
case HIF_INFRA_SET_CONF:
case HIF_INFRA_SET2_CONF:
hostif_infrastructure_set_confirm(priv);
break;
case HIF_ADH_SET_CONF:
case HIF_ADH_SET2_CONF:
hostif_adhoc_set_confirm(priv);
break;
case HIF_ASSOC_INFO_IND:
hostif_associate_indication(priv);
break;
case HIF_MIC_FAILURE_CONF:
hostif_mic_failure_confirm(priv);
break;
case HIF_SCAN_CONF:
hostif_bss_scan_confirm(priv);
break;
case HIF_PHY_INFO_CONF:
case HIF_PHY_INFO_IND:
hostif_phy_information_confirm(priv);
break;
case HIF_SCAN_IND:
hostif_scan_indication(priv);
break;
case HIF_AP_SET_CONF:
default:
//DPRINTK(1, "undefined event[%04X]\n", event);
printk("undefined event[%04X]\n", event);
/* wake_up_all(&priv->confirm_wait); */
complete(&priv->confirm_wait);
break;
}
/* add event to hostt buffer */
priv->hostt.buff[priv->hostt.qtail] = event;
priv->hostt.qtail = (priv->hostt.qtail + 1) % SME_EVENT_BUFF_SIZE;
}
#define CHECK_ALINE(size) (size%4 ? (size+(4-(size%4))):size)
int hostif_data_request(ks_wlan_private *priv, struct sk_buff *packet)
{
unsigned int packet_len=0;
unsigned char *buffer=NULL;
unsigned int length=0;
struct hostif_data_request_t *pp;
unsigned char *p;
int result=0;
unsigned short eth_proto;
struct ether_hdr *eth_hdr;
struct michel_mic_t michel_mic;
unsigned short keyinfo=0;
struct ieee802_1x_hdr *aa1x_hdr;
struct wpa_eapol_key *eap_key;
struct ethhdr *eth;
packet_len = packet->len;
if (packet_len > ETH_FRAME_LEN) {
DPRINTK(1,"bad length packet_len=%d \n", packet_len);
dev_kfree_skb(packet);
return -1;
}
if(((priv->connect_status & CONNECT_STATUS_MASK)== DISCONNECT_STATUS) ||
(priv->connect_status & FORCE_DISCONNECT) || priv->wpa.mic_failure.stop){
DPRINTK(3," DISCONNECT\n");
if(netif_queue_stopped(priv->net_dev))
netif_wake_queue(priv->net_dev);
if(packet)
dev_kfree_skb(packet);
return 0;
}
/* for PowerSave */
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE){ /* power save wakeup */
if(!netif_queue_stopped(priv->net_dev))
netif_stop_queue(priv->net_dev);
#if !defined(_SDIO_)
schedule_work(&priv->ks_wlan_wakeup_task);
#endif
}
DPRINTK(4, "skb_buff length=%d\n", packet_len);
pp = (struct hostif_data_request_t *)kmalloc(hif_align_size(sizeof(*pp)+6+packet_len+8),KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
dev_kfree_skb(packet);
return -2;
}
p = (unsigned char *)pp->data;
buffer = packet->data;
length = packet->len;
/* packet check */
eth = (struct ethhdr *)packet->data;
if (memcmp(&priv->eth_addr[0],eth->h_source, ETH_ALEN)){
DPRINTK(1, "invalid mac address !!\n");
DPRINTK(1, "ethernet->h_source=%02X:%02X:%02X:%02X:%02X:%02X\n",
eth->h_source[0],eth->h_source[1],eth->h_source[2],
eth->h_source[3],eth->h_source[4],eth->h_source[5]);
return -3;
}
/* MAC address copy */
memcpy(p, buffer, 12); /* DST/SRC MAC address */
p += 12;
buffer += 12;
length -= 12;
/* EtherType/Length check */
if (*(buffer+1) + (*buffer << 8) > 1500) {
/* ProtocolEAP = *(buffer+1) + (*buffer << 8); */
/* DPRINTK(2, "Send [SNAP]Type %x\n",ProtocolEAP); */
/* SAP/CTL/OUI(6 byte) add */
*p++ = 0xAA; /* DSAP */
*p++ = 0xAA; /* SSAP */
*p++ = 0x03; /* CTL */
*p++ = 0x00; /* OUI ("000000") */
*p++ = 0x00; /* OUI ("000000") */
*p++ = 0x00; /* OUI ("000000") */
packet_len += 6;
} else {
DPRINTK(4,"DIX\n");
/* Length(2 byte) delete */
buffer += 2;
length -= 2;
packet_len -= 2;
}
/* pp->data copy */
memcpy(p, buffer, length);
p += length;
/* for WPA */
eth_hdr = (struct ether_hdr *)&pp->data[0];
eth_proto = ntohs(eth_hdr->h_proto);
/* for MIC FAILUER REPORT check */
if(eth_proto == ETHER_PROTOCOL_TYPE_EAP && priv->wpa.mic_failure.failure>0){
aa1x_hdr=(struct ieee802_1x_hdr *)(eth_hdr+1);
if(aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY){
eap_key = (struct wpa_eapol_key *)(aa1x_hdr+1);
keyinfo=ntohs(eap_key->key_info);
}
}
if (priv->wpa.rsn_enabled && priv->wpa.key[0].key_len){
if(eth_proto == ETHER_PROTOCOL_TYPE_EAP && !(priv->wpa.key[1].key_len) &&
!(priv->wpa.key[2].key_len) && !(priv->wpa.key[3].key_len)){
pp->auth_type = cpu_to_le16((uint16_t)TYPE_AUTH); /* no encryption */
}
else{
if(priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP){
MichaelMICFunction( &michel_mic,
(uint8_t*)priv->wpa.key[0].tx_mic_key,
(uint8_t*)&pp->data[0],
(int)packet_len,
(uint8_t)0, /* priority */
(uint8_t*)michel_mic.Result );
memcpy(p, michel_mic.Result, 8);
length += 8;
packet_len += 8;
p += 8;
pp->auth_type = cpu_to_le16((uint16_t)TYPE_DATA);
}else if(priv->wpa.pairwise_suite == IW_AUTH_CIPHER_CCMP){
pp->auth_type = cpu_to_le16((uint16_t)TYPE_DATA);
}
}
}
else{
if(eth_proto == ETHER_PROTOCOL_TYPE_EAP)
pp->auth_type = cpu_to_le16((uint16_t)TYPE_AUTH);
else
pp->auth_type = cpu_to_le16((uint16_t)TYPE_DATA);
}
/* header value set */
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)+packet_len));
pp->header.event = cpu_to_le16((uint16_t)HIF_DATA_REQ);
/* tx request */
result = ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp) + packet_len),
(void *)send_packet_complete, (void *)priv, (void *)packet);
/* MIC FAILUER REPORT check */
if(eth_proto == ETHER_PROTOCOL_TYPE_EAP && priv->wpa.mic_failure.failure>0){
if(keyinfo & WPA_KEY_INFO_ERROR && keyinfo & WPA_KEY_INFO_REQUEST){
DPRINTK(3," MIC ERROR Report SET : %04X\n", keyinfo);
hostif_sme_enqueue(priv, SME_MIC_FAILURE_REQUEST);
}
if(priv->wpa.mic_failure.failure==2)
priv->wpa.mic_failure.stop=1;
}
return result;
}
#if defined(_SPI_)
#define ps_confirm_wait_inc(priv)
#else
#define ps_confirm_wait_inc(priv) do{if(atomic_read(&priv->psstatus.status) > PS_ACTIVE_SET){ \
atomic_inc(&priv->psstatus.confirm_wait); \
/* atomic_set(&priv->psstatus.status, PS_CONF_WAIT);*/ \
} }while(0)
#endif
static
void hostif_mib_get_request( ks_wlan_private *priv, unsigned long mib_attribute)
{
struct hostif_mib_get_request_t *pp;
DPRINTK(3, "\n");
/* make primitive */
pp = (struct hostif_mib_get_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_MIB_GET_REQ);
pp->mib_attribute = cpu_to_le32((uint32_t)mib_attribute);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_mib_set_request( ks_wlan_private *priv, unsigned long mib_attribute,
unsigned short size, unsigned short type,
void *vp )
{
struct hostif_mib_set_request_t *pp;
DPRINTK(3,"\n");
if (priv->dev_state < DEVICE_STATE_BOOT) {
DPRINTK(3,"DeviceRemove\n");
return;
}
/* make primitive */
pp = (struct hostif_mib_set_request_t *)kmalloc(hif_align_size(sizeof(*pp)+size), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)+size));
pp->header.event = cpu_to_le16((uint16_t)HIF_MIB_SET_REQ);
pp->mib_attribute = cpu_to_le32((uint32_t)mib_attribute);
pp->mib_value.size = cpu_to_le16((uint16_t)size);
pp->mib_value.type = cpu_to_le16((uint16_t)type);
memcpy(&pp->mib_value.body, vp, size);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp) + size), NULL, NULL, NULL);
}
static
void hostif_start_request( ks_wlan_private *priv, unsigned char mode )
{
struct hostif_start_request_t *pp;
DPRINTK(3,"\n");
/* make primitive */
pp = (struct hostif_start_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_START_REQ);
pp->mode = cpu_to_le16((uint16_t)mode);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
priv->aplist.size = 0;
priv->scan_ind_count=0;
}
static
void hostif_ps_adhoc_set_request(ks_wlan_private *priv)
{
struct hostif_ps_adhoc_set_request_t *pp;
uint16_t capability;
DPRINTK(3,"\n");
/* make primitive */
pp = (struct hostif_ps_adhoc_set_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
memset(pp, 0, sizeof(*pp));
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_PS_ADH_SET_REQ);
pp->phy_type = cpu_to_le16((uint16_t)(priv->reg.phy_type));
pp->cts_mode = cpu_to_le16((uint16_t)(priv->reg.cts_mode));
pp->scan_type = cpu_to_le16((uint16_t)(priv->reg.scan_type));
pp->channel = cpu_to_le16((uint16_t)(priv->reg.channel));
pp->rate_set.size = priv->reg.rate_set.size;
memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size);
capability = 0x0000;
if (priv->reg.preamble==SHORT_PREAMBLE) {
/* short preamble */
capability |= BSS_CAP_SHORT_PREAMBLE;
}
capability &= ~(BSS_CAP_PBCC); /* pbcc not support */
if(priv->reg.phy_type != D_11B_ONLY_MODE){
capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */
capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM */
}
pp->capability = cpu_to_le16((uint16_t)capability);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_infrastructure_set_request(ks_wlan_private *priv)
{
struct hostif_infrastructure_set_request_t *pp;
uint16_t capability;
DPRINTK(3, "ssid.size=%d \n",priv->reg.ssid.size);
/* make primitive */
pp = (struct hostif_infrastructure_set_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_INFRA_SET_REQ);
pp->phy_type = cpu_to_le16((uint16_t)(priv->reg.phy_type));
pp->cts_mode = cpu_to_le16((uint16_t)(priv->reg.cts_mode));
pp->scan_type = cpu_to_le16((uint16_t)(priv->reg.scan_type));
pp->rate_set.size = priv->reg.rate_set.size;
memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size);
pp->ssid.size = priv->reg.ssid.size;
memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size);
capability = 0x0000;
if (priv->reg.preamble==SHORT_PREAMBLE) {
/* short preamble */
capability |= BSS_CAP_SHORT_PREAMBLE;
}
capability &= ~(BSS_CAP_PBCC); /* pbcc not support */
if(priv->reg.phy_type != D_11B_ONLY_MODE){
capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */
capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */
}
pp->capability = cpu_to_le16((uint16_t)capability);
pp->beacon_lost_count = cpu_to_le16((uint16_t)(priv->reg.beacon_lost_count));
pp->auth_type = cpu_to_le16((uint16_t)(priv->reg.authenticate_type));
pp->channel_list.body[0] = 1;
pp->channel_list.body[1] = 8;
pp->channel_list.body[2] = 2;
pp->channel_list.body[3] = 9;
pp->channel_list.body[4] = 3;
pp->channel_list.body[5] = 10;
pp->channel_list.body[6] = 4;
pp->channel_list.body[7] = 11;
pp->channel_list.body[8] = 5;
pp->channel_list.body[9] = 12;
pp->channel_list.body[10] = 6;
pp->channel_list.body[11] = 13;
pp->channel_list.body[12] = 7;
if(priv->reg.phy_type == D_11G_ONLY_MODE){
pp->channel_list.size = 13;
}else{
pp->channel_list.body[13] = 14;
pp->channel_list.size = 14;
}
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)),NULL, NULL, NULL);
}
void hostif_infrastructure_set2_request(ks_wlan_private *priv)
{
struct hostif_infrastructure_set2_request_t *pp;
uint16_t capability;
DPRINTK(2, "ssid.size=%d \n",priv->reg.ssid.size);
/* make primitive */
pp = (struct hostif_infrastructure_set2_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_INFRA_SET2_REQ);
pp->phy_type = cpu_to_le16((uint16_t)(priv->reg.phy_type));
pp->cts_mode = cpu_to_le16((uint16_t)(priv->reg.cts_mode));
pp->scan_type = cpu_to_le16((uint16_t)(priv->reg.scan_type));
pp->rate_set.size = priv->reg.rate_set.size;
memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size);
pp->ssid.size = priv->reg.ssid.size;
memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size);
capability = 0x0000;
if (priv->reg.preamble==SHORT_PREAMBLE) {
/* short preamble */
capability |= BSS_CAP_SHORT_PREAMBLE;
}
capability &= ~(BSS_CAP_PBCC); /* pbcc not support */
if(priv->reg.phy_type != D_11B_ONLY_MODE){
capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */
capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */
}
pp->capability = cpu_to_le16((uint16_t)capability);
pp->beacon_lost_count = cpu_to_le16((uint16_t)(priv->reg.beacon_lost_count));
pp->auth_type = cpu_to_le16((uint16_t)(priv->reg.authenticate_type));
pp->channel_list.body[0] = 1;
pp->channel_list.body[1] = 8;
pp->channel_list.body[2] = 2;
pp->channel_list.body[3] = 9;
pp->channel_list.body[4] = 3;
pp->channel_list.body[5] = 10;
pp->channel_list.body[6] = 4;
pp->channel_list.body[7] = 11;
pp->channel_list.body[8] = 5;
pp->channel_list.body[9] = 12;
pp->channel_list.body[10] = 6;
pp->channel_list.body[11] = 13;
pp->channel_list.body[12] = 7;
if(priv->reg.phy_type == D_11G_ONLY_MODE){
pp->channel_list.size = 13;
}else{
pp->channel_list.body[13] = 14;
pp->channel_list.size = 14;
}
memcpy(pp->bssid, priv->reg.bssid, ETH_ALEN);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)),NULL, NULL, NULL);
}
static
void hostif_adhoc_set_request(ks_wlan_private *priv)
{
struct hostif_adhoc_set_request_t *pp;
uint16_t capability;
DPRINTK(3, "\n");
/* make primitive */
pp = (struct hostif_adhoc_set_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
memset(pp, 0, sizeof(*pp));
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_ADH_SET_REQ);
pp->phy_type = cpu_to_le16((uint16_t)(priv->reg.phy_type));
pp->cts_mode = cpu_to_le16((uint16_t)(priv->reg.cts_mode));
pp->scan_type = cpu_to_le16((uint16_t)(priv->reg.scan_type));
pp->channel = cpu_to_le16((uint16_t)(priv->reg.channel));
pp->rate_set.size = priv->reg.rate_set.size;
memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size);
pp->ssid.size = priv->reg.ssid.size;
memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size);
capability = 0x0000;
if (priv->reg.preamble==SHORT_PREAMBLE) {
/* short preamble */
capability |= BSS_CAP_SHORT_PREAMBLE;
}
capability &= ~(BSS_CAP_PBCC); /* pbcc not support */
if(priv->reg.phy_type != D_11B_ONLY_MODE){
capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */
capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */
}
pp->capability = cpu_to_le16((uint16_t)capability);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_adhoc_set2_request(ks_wlan_private *priv)
{
struct hostif_adhoc_set2_request_t *pp;
uint16_t capability;
DPRINTK(3, "\n");
/* make primitive */
pp = (struct hostif_adhoc_set2_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
memset(pp, 0, sizeof(*pp));
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_ADH_SET_REQ);
pp->phy_type = cpu_to_le16((uint16_t)(priv->reg.phy_type));
pp->cts_mode = cpu_to_le16((uint16_t)(priv->reg.cts_mode));
pp->scan_type = cpu_to_le16((uint16_t)(priv->reg.scan_type));
pp->rate_set.size = priv->reg.rate_set.size;
memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size);
pp->ssid.size = priv->reg.ssid.size;
memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size);
capability = 0x0000;
if (priv->reg.preamble==SHORT_PREAMBLE) {
/* short preamble */
capability |= BSS_CAP_SHORT_PREAMBLE;
}
capability &= ~(BSS_CAP_PBCC); /* pbcc not support */
if(priv->reg.phy_type != D_11B_ONLY_MODE){
capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */
capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */
}
pp->capability = cpu_to_le16((uint16_t)capability);
pp->channel_list.body[0] = priv->reg.channel;
pp->channel_list.size = 1;
memcpy(pp->bssid, priv->reg.bssid, ETH_ALEN);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_stop_request( ks_wlan_private *priv )
{
struct hostif_stop_request_t *pp;
DPRINTK(3,"\n");
/* make primitive */
pp = (struct hostif_stop_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_STOP_REQ);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_phy_information_request( ks_wlan_private *priv )
{
struct hostif_phy_information_request_t *pp;
DPRINTK(3,"\n");
/* make primitive */
pp = (struct hostif_phy_information_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3, "allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_PHY_INFO_REQ);
if(priv->reg.phy_info_timer){
pp->type = cpu_to_le16((uint16_t)TIME_TYPE);
pp->time = cpu_to_le16((uint16_t)(priv->reg.phy_info_timer));
}else{
pp->type = cpu_to_le16((uint16_t)NORMAL_TYPE);
pp->time = cpu_to_le16((uint16_t)0);
}
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_power_mngmt_request( ks_wlan_private *priv, unsigned long mode,
unsigned long wake_up, unsigned long receiveDTIMs )
{
struct hostif_power_mngmt_request_t *pp;
DPRINTK(3,"mode=%lu wake_up=%lu receiveDTIMs=%lu\n",mode,wake_up,receiveDTIMs);
/* make primitive */
pp = (struct hostif_power_mngmt_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_POWERMGT_REQ);
pp->mode = cpu_to_le32((uint32_t)mode);
pp->wake_up = cpu_to_le32((uint32_t)wake_up);
pp->receiveDTIMs = cpu_to_le32((uint32_t)receiveDTIMs);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
static
void hostif_sleep_request( ks_wlan_private *priv, unsigned long mode)
{
struct hostif_sleep_request_t *pp;
DPRINTK(3,"mode=%lu \n",mode);
if(mode == SLP_SLEEP){
/* make primitive */
pp = (struct hostif_sleep_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_SLEEP_REQ);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}else if(mode == SLP_ACTIVE){
atomic_set(&priv->sleepstatus.wakeup_request,1);
queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq,&priv->ks_wlan_hw.rw_wq, 1);
}else{
DPRINTK(3,"invalid mode %ld \n", mode);
return;
}
}
static
void hostif_bss_scan_request( ks_wlan_private *priv, unsigned long scan_type , uint8_t *scan_ssid, uint8_t scan_ssid_len)
{
struct hostif_bss_scan_request_t *pp;
DPRINTK(2,"\n");
/* make primitive */
pp = (struct hostif_bss_scan_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_SCAN_REQ);
pp->scan_type = scan_type;
pp->ch_time_min = cpu_to_le32((uint32_t)110); /* default value */
pp->ch_time_max = cpu_to_le32((uint32_t)130); /* default value */
pp->channel_list.body[0] = 1;
pp->channel_list.body[1] = 8;
pp->channel_list.body[2] = 2;
pp->channel_list.body[3] = 9;
pp->channel_list.body[4] = 3;
pp->channel_list.body[5] = 10;
pp->channel_list.body[6] = 4;
pp->channel_list.body[7] = 11;
pp->channel_list.body[8] = 5;
pp->channel_list.body[9] = 12;
pp->channel_list.body[10] = 6;
pp->channel_list.body[11] = 13;
pp->channel_list.body[12] = 7;
if(priv->reg.phy_type == D_11G_ONLY_MODE){
pp->channel_list.size = 13;
}else{
pp->channel_list.body[13] = 14;
pp->channel_list.size = 14;
}
pp->ssid.size = 0;
/* specified SSID SCAN */
if(scan_ssid_len > 0 && scan_ssid_len <= 32){
pp->ssid.size = scan_ssid_len;
memcpy(&pp->ssid.body[0], scan_ssid, scan_ssid_len);
}
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
priv->aplist.size = 0;
priv->scan_ind_count=0;
}
static
void hostif_mic_failure_request( ks_wlan_private *priv, unsigned short failure_count,
unsigned short timer )
{
struct hostif_mic_failure_request_t *pp;
DPRINTK(3,"count=%d :: timer=%d\n",failure_count,timer);
/* make primitive */
pp = (struct hostif_mic_failure_request_t *)kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG );
if (pp==NULL) {
DPRINTK(3,"allocate memory failed..\n");
return;
}
pp->header.size = cpu_to_le16((uint16_t)(sizeof(*pp)-sizeof(pp->header.size)));
pp->header.event = cpu_to_le16((uint16_t)HIF_MIC_FAILURE_REQ);
pp->failure_count = cpu_to_le16((uint16_t)failure_count);
pp->timer = cpu_to_le16((uint16_t)timer);
/* send to device request */
ps_confirm_wait_inc(priv);
ks_wlan_hw_tx( priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL);
}
/* Device I/O Recieve indicate */
static void devio_rec_ind(ks_wlan_private *priv, unsigned char *p, unsigned int size)
{
if (priv->device_open_status) {
spin_lock(&priv->dev_read_lock); /* request spin lock */
priv->dev_data[atomic_read(&priv->rec_count)] = p;
priv->dev_size[atomic_read(&priv->rec_count)] = size;
if (atomic_read(&priv->event_count) != DEVICE_STOCK_COUNT) {
/* rx event count inc */
atomic_inc(&priv->event_count);
}
atomic_inc(&priv->rec_count);
if (atomic_read(&priv->rec_count)==DEVICE_STOCK_COUNT)
atomic_set(&priv->rec_count, 0);
wake_up_interruptible_all(&priv->devread_wait);
/* release spin lock */
spin_unlock(&priv->dev_read_lock);
}
}
void hostif_receive( ks_wlan_private *priv, unsigned char *p, unsigned int size )
{
DPRINTK(4,"\n");
