Commit 16008d64 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-3.3/drivers' of git://git.kernel.dk/linux-block

* 'for-3.3/drivers' of git://git.kernel.dk/linux-block:
  mtip32xx: do rebuild monitoring asynchronously
  xen-blkfront: Use kcalloc instead of kzalloc to allocate array
  mtip32xx: uninitialized variable in mtip_quiesce_io()
  mtip32xx: updates based on feedback
  xen-blkback: convert hole punching to discard request on loop devices
  xen/blkback: Move processing of BLKIF_OP_DISCARD from dispatch_rw_block_io
  xen/blk[front|back]: Enhance discard support with secure erasing support.
  xen/blk[front|back]: Squash blkif_request_rw and blkif_request_discard together
  mtip32xx: update to new ->make_request() API
  mtip32xx: add module.h include to avoid conflict with moduleh tree
  mtip32xx: mark a few more items static
  mtip32xx: ensure that all local functions are static
  mtip32xx: cleanup compat ioctl handling
  mtip32xx: fix warnings/errors on 32-bit compiles
  block: Add driver for Micron RealSSD pcie flash cards
parents b3c9dd18 85a0f7b2
...@@ -116,6 +116,8 @@ config PARIDE ...@@ -116,6 +116,8 @@ config PARIDE
source "drivers/block/paride/Kconfig" source "drivers/block/paride/Kconfig"
source "drivers/block/mtip32xx/Kconfig"
config BLK_CPQ_DA config BLK_CPQ_DA
tristate "Compaq SMART2 support" tristate "Compaq SMART2 support"
depends on PCI && VIRT_TO_BUS depends on PCI && VIRT_TO_BUS
......
...@@ -39,5 +39,6 @@ obj-$(CONFIG_XEN_BLKDEV_FRONTEND) += xen-blkfront.o ...@@ -39,5 +39,6 @@ obj-$(CONFIG_XEN_BLKDEV_FRONTEND) += xen-blkfront.o
obj-$(CONFIG_XEN_BLKDEV_BACKEND) += xen-blkback/ obj-$(CONFIG_XEN_BLKDEV_BACKEND) += xen-blkback/
obj-$(CONFIG_BLK_DEV_DRBD) += drbd/ obj-$(CONFIG_BLK_DEV_DRBD) += drbd/
obj-$(CONFIG_BLK_DEV_RBD) += rbd.o obj-$(CONFIG_BLK_DEV_RBD) += rbd.o
obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX) += mtip32xx/
swim_mod-y := swim.o swim_asm.o swim_mod-y := swim.o swim_asm.o
#
# mtip32xx device driver configuration
#
config BLK_DEV_PCIESSD_MTIP32XX
tristate "Block Device Driver for Micron PCIe SSDs"
depends on HOTPLUG_PCI_PCIE
help
This enables the block driver for Micron PCIe SSDs.
#
# Makefile for Block device driver for Micron PCIe SSD
#
obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX) += mtip32xx.o
/*
* Driver for the Micron P320 SSD
* Copyright (C) 2011 Micron Technology, Inc.
*
* Portions of this code were derived from works subjected to the
* following copyright:
* Copyright (C) 2009 Integrated Device Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ata.h>
#include <linux/delay.h>
#include <linux/hdreg.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/compat.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/kthread.h>
#include <../drivers/ata/ahci.h>
#include "mtip32xx.h"
#define HW_CMD_SLOT_SZ (MTIP_MAX_COMMAND_SLOTS * 32)
#define HW_CMD_TBL_SZ (AHCI_CMD_TBL_HDR_SZ + (MTIP_MAX_SG * 16))
#define HW_CMD_TBL_AR_SZ (HW_CMD_TBL_SZ * MTIP_MAX_COMMAND_SLOTS)
#define HW_PORT_PRIV_DMA_SZ \
(HW_CMD_SLOT_SZ + HW_CMD_TBL_AR_SZ + AHCI_RX_FIS_SZ)
#define HOST_HSORG 0xFC
#define HSORG_DISABLE_SLOTGRP_INTR (1<<24)
#define HSORG_DISABLE_SLOTGRP_PXIS (1<<16)
#define HSORG_HWREV 0xFF00
#define HSORG_STYLE 0x8
#define HSORG_SLOTGROUPS 0x7
#define PORT_COMMAND_ISSUE 0x38
#define PORT_SDBV 0x7C
#define PORT_OFFSET 0x100
#define PORT_MEM_SIZE 0x80
#define PORT_IRQ_ERR \
(PORT_IRQ_HBUS_ERR | PORT_IRQ_IF_ERR | PORT_IRQ_CONNECT | \
PORT_IRQ_PHYRDY | PORT_IRQ_UNK_FIS | PORT_IRQ_BAD_PMP | \
PORT_IRQ_TF_ERR | PORT_IRQ_HBUS_DATA_ERR | PORT_IRQ_IF_NONFATAL | \
PORT_IRQ_OVERFLOW)
#define PORT_IRQ_LEGACY \
(PORT_IRQ_PIOS_FIS | PORT_IRQ_D2H_REG_FIS)
#define PORT_IRQ_HANDLED \
(PORT_IRQ_SDB_FIS | PORT_IRQ_LEGACY | \
PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR | \
PORT_IRQ_CONNECT | PORT_IRQ_PHYRDY)
#define DEF_PORT_IRQ \
(PORT_IRQ_ERR | PORT_IRQ_LEGACY | PORT_IRQ_SDB_FIS)
/* product numbers */
#define MTIP_PRODUCT_UNKNOWN 0x00
#define MTIP_PRODUCT_ASICFPGA 0x11
/* Device instance number, incremented each time a device is probed. */
static int instance;
/*
* Global variable used to hold the major block device number
* allocated in mtip_init().
*/
static int mtip_major;
static DEFINE_SPINLOCK(rssd_index_lock);
static DEFINE_IDA(rssd_index_ida);
static int mtip_block_initialize(struct driver_data *dd);
#ifdef CONFIG_COMPAT
struct mtip_compat_ide_task_request_s {
__u8 io_ports[8];
__u8 hob_ports[8];
ide_reg_valid_t out_flags;
ide_reg_valid_t in_flags;
int data_phase;
int req_cmd;
compat_ulong_t out_size;
compat_ulong_t in_size;
};
#endif
/*
* This function check_for_surprise_removal is called
* while card is removed from the system and it will
* read the vendor id from the configration space
*
* @pdev Pointer to the pci_dev structure.
*
* return value
* true if device removed, else false
*/
static bool mtip_check_surprise_removal(struct pci_dev *pdev)
{
u16 vendor_id = 0;
/* Read the vendorID from the configuration space */
pci_read_config_word(pdev, 0x00, &vendor_id);
if (vendor_id == 0xFFFF)
return true; /* device removed */
return false; /* device present */
}
/*
* This function is called for clean the pending command in the
* command slot during the surprise removal of device and return
* error to the upper layer.
*
* @dd Pointer to the DRIVER_DATA structure.
*
* return value
* None
*/
static void mtip_command_cleanup(struct driver_data *dd)
{
int group = 0, commandslot = 0, commandindex = 0;
struct mtip_cmd *command;
struct mtip_port *port = dd->port;
for (group = 0; group < 4; group++) {
for (commandslot = 0; commandslot < 32; commandslot++) {
if (!(port->allocated[group] & (1 << commandslot)))
continue;
commandindex = group << 5 | commandslot;
command = &port->commands[commandindex];
if (atomic_read(&command->active)
&& (command->async_callback)) {
command->async_callback(command->async_data,
-ENODEV);
command->async_callback = NULL;
command->async_data = NULL;
}
dma_unmap_sg(&port->dd->pdev->dev,
command->sg,
command->scatter_ents,
command->direction);
}
}
up(&port->cmd_slot);
atomic_set(&dd->drv_cleanup_done, true);
}
/*
* Obtain an empty command slot.
*
* This function needs to be reentrant since it could be called
* at the same time on multiple CPUs. The allocation of the
* command slot must be atomic.
*
* @port Pointer to the port data structure.
*
* return value
* >= 0 Index of command slot obtained.
* -1 No command slots available.
*/
static int get_slot(struct mtip_port *port)
{
int slot, i;
unsigned int num_command_slots = port->dd->slot_groups * 32;
/*
* Try 10 times, because there is a small race here.
* that's ok, because it's still cheaper than a lock.
*
* Race: Since this section is not protected by lock, same bit
* could be chosen by different process contexts running in
* different processor. So instead of costly lock, we are going
* with loop.