devio_rec_ind(priv, p, size);
priv->rxp = p;
priv->rx_size = size;
if (get_WORD(priv) == priv->rx_size) { /* length check !! */
hostif_event_check(priv); /* event check */
}
}
static
void hostif_sme_set_wep(ks_wlan_private *priv, int type)
{
uint32_t val;
switch(type){
case SME_WEP_INDEX_REQUEST:
val = cpu_to_le32((uint32_t)(priv->reg.wep_index));
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_ID,
sizeof(val), MIB_VALUE_TYPE_INT,
&val );
break;
case SME_WEP_KEY1_REQUEST:
if(!priv->wpa.wpa_enabled)
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE1,
priv->reg.wep_key[0].size, MIB_VALUE_TYPE_OSTRING,
&priv->reg.wep_key[0].val[0] );
break;
case SME_WEP_KEY2_REQUEST:
if(!priv->wpa.wpa_enabled)
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE2,
priv->reg.wep_key[1].size, MIB_VALUE_TYPE_OSTRING,
&priv->reg.wep_key[1].val[0]);
break;
case SME_WEP_KEY3_REQUEST:
if(!priv->wpa.wpa_enabled)
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE3,
priv->reg.wep_key[2].size, MIB_VALUE_TYPE_OSTRING,
&priv->reg.wep_key[2].val[0] );
break;
case SME_WEP_KEY4_REQUEST:
if(!priv->wpa.wpa_enabled)
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE4,
priv->reg.wep_key[3].size, MIB_VALUE_TYPE_OSTRING,
&priv->reg.wep_key[3].val[0]);
break;
case SME_WEP_FLAG_REQUEST:
val = cpu_to_le32((uint32_t)(priv->reg.privacy_invoked));
hostif_mib_set_request(priv, DOT11_PRIVACY_INVOKED,
sizeof(val), MIB_VALUE_TYPE_BOOL,
&val );
break;
}
return ;
}
struct wpa_suite_t {
unsigned short size;
unsigned char suite[4][CIPHER_ID_LEN];
} __attribute__((packed));
struct rsn_mode_t {
uint32_t rsn_mode;
uint16_t rsn_capability;
} __attribute__((packed));
static
void hostif_sme_set_rsn(ks_wlan_private *priv, int type)
{
struct wpa_suite_t wpa_suite;
struct rsn_mode_t rsn_mode;
uint32_t val;
memset(&wpa_suite,0,sizeof(wpa_suite));
switch(type){
case SME_RSN_UCAST_REQUEST:
wpa_suite.size=cpu_to_le16((uint16_t)1);
switch(priv->wpa.pairwise_suite){
case IW_AUTH_CIPHER_NONE:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_NONE,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_NONE,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_WEP40:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_WEP40,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_WEP40,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_TKIP:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_TKIP,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_TKIP,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_CCMP:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_CCMP,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_CCMP,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_WEP104:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_WEP104,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_WEP104,CIPHER_ID_LEN);
break;
}
hostif_mib_set_request(priv, DOT11_RSN_CONFIG_UNICAST_CIPHER,
sizeof(wpa_suite.size)+CIPHER_ID_LEN*wpa_suite.size,
MIB_VALUE_TYPE_OSTRING, &wpa_suite);
break;
case SME_RSN_MCAST_REQUEST:
switch(priv->wpa.group_suite){
case IW_AUTH_CIPHER_NONE:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_NONE,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_NONE,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_WEP40:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_WEP40,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_WEP40,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_TKIP:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_TKIP,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_TKIP,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_CCMP:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_CCMP,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_CCMP,CIPHER_ID_LEN);
break;
case IW_AUTH_CIPHER_WEP104:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA2_WEP104,CIPHER_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],CIPHER_ID_WPA_WEP104,CIPHER_ID_LEN);
break;
}
hostif_mib_set_request(priv, DOT11_RSN_CONFIG_MULTICAST_CIPHER,
CIPHER_ID_LEN, MIB_VALUE_TYPE_OSTRING,
&wpa_suite.suite[0][0] );
break;
case SME_RSN_AUTH_REQUEST:
wpa_suite.size=cpu_to_le16((uint16_t)1);
switch(priv->wpa.key_mgmt_suite){
case IW_AUTH_KEY_MGMT_802_1X:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA2_1X,KEY_MGMT_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA_1X,KEY_MGMT_ID_LEN);
break;
case IW_AUTH_KEY_MGMT_PSK:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA2_PSK,KEY_MGMT_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA_PSK,KEY_MGMT_ID_LEN);
break;
case 0:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA2_NONE,KEY_MGMT_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA_NONE,KEY_MGMT_ID_LEN);
break;
case 4:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA2_WPANONE,KEY_MGMT_ID_LEN);
else
memcpy(&wpa_suite.suite[0][0],KEY_MGMT_ID_WPA_WPANONE,KEY_MGMT_ID_LEN);
break;
}
hostif_mib_set_request(priv, DOT11_RSN_CONFIG_AUTH_SUITE,
sizeof(wpa_suite.size)+KEY_MGMT_ID_LEN*wpa_suite.size,
MIB_VALUE_TYPE_OSTRING, &wpa_suite);
break;
case SME_RSN_ENABLED_REQUEST:
val = cpu_to_le32((uint32_t)(priv->wpa.rsn_enabled));
hostif_mib_set_request(priv, DOT11_RSN_ENABLED,
sizeof(val), MIB_VALUE_TYPE_BOOL,
&val );
break;
case SME_RSN_MODE_REQUEST:
if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2){
rsn_mode.rsn_mode = cpu_to_le32((uint32_t)RSN_MODE_WPA2);
rsn_mode.rsn_capability = cpu_to_le16((uint16_t)0);
}
else if(priv->wpa.version == IW_AUTH_WPA_VERSION_WPA){
rsn_mode.rsn_mode = cpu_to_le32((uint32_t)RSN_MODE_WPA);
rsn_mode.rsn_capability = cpu_to_le16((uint16_t)0);
}
else{
rsn_mode.rsn_mode = cpu_to_le32((uint32_t)RSN_MODE_NONE);
rsn_mode.rsn_capability = cpu_to_le16((uint16_t)0);
}
hostif_mib_set_request(priv, LOCAL_RSN_MODE,sizeof(rsn_mode),
MIB_VALUE_TYPE_OSTRING,&rsn_mode );
break;
}
return;
}
static
void hostif_sme_mode_setup(ks_wlan_private *priv)
{
unsigned char rate_size;
unsigned char rate_octet[RATE_SET_MAX_SIZE];
int i=0;
/* rate setting if rate segging is auto for changing phy_type (#94)*/
if(priv->reg.tx_rate == TX_RATE_FULL_AUTO){
if(priv->reg.phy_type == D_11B_ONLY_MODE){
priv->reg.rate_set.body[3] = TX_RATE_11M;
priv->reg.rate_set.body[2] = TX_RATE_5M;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.rate_set.size = 4;
}else{ /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */
priv->reg.rate_set.body[11] = TX_RATE_54M;
priv->reg.rate_set.body[10] = TX_RATE_48M;
priv->reg.rate_set.body[9] = TX_RATE_36M;
priv->reg.rate_set.body[8] = TX_RATE_18M;
priv->reg.rate_set.body[7] = TX_RATE_9M;
priv->reg.rate_set.body[6] = TX_RATE_24M|BASIC_RATE;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE;
priv->reg.rate_set.body[2] = TX_RATE_5M|BASIC_RATE;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.rate_set.size = 12;
}
}
/* rate mask by phy setting */
if(priv->reg.phy_type == D_11B_ONLY_MODE){
for(i=0;i<priv->reg.rate_set.size;i++){
if(IS_11B_RATE(priv->reg.rate_set.body[i])){
if((priv->reg.rate_set.body[i] & RATE_MASK) >= TX_RATE_5M)
rate_octet[i] = priv->reg.rate_set.body[i] & RATE_MASK ;
else
rate_octet[i] = priv->reg.rate_set.body[i];
}
else
break;
}
}else{ /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */
for(i=0;i<priv->reg.rate_set.size;i++){
if(IS_11BG_RATE(priv->reg.rate_set.body[i])){
if(IS_OFDM_EXT_RATE(priv->reg.rate_set.body[i]))
rate_octet[i] = priv->reg.rate_set.body[i] & RATE_MASK ;
else
rate_octet[i] = priv->reg.rate_set.body[i];
}
else
break;
}
}
rate_size = i;
if(rate_size==0){
if(priv->reg.phy_type == D_11G_ONLY_MODE)
rate_octet[0]=TX_RATE_6M | BASIC_RATE;
else
rate_octet[0]=TX_RATE_2M | BASIC_RATE;
rate_size = 1;
}
/* rate set update */
priv->reg.rate_set.size = rate_size;
memcpy(&priv->reg.rate_set.body[0], &rate_octet[0], rate_size);
switch ( priv->reg.operation_mode ) {
case MODE_PSEUDO_ADHOC:
/* Pseudo Ad-Hoc mode */
hostif_ps_adhoc_set_request(priv);
break;
case MODE_INFRASTRUCTURE:
/* Infrastructure mode */
if (!is_valid_ether_addr((u8 *)priv->reg.bssid)) {
hostif_infrastructure_set_request(priv);
}
else {
hostif_infrastructure_set2_request(priv);
DPRINTK(2, "Infra bssid = %02x:%02x:%02x:%02x:%02x:%02x\n",
priv->reg.bssid[0],priv->reg.bssid[1],priv->reg.bssid[2],
priv->reg.bssid[3],priv->reg.bssid[4],priv->reg.bssid[5]);
}
break;
case MODE_ADHOC:
/* IEEE802.11 Ad-Hoc mode */
if (!is_valid_ether_addr((u8 *)priv->reg.bssid)) {
hostif_adhoc_set_request(priv);
}
else {
hostif_adhoc_set2_request(priv);
DPRINTK(2, "Adhoc bssid = %02x:%02x:%02x:%02x:%02x:%02x\n",
priv->reg.bssid[0],priv->reg.bssid[1],priv->reg.bssid[2],
priv->reg.bssid[3],priv->reg.bssid[4],priv->reg.bssid[5]);
}
break;
default:
break;
}
return ;
}
static
void hostif_sme_multicast_set(ks_wlan_private *priv)
{
struct net_device *dev = priv->net_dev;
int mc_count;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *mclist;
#endif
char set_address[NIC_MAX_MCAST_LIST*ETH_ALEN];
unsigned long filter_type;
int i;
DPRINTK(3,"\n");
spin_lock(&priv->multicast_spin);
memset(set_address, 0, NIC_MAX_MCAST_LIST*ETH_ALEN);
if (dev->flags & IFF_PROMISC ){
filter_type = cpu_to_le32((uint32_t)MCAST_FILTER_PROMISC);
hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type),
MIB_VALUE_TYPE_BOOL, &filter_type);
}
else if ((netdev_mc_count(dev) > NIC_MAX_MCAST_LIST) || (dev->flags & IFF_ALLMULTI)){
filter_type = cpu_to_le32((uint32_t)MCAST_FILTER_MCASTALL);
hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type),
MIB_VALUE_TYPE_BOOL, &filter_type);
}
else {
if (priv->sme_i.sme_flag & SME_MULTICAST){
mc_count = netdev_mc_count(dev);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)
netdev_for_each_mc_addr(ha, dev) {
memcpy(&set_address[i*ETH_ALEN], ha->addr, ETH_ALEN);
}
#else
for (i = 0, mclist = dev->mc_list; mclist && i < mc_count; i++, mclist = mclist->next)
memcpy(&set_address[i*ETH_ALEN], mclist->dmi_addr, ETH_ALEN);
#endif
priv->sme_i.sme_flag &= ~SME_MULTICAST;
hostif_mib_set_request(priv, LOCAL_MULTICAST_ADDRESS,
(ETH_ALEN*mc_count), MIB_VALUE_TYPE_OSTRING, &set_address[0]);
}else {
filter_type = cpu_to_le32((uint32_t)MCAST_FILTER_MCAST);
priv->sme_i.sme_flag |= SME_MULTICAST;
hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type),
MIB_VALUE_TYPE_BOOL, &filter_type);
}
}
spin_unlock(&priv->multicast_spin);
}
static
void hostif_sme_powermgt_set(ks_wlan_private *priv)
{
unsigned long mode,wake_up,receiveDTIMs ;
DPRINTK(3,"\n");
switch(priv->reg.powermgt){
case POWMGT_ACTIVE_MODE:
mode = POWER_ACTIVE;
wake_up = 0;
receiveDTIMs = 0;
break;
case POWMGT_SAVE1_MODE:
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE){
mode = POWER_SAVE;
wake_up = 0;
receiveDTIMs = 0;
} else {
mode = POWER_ACTIVE;
wake_up = 0;
receiveDTIMs = 0;
}
break;
case POWMGT_SAVE2_MODE:
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE){
mode = POWER_SAVE;
wake_up = 0;
receiveDTIMs = 1;
} else {
mode = POWER_ACTIVE;
wake_up = 0;
receiveDTIMs = 0;
}
break;
default:
mode = POWER_ACTIVE;
wake_up = 0;
receiveDTIMs = 0;
break;
}
hostif_power_mngmt_request(priv, mode, wake_up, receiveDTIMs);
return;
}
static
void hostif_sme_sleep_set(ks_wlan_private *priv)
{
DPRINTK(3,"\n");
switch(priv->sleep_mode){
case SLP_SLEEP:
hostif_sleep_request(priv, priv->sleep_mode);
break;
case SLP_ACTIVE:
hostif_sleep_request(priv, priv->sleep_mode);
break;
default:
break;
}
return;
}
static
void hostif_sme_set_key(ks_wlan_private *priv, int type)
{
uint32_t val;
switch(type){
case SME_SET_FLAG:
val = cpu_to_le32((uint32_t)(priv->reg.privacy_invoked));
hostif_mib_set_request(priv, DOT11_PRIVACY_INVOKED,
sizeof(val), MIB_VALUE_TYPE_BOOL,
&val );
break;
case SME_SET_TXKEY:
val = cpu_to_le32((uint32_t)(priv->wpa.txkey));
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_ID,
sizeof(val), MIB_VALUE_TYPE_INT,
&val );
break;
case SME_SET_KEY1:
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE1,
priv->wpa.key[0].key_len, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[0].key_val[0] );
break;
case SME_SET_KEY2:
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE2,
priv->wpa.key[1].key_len, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[1].key_val[0] );
break;
case SME_SET_KEY3:
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE3,
priv->wpa.key[2].key_len, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[2].key_val[0] );
break;
case SME_SET_KEY4:
hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE4,
priv->wpa.key[3].key_len, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[3].key_val[0] );
break;
case SME_SET_PMK_TSC:
hostif_mib_set_request(priv, DOT11_PMK_TSC,
WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[0].rx_seq[0] );
break;
case SME_SET_GMK1_TSC:
hostif_mib_set_request(priv, DOT11_GMK1_TSC,
WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[1].rx_seq[0] );
break;
case SME_SET_GMK2_TSC:
hostif_mib_set_request(priv, DOT11_GMK2_TSC,
WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING,
&priv->wpa.key[2].rx_seq[0] );
break;
}
return;
}
static
void hostif_sme_set_pmksa(ks_wlan_private *priv)
{
struct pmk_cache_t {
uint16_t size;
struct {
uint8_t bssid[ETH_ALEN];
uint8_t pmkid[IW_PMKID_LEN];
} __attribute__((packed)) list[PMK_LIST_MAX];
} __attribute__((packed)) pmkcache;
struct pmk_t *pmk;
struct list_head *ptr;
int i;
DPRINTK(4,"pmklist.size=%d\n",priv->pmklist.size);
i=0;
list_for_each(ptr, &priv->pmklist.head){
pmk = list_entry(ptr, struct pmk_t, list);
if(i<PMK_LIST_MAX){
memcpy(pmkcache.list[i].bssid, pmk->bssid, ETH_ALEN);
memcpy(pmkcache.list[i].pmkid, pmk->pmkid, IW_PMKID_LEN);
i++;
}
}
pmkcache.size = cpu_to_le16((uint16_t)(priv->pmklist.size));
hostif_mib_set_request(priv, LOCAL_PMK,
sizeof(priv->pmklist.size)+(ETH_ALEN+IW_PMKID_LEN)*(priv->pmklist.size),
MIB_VALUE_TYPE_OSTRING,&pmkcache );
}
/* execute sme */
static
void hostif_sme_execute(ks_wlan_private *priv, int event)
{
uint32_t val;
DPRINTK(3,"event=%d\n",event);
switch (event) {
case SME_START:
if ( priv->dev_state == DEVICE_STATE_BOOT ){
hostif_mib_get_request(priv, DOT11_MAC_ADDRESS);
}
break;
case SME_MULTICAST_REQUEST:
hostif_sme_multicast_set(priv);
break;
case SME_MACADDRESS_SET_REQUEST:
hostif_mib_set_request(priv, LOCAL_CURRENTADDRESS, ETH_ALEN,
MIB_VALUE_TYPE_OSTRING, &priv->eth_addr[0]);
break;
case SME_BSS_SCAN_REQUEST:
hostif_bss_scan_request(priv, priv->reg.scan_type, priv->scan_ssid, priv->scan_ssid_len);
break;
case SME_POW_MNGMT_REQUEST:
hostif_sme_powermgt_set(priv);
break;
case SME_PHY_INFO_REQUEST:
hostif_phy_information_request(priv);
break;
case SME_MIC_FAILURE_REQUEST:
if(priv->wpa.mic_failure.failure == 1){
hostif_mic_failure_request(priv, priv->wpa.mic_failure.failure-1, 0);
}else if(priv->wpa.mic_failure.failure == 2){
hostif_mic_failure_request(priv, priv->wpa.mic_failure.failure-1,
priv->wpa.mic_failure.counter);
}else
DPRINTK(4,"SME_MIC_FAILURE_REQUEST: failure count=%u error?\n",
priv->wpa.mic_failure.failure);
break;
case SME_MIC_FAILURE_CONFIRM:
if(priv->wpa.mic_failure.failure == 2){
if(priv->wpa.mic_failure.stop)
priv->wpa.mic_failure.stop = 0;
priv->wpa.mic_failure.failure = 0;
hostif_start_request( priv, priv->reg.operation_mode );
}
break;
case SME_GET_MAC_ADDRESS:
if ( priv->dev_state == DEVICE_STATE_BOOT ){
hostif_mib_get_request(priv, DOT11_PRODUCT_VERSION);
}
break;
case SME_GET_PRODUCT_VERSION:
if ( priv->dev_state == DEVICE_STATE_BOOT ){
priv->dev_state = DEVICE_STATE_PREINIT;
}
break;
case SME_STOP_REQUEST:
hostif_stop_request(priv);
break;
case SME_RTS_THRESHOLD_REQUEST:
val = cpu_to_le32((uint32_t)(priv->reg.rts));
hostif_mib_set_request(priv, DOT11_RTS_THRESHOLD,
sizeof(val), MIB_VALUE_TYPE_INT,
&val );
break;
case SME_FRAGMENTATION_THRESHOLD_REQUEST:
val = cpu_to_le32((uint32_t)(priv->reg.fragment));
hostif_mib_set_request(priv, DOT11_FRAGMENTATION_THRESHOLD,
sizeof(val), MIB_VALUE_TYPE_INT,
&val );
break;
case SME_WEP_INDEX_REQUEST: case SME_WEP_KEY1_REQUEST:
case SME_WEP_KEY2_REQUEST: case SME_WEP_KEY3_REQUEST:
case SME_WEP_KEY4_REQUEST: case SME_WEP_FLAG_REQUEST:
hostif_sme_set_wep(priv,event);
break;
case SME_RSN_UCAST_REQUEST: case SME_RSN_MCAST_REQUEST:
case SME_RSN_AUTH_REQUEST: case SME_RSN_ENABLED_REQUEST:
case SME_RSN_MODE_REQUEST:
hostif_sme_set_rsn(priv,event);
break;
case SME_SET_FLAG: case SME_SET_TXKEY:
case SME_SET_KEY1: case SME_SET_KEY2:
case SME_SET_KEY3: case SME_SET_KEY4:
case SME_SET_PMK_TSC: case SME_SET_GMK1_TSC:
case SME_SET_GMK2_TSC:
hostif_sme_set_key(priv,event);
break;
case SME_SET_PMKSA:
hostif_sme_set_pmksa(priv);
break;
#ifdef WPS
case SME_WPS_ENABLE_REQUEST:
hostif_mib_set_request(priv, LOCAL_WPS_ENABLE,
sizeof(priv->wps.wps_enabled),
MIB_VALUE_TYPE_INT, &priv->wps.wps_enabled );
break;
case SME_WPS_PROBE_REQUEST:
hostif_mib_set_request(priv, LOCAL_WPS_PROBE_REQ,
priv->wps.ielen,
MIB_VALUE_TYPE_OSTRING, priv->wps.ie);
break;
#endif /* WPS */
case SME_MODE_SET_REQUEST:
hostif_sme_mode_setup(priv);
break;
case SME_SET_GAIN:
hostif_mib_set_request(priv, LOCAL_GAIN,
sizeof(priv->gain), MIB_VALUE_TYPE_OSTRING,
&priv->gain);
break;
case SME_GET_GAIN:
hostif_mib_get_request(priv, LOCAL_GAIN);
break;
case SME_GET_EEPROM_CKSUM:
priv->eeprom_checksum = EEPROM_FW_NOT_SUPPORT; /* initialize */
hostif_mib_get_request(priv, LOCAL_EEPROM_SUM);
break;
case SME_START_REQUEST:
hostif_start_request( priv, priv->reg.operation_mode );
break;
case SME_START_CONFIRM:
/* for power save */
atomic_set(&priv->psstatus.snooze_guard, 0);
atomic_set(&priv->psstatus.confirm_wait,0);
#if !defined(_SDIO_)
atomic_set(&priv->psstatus.status, PS_NONE);
#endif
if ( priv->dev_state == DEVICE_STATE_PREINIT ){
priv->dev_state = DEVICE_STATE_INIT;
}
/* wake_up_interruptible_all(&priv->confirm_wait); */
complete(&priv->confirm_wait);
break;
case SME_SLEEP_REQUEST:
hostif_sme_sleep_set(priv);
break;
case SME_SET_REGION:
val = cpu_to_le32((uint32_t)(priv->region));
hostif_mib_set_request(priv, LOCAL_REGION,
sizeof(val), MIB_VALUE_TYPE_INT,
&val );
break;
case SME_MULTICAST_CONFIRM:
case SME_BSS_SCAN_CONFIRM:
case SME_POW_MNGMT_CONFIRM:
case SME_PHY_INFO_CONFIRM:
case SME_STOP_CONFIRM:
case SME_RTS_THRESHOLD_CONFIRM:
case SME_FRAGMENTATION_THRESHOLD_CONFIRM:
case SME_WEP_INDEX_CONFIRM: case SME_WEP_KEY1_CONFIRM:
case SME_WEP_KEY2_CONFIRM: case SME_WEP_KEY3_CONFIRM:
case SME_WEP_KEY4_CONFIRM: case SME_WEP_FLAG_CONFIRM:
case SME_RSN_UCAST_CONFIRM: case SME_RSN_MCAST_CONFIRM:
case SME_RSN_AUTH_CONFIRM: case SME_RSN_ENABLED_CONFIRM:
case SME_RSN_MODE_CONFIRM:
case SME_MODE_SET_CONFIRM:
break;
case SME_TERMINATE:
default:
break;
}
}
static
void hostif_sme_task( unsigned long dev )
{
ks_wlan_private *priv = (ks_wlan_private *)dev;
DPRINTK(3,"\n");
if(priv->dev_state >= DEVICE_STATE_BOOT){
if (0 < cnt_smeqbody(priv) && priv->dev_state >= DEVICE_STATE_BOOT) {
hostif_sme_execute(priv, priv->sme_i.event_buff[priv->sme_i.qhead]);
inc_smeqhead(priv);
if (0 < cnt_smeqbody(priv))
tasklet_schedule(&priv->sme_task);
}
}
return;
}
/* send to Station Management Entity module */
void hostif_sme_enqueue(ks_wlan_private *priv, unsigned short event)
{
DPRINTK(3,"\n");
#if !defined(_SDIO_)
if(atomic_read(&priv->psstatus.status)==PS_SNOOZE && event < SME_START_CONFIRM){ /* power save wakeup*/
schedule_work(&priv->ks_wlan_wakeup_task);
if(atomic_read(&priv->sme_task.count) <= 0){
/* schedule_work(&priv->ks_wlan_wakeup_task); */
DPRINTK(4,"sme task disable.\n");
tasklet_disable(&priv->sme_task);
}
}
#endif
/* enqueue sme event */