*/
for (i = 0; i < 10; i++) {
slot = find_next_zero_bit(port->allocated,
num_command_slots, 1);
if ((slot < num_command_slots) &&
(!test_and_set_bit(slot, port->allocated)))
return slot;
}
dev_warn(&port->dd->pdev->dev, "Failed to get a tag.\n");
if (mtip_check_surprise_removal(port->dd->pdev)) {
/* Device not present, clean outstanding commands */
mtip_command_cleanup(port->dd);
}
return -1;
}
/*
* Release a command slot.
*
* @port Pointer to the port data structure.
* @tag Tag of command to release
*
* return value
* None
*/
static inline void release_slot(struct mtip_port *port, int tag)
{
smp_mb__before_clear_bit();
clear_bit(tag, port->allocated);
smp_mb__after_clear_bit();
}
/*
* Reset the HBA (without sleeping)
*
* Just like hba_reset, except does not call sleep, so can be
* run from interrupt/tasklet context.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 The reset was successful.
* -1 The HBA Reset bit did not clear.
*/
static int hba_reset_nosleep(struct driver_data *dd)
{
unsigned long timeout;
/* Chip quirk: quiesce any chip function */
mdelay(10);
/* Set the reset bit */
writel(HOST_RESET, dd->mmio + HOST_CTL);
/* Flush */
readl(dd->mmio + HOST_CTL);
/*
* Wait 10ms then spin for up to 1 second
* waiting for reset acknowledgement
*/
timeout = jiffies + msecs_to_jiffies(1000);
mdelay(10);
while ((readl(dd->mmio + HOST_CTL) & HOST_RESET)
&& time_before(jiffies, timeout))
mdelay(1);
if (readl(dd->mmio + HOST_CTL) & HOST_RESET)
return -1;
return 0;
}
/*
* Issue a command to the hardware.
*
* Set the appropriate bit in the s_active and Command Issue hardware
* registers, causing hardware command processing to begin.
*
* @port Pointer to the port structure.
* @tag The tag of the command to be issued.
*
* return value
* None
*/
static inline void mtip_issue_ncq_command(struct mtip_port *port, int tag)
{
unsigned long flags = 0;
atomic_set(&port->commands[tag].active, 1);
spin_lock_irqsave(&port->cmd_issue_lock, flags);
writel((1 << MTIP_TAG_BIT(tag)),
port->s_active[MTIP_TAG_INDEX(tag)]);
writel((1 << MTIP_TAG_BIT(tag)),
port->cmd_issue[MTIP_TAG_INDEX(tag)]);
spin_unlock_irqrestore(&port->cmd_issue_lock, flags);
}
/*
* Enable/disable the reception of FIS
*
* @port Pointer to the port data structure
* @enable 1 to enable, 0 to disable
*
* return value
* Previous state: 1 enabled, 0 disabled
*/
static int mtip_enable_fis(struct mtip_port *port, int enable)
{
u32 tmp;
/* enable FIS reception */
tmp = readl(port->mmio + PORT_CMD);
if (enable)
writel(tmp | PORT_CMD_FIS_RX, port->mmio + PORT_CMD);
else
writel(tmp & ~PORT_CMD_FIS_RX, port->mmio + PORT_CMD);
/* Flush */
readl(port->mmio + PORT_CMD);
return (((tmp & PORT_CMD_FIS_RX) == PORT_CMD_FIS_RX));
}
/*
* Enable/disable the DMA engine
*
* @port Pointer to the port data structure
* @enable 1 to enable, 0 to disable
*
* return value
* Previous state: 1 enabled, 0 disabled.
*/
static int mtip_enable_engine(struct mtip_port *port, int enable)
{
u32 tmp;
/* enable FIS reception */
tmp = readl(port->mmio + PORT_CMD);
if (enable)
writel(tmp | PORT_CMD_START, port->mmio + PORT_CMD);
else
writel(tmp & ~PORT_CMD_START, port->mmio + PORT_CMD);
readl(port->mmio + PORT_CMD);
return (((tmp & PORT_CMD_START) == PORT_CMD_START));
}
/*
* Enables the port DMA engine and FIS reception.
*
* return value
* None
*/
static inline void mtip_start_port(struct mtip_port *port)
{
/* Enable FIS reception */
mtip_enable_fis(port, 1);
/* Enable the DMA engine */
mtip_enable_engine(port, 1);
}
/*
* Deinitialize a port by disabling port interrupts, the DMA engine,
* and FIS reception.