if (cnt_smeqbody(priv) < (SME_EVENT_BUFF_SIZE - 1)) {
priv->sme_i.event_buff[priv->sme_i.qtail] = event;
inc_smeqtail(priv);
//DPRINTK(3,"inc_smeqtail \n");
#ifdef KS_WLAN_DEBUG
if (priv->sme_i.max_event_count < cnt_smeqbody(priv))
priv->sme_i.max_event_count = cnt_smeqbody(priv);
#endif /* KS_WLAN_DEBUG */
} else {
/* in case of buffer overflow */
//DPRINTK(2,"sme queue buffer overflow\n");
printk("sme queue buffer overflow\n");
}
tasklet_schedule(&priv->sme_task);
}
int hostif_init( ks_wlan_private *priv )
{
int rc=0;
int i;
DPRINTK(3,"\n");
priv->aplist.size =0;
for(i=0;i<LOCAL_APLIST_MAX;i++)
memset(&(priv->aplist.ap[i]),0,sizeof(struct local_ap_t));
priv->infra_status = 0;
priv->current_rate = 4;
priv->connect_status = DISCONNECT_STATUS;
spin_lock_init(&priv->multicast_spin);
spin_lock_init(&priv->dev_read_lock);
init_waitqueue_head (&priv->devread_wait);
priv->dev_count = 0;
atomic_set(&priv->event_count, 0);
atomic_set(&priv->rec_count, 0);
/* for power save */
atomic_set(&priv->psstatus.status, PS_NONE);
atomic_set(&priv->psstatus.confirm_wait, 0);
atomic_set(&priv->psstatus.snooze_guard, 0);
/* init_waitqueue_head(&priv->psstatus.wakeup_wait); */
init_completion(&priv->psstatus.wakeup_wait);
//INIT_WORK(&priv->ks_wlan_wakeup_task, ks_wlan_hw_wakeup_task, (void *)priv);
INIT_WORK(&priv->ks_wlan_wakeup_task, ks_wlan_hw_wakeup_task);
/* WPA */
memset(&(priv->wpa), 0, sizeof(priv->wpa));
priv->wpa.rsn_enabled = 0;
priv->wpa.mic_failure.failure = 0;
priv->wpa.mic_failure.last_failure_time = 0;
priv->wpa.mic_failure.stop = 0;
memset(&(priv->pmklist), 0, sizeof(priv->pmklist));
INIT_LIST_HEAD(&priv->pmklist.head);
for(i=0;i<PMK_LIST_MAX;i++)
INIT_LIST_HEAD(&priv->pmklist.pmk[i].list);
priv->sme_i.sme_status = SME_IDLE;
priv->sme_i.qhead = priv->sme_i.qtail = 0;
#ifdef KS_WLAN_DEBUG
priv->sme_i.max_event_count = 0;
#endif
spin_lock_init(&priv->sme_i.sme_spin);
priv->sme_i.sme_flag = 0;
tasklet_init(&priv->sme_task, hostif_sme_task, (unsigned long)priv);
return rc;
}
void hostif_exit( ks_wlan_private *priv )
{
tasklet_kill(&priv->sme_task);
return;
}
/*
* Driver for KeyStream wireless LAN
*
* ks_hostif.h
* $Id: ks_hostif.h 994 2009-09-14 01:51:16Z sekine $
*
* Copyright (c) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#ifndef _KS_HOSTIF_H_
#define _KS_HOSTIF_H_
/*
* HOST-MAC I/F events
*/
#define HIF_DATA_REQ 0xE001
#define HIF_DATA_IND 0xE801
#define HIF_MIB_GET_REQ 0xE002
#define HIF_MIB_GET_CONF 0xE802
#define HIF_MIB_SET_REQ 0xE003
#define HIF_MIB_SET_CONF 0xE803
#define HIF_POWERMGT_REQ 0xE004
#define HIF_POWERMGT_CONF 0xE804
#define HIF_START_REQ 0xE005
#define HIF_START_CONF 0xE805
#define HIF_CONNECT_IND 0xE806
#define HIF_STOP_REQ 0xE006
#define HIF_STOP_CONF 0xE807
#define HIF_PS_ADH_SET_REQ 0xE007
#define HIF_PS_ADH_SET_CONF 0xE808
#define HIF_INFRA_SET_REQ 0xE008
#define HIF_INFRA_SET_CONF 0xE809
#define HIF_ADH_SET_REQ 0xE009
#define HIF_ADH_SET_CONF 0xE80A
#define HIF_AP_SET_REQ 0xE00A
#define HIF_AP_SET_CONF 0xE80B
#define HIF_ASSOC_INFO_IND 0xE80C
#define HIF_MIC_FAILURE_REQ 0xE00B
#define HIF_MIC_FAILURE_CONF 0xE80D
#define HIF_SCAN_REQ 0xE00C
#define HIF_SCAN_CONF 0xE80E
#define HIF_PHY_INFO_REQ 0xE00D
#define HIF_PHY_INFO_CONF 0xE80F
#define HIF_SLEEP_REQ 0xE00E
#define HIF_SLEEP_CONF 0xE810
#define HIF_PHY_INFO_IND 0xE811
#define HIF_SCAN_IND 0xE812
#define HIF_INFRA_SET2_REQ 0xE00F
#define HIF_INFRA_SET2_CONF 0xE813
#define HIF_ADH_SET2_REQ 0xE010
#define HIF_ADH_SET2_CONF 0xE814
#define HIF_REQ_MAX 0xE010
/*
* HOST-MAC I/F data structure
* Byte alignmet Little Endian
*/
struct hostif_hdr {
uint16_t size;
uint16_t event;
} __attribute__((packed));
struct hostif_data_request_t {
struct hostif_hdr header;
uint16_t auth_type;
#define TYPE_DATA 0x0000
#define TYPE_AUTH 0x0001
uint16_t reserved;
uint8_t data[0];
} __attribute__((packed));
struct hostif_data_indication_t {
struct hostif_hdr header;
uint16_t auth_type;
/* #define TYPE_DATA 0x0000 */
#define TYPE_PMK1 0x0001
#define TYPE_GMK1 0x0002
#define TYPE_GMK2 0x0003
uint16_t reserved;
uint8_t data[0];
} __attribute__((packed));
#define CHANNEL_LIST_MAX_SIZE 14
struct channel_list_t {
uint8_t size;
uint8_t body[CHANNEL_LIST_MAX_SIZE];
uint8_t pad;
} __attribute__((packed));
/* MIB Attribute */
#define DOT11_MAC_ADDRESS 0x21010100 /* MAC Address (R) */
#define DOT11_PRODUCT_VERSION 0x31024100 /* FirmWare Version (R)*/
#define DOT11_RTS_THRESHOLD 0x21020100 /* RTS Threshold (R/W) */
#define DOT11_FRAGMENTATION_THRESHOLD 0x21050100 /* Fragment Threshold (R/W) */
#define DOT11_PRIVACY_INVOKED 0x15010100 /* WEP ON/OFF (W) */
#define DOT11_WEP_DEFAULT_KEY_ID 0x15020100 /* WEP Index (W) */
#define DOT11_WEP_DEFAULT_KEY_VALUE1 0x13020101 /* WEP Key#1(TKIP AES: PairwiseTemporalKey) (W) */
#define DOT11_WEP_DEFAULT_KEY_VALUE2 0x13020102 /* WEP Key#2(TKIP AES: GroupKey1) (W) */
#define DOT11_WEP_DEFAULT_KEY_VALUE3 0x13020103 /* WEP Key#3(TKIP AES: GroupKey2) (W) */
#define DOT11_WEP_DEFAULT_KEY_VALUE4 0x13020104 /* WEP Key#4 (W) */
#define DOT11_WEP_LIST 0x13020100 /* WEP LIST */
#define DOT11_DESIRED_SSID 0x11090100 /* SSID */
#define DOT11_CURRENT_CHANNEL 0x45010100 /* channel set */
#define DOT11_OPERATION_RATE_SET 0x11110100 /* rate set */
#define LOCAL_AP_SEARCH_INTEAVAL 0xF1010100 /* AP search interval (R/W) */
#define LOCAL_CURRENTADDRESS 0xF1050100 /* MAC Adress change (W) */
#define LOCAL_MULTICAST_ADDRESS 0xF1060100 /* Multicast Adress (W) */
#define LOCAL_MULTICAST_FILTER 0xF1060200 /* Multicast Adress Filter enable/disable (W) */
#define LOCAL_SEARCHED_AP_LIST 0xF1030100 /* AP list (R) */
#define LOCAL_LINK_AP_STATUS 0xF1040100 /* Link AP status (R) */
#define LOCAL_PACKET_STATISTICS 0xF1020100 /* tx,rx packets statistics */
#define LOCAL_AP_SCAN_LIST_TYPE_SET 0xF1030200 /* AP_SCAN_LIST_TYPE */
#define DOT11_RSN_ENABLED 0x15070100 /* WPA enable/disable (W) */
#define LOCAL_RSN_MODE 0x56010100 /* RSN mode WPA/WPA2 (W) */
#define DOT11_RSN_CONFIG_MULTICAST_CIPHER 0x51040100 /* GroupKeyCipherSuite (W) */
#define DOT11_RSN_CONFIG_UNICAST_CIPHER 0x52020100 /* PairwiseKeyCipherSuite (W) */
#define DOT11_RSN_CONFIG_AUTH_SUITE 0x53020100 /* AuthenticationKeyManagementSuite (W) */
#define DOT11_RSN_CONFIG_VERSION 0x51020100 /* RSN version (W) */
#define LOCAL_RSN_CONFIG_ALL 0x5F010100 /* RSN CONFIG ALL (W) */
#define DOT11_PMK_TSC 0x55010100 /* PMK_TSC (W) */
#define DOT11_GMK1_TSC 0x55010101 /* GMK1_TSC (W) */
#define DOT11_GMK2_TSC 0x55010102 /* GMK2_TSC (W) */
#define DOT11_GMK3_TSC 0x55010103 /* GMK3_TSC */
#define LOCAL_PMK 0x58010100 /* Pairwise Master Key cache (W) */
#define LOCAL_REGION 0xF10A0100 /* Region setting */
#ifdef WPS
#define LOCAL_WPS_ENABLE 0xF10B0100 /* WiFi Protected Setup */
#define LOCAL_WPS_PROBE_REQ 0xF10C0100 /* WPS Probe Request */
#endif /* WPS */
#define LOCAL_GAIN 0xF10D0100 /* Carrer sense threshold for demo ato show */
#define LOCAL_EEPROM_SUM 0xF10E0100 /* EEPROM checksum information */
struct hostif_mib_get_request_t {
struct hostif_hdr header;
uint32_t mib_attribute;
} __attribute__((packed));
struct hostif_mib_value_t {
uint16_t size;
uint16_t type;
#define MIB_VALUE_TYPE_NULL 0
#define MIB_VALUE_TYPE_INT 1
#define MIB_VALUE_TYPE_BOOL 2
#define MIB_VALUE_TYPE_COUNT32 3
#define MIB_VALUE_TYPE_OSTRING 4
uint8_t body[0];
} __attribute__((packed));
struct hostif_mib_get_confirm_t {
struct hostif_hdr header;
uint32_t mib_status;
#define MIB_SUCCESS 0
#define MIB_INVALID 1
#define MIB_READ_ONLY 2
#define MIB_WRITE_ONLY 3
uint32_t mib_attribute;
struct hostif_mib_value_t mib_value;
} __attribute__((packed));
struct hostif_mib_set_request_t {
struct hostif_hdr header;
uint32_t mib_attribute;
struct hostif_mib_value_t mib_value;
} __attribute__((packed));
struct hostif_mib_set_confirm_t {
struct hostif_hdr header;
uint32_t mib_status;
uint32_t mib_attribute;
} __attribute__((packed));
struct hostif_power_mngmt_request_t {
struct hostif_hdr header;
uint32_t mode;
#define POWER_ACTIVE 1
#define POWER_SAVE 2
uint32_t wake_up;
#define SLEEP_FALSE 0
#define SLEEP_TRUE 1 /* not used */
uint32_t receiveDTIMs;
#define DTIM_FALSE 0
#define DTIM_TRUE 1
} __attribute__((packed));
/* power management mode */
enum {
POWMGT_ACTIVE_MODE=0,
POWMGT_SAVE1_MODE,
POWMGT_SAVE2_MODE
};
#define RESULT_SUCCESS 0
#define RESULT_INVALID_PARAMETERS 1
#define RESULT_NOT_SUPPORTED 2
/* #define RESULT_ALREADY_RUNNING 3 */
#define RESULT_ALREADY_RUNNING 7
struct hostif_power_mngmt_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct hostif_start_request_t {
struct hostif_hdr header;
uint16_t mode;
#define MODE_PSEUDO_ADHOC 0
#define MODE_INFRASTRUCTURE 1
#define MODE_AP 2 /* not used */
#define MODE_ADHOC 3
} __attribute__((packed));
struct hostif_start_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
#define SSID_MAX_SIZE 32
struct ssid_t {
uint8_t size;
uint8_t body[SSID_MAX_SIZE];
uint8_t ssid_pad;
} __attribute__((packed));
#define RATE_SET_MAX_SIZE 16
struct rate_set8_t {
uint8_t size;
uint8_t body[8];
uint8_t rate_pad;
} __attribute__((packed));
struct FhParms_t {
uint16_t dwellTime;
uint8_t hopSet;
uint8_t hopPattern;
uint8_t hopIndex;
} __attribute__((packed));
struct DsParms_t {
uint8_t channel;
} __attribute__((packed));
struct CfParms_t {
uint8_t count;
uint8_t period;
uint16_t maxDuration;
uint16_t durRemaining;
} __attribute__((packed));
struct IbssParms_t {
uint16_t atimWindow;
} __attribute__((packed));
struct rsn_t {
uint8_t size;
#define RSN_BODY_SIZE 64
uint8_t body[RSN_BODY_SIZE];
} __attribute__((packed));
struct ErpParams_t {
uint8_t erp_info;
} __attribute__((packed));
struct rate_set16_t{
uint8_t size;
uint8_t body[16];
uint8_t rate_pad;
} __attribute__((packed));
struct ap_info_t{
uint8_t bssid[6]; /* +00 */
uint8_t rssi; /* +06 */
uint8_t sq; /* +07 */
uint8_t noise; /* +08 */
uint8_t pad0; /* +09 */
uint16_t beacon_period; /* +10 */
uint16_t capability; /* +12 */
#define BSS_CAP_ESS (1<<0)
#define BSS_CAP_IBSS (1<<1)
#define BSS_CAP_CF_POLABLE (1<<2)
#define BSS_CAP_CF_POLL_REQ (1<<3)
#define BSS_CAP_PRIVACY (1<<4)
#define BSS_CAP_SHORT_PREAMBLE (1<<5)
#define BSS_CAP_PBCC (1<<6)
#define BSS_CAP_CHANNEL_AGILITY (1<<7)
#define BSS_CAP_SHORT_SLOT_TIME (1<<10)
#define BSS_CAP_DSSS_OFDM (1<<13)
uint8_t frame_type; /* +14 */
uint8_t ch_info; /* +15 */
#define FRAME_TYPE_BEACON 0x80
#define FRAME_TYPE_PROBE_RESP 0x50
uint16_t body_size; /* +16 */
uint8_t body[1024]; /* +18 */
/* +1032 */
} __attribute__((packed));
struct link_ap_info_t{
uint8_t bssid[6]; /* +00 */
uint8_t rssi; /* +06 */
uint8_t sq; /* +07 */
uint8_t noise; /* +08 */
uint8_t pad0; /* +09 */
uint16_t beacon_period; /* +10 */
uint16_t capability; /* +12 */
struct rate_set8_t rate_set; /* +14 */
struct FhParms_t fh_parameter; /* +24 */
struct DsParms_t ds_parameter; /* +29 */
struct CfParms_t cf_parameter; /* +30 */
struct IbssParms_t ibss_parameter; /* +36 */
struct ErpParams_t erp_parameter; /* +38 */
uint8_t pad1; /* +39 */
struct rate_set8_t ext_rate_set; /* +40 */
uint8_t DTIM_period; /* +50 */
uint8_t rsn_mode; /* +51 */
#define RSN_MODE_NONE 0
#define RSN_MODE_WPA 1
#define RSN_MODE_WPA2 2
struct {
uint8_t size; /* +52 */
uint8_t body[128]; /* +53 */
} __attribute__((packed)) rsn;
} __attribute__((packed));
struct hostif_connect_indication_t {
struct hostif_hdr header;
uint16_t connect_code;
#define RESULT_CONNECT 0
#define RESULT_DISCONNECT 1
struct link_ap_info_t link_ap_info;
} __attribute__((packed));
struct hostif_stop_request_t {
struct hostif_hdr header;
} __attribute__((packed));
struct hostif_stop_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct hostif_ps_adhoc_set_request_t {
struct hostif_hdr header;
uint16_t phy_type;
#define D_11B_ONLY_MODE 0
#define D_11G_ONLY_MODE 1
#define D_11BG_COMPATIBLE_MODE 2
#define D_11A_ONLY_MODE 3
uint16_t cts_mode;
#define CTS_MODE_FALSE 0
#define CTS_MODE_TRUE 1
uint16_t channel;
struct rate_set16_t rate_set;
uint16_t capability; /* bit5:preamble bit6:pbcc pbcc not supported always 0
* bit10:ShortSlotTime bit13:DSSS-OFDM DSSS-OFDM not supported always 0 */
uint16_t scan_type;
} __attribute__((packed));
struct hostif_ps_adhoc_set_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct hostif_infrastructure_set_request_t {
struct hostif_hdr header;
uint16_t phy_type;
uint16_t cts_mode;
struct rate_set16_t rate_set;
struct ssid_t ssid;
uint16_t capability; /* bit5:preamble bit6:pbcc pbcc not supported always 0
* bit10:ShortSlotTime bit13:DSSS-OFDM DSSS-OFDM not supported always 0 */
uint16_t beacon_lost_count;
uint16_t auth_type;
#define AUTH_TYPE_OPEN_SYSTEM 0
#define AUTH_TYPE_SHARED_KEY 1
struct channel_list_t channel_list;
uint16_t scan_type;
} __attribute__((packed));
struct hostif_infrastructure_set2_request_t {
struct hostif_hdr header;
uint16_t phy_type;
uint16_t cts_mode;
struct rate_set16_t rate_set;
struct ssid_t ssid;
uint16_t capability; /* bit5:preamble bit6:pbcc pbcc not supported always 0
* bit10:ShortSlotTime bit13:DSSS-OFDM DSSS-OFDM not supported always 0 */
uint16_t beacon_lost_count;
uint16_t auth_type;
#define AUTH_TYPE_OPEN_SYSTEM 0
#define AUTH_TYPE_SHARED_KEY 1
struct channel_list_t channel_list;
uint16_t scan_type;
uint8_t bssid[ETH_ALEN];
} __attribute__((packed));
struct hostif_infrastructure_set_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct hostif_adhoc_set_request_t {
struct hostif_hdr header;
uint16_t phy_type;
uint16_t cts_mode;
uint16_t channel;
struct rate_set16_t rate_set;
struct ssid_t ssid;
uint16_t capability; /* bit5:preamble bit6:pbcc pbcc not supported always 0
* bit10:ShortSlotTime bit13:DSSS-OFDM DSSS-OFDM not supported always 0 */
uint16_t scan_type;
} __attribute__((packed));
struct hostif_adhoc_set2_request_t {
struct hostif_hdr header;
uint16_t phy_type;
uint16_t cts_mode;
uint16_t reserved;
struct rate_set16_t rate_set;
struct ssid_t ssid;
uint16_t capability; /* bit5:preamble bit6:pbcc pbcc not supported always 0
* bit10:ShortSlotTime bit13:DSSS-OFDM DSSS-OFDM not supported always 0 */
uint16_t scan_type;
struct channel_list_t channel_list;
uint8_t bssid[ETH_ALEN];
} __attribute__((packed));
struct hostif_adhoc_set_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct last_associate_t {
uint8_t type;
uint8_t status;
} __attribute__((packed));
struct association_request_t {
uint8_t type;
#define FRAME_TYPE_ASSOC_REQ 0x00
#define FRAME_TYPE_REASSOC_REQ 0x20
uint8_t pad;
uint16_t capability;
uint16_t listen_interval;
uint8_t ap_address[6];
uint16_t reqIEs_size;
} __attribute__((packed));
struct association_response_t {
uint8_t type;
#define FRAME_TYPE_ASSOC_RESP 0x10
#define FRAME_TYPE_REASSOC_RESP 0x30
uint8_t pad;
uint16_t capability;
uint16_t status;
uint16_t association_id;
uint16_t respIEs_size;
} __attribute__((packed));
struct hostif_associate_indication_t {
struct hostif_hdr header;
struct association_request_t assoc_req;
struct association_response_t assoc_resp;
/* followed by (reqIEs_size + respIEs_size) octets of data */
/* reqIEs data *//* respIEs data */
} __attribute__((packed));
struct hostif_bss_scan_request_t {
struct hostif_hdr header;
uint8_t scan_type;
#define ACTIVE_SCAN 0
#define PASSIVE_SCAN 1
uint8_t pad[3];
uint32_t ch_time_min;
uint32_t ch_time_max;
struct channel_list_t channel_list;
struct ssid_t ssid;
} __attribute__((packed));
struct hostif_bss_scan_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
uint16_t reserved;
} __attribute__((packed));
struct hostif_phy_information_request_t {
struct hostif_hdr header;
uint16_t type;
#define NORMAL_TYPE 0
#define TIME_TYPE 1
uint16_t time; /* unit 100ms */
} __attribute__((packed));
struct hostif_phy_information_confirm_t {
struct hostif_hdr header;
uint8_t rssi;
uint8_t sq;
uint8_t noise;
uint8_t link_speed;
uint32_t tx_frame;
uint32_t rx_frame;
uint32_t tx_error;
uint32_t rx_error;
} __attribute__((packed));
/* sleep mode */
#define SLP_ACTIVE 0
#define SLP_SLEEP 1
struct hostif_sleep_request_t {
struct hostif_hdr header;
} __attribute__((packed));
struct hostif_sleep_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
struct hostif_mic_failure_request_t {
struct hostif_hdr header;
uint16_t failure_count;
uint16_t timer;
} __attribute__((packed));
struct hostif_mic_failure_confirm_t {
struct hostif_hdr header;
uint16_t result_code;
} __attribute__((packed));
#define BASIC_RATE 0x80
#define RATE_MASK 0x7F
#define TX_RATE_AUTO 0xff
#define TX_RATE_1M_FIXED 0
#define TX_RATE_2M_FIXED 1
#define TX_RATE_1_2M_AUTO 2
#define TX_RATE_5M_FIXED 3
#define TX_RATE_11M_FIXED 4
#define TX_RATE_FULL_AUTO 0
#define TX_RATE_11_AUTO 1
#define TX_RATE_11B_AUTO 2
#define TX_RATE_11BG_AUTO 3
#define TX_RATE_MANUAL_AUTO 4
#define TX_RATE_FIXED 5
/* 11b rate */
#define TX_RATE_1M (uint8_t)(10/5) /* 11b 11g basic rate */
#define TX_RATE_2M (uint8_t)(20/5) /* 11b 11g basic rate */
#define TX_RATE_5M (uint8_t)(55/5) /* 11g basic rate */
#define TX_RATE_11M (uint8_t)(110/5) /* 11g basic rate */
/* 11g rate */
#define TX_RATE_6M (uint8_t)(60/5) /* 11g basic rate */
#define TX_RATE_12M (uint8_t)(120/5) /* 11g basic rate */
#define TX_RATE_24M (uint8_t)(240/5) /* 11g basic rate */
#define TX_RATE_9M (uint8_t)(90/5)
#define TX_RATE_18M (uint8_t)(180/5)
#define TX_RATE_36M (uint8_t)(360/5)
#define TX_RATE_48M (uint8_t)(480/5)
#define TX_RATE_54M (uint8_t)(540/5)
#define IS_11B_RATE(A) (((A&RATE_MASK)==TX_RATE_1M)||((A&RATE_MASK)==TX_RATE_2M)||\
((A&RATE_MASK)==TX_RATE_5M)||((A&RATE_MASK)==TX_RATE_11M))
#define IS_OFDM_RATE(A) (((A&RATE_MASK)==TX_RATE_6M)||((A&RATE_MASK)==TX_RATE_12M)||\
((A&RATE_MASK)==TX_RATE_24M)||((A&RATE_MASK)==TX_RATE_9M)||\
((A&RATE_MASK)==TX_RATE_18M)||((A&RATE_MASK)==TX_RATE_36M)||\
((A&RATE_MASK)==TX_RATE_48M)||((A&RATE_MASK)==TX_RATE_54M))
#define IS_11BG_RATE(A) (IS_11B_RATE(A)||IS_OFDM_RATE(A))
#define IS_OFDM_EXT_RATE(A) (((A&RATE_MASK)==TX_RATE_9M)||((A&RATE_MASK)==TX_RATE_18M)||\
((A&RATE_MASK)==TX_RATE_36M)||((A&RATE_MASK)==TX_RATE_48M)||\
((A&RATE_MASK)==TX_RATE_54M))
enum {
CONNECT_STATUS=0,
DISCONNECT_STATUS
};
/* preamble type */
enum {
LONG_PREAMBLE=0,
SHORT_PREAMBLE
};
/* multicast filter */
#define MCAST_FILTER_MCAST 0
#define MCAST_FILTER_MCASTALL 1
#define MCAST_FILTER_PROMISC 2
#define NIC_MAX_MCAST_LIST 32
/* macro function */
#define HIF_EVENT_MASK 0xE800
#define IS_HIF_IND(_EVENT) ((_EVENT&HIF_EVENT_MASK)==0xE800 && \
((_EVENT&~HIF_EVENT_MASK)==0x0001 || \
(_EVENT&~HIF_EVENT_MASK)==0x0006 || \
(_EVENT&~HIF_EVENT_MASK)==0x000C || \
(_EVENT&~HIF_EVENT_MASK)==0x0011 || \
(_EVENT&~HIF_EVENT_MASK)==0x0012))
#define IS_HIF_CONF(_EVENT) ((_EVENT&HIF_EVENT_MASK)==0xE800 && \
(_EVENT&~HIF_EVENT_MASK)>0x0000 && \
(_EVENT&~HIF_EVENT_MASK)<0x0012 && \
!IS_HIF_IND(_EVENT) )
#ifdef __KERNEL__
#include "ks_wlan.h"
/* function prototype */
extern int hostif_data_request( ks_wlan_private *priv, struct sk_buff *packet );
extern void hostif_receive( ks_wlan_private *priv, unsigned char *p, unsigned int size );
extern void hostif_sme_enqueue(ks_wlan_private *priv, uint16_t event);
extern int hostif_init( ks_wlan_private *priv );
extern void hostif_exit( ks_wlan_private *priv );
static
inline int hif_align_size(int size)
{
#ifdef KS_ATOM
if( size < 1024 )
size = 1024;
#endif
#ifdef DEVICE_ALIGNMENT
return (size%DEVICE_ALIGNMENT) ? size + DEVICE_ALIGNMENT - (size % DEVICE_ALIGNMENT) : size;
#else
return size;
#endif
}
#endif /* __KERNEL__ */
#endif /* _KS_HOSTIF_H_ */
/*
* Driver for KeyStream IEEE802.11 b/g wireless LAN cards.