*
* @port Pointer to the port structure
*
* return value
* None
*/
static inline void mtip_deinit_port(struct mtip_port *port)
{
/* Disable interrupts on this port */
writel(0, port->mmio + PORT_IRQ_MASK);
/* Disable the DMA engine */
mtip_enable_engine(port, 0);
/* Disable FIS reception */
mtip_enable_fis(port, 0);
}
/*
* Initialize a port.
*
* This function deinitializes the port by calling mtip_deinit_port() and
* then initializes it by setting the command header and RX FIS addresses,
* clearing the SError register and any pending port interrupts before
* re-enabling the default set of port interrupts.
*
* @port Pointer to the port structure.
*
* return value
* None
*/
static void mtip_init_port(struct mtip_port *port)
{
int i;
mtip_deinit_port(port);
/* Program the command list base and FIS base addresses */
if (readl(port->dd->mmio + HOST_CAP) & HOST_CAP_64) {
writel((port->command_list_dma >> 16) >> 16,
port->mmio + PORT_LST_ADDR_HI);
writel((port->rxfis_dma >> 16) >> 16,
port->mmio + PORT_FIS_ADDR_HI);
}
writel(port->command_list_dma & 0xFFFFFFFF,
port->mmio + PORT_LST_ADDR);
writel(port->rxfis_dma & 0xFFFFFFFF, port->mmio + PORT_FIS_ADDR);
/* Clear SError */
writel(readl(port->mmio + PORT_SCR_ERR), port->mmio + PORT_SCR_ERR);
/* reset the completed registers.*/
for (i = 0; i < port->dd->slot_groups; i++)
writel(0xFFFFFFFF, port->completed[i]);
/* Clear any pending interrupts for this port */
writel(readl(port->mmio + PORT_IRQ_STAT), port->mmio + PORT_IRQ_STAT);
/* Enable port interrupts */
writel(DEF_PORT_IRQ, port->mmio + PORT_IRQ_MASK);
}
/*
* Restart a port
*
* @port Pointer to the port data structure.
*
* return value
* None
*/
static void mtip_restart_port(struct mtip_port *port)
{
unsigned long timeout;
/* Disable the DMA engine */
mtip_enable_engine(port, 0);
/* Chip quirk: wait up to 500ms for PxCMD.CR == 0 */
timeout = jiffies + msecs_to_jiffies(500);
while ((readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON)
&& time_before(jiffies, timeout))
;
/*
* Chip quirk: escalate to hba reset if
* PxCMD.CR not clear after 500 ms
*/
if (readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON) {
dev_warn(&port->dd->pdev->dev,
"PxCMD.CR not clear, escalating reset\n");
if (hba_reset_nosleep(port->dd))
dev_err(&port->dd->pdev->dev,
"HBA reset escalation failed.\n");
/* 30 ms delay before com reset to quiesce chip */
mdelay(30);
}
dev_warn(&port->dd->pdev->dev, "Issuing COM reset\n");
/* Set PxSCTL.DET */
writel(readl(port->mmio + PORT_SCR_CTL) |
1, port->mmio + PORT_SCR_CTL);
readl(port->mmio + PORT_SCR_CTL);
/* Wait 1 ms to quiesce chip function */
timeout = jiffies + msecs_to_jiffies(1);
while (time_before(jiffies, timeout))
;
/* Clear PxSCTL.DET */
writel(readl(port->mmio + PORT_SCR_CTL) & ~1,
port->mmio + PORT_SCR_CTL);
readl(port->mmio + PORT_SCR_CTL);
/* Wait 500 ms for bit 0 of PORT_SCR_STS to be set */
timeout = jiffies + msecs_to_jiffies(500);
while (((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0)
&& time_before(jiffies, timeout))
;
if ((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0)
dev_warn(&port->dd->pdev->dev,
"COM reset failed\n");
/* Clear SError, the PxSERR.DIAG.x should be set so clear it */
writel(readl(port->mmio + PORT_SCR_ERR), port->mmio + PORT_SCR_ERR);
/* Enable the DMA engine */
mtip_enable_engine(port, 1);
}
/*
* Called periodically to see if any read/write commands are
* taking too long to complete.
*
* @data Pointer to the PORT data structure.