*
* ks_wlan.h
* $Id: ks_wlan.h 994 2009-09-14 01:51:16Z sekine $
*
* Copyright (C) 2006-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#ifndef _KS_WLAN_H
#define _KS_WLAN_H
#define WPS
#include <linux/version.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
#include <linux/config.h>
#endif
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h> /* spinlock_t */
#include <linux/sched.h> /* wait_queue_head_t */
#include <linux/types.h> /* pid_t */
#include <linux/netdevice.h> /* struct net_device_stats, struct sk_buff */
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <asm/atomic.h> /* struct atmic_t */
#include <linux/timer.h> /* struct timer_list */
#include <linux/string.h>
#include <linux/completion.h> /* struct completion */
#include <asm/io.h>
/* Workqueue / task queue backwards compatibility stuff */
#if ((LINUX_VERSION_CODE > KERNEL_VERSION(2,5,41)) || (defined _MVL31_) || (defined _CELF3_))
#include <linux/workqueue.h>
#else
#include <linux/tqueue.h>
#define work_struct tq_struct
#define INIT_WORK INIT_TQUEUE
#define schedule_work schedule_task
#endif
/* Interrupt handler backwards compatibility stuff */
/*
#ifndef IRQ_NONE
#define IRQ_NONE
#define IRQ_HANDLED
typedef void irqreturn_t;
#endif
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,4,23)
#define free_netdev(x) kfree(x)
#define pci_name(x) x->slot_name
#endif
#if (defined _PCMCIA_)
#include "pcmcia/ks7010_pcmcia.h"
#elif (defined _PCI_)
#include "pci/ks7010_pci.h"
#elif (defined _SDIO_)
#include "ks7010_sdio.h"
#elif (defined _SPI_)
#include "spi/ks7010_spi.h"
#else
#error not defined bus type !
#endif
struct ks_wlan_parameter {
uint8_t operation_mode; /* Operation Mode */
uint8_t channel; /* Channel */
uint8_t tx_rate; /* Transmit Rate */
struct {
uint8_t size;
uint8_t body[16];
} rate_set;
uint8_t bssid[ETH_ALEN]; /* BSSID */
struct {
uint8_t size;
uint8_t body[32+1];
} ssid; /* SSID */
uint8_t preamble; /* Preamble */
uint8_t powermgt; /* PowerManagementMode */
uint32_t scan_type; /* AP List Scan Type */
#define BEACON_LOST_COUNT_MIN 0
#define BEACON_LOST_COUNT_MAX 65535
uint32_t beacon_lost_count; /* Beacon Lost Count */
uint32_t rts; /* RTS Threashold */
uint32_t fragment; /* Fragmentation Threashold */
uint32_t privacy_invoked;
uint32_t wep_index;
struct {
uint8_t size;
uint8_t val[13*2+1];
} wep_key[4];
uint16_t authenticate_type;
uint16_t phy_type; /* 11b/11g/11bg mode type*/
uint16_t cts_mode; /* for 11g/11bg mode cts mode */
uint16_t phy_info_timer; /* phy information timer */
char rom_file[256];
};
enum {
DEVICE_STATE_OFF = 0, /* this means hw_unavailable is != 0 */
DEVICE_STATE_PREBOOT, /* we are in a pre-boot state (empty RAM) */
DEVICE_STATE_BOOT, /* boot state (fw upload, run fw) */
DEVICE_STATE_PREINIT, /* pre-init state */
DEVICE_STATE_INIT, /* init state (restore MIB backup to device) */
DEVICE_STATE_READY, /* driver&device are in operational state */
DEVICE_STATE_SLEEP /* device in sleep mode */
};
/* SME flag */
#define SME_MODE_SET (1<<0)
#define SME_RTS (1<<1)
#define SME_FRAG (1<<2)
#define SME_WEP_FLAG (1<<3)
#define SME_WEP_INDEX (1<<4)
#define SME_WEP_VAL1 (1<<5)
#define SME_WEP_VAL2 (1<<6)
#define SME_WEP_VAL3 (1<<7)
#define SME_WEP_VAL4 (1<<8)
#define SME_WEP_VAL_MASK (SME_WEP_VAL1|SME_WEP_VAL2|SME_WEP_VAL3|SME_WEP_VAL4)
#define SME_RSN (1<<9)
#define SME_RSN_MULTICAST (1<<10)
#define SME_RSN_UNICAST (1<<11)
#define SME_RSN_AUTH (1<<12)
#define SME_AP_SCAN (1<<13)
#define SME_MULTICAST (1<<14)
/* SME Event */
enum {
SME_START,
SME_MULTICAST_REQUEST,
SME_MACADDRESS_SET_REQUEST,
SME_BSS_SCAN_REQUEST,
SME_SET_FLAG,
SME_SET_TXKEY,
SME_SET_KEY1,
SME_SET_KEY2,
SME_SET_KEY3,
SME_SET_KEY4,
SME_SET_PMK_TSC,
SME_SET_GMK1_TSC,
SME_SET_GMK2_TSC,
SME_SET_GMK3_TSC,
SME_SET_PMKSA,
SME_POW_MNGMT_REQUEST,
SME_PHY_INFO_REQUEST,
SME_MIC_FAILURE_REQUEST,
SME_GET_MAC_ADDRESS,
SME_GET_PRODUCT_VERSION,
SME_STOP_REQUEST,
SME_RTS_THRESHOLD_REQUEST,
SME_FRAGMENTATION_THRESHOLD_REQUEST,
SME_WEP_INDEX_REQUEST,
SME_WEP_KEY1_REQUEST,
SME_WEP_KEY2_REQUEST,
SME_WEP_KEY3_REQUEST,
SME_WEP_KEY4_REQUEST,
SME_WEP_FLAG_REQUEST,
SME_RSN_UCAST_REQUEST,
SME_RSN_MCAST_REQUEST,
SME_RSN_AUTH_REQUEST,
SME_RSN_ENABLED_REQUEST,
SME_RSN_MODE_REQUEST,
#ifdef WPS
SME_WPS_ENABLE_REQUEST,
SME_WPS_PROBE_REQUEST,
#endif
SME_SET_GAIN,
SME_GET_GAIN,
SME_SLEEP_REQUEST,
SME_SET_REGION,
SME_MODE_SET_REQUEST,
SME_START_REQUEST,
SME_GET_EEPROM_CKSUM,
SME_MIC_FAILURE_CONFIRM,
SME_START_CONFIRM,
SME_MULTICAST_CONFIRM,
SME_BSS_SCAN_CONFIRM,
SME_GET_CURRENT_AP,
SME_POW_MNGMT_CONFIRM,
SME_PHY_INFO_CONFIRM,
SME_STOP_CONFIRM,
SME_RTS_THRESHOLD_CONFIRM,
SME_FRAGMENTATION_THRESHOLD_CONFIRM,
SME_WEP_INDEX_CONFIRM,
SME_WEP_KEY1_CONFIRM,
SME_WEP_KEY2_CONFIRM,
SME_WEP_KEY3_CONFIRM,
SME_WEP_KEY4_CONFIRM,
SME_WEP_FLAG_CONFIRM,
SME_RSN_UCAST_CONFIRM,
SME_RSN_MCAST_CONFIRM,
SME_RSN_AUTH_CONFIRM,
SME_RSN_ENABLED_CONFIRM,
SME_RSN_MODE_CONFIRM,
SME_MODE_SET_CONFIRM,
SME_SLEEP_CONFIRM,
SME_RSN_SET_CONFIRM,
SME_WEP_SET_CONFIRM,
SME_TERMINATE,
SME_EVENT_SIZE /* end */
};
/* SME Status */
enum {
SME_IDLE,
SME_SETUP,
SME_DISCONNECT,
SME_CONNECT
};
#define SME_EVENT_BUFF_SIZE 128
struct sme_info{
int sme_status;
int event_buff[SME_EVENT_BUFF_SIZE];
unsigned int qhead;
unsigned int qtail;
#ifdef KS_WLAN_DEBUG
/* for debug */
unsigned int max_event_count;
#endif
spinlock_t sme_spin;
unsigned long sme_flag;
};
struct hostt_t{
int buff[SME_EVENT_BUFF_SIZE];
unsigned int qhead;
unsigned int qtail;
};
#define RSN_IE_BODY_MAX 64
struct rsn_ie_t {
uint8_t id; /* 0xdd = WPA or 0x30 = RSN */
uint8_t size; /* max ? 255 ? */
uint8_t body[RSN_IE_BODY_MAX];
} __attribute__((packed));
#ifdef WPS
#define WPS_IE_BODY_MAX 255
struct wps_ie_t {
uint8_t id; /* 221 'dd <len> 00 50 F2 04' */
uint8_t size; /* max ? 255 ? */
uint8_t body[WPS_IE_BODY_MAX];
} __attribute__((packed));
#endif /* WPS */
struct local_ap_t {
uint8_t bssid[6];
uint8_t rssi;
uint8_t sq;
struct {
uint8_t size;
uint8_t body[32];
uint8_t ssid_pad;
} ssid;
struct {
uint8_t size;
uint8_t body[16];
uint8_t rate_pad;
} rate_set;
uint16_t capability;
uint8_t channel;
uint8_t noise;
struct rsn_ie_t wpa_ie;
struct rsn_ie_t rsn_ie;
#ifdef WPS
struct wps_ie_t wps_ie;
#endif /* WPS */
};
#define LOCAL_APLIST_MAX 31
#define LOCAL_CURRENT_AP LOCAL_APLIST_MAX
struct local_aplist_t {
int size;
struct local_ap_t ap[LOCAL_APLIST_MAX+1];
};
struct local_gain_t{
uint8_t TxMode;
uint8_t RxMode;
uint8_t TxGain;
uint8_t RxGain;
};
struct local_eeprom_sum_t{
uint8_t type;
uint8_t result;
};
enum {
EEPROM_OK,
EEPROM_CHECKSUM_NONE,
EEPROM_FW_NOT_SUPPORT,
EEPROM_NG,
};
/* Power Save Status */
enum {
PS_NONE,
PS_ACTIVE_SET,
PS_SAVE_SET,
PS_CONF_WAIT,
PS_SNOOZE,
PS_WAKEUP
};
struct power_save_status_t {
atomic_t status; /* initialvalue 0 */
struct completion wakeup_wait;
atomic_t confirm_wait;
atomic_t snooze_guard;
};
struct sleep_status_t {
atomic_t status; /* initialvalue 0 */
atomic_t doze_request;
atomic_t wakeup_request;
};
/* WPA */
struct scan_ext_t {
unsigned int flag;
char ssid[IW_ESSID_MAX_SIZE+1];
};
enum {
CIPHER_NONE,
CIPHER_WEP40,
CIPHER_TKIP,
CIPHER_CCMP,
CIPHER_WEP104
};
#define CIPHER_ID_WPA_NONE "\x00\x50\xf2\x00"
#define CIPHER_ID_WPA_WEP40 "\x00\x50\xf2\x01"
#define CIPHER_ID_WPA_TKIP "\x00\x50\xf2\x02"
#define CIPHER_ID_WPA_CCMP "\x00\x50\xf2\x04"
#define CIPHER_ID_WPA_WEP104 "\x00\x50\xf2\x05"
#define CIPHER_ID_WPA2_NONE "\x00\x0f\xac\x00"
#define CIPHER_ID_WPA2_WEP40 "\x00\x0f\xac\x01"
#define CIPHER_ID_WPA2_TKIP "\x00\x0f\xac\x02"
#define CIPHER_ID_WPA2_CCMP "\x00\x0f\xac\x04"
#define CIPHER_ID_WPA2_WEP104 "\x00\x0f\xac\x05"
#define CIPHER_ID_LEN 4
enum {
KEY_MGMT_802_1X,
KEY_MGMT_PSK,
KEY_MGMT_WPANONE,
};
#define KEY_MGMT_ID_WPA_NONE "\x00\x50\xf2\x00"
#define KEY_MGMT_ID_WPA_1X "\x00\x50\xf2\x01"
#define KEY_MGMT_ID_WPA_PSK "\x00\x50\xf2\x02"
#define KEY_MGMT_ID_WPA_WPANONE "\x00\x50\xf2\xff"
#define KEY_MGMT_ID_WPA2_NONE "\x00\x0f\xac\x00"
#define KEY_MGMT_ID_WPA2_1X "\x00\x0f\xac\x01"
#define KEY_MGMT_ID_WPA2_PSK "\x00\x0f\xac\x02"
#define KEY_MGMT_ID_WPA2_WPANONE "\x00\x0f\xac\xff"
#define KEY_MGMT_ID_LEN 4
#define MIC_KEY_SIZE 8
struct wpa_key_t {
uint32_t ext_flags; /* IW_ENCODE_EXT_xxx */
uint8_t tx_seq[IW_ENCODE_SEQ_MAX_SIZE]; /* LSB first */
uint8_t rx_seq[IW_ENCODE_SEQ_MAX_SIZE]; /* LSB first */
struct sockaddr addr; /* ff:ff:ff:ff:ff:ff for broadcast/multicast
* (group) keys or unicast address for
* individual keys */
uint16_t alg;
uint16_t key_len; /* WEP: 5 or 13, TKIP: 32, CCMP: 16 */
uint8_t key_val[IW_ENCODING_TOKEN_MAX];
uint8_t tx_mic_key[MIC_KEY_SIZE];
uint8_t rx_mic_key[MIC_KEY_SIZE];
};
#define WPA_KEY_INDEX_MAX 4
#define WPA_RX_SEQ_LEN 6
struct mic_failure_t {
uint16_t failure; /* MIC Failure counter 0 or 1 or 2 */
uint16_t counter; /* 1sec counter 0-60 */
uint32_t last_failure_time;
int stop; /* stop flag */
};
struct wpa_status_t {
int wpa_enabled;
unsigned int rsn_enabled;
int version;
int pairwise_suite; /* unicast cipher */
int group_suite; /* multicast cipher */
int key_mgmt_suite; /* authentication key management suite */
int auth_alg;
int txkey;
struct wpa_key_t key[WPA_KEY_INDEX_MAX];
struct scan_ext_t scan_ext;
struct mic_failure_t mic_failure;
};
#include <linux/list.h>
#define PMK_LIST_MAX 8
struct pmk_list_t {
uint16_t size;
struct list_head head;
struct pmk_t {
struct list_head list;
uint8_t bssid[ETH_ALEN];
uint8_t pmkid[IW_PMKID_LEN];
} pmk[PMK_LIST_MAX];
};
#ifdef WPS
struct wps_status_t {
int wps_enabled;
int ielen;
uint8_t ie[255];
};
#endif /* WPS */
typedef struct ks_wlan_private{
struct hw_info_t ks_wlan_hw; /* hardware information */
struct net_device *net_dev;
int reg_net; /* register_netdev */
struct net_device_stats nstats;
struct iw_statistics wstats;
struct completion confirm_wait;
/* trx device & sme */
struct tx_device tx_dev;
struct rx_device rx_dev;
struct sme_info sme_i;
u8 *rxp;
unsigned int rx_size;
struct tasklet_struct sme_task;
struct work_struct ks_wlan_wakeup_task;
int scan_ind_count;
unsigned char eth_addr[ETH_ALEN];
struct local_aplist_t aplist;
struct local_ap_t current_ap;
struct power_save_status_t psstatus;
struct sleep_status_t sleepstatus;
struct wpa_status_t wpa;
struct pmk_list_t pmklist;
/* wireless parameter */
struct ks_wlan_parameter reg;
uint8_t current_rate;
char nick[IW_ESSID_MAX_SIZE+1];
spinlock_t multicast_spin;
spinlock_t dev_read_lock;
wait_queue_head_t devread_wait;
unsigned int need_commit; /* for ioctl */
/* DeviceIoControl */
int device_open_status;
atomic_t event_count;
atomic_t rec_count;
int dev_count;
#define DEVICE_STOCK_COUNT 20
unsigned char *dev_data[DEVICE_STOCK_COUNT];
int dev_size[DEVICE_STOCK_COUNT];
/* ioctl : IOCTL_FIRMWARE_VERSION */
unsigned char firmware_version[128+1];
int version_size;
int mac_address_valid; /* Mac Address Status */
int dev_state;
struct sk_buff *skb;
unsigned int cur_rx; /* Index into the Rx buffer of next Rx pkt. */
/* spinlock_t lock; */
#define FORCE_DISCONNECT 0x80000000
#define CONNECT_STATUS_MASK 0x7FFFFFFF
uint32_t connect_status; /* connect status */
int infra_status; /* Infractructure status */
uint8_t data_buff[0x1000];
uint8_t scan_ssid_len;
uint8_t scan_ssid[IW_ESSID_MAX_SIZE+1];
struct local_gain_t gain;
#ifdef WPS
struct net_device *l2_dev;
int l2_fd;
struct wps_status_t wps;
#endif /* WPS */
uint8_t sleep_mode;
uint8_t region;
struct local_eeprom_sum_t eeprom_sum;
uint8_t eeprom_checksum;
struct hostt_t hostt;
unsigned long last_doze;
unsigned long last_wakeup;
uint sdio_error_count; /* SDIO error */
uint wakeup_count; /* for detect wakeup loop */
} ks_wlan_private;
#endif /* _KS_WLAN_H */
/*
* Driver for KeyStream 11b/g wireless LAN
*
* ks_wlan_ioctl.h
* $Id: ks_wlan_ioctl.h 996 2009-09-14 02:54:21Z sekine $
*
* Copyright (c) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#ifndef _KS_WLAN_IOCTL_H
#define _KS_WLAN_IOCTL_H
#include <linux/wireless.h>
/* The low order bit identify a SET (0) or a GET (1) ioctl. */
/* SIOCIWFIRSTPRIV+0 */
#define KS_WLAN_GET_DRIVER_VERSION SIOCIWFIRSTPRIV+1
/* SIOCIWFIRSTPRIV+2 */
#define KS_WLAN_GET_FIRM_VERSION SIOCIWFIRSTPRIV+3
#ifdef WPS
#define KS_WLAN_SET_WPS_ENABLE SIOCIWFIRSTPRIV+4
#define KS_WLAN_GET_WPS_ENABLE SIOCIWFIRSTPRIV+5
#define KS_WLAN_SET_WPS_PROBE_REQ SIOCIWFIRSTPRIV+6
#endif
#define KS_WLAN_GET_EEPROM_CKSUM SIOCIWFIRSTPRIV+7
#define KS_WLAN_SET_PREAMBLE SIOCIWFIRSTPRIV+8
#define KS_WLAN_GET_PREAMBLE SIOCIWFIRSTPRIV+9
#define KS_WLAN_SET_POWER_SAVE SIOCIWFIRSTPRIV+10
#define KS_WLAN_GET_POWER_SAVE SIOCIWFIRSTPRIV+11
#define KS_WLAN_SET_SCAN_TYPE SIOCIWFIRSTPRIV+12
#define KS_WLAN_GET_SCAN_TYPE SIOCIWFIRSTPRIV+13
#define KS_WLAN_SET_RX_GAIN SIOCIWFIRSTPRIV+14
#define KS_WLAN_GET_RX_GAIN SIOCIWFIRSTPRIV+15
#define KS_WLAN_HOSTT SIOCIWFIRSTPRIV+16 /* unused */
//#define KS_WLAN_SET_REGION SIOCIWFIRSTPRIV+17
#define KS_WLAN_SET_BEACON_LOST SIOCIWFIRSTPRIV+18
#define KS_WLAN_GET_BEACON_LOST SIOCIWFIRSTPRIV+19
#define KS_WLAN_SET_TX_GAIN SIOCIWFIRSTPRIV+20
#define KS_WLAN_GET_TX_GAIN SIOCIWFIRSTPRIV+21
/* for KS7010 */
#define KS_WLAN_SET_PHY_TYPE SIOCIWFIRSTPRIV+22
#define KS_WLAN_GET_PHY_TYPE SIOCIWFIRSTPRIV+23
#define KS_WLAN_SET_CTS_MODE SIOCIWFIRSTPRIV+24
#define KS_WLAN_GET_CTS_MODE SIOCIWFIRSTPRIV+25
/* SIOCIWFIRSTPRIV+26 */
/* SIOCIWFIRSTPRIV+27 */
#define KS_WLAN_SET_SLEEP_MODE SIOCIWFIRSTPRIV+28 /* sleep mode */
#define KS_WLAN_GET_SLEEP_MODE SIOCIWFIRSTPRIV+29 /* sleep mode */
/* SIOCIWFIRSTPRIV+30 */
/* SIOCIWFIRSTPRIV+31 */
#ifdef __KERNEL__
#include "ks_wlan.h"
#include <linux/netdevice.h>
extern int ks_wlan_read_config_file(ks_wlan_private *priv);
extern int ks_wlan_setup_parameter(ks_wlan_private *priv, unsigned int commit_flag);
#endif /* __KERNEL__ */
#endif /* _KS_WLAN_IOCTL_H */
/*
* Driver for KeyStream 11b/g wireless LAN
*
* ks_wlan_net.c
* $Id: ks_wlan_net.c 1020 2009-09-28 05:48:31Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#include <linux/version.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/mii.h>
#include <linux/pci.h>
#include <linux/ctype.h>
#include <linux/timer.h>
#include <asm/atomic.h>
#include <linux/io.h>
#include <asm/uaccess.h>
static int wep_on_off;
#define WEP_OFF 0
#define WEP_ON_64BIT 1
#define WEP_ON_128BIT 2
#include "ks_wlan.h"
#include "ks_hostif.h"
#include "ks_wlan_ioctl.h"
#include "ks_debug.h"
/* Include Wireless Extension definition and check version */
#include <linux/wireless.h>
#define WIRELESS_SPY /* enable iwspy support */
#include <net/iw_handler.h> /* New driver API */
#ifdef WIRELESS_EXT
/* Frequency list (map channels to frequencies) */
static const long frequency_list[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442,
2447, 2452, 2457, 2462, 2467, 2472, 2484 };
/* A few details needed for WEP (Wireless Equivalent Privacy) */
#define MAX_KEY_SIZE 13 /* 128 (?) bits */
#define MIN_KEY_SIZE 5 /* 40 bits RC4 - WEP */
typedef struct wep_key_t {
u16 len;
u8 key[16]; /* 40-bit and 104-bit keys */
} wep_key_t;
/* Backward compatibility */
#ifndef IW_ENCODE_NOKEY
#define IW_ENCODE_NOKEY 0x0800 /* Key is write only, so not present */
#define IW_ENCODE_MODE (IW_ENCODE_DISABLED | IW_ENCODE_RESTRICTED | IW_ENCODE_OPEN)
#endif /* IW_ENCODE_NOKEY */
/* List of Wireless Handlers (new API) */
static const struct iw_handler_def ks_wlan_handler_def;
#define KSC_OPNOTSUPP /* Operation Not Support*/
#endif /* WIRELESS_EXT */
/*
* function prototypes
*/
extern int ks_wlan_hw_tx(ks_wlan_private *priv, void *p, unsigned long size,
void (*complete_handler)(void *arg1, void *arg2),
void *arg1,
void *arg2 );
static int ks_wlan_open (struct net_device *dev);
static void ks_wlan_tx_timeout (struct net_device *dev);
static int ks_wlan_start_xmit (struct sk_buff *skb, struct net_device *dev);
static int ks_wlan_close (struct net_device *dev);
static void ks_wlan_set_multicast_list (struct net_device *dev);
static struct net_device_stats *ks_wlan_get_stats (struct net_device *dev);
static int ks_wlan_set_mac_address(struct net_device *dev, void *addr);
static int ks_wlan_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static atomic_t update_phyinfo;
static struct timer_list update_phyinfo_timer;
static
int ks_wlan_update_phy_information(ks_wlan_private *priv)
{
struct iw_statistics *wstats = &priv->wstats;
DPRINTK(4, "in_interrupt = %ld\n", in_interrupt());
if (priv->dev_state < DEVICE_STATE_READY) {
return -1; /* not finished initialize */
}
if(atomic_read(&update_phyinfo))
return 1;
/* The status */
wstats->status = priv->reg.operation_mode; /* Operation mode */
/* Signal quality and co. But where is the noise level ??? */
hostif_sme_enqueue(priv, SME_PHY_INFO_REQUEST);
/* interruptible_sleep_on_timeout(&priv->confirm_wait, HZ/2); */
if(!wait_for_completion_interruptible_timeout(&priv->confirm_wait,HZ/2)){
DPRINTK(1,"wait time out!!\n");
}
atomic_inc(&update_phyinfo);
update_phyinfo_timer.expires = jiffies + HZ; /* 1sec */
add_timer(&update_phyinfo_timer);
return 0;
}
static
void ks_wlan_update_phyinfo_timeout(unsigned long ptr)
{
DPRINTK(4, "in_interrupt = %ld\n", in_interrupt());
atomic_set(&update_phyinfo,0);
}
int ks_wlan_setup_parameter(ks_wlan_private *priv, unsigned int commit_flag)
{
DPRINTK(2,"\n");
hostif_sme_enqueue(priv, SME_STOP_REQUEST);
if(commit_flag & SME_RTS)
hostif_sme_enqueue(priv, SME_RTS_THRESHOLD_REQUEST);
if(commit_flag & SME_FRAG)
hostif_sme_enqueue(priv, SME_FRAGMENTATION_THRESHOLD_REQUEST);
if(commit_flag & SME_WEP_INDEX)
hostif_sme_enqueue(priv, SME_WEP_INDEX_REQUEST);
if(commit_flag & SME_WEP_VAL1)
hostif_sme_enqueue(priv, SME_WEP_KEY1_REQUEST);
if(commit_flag & SME_WEP_VAL2)
hostif_sme_enqueue(priv, SME_WEP_KEY2_REQUEST);
if(commit_flag & SME_WEP_VAL3)
hostif_sme_enqueue(priv, SME_WEP_KEY3_REQUEST);
if(commit_flag & SME_WEP_VAL4)
hostif_sme_enqueue(priv, SME_WEP_KEY4_REQUEST);
if(commit_flag & SME_WEP_FLAG)
hostif_sme_enqueue(priv, SME_WEP_FLAG_REQUEST);
if(commit_flag & SME_RSN){
hostif_sme_enqueue(priv, SME_RSN_ENABLED_REQUEST);
hostif_sme_enqueue(priv, SME_RSN_MODE_REQUEST);
}
if(commit_flag & SME_RSN_MULTICAST)
hostif_sme_enqueue(priv, SME_RSN_MCAST_REQUEST);
if(commit_flag & SME_RSN_UNICAST)
hostif_sme_enqueue(priv, SME_RSN_UCAST_REQUEST);
if(commit_flag & SME_RSN_AUTH)
hostif_sme_enqueue(priv, SME_RSN_AUTH_REQUEST);
hostif_sme_enqueue(priv, SME_MODE_SET_REQUEST);
hostif_sme_enqueue(priv, SME_START_REQUEST);
return 0;
}
#ifdef WIRELESS_EXT
/*
* Initial Wireless Extension code for Ks_Wlannet driver by :
* Jean Tourrilhes <jt@hpl.hp.com> - HPL - 17 November 00
* Conversion to new driver API by :
* Jean Tourrilhes <jt@hpl.hp.com> - HPL - 26 March 02
* Javier also did a good amount of work here, adding some new extensions
* and fixing my code. Let's just say that without him this code just
* would not work at all... - Jean II
*/
/*------------------------------------------------------------------*/
/* Wireless Handler : get protocol name */
static int ks_wlan_get_name(struct net_device *dev, struct iw_request_info *info,
char *cwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *) netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if (priv->dev_state < DEVICE_STATE_READY) {
strcpy(cwrq, "NOT READY!");
}
else if(priv->reg.phy_type == D_11B_ONLY_MODE){
strcpy(cwrq, "IEEE 802.11b");
}
else if(priv->reg.phy_type == D_11G_ONLY_MODE){
strcpy(cwrq, "IEEE 802.11g");
}
else {
strcpy(cwrq, "IEEE 802.11b/g");
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set frequency */
static int ks_wlan_set_freq(struct net_device *dev, struct iw_request_info *info,
struct iw_freq *fwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int rc = -EINPROGRESS; /* Call commit handler */
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* If setting by frequency, convert to a channel */
if((fwrq->e == 1) &&
(fwrq->m >= (int) 2.412e8) &&
(fwrq->m <= (int) 2.487e8)) {
int f = fwrq->m / 100000;
int c = 0;
while((c < 14) && (f != frequency_list[c]))
c++;
/* Hack to fall through... */
fwrq->e = 0;
fwrq->m = c + 1;
}
/* Setting by channel number */
if((fwrq->m > 1000) || (fwrq->e > 0))
rc = -EOPNOTSUPP;
else {
int channel = fwrq->m;
/* We should do a better check than that,
* based on the card capability !!! */
if((channel < 1) || (channel > 14)) {
printk(KERN_DEBUG "%s: New channel value of %d is invalid!\n", dev->name, fwrq->m);
rc = -EINVAL;
} else {
/* Yes ! We can set it !!! */
priv->reg.channel = (u8)(channel);
priv->need_commit |= SME_MODE_SET;
}
}
return rc;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get frequency */
static int ks_wlan_get_freq(struct net_device *dev, struct iw_request_info *info,
struct iw_freq *fwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int f;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS){
f = (int)priv->current_ap.channel;
}
else
f = (int)priv->reg.channel;
fwrq->m = frequency_list[f-1] * 100000;
fwrq->e = 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set ESSID */
static int ks_wlan_set_essid(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
size_t len;
DPRINTK(2," %d\n", dwrq->flags);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* Check if we asked for `any' */
if(dwrq->flags == 0) {
/* Just send an empty SSID list */
memset(priv->reg.ssid.body, 0, sizeof(priv->reg.ssid.body));
priv->reg.ssid.size = 0;
} else {
#if 1
len = dwrq->length;
/* iwconfig uses nul termination in SSID.. */
if (len > 0 && extra[len - 1] == '\0')
len--;
/* Check the size of the string */
if(len > IW_ESSID_MAX_SIZE) {
return -EINVAL;
}
#else
/* Check the size of the string */
if(dwrq->length > IW_ESSID_MAX_SIZE+1) {
return -E2BIG ;
}
#endif
/* Set the SSID */
memset(priv->reg.ssid.body, 0, sizeof(priv->reg.ssid.body));
#if 1
memcpy(priv->reg.ssid.body, extra, len);
priv->reg.ssid.size = len;
#else
memcpy(priv->reg.ssid.body, extra, dwrq->length);
priv->reg.ssid.size = dwrq->length;
#endif
}
/* Write it to the card */
priv->need_commit |= SME_MODE_SET;
// return -EINPROGRESS; /* Call commit handler */
ks_wlan_setup_parameter(priv, priv->need_commit);
priv->need_commit=0;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get ESSID */
static int ks_wlan_get_essid(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* Note : if dwrq->flags != 0, we should
* get the relevant SSID from the SSID list... */
if(priv->reg.ssid.size){
/* Get the current SSID */
memcpy(extra, priv->reg.ssid.body, priv->reg.ssid.size);
#if 0
extra[priv->reg.ssid.size] = '\0';
#endif
/* If none, we may want to get the one that was set */
/* Push it out ! */
#if 1
dwrq->length = priv->reg.ssid.size;
#else
dwrq->length = priv->reg.ssid.size+1;
#endif
dwrq->flags = 1; /* active */
}else{
#if 1
dwrq->length = 0;
#else
extra[0] = '\0';
dwrq->length = 1;
#endif
dwrq->flags = 0; /* ANY */
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set AP address */
static int ks_wlan_set_wap(struct net_device *dev, struct iw_request_info *info,
struct sockaddr *ap_addr, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if (priv->reg.operation_mode == MODE_ADHOC ||
priv->reg.operation_mode == MODE_INFRASTRUCTURE) {
memcpy(priv->reg.bssid, (u8 *)&ap_addr->sa_data, ETH_ALEN);
if (is_valid_ether_addr((u8 *)priv->reg.bssid)) {
priv->need_commit |= SME_MODE_SET;
}
}
else {
memset(priv->reg.bssid, 0x0, ETH_ALEN);
return -EOPNOTSUPP;
}
DPRINTK(2, "bssid = %02x:%02x:%02x:%02x:%02x:%02x\n",
priv->reg.bssid[0],priv->reg.bssid[1],priv->reg.bssid[2],
priv->reg.bssid[3],priv->reg.bssid[4],priv->reg.bssid[5]);
/* Write it to the card */
if (priv->need_commit) {
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get AP address */
static int ks_wlan_get_wap(struct net_device *dev, struct iw_request_info *info,
struct sockaddr *awrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS){
memcpy(awrq->sa_data, &(priv->current_ap.bssid[0]), ETH_ALEN);
}
else{
memset(awrq->sa_data, 0, ETH_ALEN);
}
awrq->sa_family = ARPHRD_ETHER;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Nickname */
static int ks_wlan_set_nick(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* Check the size of the string */
if(dwrq->length > 16 + 1) {
return -E2BIG;
}
memset(priv->nick, 0, sizeof(priv->nick));
memcpy(priv->nick, extra, dwrq->length);
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Nickname */
static int ks_wlan_get_nick(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
strncpy(extra, priv->nick, 16);
extra[16] = '\0';
dwrq->length = strlen(extra) + 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Bit-Rate */
static int ks_wlan_set_rate(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int i = 0;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(priv->reg.phy_type == D_11B_ONLY_MODE){
if(vwrq->fixed == 1) {
switch(vwrq->value){
case 11000000:
case 5500000:
priv->reg.rate_set.body[0] = (uint8_t)(vwrq->value/500000);
break;
case 2000000:
case 1000000:
priv->reg.rate_set.body[0] = ((uint8_t)(vwrq->value/500000))|BASIC_RATE;
break;
default:
return -EINVAL;
}
priv->reg.tx_rate = TX_RATE_FIXED;
priv->reg.rate_set.size = 1;
}else{ /* vwrq->fixed == 0 */
if(vwrq->value > 0){
switch(vwrq->value){
case 11000000:
priv->reg.rate_set.body[3] = TX_RATE_11M; i++;
case 5500000:
priv->reg.rate_set.body[2] = TX_RATE_5M; i++;
case 2000000:
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE; i++;
case 1000000:
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE; i++;
break;
default:
return -EINVAL;
}
priv->reg.tx_rate = TX_RATE_MANUAL_AUTO;
priv->reg.rate_set.size = i;
}else{
priv->reg.rate_set.body[3] = TX_RATE_11M;
priv->reg.rate_set.body[2] = TX_RATE_5M;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.tx_rate = TX_RATE_FULL_AUTO;
priv->reg.rate_set.size = 4;
}
}
}else{ /* D_11B_ONLY_MODE or D_11BG_COMPATIBLE_MODE */
if(vwrq->fixed == 1) {
switch(vwrq->value){
case 54000000:
case 48000000:
case 36000000:
case 18000000:
case 9000000:
priv->reg.rate_set.body[0] = (uint8_t)(vwrq->value/500000);
break;
case 24000000:
case 12000000:
case 11000000:
case 6000000:
case 5500000:
case 2000000:
case 1000000:
priv->reg.rate_set.body[0] = ((uint8_t)(vwrq->value/500000))|BASIC_RATE;
break;
default:
return -EINVAL;
}
priv->reg.tx_rate = TX_RATE_FIXED;
priv->reg.rate_set.size = 1;
}else{ /* vwrq->fixed == 0 */
if(vwrq->value > 0){
switch(vwrq->value){
case 54000000:
priv->reg.rate_set.body[11] = TX_RATE_54M; i++;
case 48000000:
priv->reg.rate_set.body[10] = TX_RATE_48M; i++;
case 36000000:
priv->reg.rate_set.body[9] = TX_RATE_36M; i++;
case 24000000: case 18000000: case 12000000:
case 11000000: case 9000000: case 6000000:
if(vwrq->value == 24000000){
priv->reg.rate_set.body[8] = TX_RATE_18M; i++;
priv->reg.rate_set.body[7] = TX_RATE_9M; i++;
priv->reg.rate_set.body[6] = TX_RATE_24M|BASIC_RATE; i++;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE; i++;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE; i++;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE; i++;
}else if(vwrq->value == 18000000){
priv->reg.rate_set.body[7] = TX_RATE_18M; i++;
priv->reg.rate_set.body[6] = TX_RATE_9M; i++;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE; i++;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE; i++;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE; i++;
}else if(vwrq->value == 12000000){
priv->reg.rate_set.body[6] = TX_RATE_9M; i++;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE; i++;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE; i++;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE; i++;
}else if(vwrq->value == 11000000){
priv->reg.rate_set.body[5] = TX_RATE_9M; i++;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE; i++;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE; i++;
}else if(vwrq->value == 9000000){
priv->reg.rate_set.body[4] = TX_RATE_9M; i++;
priv->reg.rate_set.body[3] = TX_RATE_6M|BASIC_RATE; i++;
}else{ /* vwrq->value == 6000000 */
priv->reg.rate_set.body[3] = TX_RATE_6M|BASIC_RATE; i++;
}
case 5500000:
priv->reg.rate_set.body[2] = TX_RATE_5M|BASIC_RATE; i++;
case 2000000:
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE; i++;
case 1000000:
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE; i++;
break;
default:
return -EINVAL;
}
priv->reg.tx_rate = TX_RATE_MANUAL_AUTO;
priv->reg.rate_set.size = i;
}else{
priv->reg.rate_set.body[11] = TX_RATE_54M;
priv->reg.rate_set.body[10] = TX_RATE_48M;
priv->reg.rate_set.body[9] = TX_RATE_36M;
priv->reg.rate_set.body[8] = TX_RATE_18M;
priv->reg.rate_set.body[7] = TX_RATE_9M;
priv->reg.rate_set.body[6] = TX_RATE_24M|BASIC_RATE;
priv->reg.rate_set.body[5] = TX_RATE_12M|BASIC_RATE;
priv->reg.rate_set.body[4] = TX_RATE_6M|BASIC_RATE;
priv->reg.rate_set.body[3] = TX_RATE_11M|BASIC_RATE;
priv->reg.rate_set.body[2] = TX_RATE_5M|BASIC_RATE;
priv->reg.rate_set.body[1] = TX_RATE_2M|BASIC_RATE;
priv->reg.rate_set.body[0] = TX_RATE_1M|BASIC_RATE;
priv->reg.tx_rate = TX_RATE_FULL_AUTO;
priv->reg.rate_set.size = 12;
}
}
}
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Bit-Rate */
static int ks_wlan_get_rate(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2, "in_interrupt = %ld update_phyinfo = %d\n",
in_interrupt(),atomic_read(&update_phyinfo));
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(!atomic_read(&update_phyinfo)){
ks_wlan_update_phy_information(priv);
}
vwrq->value = ((priv->current_rate) & RATE_MASK) * 500000;
if(priv->reg.tx_rate == TX_RATE_FIXED)
vwrq->fixed = 1;
else
vwrq->fixed = 0;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set RTS threshold */
static int ks_wlan_set_rts(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int rthr = vwrq->value;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(vwrq->disabled)
rthr = 2347;
if((rthr < 0) || (rthr > 2347)) {
return -EINVAL;
}
priv->reg.rts = rthr;
priv->need_commit |= SME_RTS;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get RTS threshold */
static int ks_wlan_get_rts(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
vwrq->value = priv->reg.rts;
vwrq->disabled = (vwrq->value >= 2347);
vwrq->fixed = 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Fragmentation threshold */
static int ks_wlan_set_frag(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int fthr = vwrq->value;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(vwrq->disabled)
fthr = 2346;
if((fthr < 256) || (fthr > 2346)) {
return -EINVAL;
}
fthr &= ~0x1; /* Get an even value - is it really needed ??? */
priv->reg.fragment = fthr;
priv->need_commit |= SME_FRAG;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Fragmentation threshold */
static int ks_wlan_get_frag(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
vwrq->value = priv->reg.fragment;
vwrq->disabled = (vwrq->value >= 2346);
vwrq->fixed = 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Mode of Operation */
static int ks_wlan_set_mode(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"mode=%d\n",*uwrq);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
switch(*uwrq) {
case IW_MODE_ADHOC:
priv->reg.operation_mode = MODE_ADHOC;
priv->need_commit |= SME_MODE_SET;
break;
case IW_MODE_INFRA:
priv->reg.operation_mode = MODE_INFRASTRUCTURE;
priv->need_commit |= SME_MODE_SET;
break;
case IW_MODE_AUTO:
case IW_MODE_MASTER:
case IW_MODE_REPEAT:
case IW_MODE_SECOND:
case IW_MODE_MONITOR:
default:
return -EINVAL;
}
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Mode of Operation */
static int ks_wlan_get_mode(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* If not managed, assume it's ad-hoc */
switch (priv->reg.operation_mode) {
case MODE_INFRASTRUCTURE:
*uwrq = IW_MODE_INFRA;
break;
case MODE_ADHOC:
*uwrq = IW_MODE_ADHOC;
break;
default:
*uwrq = IW_MODE_ADHOC;
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Encryption Key */
static int ks_wlan_set_encode(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
wep_key_t key;
int index = (dwrq->flags & IW_ENCODE_INDEX);
int current_index = priv->reg.wep_index;
int i;
DPRINTK(2,"flags=%04X\n",dwrq->flags);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* index check */
if((index<0) || (index>4))
return -EINVAL;
else if (index==0)
index = current_index;
else
index--;
/* Is WEP supported ? */
/* Basic checking: do we have a key to set ? */
if (dwrq->length > 0) {
if (dwrq->length > MAX_KEY_SIZE) { /* Check the size of the key */
return -EINVAL;
}
if (dwrq->length > MIN_KEY_SIZE) { /* Set the length */
key.len = MAX_KEY_SIZE;
priv->reg.privacy_invoked = 0x01;
priv->need_commit |= SME_WEP_FLAG;
wep_on_off = WEP_ON_128BIT;
} else {
if (dwrq->length > 0) {
key.len = MIN_KEY_SIZE;
priv->reg.privacy_invoked = 0x01;
priv->need_commit |= SME_WEP_FLAG;
wep_on_off = WEP_ON_64BIT;
} else { /* Disable the key */
key.len = 0;
}
}
/* Check if the key is not marked as invalid */
if(!(dwrq->flags & IW_ENCODE_NOKEY)) {
/* Cleanup */
memset(key.key, 0, MAX_KEY_SIZE);
/* Copy the key in the driver */
if(copy_from_user(key.key,dwrq->pointer,dwrq->length)) {
key.len = 0;
return -EFAULT;
}
/* Send the key to the card */
priv->reg.wep_key[index].size = key.len;
for (i=0; i<(priv->reg.wep_key[index].size); i++) {
priv->reg.wep_key[index].val[i] = key.key[i];
}
priv->need_commit |= (SME_WEP_VAL1<<index);
priv->reg.wep_index = index;
priv->need_commit |= SME_WEP_INDEX;
}
} else {
if(dwrq->flags & IW_ENCODE_DISABLED){
priv->reg.wep_key[0].size = 0;
priv->reg.wep_key[1].size = 0;
priv->reg.wep_key[2].size = 0;
priv->reg.wep_key[3].size = 0;
priv->reg.privacy_invoked = 0x00;
if(priv->reg.authenticate_type == AUTH_TYPE_SHARED_KEY){
priv->need_commit |= SME_MODE_SET;
}
priv->reg.authenticate_type = AUTH_TYPE_OPEN_SYSTEM;
wep_on_off = WEP_OFF;
priv->need_commit |= SME_WEP_FLAG;
}else{
/* Do we want to just set the transmit key index ? */
if ((index>=0) && (index<4)) {
/* set_wep_key(priv, index, 0, 0, 1); xxx */
if(priv->reg.wep_key[index].size){
priv->reg.wep_index = index;
priv->need_commit |= SME_WEP_INDEX;
}
else
return -EINVAL;
}
}
}
/* Commit the changes if needed */
if(dwrq->flags & IW_ENCODE_MODE)
priv->need_commit |= SME_WEP_FLAG;
if(dwrq->flags & IW_ENCODE_OPEN) {
if(priv->reg.authenticate_type == AUTH_TYPE_SHARED_KEY){
priv->need_commit |= SME_MODE_SET;
}
priv->reg.authenticate_type = AUTH_TYPE_OPEN_SYSTEM;
} else if(dwrq->flags & IW_ENCODE_RESTRICTED) {
if(priv->reg.authenticate_type == AUTH_TYPE_OPEN_SYSTEM){
priv->need_commit |= SME_MODE_SET;
}
priv->reg.authenticate_type = AUTH_TYPE_SHARED_KEY;
}
// return -EINPROGRESS; /* Call commit handler */
if(priv->need_commit){
ks_wlan_setup_parameter(priv, priv->need_commit);
priv->need_commit=0;
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Encryption Key */
static int ks_wlan_get_encode(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
char zeros[16];
int index = (dwrq->flags & IW_ENCODE_INDEX) - 1;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
dwrq->flags = IW_ENCODE_DISABLED;
/* Check encryption mode */
switch(priv->reg.authenticate_type) {
case AUTH_TYPE_OPEN_SYSTEM:
dwrq->flags = IW_ENCODE_OPEN;
break;
case AUTH_TYPE_SHARED_KEY:
dwrq->flags = IW_ENCODE_RESTRICTED;
break;
}
memset(zeros,0, sizeof(zeros));
/* Which key do we want ? -1 -> tx index */
if((index < 0) || (index >= 4))
index = priv->reg.wep_index;
if (priv->reg.privacy_invoked){
dwrq->flags &= ~IW_ENCODE_DISABLED;
/* dwrq->flags |= IW_ENCODE_NOKEY; */
}
dwrq->flags |= index + 1;
DPRINTK(2,"encoding flag = 0x%04X\n",dwrq->flags);
/* Copy the key to the user buffer */
if((index >= 0) && (index < 4))
dwrq->length = priv->reg.wep_key[index].size;
if (dwrq->length > 16) {
dwrq->length=0;
}
#if 1 /* IW_ENCODE_NOKEY; */
if (dwrq->length) {
if((index >= 0) && (index < 4))
memcpy(extra,priv->reg.wep_key[index].val,dwrq->length);
} else
memcpy(extra,zeros,dwrq->length);
#endif
return 0;
}
#ifndef KSC_OPNOTSUPP
/*------------------------------------------------------------------*/
/* Wireless Handler : set Tx-Power */
static int ks_wlan_set_txpow(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
return -EOPNOTSUPP; /* Not Support */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Tx-Power */
static int ks_wlan_get_txpow(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* Not Support */
vwrq->value = 0;
vwrq->disabled = (vwrq->value == 0);
vwrq->fixed = 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Retry limits */
static int ks_wlan_set_retry(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
return -EOPNOTSUPP; /* Not Support */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Retry limits */
static int ks_wlan_get_retry(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* Not Support */
vwrq->value = 0;
vwrq->disabled = (vwrq->value == 0);
vwrq->fixed = 1;
return 0;
}
#endif /* KSC_OPNOTSUPP */
/*------------------------------------------------------------------*/
/* Wireless Handler : get range info */
static int ks_wlan_get_range(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct iw_range *range = (struct iw_range *) extra;
int i,k;
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
dwrq->length = sizeof(struct iw_range);
memset(range, 0, sizeof(*range));
range->min_nwid = 0x0000;
range->max_nwid = 0x0000;
range->num_channels = 14;
/* Should be based on cap_rid.country to give only
* what the current card support */
k = 0;
for(i = 0; i < 13; i++) { /* channel 1 -- 13*/
range->freq[k].i = i + 1; /* List index */
range->freq[k].m = frequency_list[i] * 100000;
range->freq[k++].e = 1; /* Values in table in MHz -> * 10^5 * 10 */
}
range->num_frequency = k;
if(priv->reg.phy_type == D_11B_ONLY_MODE ||
priv->reg.phy_type == D_11BG_COMPATIBLE_MODE){ /* channel 14 */
range->freq[13].i = 14; /* List index */
range->freq[13].m = frequency_list[13] * 100000;
range->freq[13].e = 1; /* Values in table in MHz -> * 10^5 * 10 */
range->num_frequency = 14;
}
/* Hum... Should put the right values there */
range->max_qual.qual = 100;
range->max_qual.level = 256 - 128; /* 0 dBm? */
range->max_qual.noise = 256 - 128;
range->sensitivity = 1;
if(priv->reg.phy_type == D_11B_ONLY_MODE){
range->bitrate[0] = 1e6;
range->bitrate[1] = 2e6;
range->bitrate[2] = 5.5e6;
range->bitrate[3] = 11e6;
range->num_bitrates = 4;
}
else{ /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */
range->bitrate[0] = 1e6;
range->bitrate[1] = 2e6;
range->bitrate[2] = 5.5e6;
range->bitrate[3] = 11e6;
range->bitrate[4] = 6e6;
range->bitrate[5] = 9e6;
range->bitrate[6] = 12e6;
if(IW_MAX_BITRATES < 9){
range->bitrate[7] = 54e6;
range->num_bitrates = 8;
}else{
range->bitrate[7] = 18e6;
range->bitrate[8] = 24e6;
range->bitrate[9] = 36e6;
range->bitrate[10] = 48e6;
range->bitrate[11] = 54e6;
range->num_bitrates = 12;
}
}
/* Set an indication of the max TCP throughput
* in bit/s that we can expect using this interface.