*
* return value
* None
*/
static void mtip_timeout_function(unsigned long int data)
{
struct mtip_port *port = (struct mtip_port *) data;
struct host_to_dev_fis *fis;
struct mtip_cmd *command;
int tag, cmdto_cnt = 0;
unsigned int bit, group;
unsigned int num_command_slots = port->dd->slot_groups * 32;
if (unlikely(!port))
return;
if (atomic_read(&port->dd->resumeflag) == true) {
mod_timer(&port->cmd_timer,
jiffies + msecs_to_jiffies(30000));
return;
}
for (tag = 0; tag < num_command_slots; tag++) {
/*
* Skip internal command slot as it has
* its own timeout mechanism
*/
if (tag == MTIP_TAG_INTERNAL)
continue;
if (atomic_read(&port->commands[tag].active) &&
(time_after(jiffies, port->commands[tag].comp_time))) {
group = tag >> 5;
bit = tag & 0x1F;
command = &port->commands[tag];
fis = (struct host_to_dev_fis *) command->command;
dev_warn(&port->dd->pdev->dev,
"Timeout for command tag %d\n", tag);
cmdto_cnt++;
if (cmdto_cnt == 1)
set_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags);
/*
* Clear the completed bit. This should prevent
* any interrupt handlers from trying to retire
* the command.
*/
writel(1 << bit, port->completed[group]);
/* Call the async completion callback. */
if (likely(command->async_callback))
command->async_callback(command->async_data,
-EIO);
command->async_callback = NULL;
command->comp_func = NULL;
/* Unmap the DMA scatter list entries */
dma_unmap_sg(&port->dd->pdev->dev,
command->sg,
command->scatter_ents,
command->direction);
/*
* Clear the allocated bit and active tag for the
* command.
*/
atomic_set(&port->commands[tag].active, 0);
release_slot(port, tag);
up(&port->cmd_slot);
}
}
if (cmdto_cnt) {
dev_warn(&port->dd->pdev->dev,
"%d commands timed out: restarting port",
cmdto_cnt);
mtip_restart_port(port);
clear_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags);
wake_up_interruptible(&port->svc_wait);
}
/* Restart the timer */
mod_timer(&port->cmd_timer,
jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD));
}
/*
* IO completion function.
*
* This completion function is called by the driver ISR when a
* command that was issued by the kernel completes. It first calls the
* asynchronous completion function which normally calls back into the block
* layer passing the asynchronous callback data, then unmaps the
* scatter list associated with the completed command, and finally
* clears the allocated bit associated with the completed command.
*
* @port Pointer to the port data structure.
* @tag Tag of the command.
* @data Pointer to driver_data.
* @status Completion status.
*
* return value
* None
*/
static void mtip_async_complete(struct mtip_port *port,
int tag,
void *data,
int status)
{
struct mtip_cmd *command;
struct driver_data *dd = data;
int cb_status = status ? -EIO : 0;
if (unlikely(!dd) || unlikely(!port))
return;
command = &port->commands[tag];
if (unlikely(status == PORT_IRQ_TF_ERR)) {
dev_warn(&port->dd->pdev->dev,
"Command tag %d failed due to TFE\n", tag);
}
/* Upper layer callback */
if (likely(command->async_callback))
command->async_callback(command->async_data, cb_status);
command->async_callback = NULL;
command->comp_func = NULL;
/* Unmap the DMA scatter list entries */
dma_unmap_sg(&dd->pdev->dev,
command->sg,
command->scatter_ents,
command->direction);
/* Clear the allocated and active bits for the command */
atomic_set(&port->commands[tag].active, 0);
release_slot(port, tag);
up(&port->cmd_slot);
}
/*
* Internal command completion callback function.
*
* This function is normally called by the driver ISR when an internal
* command completed. This function signals the command completion by
* calling complete().
*
* @port Pointer to the port data structure.
* @tag Tag of the command that has completed.
* @data Pointer to a completion structure.
* @status Completion status.
*
* return value
* None
*/
static void mtip_completion(struct mtip_port *port,
int tag,
void *data,
int status)
{
struct mtip_cmd *command = &port->commands[tag];
struct completion *waiting = data;
if (unlikely(status == PORT_IRQ_TF_ERR))
dev_warn(&port->dd->pdev->dev,
"Internal command %d completed with TFE\n", tag);
command->async_callback = NULL;
command->comp_func = NULL;
complete(waiting);
}
/*
* Helper function for tag logging
*/
static void print_tags(struct driver_data *dd,
char *msg,
unsigned long *tagbits)
{
unsigned int tag, count = 0;
for (tag = 0; tag < (dd->slot_groups) * 32; tag++) {
if (test_bit(tag, tagbits))
count++;
}
if (count)
dev_info(&dd->pdev->dev, "%s [%i tags]\n", msg, count);
}
/*
* Handle an error.