* May be use for QoS stuff... Jean II */
if(i > 2)
range->throughput = 5000 * 1000;
else
range->throughput = 1500 * 1000;
range->min_rts = 0;
range->max_rts = 2347;
range->min_frag = 256;
range->max_frag = 2346;
range->encoding_size[0] = 5; /* WEP: RC4 40 bits */
range->encoding_size[1] = 13; /* WEP: RC4 ~128 bits */
range->num_encoding_sizes = 2;
range->max_encoding_tokens = 4;
/* power management not support */
range->pmp_flags = IW_POWER_ON;
range->pmt_flags = IW_POWER_ON;
range->pm_capa = 0;
/* Transmit Power - values are in dBm( or mW) */
range->txpower[0]=-256;
range->num_txpower = 1;
range->txpower_capa = IW_TXPOW_DBM;
/* range->txpower_capa = IW_TXPOW_MWATT; */
range->we_version_source = 21;
range->we_version_compiled = WIRELESS_EXT;
range->retry_capa = IW_RETRY_ON;
range->retry_flags = IW_RETRY_ON;
range->r_time_flags = IW_RETRY_ON;
/* Experimental measurements - boundary 11/5.5 Mb/s */
/* Note : with or without the (local->rssi), results
* are somewhat different. - Jean II */
range->avg_qual.qual = 50;
range->avg_qual.level = 186; /* -70 dBm */
range->avg_qual.noise = 0;
#if defined(WIRELESS_EXT)
/* Event capability (kernel + driver) */
range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
IW_EVENT_CAPA_MASK(SIOCGIWAP) |
IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
range->event_capa[1] = IW_EVENT_CAPA_K_1;
range->event_capa[4] = (IW_EVENT_CAPA_MASK(IWEVCUSTOM) |
IW_EVENT_CAPA_MASK(IWEVMICHAELMICFAILURE));
/* encode extension (WPA) capability */
range->enc_capa = (IW_ENC_CAPA_WPA |
IW_ENC_CAPA_WPA2 |
IW_ENC_CAPA_CIPHER_TKIP |
IW_ENC_CAPA_CIPHER_CCMP);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set Power Management */
static int ks_wlan_set_power(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
short enabled;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
enabled = vwrq->disabled ? 0 : 1;
if(enabled == 0 ){ /* 0 */
priv->reg.powermgt = POWMGT_ACTIVE_MODE;
}else if(enabled){ /* 1 */
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE)
priv->reg.powermgt = POWMGT_SAVE1_MODE;
else
return -EINVAL;
}else if(enabled){ /* 2 */
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE)
priv->reg.powermgt = POWMGT_SAVE2_MODE;
else
return -EINVAL;
}else
return -EINVAL;
hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST);
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Power Management */
static int ks_wlan_get_power(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(priv->reg.powermgt > 0)
vwrq->disabled = 0;
else
vwrq->disabled = 1;
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get wirless statistics */
static int ks_wlan_get_iwstats(struct net_device *dev, struct iw_request_info *info,
struct iw_quality *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
vwrq->qual = 0; /* not supported */
vwrq->level = priv->wstats.qual.level;
vwrq->noise = 0; /* not supported */
vwrq->updated = 0;
return 0;
}
#ifndef KSC_OPNOTSUPP
/*------------------------------------------------------------------*/
/* Wireless Handler : set Sensitivity */
static int ks_wlan_set_sens(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
return -EOPNOTSUPP; /* Not Support */
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get Sensitivity */
static int ks_wlan_get_sens(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
/* Not Support */
vwrq->value = 0;
vwrq->disabled = (vwrq->value == 0);
vwrq->fixed = 1;
return 0;
}
#endif /* KSC_OPNOTSUPP */
/*------------------------------------------------------------------*/
/* Wireless Handler : get AP List */
/* Note : this is deprecated in favor of IWSCAN */
static int ks_wlan_get_aplist(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct sockaddr *address = (struct sockaddr *) extra;
struct iw_quality qual[LOCAL_APLIST_MAX];
int i;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
for (i = 0; i < priv->aplist.size; i++) {
memcpy(address[i].sa_data, &(priv->aplist.ap[i].bssid[0]), ETH_ALEN);
address[i].sa_family = ARPHRD_ETHER;
qual[i].level = 256 - priv->aplist.ap[i].rssi;
qual[i].qual = priv->aplist.ap[i].sq;
qual[i].noise = 0; /* invalid noise value */
qual[i].updated = 7;
}
if (i){
dwrq->flags = 1; /* Should be define'd */
memcpy(extra + sizeof(struct sockaddr)*i,
&qual, sizeof(struct iw_quality)*i);
}
dwrq->length = i;
return 0;
}
#if defined(WIRELESS_EXT)
/*------------------------------------------------------------------*/
/* Wireless Handler : Initiate Scan */
static int ks_wlan_set_scan(struct net_device *dev, struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct iw_scan_req *req = NULL;
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* specified SSID SCAN */
if(wrqu->data.length == sizeof(struct iw_scan_req) && wrqu->data.flags & IW_SCAN_THIS_ESSID){
req = (struct iw_scan_req *) extra;
priv->scan_ssid_len = req->essid_len;
memcpy(priv->scan_ssid, req->essid, priv->scan_ssid_len);
}else{
priv->scan_ssid_len = 0;
}
priv->sme_i.sme_flag |= SME_AP_SCAN;
hostif_sme_enqueue(priv, SME_BSS_SCAN_REQUEST);
/* At this point, just return to the user. */
return 0;
}
/*------------------------------------------------------------------*/
/*
* Translate scan data returned from the card to a card independent
* format that the Wireless Tools will understand - Jean II
*/
static inline char *ks_wlan_translate_scan(struct net_device *dev, struct iw_request_info *info, char *current_ev,
char *end_buf, struct local_ap_t *ap)
{
/* ks_wlan_private *priv = (ks_wlan_private *)dev->priv; */
struct iw_event iwe; /* Temporary buffer */
u16 capabilities;
char *current_val; /* For rates */
int i;
static const char rsn_leader[] = "rsn_ie=";
static const char wpa_leader[] = "wpa_ie=";
char buf0[RSN_IE_BODY_MAX*2 + 30];
char buf1[RSN_IE_BODY_MAX*2 + 30];
char *pbuf;
/* First entry *MUST* be the AP MAC address */
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, ap->bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_ADDR_LEN);
/* Other entries will be displayed in the order we give them */
/* Add the ESSID */
iwe.u.data.length = ap->ssid.size;
if(iwe.u.data.length > 32)
iwe.u.data.length = 32;
iwe.cmd = SIOCGIWESSID;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, &(ap->ssid.body[0]));
/* Add mode */
iwe.cmd = SIOCGIWMODE;
capabilities = le16_to_cpu(ap->capability);
if(capabilities & (BSS_CAP_ESS | BSS_CAP_IBSS)) {
if(capabilities & BSS_CAP_ESS)
iwe.u.mode = IW_MODE_INFRA;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_UINT_LEN);
}
/* Add frequency */
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ap->channel;
iwe.u.freq.m = frequency_list[iwe.u.freq.m-1] * 100000;
iwe.u.freq.e = 1;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_FREQ_LEN);
/* Add quality statistics */
iwe.cmd = IWEVQUAL;
iwe.u.qual.level = 256 - ap->rssi;
iwe.u.qual.qual = ap->sq;
iwe.u.qual.noise = 0; /* invalid noise value */
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe, IW_EV_QUAL_LEN);
/* Add encryption capability */
iwe.cmd = SIOCGIWENCODE;
if(capabilities & BSS_CAP_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(info, current_ev, end_buf, &iwe, &(ap->ssid.body[0]));
/* Rate : stuffing multiple values in a single event require a bit
* more of magic - Jean II */
current_val = current_ev + IW_EV_LCP_LEN;
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
/* Max 16 values */
for(i = 0 ; i < 16 ; i++) {
/* NULL terminated */
if(i >= ap->rate_set.size)
break;
/* Bit rate given in 500 kb/s units (+ 0x80) */
iwe.u.bitrate.value = ((ap->rate_set.body[i] & 0x7f) * 500000);
/* Add new value to event */
current_val = iwe_stream_add_value(info, current_ev, current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
}
/* Check if we added any event */
if((current_val - current_ev) > IW_EV_LCP_LEN)
current_ev = current_val;
#define GENERIC_INFO_ELEM_ID 0xdd
#define RSN_INFO_ELEM_ID 0x30
if (ap->rsn_ie.id == RSN_INFO_ELEM_ID && ap->rsn_ie.size != 0) {
pbuf = &buf0[0];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
memcpy(buf0,rsn_leader,sizeof(rsn_leader)-1);
iwe.u.data.length += sizeof(rsn_leader)-1;
pbuf += sizeof(rsn_leader)-1;
pbuf += sprintf(pbuf, "%02x", ap->rsn_ie.id);
pbuf += sprintf(pbuf, "%02x", ap->rsn_ie.size);
iwe.u.data.length += 4;
for (i = 0; i < ap->rsn_ie.size; i++)
pbuf += sprintf(pbuf, "%02x", ap->rsn_ie.body[i]);
iwe.u.data.length += (ap->rsn_ie.size)*2;
DPRINTK(4,"ap->rsn.size=%d\n",ap->rsn_ie.size);
current_ev = iwe_stream_add_point(info, current_ev, end_buf,&iwe, &buf0[0]);
}
if (ap->wpa_ie.id == GENERIC_INFO_ELEM_ID && ap->wpa_ie.size != 0) {
pbuf = &buf1[0];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
memcpy(buf1,wpa_leader,sizeof(wpa_leader)-1);
iwe.u.data.length += sizeof(wpa_leader)-1;
pbuf += sizeof(wpa_leader)-1;
pbuf += sprintf(pbuf, "%02x", ap->wpa_ie.id);
pbuf += sprintf(pbuf, "%02x", ap->wpa_ie.size);
iwe.u.data.length += 4;
for (i = 0; i < ap->wpa_ie.size; i++)
pbuf += sprintf(pbuf, "%02x", ap->wpa_ie.body[i]);
iwe.u.data.length += (ap->wpa_ie.size)*2;
DPRINTK(4,"ap->rsn.size=%d\n",ap->wpa_ie.size);
DPRINTK(4,"iwe.u.data.length=%d\n",iwe.u.data.length);
current_ev = iwe_stream_add_point(info, current_ev, end_buf,&iwe, &buf1[0]);
}
/* The other data in the scan result are not really
* interesting, so for now drop it - Jean II */
return current_ev;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : Read Scan Results */
static int ks_wlan_get_scan(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int i;
char *current_ev = extra;
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(priv->sme_i.sme_flag & SME_AP_SCAN) {
DPRINTK(2,"flag AP_SCAN\n");
return -EAGAIN;
}
if(priv->aplist.size == 0) {
/* Client error, no scan results...
* The caller need to restart the scan. */
DPRINTK(2,"aplist 0\n");
return -ENODATA;
}
#if 0
/* current connect ap */
if((priv->connect_status & CONNECT_STATUS_MASK)== CONNECT_STATUS){
if ((extra + dwrq->length) - current_ev <= IW_EV_ADDR_LEN) {
dwrq->length = 0;
return -E2BIG;
}
current_ev = ks_wlan_translate_scan(dev, current_ev,
// extra + IW_SCAN_MAX_DATA,
extra + dwrq->length,
&(priv->current_ap));
}
#endif
/* Read and parse all entries */
for(i=0; i < priv->aplist.size; i++) {
if ((extra + dwrq->length) - current_ev <= IW_EV_ADDR_LEN) {
dwrq->length = 0;
return -E2BIG;
}
/* Translate to WE format this entry */
current_ev = ks_wlan_translate_scan(dev, info, current_ev,
// extra + IW_SCAN_MAX_DATA,
extra + dwrq->length,
&(priv->aplist.ap[i]));
}
/* Length of data */
dwrq->length = (current_ev - extra);
dwrq->flags = 0;
return 0;
}
#endif /* WIRELESS_EXT */
/*------------------------------------------------------------------*/
/* Commit handler : called after a bunch of SET operations */
static int ks_wlan_config_commit(struct net_device *dev, struct iw_request_info *info,
void *zwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (!priv->need_commit)
return 0;
ks_wlan_setup_parameter(priv, priv->need_commit);
priv->need_commit=0;
return 0;
}
#ifdef WIRELESS_EXT
/*------------------------------------------------------------------*/
/* Wireless handler : set association ie params */
static int ks_wlan_set_genie(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2, "\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
return 0;
// return -EOPNOTSUPP;
}
/*------------------------------------------------------------------*/
/* Wireless handler : set authentication mode params */
static int ks_wlan_set_auth_mode(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int index = (vwrq->flags & IW_AUTH_INDEX);
int value = vwrq->value;
DPRINTK(2,"index=%d:value=%08X\n",index,value);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
switch(index){
case IW_AUTH_WPA_VERSION: /* 0 */
switch(value){
case IW_AUTH_WPA_VERSION_DISABLED:
priv->wpa.version = value;
if(priv->wpa.rsn_enabled){
priv->wpa.rsn_enabled = 0;
}
priv->need_commit |= SME_RSN;
break;
case IW_AUTH_WPA_VERSION_WPA:
case IW_AUTH_WPA_VERSION_WPA2:
priv->wpa.version = value;
if(!(priv->wpa.rsn_enabled)){
priv->wpa.rsn_enabled = 1;
}
priv->need_commit |= SME_RSN;
break;
default:
return -EOPNOTSUPP;
}
break;
case IW_AUTH_CIPHER_PAIRWISE: /* 1 */
switch(value){
case IW_AUTH_CIPHER_NONE:
if(priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x00;
priv->need_commit |= SME_WEP_FLAG;
}
break;
case IW_AUTH_CIPHER_WEP40:
case IW_AUTH_CIPHER_TKIP:
case IW_AUTH_CIPHER_CCMP:
case IW_AUTH_CIPHER_WEP104:
if(!priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x01;
priv->need_commit |= SME_WEP_FLAG;
}
priv->wpa.pairwise_suite = value;
priv->need_commit |= SME_RSN_UNICAST;
break;
default:
return -EOPNOTSUPP;
}
break;
case IW_AUTH_CIPHER_GROUP: /* 2 */
switch(value){
case IW_AUTH_CIPHER_NONE:
if(priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x00;
priv->need_commit |= SME_WEP_FLAG;
}
break;
case IW_AUTH_CIPHER_WEP40:
case IW_AUTH_CIPHER_TKIP:
case IW_AUTH_CIPHER_CCMP:
case IW_AUTH_CIPHER_WEP104:
if(!priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x01;
priv->need_commit |= SME_WEP_FLAG;
}
priv->wpa.group_suite = value;
priv->need_commit |= SME_RSN_MULTICAST;
break;
default:
return -EOPNOTSUPP;
}
break;
case IW_AUTH_KEY_MGMT: /* 3 */
switch(value){
case IW_AUTH_KEY_MGMT_802_1X:
case IW_AUTH_KEY_MGMT_PSK:
case 0: /* NONE or 802_1X_NO_WPA */
case 4: /* WPA_NONE */
priv->wpa.key_mgmt_suite = value;
priv->need_commit |= SME_RSN_AUTH;
break;
default:
return -EOPNOTSUPP;
}
break;
case IW_AUTH_80211_AUTH_ALG: /* 6 */
switch(value){
case IW_AUTH_ALG_OPEN_SYSTEM:
priv->wpa.auth_alg = value;
priv->reg.authenticate_type = AUTH_TYPE_OPEN_SYSTEM;
break;
case IW_AUTH_ALG_SHARED_KEY:
priv->wpa.auth_alg = value;
priv->reg.authenticate_type = AUTH_TYPE_SHARED_KEY;
break;
case IW_AUTH_ALG_LEAP:
default:
return -EOPNOTSUPP;
}
priv->need_commit |= SME_MODE_SET;
break;
case IW_AUTH_WPA_ENABLED: /* 7 */
priv->wpa.wpa_enabled = value;
break;
case IW_AUTH_PRIVACY_INVOKED: /* 10 */
if((value && !priv->reg.privacy_invoked)||
(!value && priv->reg.privacy_invoked)){
priv->reg.privacy_invoked = value?0x01:0x00;
priv->need_commit |= SME_WEP_FLAG;
}
break;
case IW_AUTH_RX_UNENCRYPTED_EAPOL: /* 4 */
case IW_AUTH_TKIP_COUNTERMEASURES: /* 5 */
case IW_AUTH_DROP_UNENCRYPTED: /* 8 */
case IW_AUTH_ROAMING_CONTROL: /* 9 */
default:
break;
}
/* return -EINPROGRESS; */
if(priv->need_commit){
ks_wlan_setup_parameter(priv, priv->need_commit);
priv->need_commit=0;
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless handler : get authentication mode params */
static int ks_wlan_get_auth_mode(struct net_device *dev, struct iw_request_info *info,
struct iw_param *vwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
int index = (vwrq->flags & IW_AUTH_INDEX);
DPRINTK(2,"index=%d\n",index);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* WPA (not used ?? wpa_supplicant) */
switch(index){
case IW_AUTH_WPA_VERSION:
vwrq->value = priv->wpa.version;
break;
case IW_AUTH_CIPHER_PAIRWISE:
vwrq->value = priv->wpa.pairwise_suite;
break;
case IW_AUTH_CIPHER_GROUP:
vwrq->value = priv->wpa.group_suite;
break;
case IW_AUTH_KEY_MGMT:
vwrq->value = priv->wpa.key_mgmt_suite;
break;
case IW_AUTH_80211_AUTH_ALG:
vwrq->value = priv->wpa.auth_alg;
break;
case IW_AUTH_WPA_ENABLED:
vwrq->value = priv->wpa.rsn_enabled;
break;
case IW_AUTH_RX_UNENCRYPTED_EAPOL: /* OK??? */
case IW_AUTH_TKIP_COUNTERMEASURES:
case IW_AUTH_DROP_UNENCRYPTED:
default:
/* return -EOPNOTSUPP; */
break;
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set encoding token & mode (WPA)*/
static int ks_wlan_set_encode_ext(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct iw_encode_ext *enc;
int index = dwrq->flags & IW_ENCODE_INDEX;
unsigned int commit=0;
enc = (struct iw_encode_ext *)extra;
DPRINTK(2,"flags=%04X:: ext_flags=%08X\n",dwrq->flags, enc->ext_flags);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(index<1||index>4)
return -EINVAL;
else
index--;
if(dwrq->flags & IW_ENCODE_DISABLED){
priv->wpa.key[index].key_len=0;
}
if(enc){
priv->wpa.key[index].ext_flags=enc->ext_flags;
if(enc->ext_flags&IW_ENCODE_EXT_SET_TX_KEY){
priv->wpa.txkey=index;
commit |= SME_WEP_INDEX;
}else if(enc->ext_flags&IW_ENCODE_EXT_RX_SEQ_VALID){
if(enc->rx_seq)
memcpy(&priv->wpa.key[index].rx_seq[0],
enc->rx_seq, IW_ENCODE_SEQ_MAX_SIZE);
else
return -EINVAL;
}
memcpy(&priv->wpa.key[index].addr.sa_data[0],
&enc->addr.sa_data[0], ETH_ALEN);
switch (enc->alg) {
case IW_ENCODE_ALG_NONE:
if(priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x00;
commit |= SME_WEP_FLAG;
}
priv->wpa.key[index].key_len = 0;
break;
case IW_ENCODE_ALG_WEP:
case IW_ENCODE_ALG_CCMP:
if(!priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x01;
commit |= SME_WEP_FLAG;
}
if(enc->key && enc->key_len){
memcpy(&priv->wpa.key[index].key_val[0],
&enc->key[0], enc->key_len);
priv->wpa.key[index].key_len = enc->key_len;
commit |= (SME_WEP_VAL1 << index);
}
break;
case IW_ENCODE_ALG_TKIP:
if(!priv->reg.privacy_invoked){
priv->reg.privacy_invoked = 0x01;
commit |= SME_WEP_FLAG;
}
if(enc->key && enc->key_len == 32){
memcpy(&priv->wpa.key[index].key_val[0],
&enc->key[0], enc->key_len-16);
priv->wpa.key[index].key_len = enc->key_len-16;
if(priv->wpa.key_mgmt_suite==4){ /* WPA_NONE */
memcpy(&priv->wpa.key[index].tx_mic_key[0],
&enc->key[16],8);
memcpy(&priv->wpa.key[index].rx_mic_key[0],
&enc->key[16],8);
}else{
memcpy(&priv->wpa.key[index].tx_mic_key[0],
&enc->key[16],8);
memcpy(&priv->wpa.key[index].rx_mic_key[0],
&enc->key[24],8);
}
commit |= (SME_WEP_VAL1 << index);
}
break;
default:
return -EINVAL;
}
priv->wpa.key[index].alg=enc->alg;
}
else
return -EINVAL;
if(commit){
if(commit&SME_WEP_INDEX)
hostif_sme_enqueue(priv, SME_SET_TXKEY);
if(commit&SME_WEP_VAL_MASK)
hostif_sme_enqueue(priv, SME_SET_KEY1+index);
if(commit&SME_WEP_FLAG)
hostif_sme_enqueue(priv, SME_WEP_FLAG_REQUEST);
}
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : get encoding token & mode (WPA)*/
static int ks_wlan_get_encode_ext(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
/* WPA (not used ?? wpa_supplicant)
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
struct iw_encode_ext *enc;
enc = (struct iw_encode_ext *)extra;
int index = dwrq->flags & IW_ENCODE_INDEX;
WPA (not used ?? wpa_supplicant) */
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : PMKSA cache operation (WPA2) */
static int ks_wlan_set_pmksa(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct iw_pmksa *pmksa ;
int i;
struct pmk_t *pmk;
struct list_head *ptr;
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(!extra){
return -EINVAL;
}
pmksa = (struct iw_pmksa *)extra;
DPRINTK(2,"cmd=%d\n",pmksa->cmd);
switch(pmksa->cmd){
case IW_PMKSA_ADD:
if(list_empty(&priv->pmklist.head)){ /* new list */
for(i=0;i<PMK_LIST_MAX;i++){
pmk = &priv->pmklist.pmk[i];
if(!memcmp("\x00\x00\x00\x00\x00\x00",pmk->bssid,ETH_ALEN))
break;
}
memcpy(pmk->bssid, pmksa->bssid.sa_data, ETH_ALEN);
memcpy(pmk->pmkid, pmksa->pmkid, IW_PMKID_LEN);
list_add(&pmk->list,&priv->pmklist.head);
priv->pmklist.size++;
}
else { /* search cache data */
list_for_each(ptr, &priv->pmklist.head){
pmk = list_entry(ptr, struct pmk_t, list);
if(!memcmp(pmksa->bssid.sa_data, pmk->bssid, ETH_ALEN)){ /* match address! list move to head. */
memcpy(pmk->pmkid, pmksa->pmkid, IW_PMKID_LEN);
list_move(&pmk->list, &priv->pmklist.head);
break;
}
}
if(ptr == &priv->pmklist.head){ /* not find address. */
if(PMK_LIST_MAX > priv->pmklist.size){ /* new cache data */
for(i=0;i<PMK_LIST_MAX;i++){
pmk = &priv->pmklist.pmk[i];
if(!memcmp("\x00\x00\x00\x00\x00\x00",pmk->bssid,ETH_ALEN))
break;
}
memcpy(pmk->bssid, pmksa->bssid.sa_data, ETH_ALEN);
memcpy(pmk->pmkid, pmksa->pmkid, IW_PMKID_LEN);
list_add(&pmk->list,&priv->pmklist.head);
priv->pmklist.size++;
}
else{ /* overwrite old cache data */
pmk = list_entry(priv->pmklist.head.prev, struct pmk_t, list);
memcpy(pmk->bssid, pmksa->bssid.sa_data, ETH_ALEN);
memcpy(pmk->pmkid, pmksa->pmkid, IW_PMKID_LEN);
list_move(&pmk->list,&priv->pmklist.head);
}
}
}
break;
case IW_PMKSA_REMOVE:
if(list_empty(&priv->pmklist.head)){ /* list empty */
return -EINVAL;
}
else{ /* search cache data */
list_for_each(ptr, &priv->pmklist.head){
pmk = list_entry(ptr, struct pmk_t, list);
if(!memcmp(pmksa->bssid.sa_data, pmk->bssid, ETH_ALEN)){ /* match address! list del. */
memset(pmk->bssid, 0, ETH_ALEN);
memset(pmk->pmkid, 0, IW_PMKID_LEN);
list_del_init(&pmk->list);
break;
}
}
if(ptr == &priv->pmklist.head){ /* not find address. */
return 0;
}
}
break;
case IW_PMKSA_FLUSH:
memset(&(priv->pmklist), 0, sizeof(priv->pmklist));
INIT_LIST_HEAD(&priv->pmklist.head);
for(i=0;i<PMK_LIST_MAX;i++)
INIT_LIST_HEAD(&priv->pmklist.pmk[i].list);
break;
default:
return -EINVAL;
}
hostif_sme_enqueue(priv, SME_SET_PMKSA);
return 0;
}
static struct iw_statistics *ks_get_wireless_stats(struct net_device *dev)
{
ks_wlan_private *priv = (ks_wlan_private *) netdev_priv(dev);
struct iw_statistics *wstats = &priv->wstats;
if(!atomic_read(&update_phyinfo)){
if (priv->dev_state < DEVICE_STATE_READY)
return NULL; /* not finished initialize */
else
return wstats;
}
/* Packets discarded in the wireless adapter due to wireless
* specific problems */
wstats->discard.nwid = 0; /* Rx invalid nwid */
wstats->discard.code = 0; /* Rx invalid crypt */
wstats->discard.fragment = 0; /* Rx invalid frag */
wstats->discard.retries = 0; /* Tx excessive retries */
wstats->discard.misc = 0; /* Invalid misc */
wstats->miss.beacon = 0; /* Missed beacon */
return wstats;
}
/*------------------------------------------------------------------*/
/* Private handler : set stop request */
static int ks_wlan_set_stop_request(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(!(*uwrq))
return -EINVAL;
hostif_sme_enqueue(priv, SME_STOP_REQUEST);
return 0;
}
/*------------------------------------------------------------------*/
/* Wireless Handler : set MLME */
#include <linux/ieee80211.h>
static int ks_wlan_set_mlme(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
struct iw_mlme *mlme = (struct iw_mlme *)extra;
__u32 mode;
DPRINTK(2, ":%d :%d\n", mlme->cmd, mlme->reason_code);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
switch (mlme->cmd) {
case IW_MLME_DEAUTH:
if (mlme->reason_code == WLAN_REASON_MIC_FAILURE) {
return 0;
}
case IW_MLME_DISASSOC:
mode = 1;
return ks_wlan_set_stop_request(dev, NULL, &mode, NULL);
default:
return -EOPNOTSUPP; /* Not Support */
}
}
#endif /* WIRELESS_EXT */
/*------------------------------------------------------------------*/
/* Private handler : get driver version */
static int ks_wlan_get_driver_version(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
strcpy(extra, KS_WLAN_DRIVER_VERSION_INFO);
dwrq->length = strlen(KS_WLAN_DRIVER_VERSION_INFO)+1;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get firemware version */
static int ks_wlan_get_firmware_version(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
strcpy(extra, &(priv->firmware_version[0]));
dwrq->length = priv->version_size+1;
return 0;
}
#if 0
/*------------------------------------------------------------------*/
/* Private handler : set force disconnect status */
static int ks_wlan_set_detach(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == CONNECT_STATUS){ /* 0 */
priv->connect_status &= ~FORCE_DISCONNECT;
if((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS)
netif_carrier_on(dev);
}else if(*uwrq == DISCONNECT_STATUS){ /* 1 */
priv->connect_status |= FORCE_DISCONNECT;
netif_carrier_off(dev);
}else
return -EINVAL;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get force disconnect status */
static int ks_wlan_get_detach(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = ((priv->connect_status & FORCE_DISCONNECT) ? 1 : 0 );
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get connect status */
static int ks_wlan_get_connect(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = (priv->connect_status & CONNECT_STATUS_MASK);
return 0;
}
#endif
/*------------------------------------------------------------------*/
/* Private handler : set preamble */
static int ks_wlan_set_preamble(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == LONG_PREAMBLE){ /* 0 */
priv->reg.preamble = LONG_PREAMBLE;
}else if(*uwrq == SHORT_PREAMBLE){ /* 1 */
priv->reg.preamble = SHORT_PREAMBLE;
}else
return -EINVAL;
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Private handler : get preamble */
static int ks_wlan_get_preamble(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.preamble;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set power save mode */
static int ks_wlan_set_powermgt(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == POWMGT_ACTIVE_MODE){ /* 0 */
priv->reg.powermgt = POWMGT_ACTIVE_MODE;
}else if(*uwrq == POWMGT_SAVE1_MODE){ /* 1 */
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE)
priv->reg.powermgt = POWMGT_SAVE1_MODE;
else
return -EINVAL;
}else if(*uwrq == POWMGT_SAVE2_MODE){ /* 2 */
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE)
priv->reg.powermgt = POWMGT_SAVE2_MODE;
else
return -EINVAL;
}else
return -EINVAL;
hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get power save made */
static int ks_wlan_get_powermgt(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.powermgt;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set scan type */
static int ks_wlan_set_scan_type(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == ACTIVE_SCAN){ /* 0 */
priv->reg.scan_type = ACTIVE_SCAN;
}else if(*uwrq == PASSIVE_SCAN){ /* 1 */
priv->reg.scan_type = PASSIVE_SCAN;
}else
return -EINVAL;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get scan type */
static int ks_wlan_get_scan_type(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.scan_type;
return 0;
}
#if 0
/*------------------------------------------------------------------*/
/* Private handler : write raw data to device */
static int ks_wlan_data_write(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
unsigned char *wbuff = NULL;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
wbuff = (unsigned char *)kmalloc(dwrq->length, GFP_ATOMIC);
if(!wbuff)
return -EFAULT;
memcpy(wbuff, extra, dwrq->length);
/* write to device */
ks_wlan_hw_tx( priv, wbuff, dwrq->length, NULL, NULL, NULL);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : read raw data form device */
static int ks_wlan_data_read(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
unsigned short read_length;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(!atomic_read(&priv->event_count)){
if (priv->dev_state < DEVICE_STATE_BOOT) { /* Remove device */
read_length = 4;
memset(extra,0xff,read_length);
dwrq->length = read_length;
return 0;
}
read_length = 0;
memset(extra,0,1);
dwrq->length = 0;
return 0;
}
if(atomic_read(&priv->event_count)>0)
atomic_dec(&priv->event_count);
spin_lock(&priv->dev_read_lock); /* request spin lock */
/* Copy length max size 0x07ff */
if(priv->dev_size[priv->dev_count] > 2047)
read_length = 2047;
else
read_length = priv->dev_size[priv->dev_count];
/* Copy data */
memcpy(extra, &(priv->dev_data[priv->dev_count][0]), read_length);
spin_unlock(&priv->dev_read_lock); /* release spin lock */
/* Initialize */
priv->dev_data[priv->dev_count] = 0;
priv->dev_size[priv->dev_count] = 0;
priv->dev_count++;
if(priv->dev_count == DEVICE_STOCK_COUNT)
priv->dev_count=0;
/* Set read size */
dwrq->length = read_length;
return 0;
}
#endif
#if 0
/*------------------------------------------------------------------*/
/* Private handler : get wep string */
#define WEP_ASCII_BUFF_SIZE (17+64*4+1)
static int ks_wlan_get_wep_ascii(struct net_device *dev, struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
int i,j,len=0;
char tmp[WEP_ASCII_BUFF_SIZE];
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
strcpy(tmp," WEP keys ASCII \n");
len+=strlen(" WEP keys ASCII \n");
for(i=0;i<4;i++){
strcpy(tmp+len,"\t[");
len+=strlen("\t[");
tmp[len] = '1'+i;
len++;
strcpy(tmp+len,"] ");
len+=strlen("] ");
if(priv->reg.wep_key[i].size){
strcpy(tmp+len,(priv->reg.wep_key[i].size < 6 ? "(40bits) [" : "(104bits) ["));
len+=strlen((priv->reg.wep_key[i].size < 6 ? "(40bits) [" : "(104bits) ["));
for(j=0;j<priv->reg.wep_key[i].size;j++,len++)
tmp[len]=(isprint(priv->reg.wep_key[i].val[j]) ? priv->reg.wep_key[i].val[j] : ' ');
strcpy(tmp+len,"]\n");
len+=strlen("]\n");
}
else{
strcpy(tmp+len,"off\n");
len+=strlen("off\n");
}
}
memcpy(extra, tmp, len);
dwrq->length = len+1;
return 0;
}
#endif
/*------------------------------------------------------------------*/
/* Private handler : set beacon lost count */
static int ks_wlan_set_beacon_lost(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq >= BEACON_LOST_COUNT_MIN &&
*uwrq <= BEACON_LOST_COUNT_MAX){
priv->reg.beacon_lost_count = *uwrq;
}else
return -EINVAL;
if(priv->reg.operation_mode == MODE_INFRASTRUCTURE){
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
else
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get beacon lost count */
static int ks_wlan_get_beacon_lost(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.beacon_lost_count;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set phy type */
static int ks_wlan_set_phy_type(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == D_11B_ONLY_MODE){ /* 0 */
priv->reg.phy_type = D_11B_ONLY_MODE;
}else if(*uwrq == D_11G_ONLY_MODE){ /* 1 */
priv->reg.phy_type = D_11G_ONLY_MODE;
}else if(*uwrq == D_11BG_COMPATIBLE_MODE){ /* 2 */
priv->reg.phy_type = D_11BG_COMPATIBLE_MODE;
}else
return -EINVAL;
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Private handler : get phy type */
static int ks_wlan_get_phy_type(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.phy_type;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set cts mode */
static int ks_wlan_set_cts_mode(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == CTS_MODE_FALSE){ /* 0 */
priv->reg.cts_mode = CTS_MODE_FALSE;
}else if(*uwrq == CTS_MODE_TRUE){ /* 1 */
if(priv->reg.phy_type == D_11G_ONLY_MODE ||
priv->reg.phy_type == D_11BG_COMPATIBLE_MODE)
priv->reg.cts_mode = CTS_MODE_TRUE;
else
priv->reg.cts_mode = CTS_MODE_FALSE;
}else
return -EINVAL;
priv->need_commit |= SME_MODE_SET;
return -EINPROGRESS; /* Call commit handler */
}
/*------------------------------------------------------------------*/
/* Private handler : get cts mode */
static int ks_wlan_get_cts_mode(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.cts_mode;
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set sleep mode */
static int ks_wlan_set_sleep_mode(struct net_device *dev,
struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if(*uwrq == SLP_SLEEP){
priv->sleep_mode = *uwrq;
printk("SET_SLEEP_MODE %d\n", priv->sleep_mode);
hostif_sme_enqueue(priv, SME_STOP_REQUEST);
hostif_sme_enqueue(priv, SME_SLEEP_REQUEST);
}else if(*uwrq == SLP_ACTIVE) {
priv->sleep_mode = *uwrq;
printk("SET_SLEEP_MODE %d\n", priv->sleep_mode);
hostif_sme_enqueue(priv, SME_SLEEP_REQUEST);
}else{
printk("SET_SLEEP_MODE %d errror\n", *uwrq);
return -EINVAL;
}
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get sleep mode */
static int ks_wlan_get_sleep_mode(struct net_device *dev,
struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2, "GET_SLEEP_MODE %d\n", priv->sleep_mode);
*uwrq = priv->sleep_mode;
return 0;
}
#if 0
/*------------------------------------------------------------------*/
/* Private handler : set phy information timer */
static int ks_wlan_set_phy_information_timer(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq >= 0 && *uwrq <= 0xFFFF) /* 0-65535 */
priv->reg.phy_info_timer = (uint16_t)*uwrq;
else
return -EINVAL;
hostif_sme_enqueue(priv, SME_PHY_INFO_REQUEST);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get phy information timer */
static int ks_wlan_get_phy_information_timer(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->reg.phy_info_timer;
return 0;
}
#endif
#ifdef WPS
/*------------------------------------------------------------------*/
/* Private handler : set WPS enable */
static int ks_wlan_set_wps_enable(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq == 0 || *uwrq == 1)
priv->wps.wps_enabled = *uwrq;
else
return -EINVAL;
hostif_sme_enqueue(priv, SME_WPS_ENABLE_REQUEST);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get WPS enable */
static int ks_wlan_get_wps_enable(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->wps.wps_enabled;
printk("return=%d\n", *uwrq);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set WPS probe req */
static int ks_wlan_set_wps_probe_req(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *dwrq, char *extra)
{
uint8_t *p = extra;
unsigned char len;
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
DPRINTK(2,"dwrq->length=%d\n", dwrq->length);
/* length check */
if(p[1] + 2 != dwrq->length || dwrq->length > 256 ){
return -EINVAL;
}
priv->wps.ielen = p[1] + 2 + 1; /* IE header + IE + sizeof(len) */
len = p[1] + 2; /* IE header + IE */
memcpy(priv->wps.ie, &len, sizeof(len));
p = memcpy(priv->wps.ie+1, p, len);
DPRINTK(2,"%d(%#x): %02X %02X %02X %02X ... %02X %02X %02X\n",
priv->wps.ielen, priv->wps.ielen, p[0], p[1], p[2], p[3],
p[priv->wps.ielen-3], p[priv->wps.ielen-2], p[priv->wps.ielen-1]);
hostif_sme_enqueue(priv, SME_WPS_PROBE_REQUEST);
return 0;
}
#if 0
/*------------------------------------------------------------------*/
/* Private handler : get WPS probe req */
static int ks_wlan_get_wps_probe_req(struct net_device *dev,
struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
DPRINTK(2,"\n");
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
return 0;
}
#endif
#endif /* WPS */
/*------------------------------------------------------------------*/
/* Private handler : set tx gain control value */
static int ks_wlan_set_tx_gain(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq >= 0 && *uwrq <= 0xFF) /* 0-255 */
priv->gain.TxGain = (uint8_t)*uwrq;
else
return -EINVAL;
if(priv->gain.TxGain < 0xFF)
priv->gain.TxMode = 1;
else
priv->gain.TxMode = 0;
hostif_sme_enqueue(priv, SME_SET_GAIN);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get tx gain control value */
static int ks_wlan_get_tx_gain(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->gain.TxGain;
hostif_sme_enqueue(priv, SME_GET_GAIN);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : set rx gain control value */
static int ks_wlan_set_rx_gain(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq >= 0 && *uwrq <= 0xFF) /* 0-255 */
priv->gain.RxGain = (uint8_t)*uwrq;
else
return -EINVAL;
if(priv->gain.RxGain < 0xFF)
priv->gain.RxMode = 1;
else
priv->gain.RxMode = 0;
hostif_sme_enqueue(priv, SME_SET_GAIN);
return 0;
}
/*------------------------------------------------------------------*/
/* Private handler : get rx gain control value */
static int ks_wlan_get_rx_gain(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
*uwrq = priv->gain.RxGain;
hostif_sme_enqueue(priv, SME_GET_GAIN);
return 0;
}
#if 0
/*------------------------------------------------------------------*/
/* Private handler : set region value */
static int ks_wlan_set_region(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)dev->priv;
if (priv->sleep_mode == SLP_SLEEP){ return -EPERM; } /* for SLEEP MODE */
if(*uwrq >= 0x9 && *uwrq <= 0xF) /* 0x9-0xf */
priv->region = (uint8_t)*uwrq;
else
return -EINVAL;
hostif_sme_enqueue(priv, SME_SET_REGION);
return 0;
}
#endif
/*------------------------------------------------------------------*/
/* Private handler : get eeprom checksum result */
static int ks_wlan_get_eeprom_cksum(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
*uwrq = priv->eeprom_checksum;
return 0;
}
static void print_hif_event(int event){
switch(event){
case HIF_DATA_REQ :
printk("HIF_DATA_REQ\n");
break;
case HIF_DATA_IND :
printk("HIF_DATA_IND\n");
break;
case HIF_MIB_GET_REQ :
printk("HIF_MIB_GET_REQ\n");
break;
case HIF_MIB_GET_CONF :
printk("HIF_MIB_GET_CONF\n");
break;
case HIF_MIB_SET_REQ :
printk("HIF_MIB_SET_REQ\n");
break;
case HIF_MIB_SET_CONF :
printk("HIF_MIB_SET_CONF\n");
break;
case HIF_POWERMGT_REQ :
printk("HIF_POWERMGT_REQ\n");
break;
case HIF_POWERMGT_CONF :
printk("HIF_POWERMGT_CONF\n");
break;
case HIF_START_REQ :
printk("HIF_START_REQ\n");
break;
case HIF_START_CONF :
printk("HIF_START_CONF\n");
break;
case HIF_CONNECT_IND :
printk("HIF_CONNECT_IND\n");
break;
case HIF_STOP_REQ :
printk("HIF_STOP_REQ\n");
break;
case HIF_STOP_CONF :
printk("HIF_STOP_CONF\n");
break;
case HIF_PS_ADH_SET_REQ :
printk("HIF_PS_ADH_SET_REQ\n");
break;
case HIF_PS_ADH_SET_CONF:
printk("HIF_PS_ADH_SET_CONF\n");
break;
case HIF_INFRA_SET_REQ :
printk("HIF_INFRA_SET_REQ\n");
break;
case HIF_INFRA_SET_CONF :
printk("HIF_INFRA_SET_CONF\n");
break;
case HIF_ADH_SET_REQ :
printk("HIF_ADH_SET_REQ\n");
break;
case HIF_ADH_SET_CONF :
printk("HIF_ADH_SET_CONF\n");
break;
case HIF_AP_SET_REQ :
printk("HIF_AP_SET_REQ\n");
break;
case HIF_AP_SET_CONF :
printk("HIF_AP_SET_CONF\n");
break;
case HIF_ASSOC_INFO_IND :
printk("HIF_ASSOC_INFO_IND\n");
break;
case HIF_MIC_FAILURE_REQ:
printk("HIF_MIC_FAILURE_REQ\n");
break;