*
* @dd Pointer to the DRIVER_DATA structure.
*
* return value
* None
*/
static void mtip_handle_tfe(struct driver_data *dd)
{
int group, tag, bit, reissue;
struct mtip_port *port;
struct mtip_cmd *command;
u32 completed;
struct host_to_dev_fis *fis;
unsigned long tagaccum[SLOTBITS_IN_LONGS];
dev_warn(&dd->pdev->dev, "Taskfile error\n");
port = dd->port;
/* Stop the timer to prevent command timeouts. */
del_timer(&port->cmd_timer);
/* Set eh_active */
set_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags);
/* Loop through all the groups */
for (group = 0; group < dd->slot_groups; group++) {
completed = readl(port->completed[group]);
/* clear completed status register in the hardware.*/
writel(completed, port->completed[group]);
/* clear the tag accumulator */
memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long));
/* Process successfully completed commands */
for (bit = 0; bit < 32 && completed; bit++) {
if (!(completed & (1<<bit)))
continue;
tag = (group << 5) + bit;
/* Skip the internal command slot */
if (tag == MTIP_TAG_INTERNAL)
continue;
command = &port->commands[tag];
if (likely(command->comp_func)) {
set_bit(tag, tagaccum);
atomic_set(&port->commands[tag].active, 0);
command->comp_func(port,
tag,
command->comp_data,
0);
} else {
dev_err(&port->dd->pdev->dev,
"Missing completion func for tag %d",
tag);
if (mtip_check_surprise_removal(dd->pdev)) {
mtip_command_cleanup(dd);
/* don't proceed further */
return;
}
}
}
}
print_tags(dd, "TFE tags completed:", tagaccum);
/* Restart the port */
mdelay(20);
mtip_restart_port(port);
/* clear the tag accumulator */
memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long));
/* Loop through all the groups */
for (group = 0; group < dd->slot_groups; group++) {
for (bit = 0; bit < 32; bit++) {
reissue = 1;
tag = (group << 5) + bit;
/* If the active bit is set re-issue the command */
if (atomic_read(&port->commands[tag].active) == 0)
continue;
fis = (struct host_to_dev_fis *)
port->commands[tag].command;
/* Should re-issue? */
if (tag == MTIP_TAG_INTERNAL ||
fis->command == ATA_CMD_SET_FEATURES)
reissue = 0;
/*
* First check if this command has
* exceeded its retries.
*/
if (reissue &&
(port->commands[tag].retries-- > 0)) {
set_bit(tag, tagaccum);
/* Update the timeout value. */
port->commands[tag].comp_time =
jiffies + msecs_to_jiffies(
MTIP_NCQ_COMMAND_TIMEOUT_MS);
/* Re-issue the command. */
mtip_issue_ncq_command(port, tag);
continue;
}
/* Retire a command that will not be reissued */
dev_warn(&port->dd->pdev->dev,
"retiring tag %d\n", tag);
atomic_set(&port->commands[tag].active, 0);
if (port->commands[tag].comp_func)
port->commands[tag].comp_func(
port,
tag,
port->commands[tag].comp_data,
PORT_IRQ_TF_ERR);
else
dev_warn(&port->dd->pdev->dev,
"Bad completion for tag %d\n",
tag);
}
}
print_tags(dd, "TFE tags reissued:", tagaccum);
/* clear eh_active */
clear_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags);
wake_up_interruptible(&port->svc_wait);
mod_timer(&port->cmd_timer,
jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD));
}
/*
* Handle a set device bits interrupt
*/
static inline void mtip_process_sdbf(struct driver_data *dd)
{
struct mtip_port *port = dd->port;
int group, tag, bit;
u32 completed;
struct mtip_cmd *command;
/* walk all bits in all slot groups */
for (group = 0; group < dd->slot_groups; group++) {
completed = readl(port->completed[group]);
/* clear completed status register in the hardware.*/
writel(completed, port->completed[group]);
/* Process completed commands. */
for (bit = 0;
(bit < 32) && completed;
bit++, completed >>= 1) {
if (completed & 0x01) {
tag = (group << 5) | bit