case HIF_MIC_FAILURE_CONF :
printk("HIF_MIC_FAILURE_CONF\n");
break;
case HIF_SCAN_REQ :
printk("HIF_SCAN_REQ\n");
break;
case HIF_SCAN_CONF :
printk("HIF_SCAN_CONF\n");
break;
case HIF_PHY_INFO_REQ :
printk("HIF_PHY_INFO_REQ\n");
break;
case HIF_PHY_INFO_CONF :
printk("HIF_PHY_INFO_CONF\n");
break;
case HIF_SLEEP_REQ :
printk("HIF_SLEEP_REQ\n");
break;
case HIF_SLEEP_CONF :
printk("HIF_SLEEP_CONF\n");
break;
case HIF_PHY_INFO_IND :
printk("HIF_PHY_INFO_IND\n");
break;
case HIF_SCAN_IND :
printk("HIF_SCAN_IND\n");
break;
case HIF_INFRA_SET2_REQ :
printk("HIF_INFRA_SET2_REQ\n");
break;
case HIF_INFRA_SET2_CONF:
printk("HIF_INFRA_SET2_CONF\n");
break;
case HIF_ADH_SET2_REQ :
printk("HIF_ADH_SET2_REQ\n");
break;
case HIF_ADH_SET2_CONF :
printk("HIF_ADH_SET2_CONF\n");
}
}
/*------------------------------------------------------------------*/
/* Private handler : get host command history */
static int ks_wlan_hostt(struct net_device *dev, struct iw_request_info *info,
__u32 *uwrq, char *extra)
{
int i,event;
ks_wlan_private *priv = (ks_wlan_private *)netdev_priv(dev);
for(i = 63; i >= 0; i--){
event = priv->hostt.buff[(priv->hostt.qtail -1 -i)%SME_EVENT_BUFF_SIZE] ;
print_hif_event(event);
}
return 0;
}
/* Structures to export the Wireless Handlers */
static const struct iw_priv_args ks_wlan_private_args[] = {
/*{ cmd, set_args, get_args, name[16] } */
{ KS_WLAN_GET_DRIVER_VERSION, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_CHAR | (128+1), "GetDriverVer" },
{ KS_WLAN_GET_FIRM_VERSION, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_CHAR | (128+1), "GetFirmwareVer" },
#ifdef WPS
{ KS_WLAN_SET_WPS_ENABLE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetWPSEnable" },
{ KS_WLAN_GET_WPS_ENABLE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetW" },
{ KS_WLAN_SET_WPS_PROBE_REQ, IW_PRIV_TYPE_BYTE | 2047, IW_PRIV_TYPE_NONE, "SetWPSProbeReq" },
#endif /* WPS */
{ KS_WLAN_SET_PREAMBLE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetPreamble" },
{ KS_WLAN_GET_PREAMBLE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetPreamble" },
{ KS_WLAN_SET_POWER_SAVE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetPowerSave" },
{ KS_WLAN_GET_POWER_SAVE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetPowerSave" },
{ KS_WLAN_SET_SCAN_TYPE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetScanType" },
{ KS_WLAN_GET_SCAN_TYPE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetScanType" },
{ KS_WLAN_SET_RX_GAIN, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetRxGain" },
{ KS_WLAN_GET_RX_GAIN, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetRxGain" },
{ KS_WLAN_HOSTT, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_CHAR | (128+1), "hostt" },
{ KS_WLAN_SET_BEACON_LOST, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetBeaconLost" },
{ KS_WLAN_GET_BEACON_LOST, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetBeaconLost" },
{ KS_WLAN_SET_SLEEP_MODE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetSleepMode" },
{ KS_WLAN_GET_SLEEP_MODE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetSleepMode" },
{ KS_WLAN_SET_TX_GAIN, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetTxGain" },
{ KS_WLAN_GET_TX_GAIN, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetTxGain" },
{ KS_WLAN_SET_PHY_TYPE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetPhyType" },
{ KS_WLAN_GET_PHY_TYPE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetPhyType" },
{ KS_WLAN_SET_CTS_MODE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, IW_PRIV_TYPE_NONE, "SetCtsMode" },
{ KS_WLAN_GET_CTS_MODE, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetCtsMode" },
{ KS_WLAN_GET_EEPROM_CKSUM, IW_PRIV_TYPE_NONE, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "GetChecksum" },
};
static const iw_handler ks_wlan_handler[] =
{
(iw_handler) ks_wlan_config_commit, /* SIOCSIWCOMMIT */
(iw_handler) ks_wlan_get_name, /* SIOCGIWNAME */
(iw_handler) NULL, /* SIOCSIWNWID */
(iw_handler) NULL, /* SIOCGIWNWID */
(iw_handler) ks_wlan_set_freq, /* SIOCSIWFREQ */
(iw_handler) ks_wlan_get_freq, /* SIOCGIWFREQ */
(iw_handler) ks_wlan_set_mode, /* SIOCSIWMODE */
(iw_handler) ks_wlan_get_mode, /* SIOCGIWMODE */
#ifndef KSC_OPNOTSUPP
(iw_handler) ks_wlan_set_sens, /* SIOCSIWSENS */
(iw_handler) ks_wlan_get_sens, /* SIOCGIWSENS */
#else /* KSC_OPNOTSUPP */
(iw_handler) NULL, /* SIOCSIWSENS */
(iw_handler) NULL, /* SIOCGIWSENS */
#endif /* KSC_OPNOTSUPP */
(iw_handler) NULL, /* SIOCSIWRANGE */
(iw_handler) ks_wlan_get_range, /* SIOCGIWRANGE */
(iw_handler) NULL, /* SIOCSIWPRIV */
(iw_handler) NULL, /* SIOCGIWPRIV */
(iw_handler) NULL, /* SIOCSIWSTATS */
(iw_handler) ks_wlan_get_iwstats, /* SIOCGIWSTATS */
(iw_handler) NULL, /* SIOCSIWSPY */
(iw_handler) NULL, /* SIOCGIWSPY */
(iw_handler) NULL, /* SIOCSIWTHRSPY */
(iw_handler) NULL, /* SIOCGIWTHRSPY */
(iw_handler) ks_wlan_set_wap, /* SIOCSIWAP */
(iw_handler) ks_wlan_get_wap, /* SIOCGIWAP */
// (iw_handler) NULL, /* SIOCSIWMLME */
(iw_handler) ks_wlan_set_mlme, /* SIOCSIWMLME */
(iw_handler) ks_wlan_get_aplist, /* SIOCGIWAPLIST */
(iw_handler) ks_wlan_set_scan, /* SIOCSIWSCAN */
(iw_handler) ks_wlan_get_scan, /* SIOCGIWSCAN */
(iw_handler) ks_wlan_set_essid, /* SIOCSIWESSID */
(iw_handler) ks_wlan_get_essid, /* SIOCGIWESSID */
(iw_handler) ks_wlan_set_nick, /* SIOCSIWNICKN */
(iw_handler) ks_wlan_get_nick, /* SIOCGIWNICKN */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) ks_wlan_set_rate, /* SIOCSIWRATE */
(iw_handler) ks_wlan_get_rate, /* SIOCGIWRATE */
(iw_handler) ks_wlan_set_rts, /* SIOCSIWRTS */
(iw_handler) ks_wlan_get_rts, /* SIOCGIWRTS */
(iw_handler) ks_wlan_set_frag, /* SIOCSIWFRAG */
(iw_handler) ks_wlan_get_frag, /* SIOCGIWFRAG */
#ifndef KSC_OPNOTSUPP
(iw_handler) ks_wlan_set_txpow, /* SIOCSIWTXPOW */
(iw_handler) ks_wlan_get_txpow, /* SIOCGIWTXPOW */
(iw_handler) ks_wlan_set_retry, /* SIOCSIWRETRY */
(iw_handler) ks_wlan_get_retry, /* SIOCGIWRETRY */
#else /* KSC_OPNOTSUPP */
(iw_handler) NULL, /* SIOCSIWTXPOW */
(iw_handler) NULL, /* SIOCGIWTXPOW */
(iw_handler) NULL, /* SIOCSIWRETRY */
(iw_handler) NULL, /* SIOCGIWRETRY */
#endif /* KSC_OPNOTSUPP */
(iw_handler) ks_wlan_set_encode, /* SIOCSIWENCODE */
(iw_handler) ks_wlan_get_encode, /* SIOCGIWENCODE */
(iw_handler) ks_wlan_set_power, /* SIOCSIWPOWER */
(iw_handler) ks_wlan_get_power, /* SIOCGIWPOWER */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
// (iw_handler) NULL, /* SIOCSIWGENIE */
(iw_handler) ks_wlan_set_genie, /* SIOCSIWGENIE */
(iw_handler) NULL, /* SIOCGIWGENIE */
(iw_handler) ks_wlan_set_auth_mode, /* SIOCSIWAUTH */
(iw_handler) ks_wlan_get_auth_mode, /* SIOCGIWAUTH */
(iw_handler) ks_wlan_set_encode_ext, /* SIOCSIWENCODEEXT */
(iw_handler) ks_wlan_get_encode_ext, /* SIOCGIWENCODEEXT */
(iw_handler) ks_wlan_set_pmksa, /* SIOCSIWPMKSA */
(iw_handler) NULL, /* -- hole -- */
};
/* private_handler */
static const iw_handler ks_wlan_private_handler[] =
{
(iw_handler) NULL, /* 0 */
(iw_handler) ks_wlan_get_driver_version, /* 1 KS_WLAN_GET_DRIVER_VERSION */
(iw_handler) NULL, /* 2 */
(iw_handler) ks_wlan_get_firmware_version, /* 3 KS_WLAN_GET_FIRM_VERSION */
#ifdef WPS
(iw_handler) ks_wlan_set_wps_enable, /* 4 KS_WLAN_SET_WPS_ENABLE */
(iw_handler) ks_wlan_get_wps_enable, /* 5 KS_WLAN_GET_WPS_ENABLE */
(iw_handler) ks_wlan_set_wps_probe_req, /* 6 KS_WLAN_SET_WPS_PROBE_REQ */
#else
(iw_handler) NULL, /* 4 */
(iw_handler) NULL, /* 5 */
(iw_handler) NULL, /* 6 */
#endif /* WPS */
(iw_handler) ks_wlan_get_eeprom_cksum, /* 7 KS_WLAN_GET_CONNECT */
(iw_handler) ks_wlan_set_preamble, /* 8 KS_WLAN_SET_PREAMBLE */
(iw_handler) ks_wlan_get_preamble, /* 9 KS_WLAN_GET_PREAMBLE */
(iw_handler) ks_wlan_set_powermgt, /* 10 KS_WLAN_SET_POWER_SAVE */
(iw_handler) ks_wlan_get_powermgt, /* 11 KS_WLAN_GET_POWER_SAVE */
(iw_handler) ks_wlan_set_scan_type, /* 12 KS_WLAN_SET_SCAN_TYPE */
(iw_handler) ks_wlan_get_scan_type, /* 13 KS_WLAN_GET_SCAN_TYPE */
(iw_handler) ks_wlan_set_rx_gain, /* 14 KS_WLAN_SET_RX_GAIN */
(iw_handler) ks_wlan_get_rx_gain, /* 15 KS_WLAN_GET_RX_GAIN */
(iw_handler) ks_wlan_hostt, /* 16 KS_WLAN_HOSTT */
(iw_handler) NULL, /* 17 */
(iw_handler) ks_wlan_set_beacon_lost, /* 18 KS_WLAN_SET_BECAN_LOST */
(iw_handler) ks_wlan_get_beacon_lost, /* 19 KS_WLAN_GET_BECAN_LOST */
(iw_handler) ks_wlan_set_tx_gain, /* 20 KS_WLAN_SET_TX_GAIN */
(iw_handler) ks_wlan_get_tx_gain, /* 21 KS_WLAN_GET_TX_GAIN */
(iw_handler) ks_wlan_set_phy_type, /* 22 KS_WLAN_SET_PHY_TYPE */
(iw_handler) ks_wlan_get_phy_type, /* 23 KS_WLAN_GET_PHY_TYPE */
(iw_handler) ks_wlan_set_cts_mode, /* 24 KS_WLAN_SET_CTS_MODE */
(iw_handler) ks_wlan_get_cts_mode, /* 25 KS_WLAN_GET_CTS_MODE */
(iw_handler) NULL, /* 26 */
(iw_handler) NULL, /* 27 */
(iw_handler) ks_wlan_set_sleep_mode, /* 28 KS_WLAN_SET_SLEEP_MODE */
(iw_handler) ks_wlan_get_sleep_mode, /* 29 KS_WLAN_GET_SLEEP_MODE */
(iw_handler) NULL, /* 30 */
(iw_handler) NULL, /* 31 */
};
static const struct iw_handler_def ks_wlan_handler_def =
{
.num_standard = sizeof(ks_wlan_handler)/sizeof(iw_handler),
.num_private = sizeof(ks_wlan_private_handler)/sizeof(iw_handler),
.num_private_args = sizeof(ks_wlan_private_args)/sizeof(struct iw_priv_args),
.standard = (iw_handler *) ks_wlan_handler,
.private = (iw_handler *) ks_wlan_private_handler,
.private_args = (struct iw_priv_args *) ks_wlan_private_args,
.get_wireless_stats = ks_get_wireless_stats,
};
#endif /* WIRELESS_EXT */
static int ks_wlan_netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
int rc = 0;
#if defined(WIRELESS_EXT)
struct iwreq *wrq = (struct iwreq *) rq;
#endif /* WIRELESS_EXT */
switch (cmd) {
#if defined(WIRELESS_EXT)
case SIOCIWFIRSTPRIV+20: /* KS_WLAN_SET_STOP_REQ */
rc = ks_wlan_set_stop_request(dev, NULL, &(wrq->u.mode), NULL);
break;
#endif /* WIRELESS_EXT >17 */
// All other calls are currently unsupported
default:
rc = -EOPNOTSUPP;
}
DPRINTK(5,"return=%d\n",rc);
return rc;
}
static
struct net_device_stats *ks_wlan_get_stats(struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
if (priv->dev_state < DEVICE_STATE_READY) {
return NULL; /* not finished initialize */
}
return &priv->nstats;
}
static
int ks_wlan_set_mac_address(struct net_device *dev, void *addr)
{
ks_wlan_private *priv = netdev_priv(dev);
struct sockaddr *mac_addr=(struct sockaddr *)addr;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, mac_addr->sa_data, dev->addr_len);
memcpy(priv->eth_addr, mac_addr->sa_data, ETH_ALEN);
priv->mac_address_valid = 0;
hostif_sme_enqueue(priv, SME_MACADDRESS_SET_REQUEST);
printk(KERN_INFO "ks_wlan: MAC ADDRESS = %02x:%02x:%02x:%02x:%02x:%02x\n",
priv->eth_addr[0],priv->eth_addr[1],priv->eth_addr[2],
priv->eth_addr[3],priv->eth_addr[4],priv->eth_addr[5]);
return 0;
}
static
void ks_wlan_tx_timeout(struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
DPRINTK(1,"head(%d) tail(%d)!!\n",priv->tx_dev.qhead, priv->tx_dev.qtail);
if(!netif_queue_stopped(dev)){
netif_stop_queue(dev);
}
priv->nstats.tx_errors++;
netif_wake_queue(dev);
return;
}
static
int ks_wlan_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
int rc = 0;
DPRINTK(3,"in_interrupt()=%ld\n",in_interrupt());
if ( skb == NULL ) {
printk( KERN_ERR "ks_wlan: skb == NULL!!!\n" );
return 0;
}
if (priv->dev_state < DEVICE_STATE_READY) {
dev_kfree_skb(skb);
return 0; /* not finished initialize */
}
if(netif_running(dev))
netif_stop_queue(dev);
rc = hostif_data_request(priv, skb);
dev->trans_start = jiffies;
DPRINTK(4,"rc=%d\n",rc);
if (rc){
rc=0;
}
return rc;
}
void send_packet_complete(void *arg1, void *arg2)
{
ks_wlan_private *priv = (ks_wlan_private *)arg1;
struct sk_buff *packet = (struct sk_buff *)arg2;
DPRINTK(3,"\n");
priv->nstats.tx_bytes += packet->len;
priv->nstats.tx_packets++;
if(netif_queue_stopped(priv->net_dev))
netif_wake_queue(priv->net_dev);
if(packet){
dev_kfree_skb(packet);
packet=NULL;
}
}
/* Set or clear the multicast filter for this adaptor.
This routine is not state sensitive and need not be SMP locked. */
static
void ks_wlan_set_multicast_list(struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
DPRINTK(4,"\n");
if (priv->dev_state < DEVICE_STATE_READY) {
return ; /* not finished initialize */
}
hostif_sme_enqueue(priv, SME_MULTICAST_REQUEST);
return;
}
static
int ks_wlan_open(struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
priv->cur_rx = 0;
if(!priv->mac_address_valid){
printk(KERN_ERR "ks_wlan : %s Not READY !!\n", dev->name);
return -EBUSY;
}
else
netif_start_queue (dev);
return 0;
}
static
int ks_wlan_close(struct net_device *dev)
{
netif_stop_queue (dev);
DPRINTK(4, "%s: Shutting down ethercard, status was 0x%4.4x.\n",
dev->name, 0x00);
return 0;
}
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (3*HZ)
static const unsigned char dummy_addr[] = {0x00,0x0b,0xe3,0x00,0x00,0x00};
static const struct net_device_ops ks_wlan_netdev_ops = {
.ndo_start_xmit = ks_wlan_start_xmit,
.ndo_open = ks_wlan_open,
.ndo_stop = ks_wlan_close,
.ndo_do_ioctl = ks_wlan_netdev_ioctl,
.ndo_set_mac_address = ks_wlan_set_mac_address,
.ndo_get_stats = ks_wlan_get_stats,
.ndo_tx_timeout = ks_wlan_tx_timeout,
.ndo_set_rx_mode = ks_wlan_set_multicast_list,
};
int ks_wlan_net_start(struct net_device *dev)
{
ks_wlan_private *priv;
/* int rc; */
priv = netdev_priv(dev);
priv->mac_address_valid = 0;
priv->need_commit = 0;
priv->device_open_status = 1;
/* phy information update timer */
atomic_set(&update_phyinfo,0);
init_timer(&update_phyinfo_timer);
update_phyinfo_timer.function=ks_wlan_update_phyinfo_timeout;
update_phyinfo_timer.data = (unsigned long)priv;
/* dummy address set */
memcpy(priv->eth_addr, dummy_addr, ETH_ALEN);
dev->dev_addr[0] = priv->eth_addr[0];
dev->dev_addr[1] = priv->eth_addr[1];
dev->dev_addr[2] = priv->eth_addr[2];
dev->dev_addr[3] = priv->eth_addr[3];
dev->dev_addr[4] = priv->eth_addr[4];
dev->dev_addr[5] = priv->eth_addr[5];
dev->dev_addr[6] = 0x00;
dev->dev_addr[7] = 0x00;
/* The ks_wlan-specific entries in the device structure. */
dev->netdev_ops = &ks_wlan_netdev_ops;
dev->wireless_handlers = (struct iw_handler_def *)&ks_wlan_handler_def;
dev->watchdog_timeo = TX_TIMEOUT;
netif_carrier_off(dev);
return 0;
}
int ks_wlan_net_stop(struct net_device *dev)
{
ks_wlan_private *priv = netdev_priv(dev);
int ret = 0;
priv->device_open_status = 0;
del_timer_sync(&update_phyinfo_timer);
if(netif_running(dev))
netif_stop_queue(dev);
return ret;
}
int ks_wlan_reset(struct net_device *dev)
{
return 0;
}
/*
* Driver for KeyStream wireless LAN
*
* michael_mic.c
* $Id: michael_mic.c 991 2009-09-14 01:38:58Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
#include <linux/types.h>
#include <linux/string.h>
#include "michael_mic.h"
// Rotation functions on 32 bit values
#define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) )
#define ROR32( A, n ) ROL32( (A), 32-(n) )
// Convert from Byte[] to UInt32 in a portable way
#define getUInt32( A, B ) (uint32_t)(A[B+0] << 0) + (A[B+1] << 8) + (A[B+2] << 16) + (A[B+3] << 24)
// Convert from UInt32 to Byte[] in a portable way
#define putUInt32( A, B, C ) A[B+0] = (uint8_t) (C & 0xff); \
A[B+1] = (uint8_t) ((C>>8) & 0xff); \
A[B+2] = (uint8_t) ((C>>16) & 0xff); \
A[B+3] = (uint8_t) ((C>>24) & 0xff)
// Reset the state to the empty message.
#define MichaelClear( A ) A->L = A->K0; \
A->R = A->K1; \
A->nBytesInM = 0;
static
void MichaelInitializeFunction( struct michel_mic_t *Mic, uint8_t *key )
{
// Set the key
Mic->K0 = getUInt32( key , 0 );
Mic->K1 = getUInt32( key , 4 );
//clear();
MichaelClear(Mic);
}
#define MichaelBlockFunction(L, R) \
do{ \
R ^= ROL32( L, 17 ); \
L += R; \
R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8); \
L += R; \
R ^= ROL32( L, 3 ); \
L += R; \
R ^= ROR32( L, 2 ); \
L += R; \
}while(0)
static
void MichaelAppend( struct michel_mic_t *Mic, uint8_t *src, int nBytes )
{
int addlen ;
if (Mic->nBytesInM) {
addlen = 4 - Mic->nBytesInM;
if (addlen > nBytes)
addlen = nBytes;
memcpy(&Mic->M[Mic->nBytesInM], src, addlen);
Mic->nBytesInM += addlen;
src += addlen;
nBytes -= addlen;
if (Mic->nBytesInM < 4)
return;
Mic->L ^= getUInt32(Mic->M,0);
MichaelBlockFunction(Mic->L, Mic->R);
Mic->nBytesInM = 0;
}
while(nBytes >= 4){
Mic->L ^= getUInt32(src,0);
MichaelBlockFunction(Mic->L, Mic->R);
src += 4;
nBytes -= 4;
}
if (nBytes > 0) {
Mic->nBytesInM = nBytes;
memcpy(Mic->M, src, nBytes);
}
}
static
void MichaelGetMIC( struct michel_mic_t *Mic, uint8_t *dst )
{
uint8_t *data = Mic->M;
switch (Mic->nBytesInM) {
case 0:
Mic->L ^= 0x5a;
break;
case 1:
Mic->L ^= data[0] | 0x5a00;
break;
case 2:
Mic->L ^= data[0] | (data[1] << 8) | 0x5a0000;
break;
case 3:
Mic->L ^= data[0] | (data[1] << 8) | (data[2] << 16) |
0x5a000000;
break;
}
MichaelBlockFunction(Mic->L, Mic->R);
MichaelBlockFunction(Mic->L, Mic->R);
// The appendByte function has already computed the result.
putUInt32( dst, 0, Mic->L );
putUInt32( dst, 4, Mic->R );
// Reset to the empty message.
MichaelClear(Mic);
}
void MichaelMICFunction( struct michel_mic_t *Mic, uint8_t *Key,
uint8_t *Data, int Len, uint8_t priority,
uint8_t *Result )
{
uint8_t pad_data[4] = {priority,0,0,0};
// Compute the MIC value
/*
* IEEE802.11i page 47
* Figure 43g TKIP MIC processing format
* +--+--+--------+--+----+--+--+--+--+--+--+--+--+
* |6 |6 |1 |3 |M |1 |1 |1 |1 |1 |1 |1 |1 | Octet
* +--+--+--------+--+----+--+--+--+--+--+--+--+--+
* |DA|SA|Priority|0 |Data|M0|M1|M2|M3|M4|M5|M6|M7|
* +--+--+--------+--+----+--+--+--+--+--+--+--+--+
*/
MichaelInitializeFunction( Mic, Key ) ;
MichaelAppend( Mic, (uint8_t*)Data, 12 ); /* |DA|SA| */
MichaelAppend( Mic, pad_data, 4 ); /* |Priority|0|0|0| */
MichaelAppend( Mic, (uint8_t*)(Data+12), Len -12 ); /* |Data| */
MichaelGetMIC( Mic, Result ) ;
}
/*
* Driver for KeyStream wireless LAN
*
* michael_mic.h
* $Id: michael_mic.h 991 2009-09-14 01:38:58Z sekine $
*
* Copyright (C) 2005-2008 KeyStream Corp.
* Copyright (C) 2009 Renesas Technology Corp.
*
* This program is free software; you can redistribute it and/or modify
* it undr the terms of the GNU General Public License version 2 as
* published by the Free Sotware Foundation.
*/
/* MichelMIC routine define */
struct michel_mic_t {
uint32_t K0; // Key
uint32_t K1; // Key
uint32_t L; // Current state
uint32_t R; // Current state
uint8_t M[4]; // Message accumulator (single word)
int nBytesInM; // # bytes in M
uint8_t Result[8];
};
extern
void MichaelMICFunction( struct michel_mic_t *Mic, uint8_t *Key,
uint8_t *Data, int Len, uint8_t priority,
uint8_t *Result );
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment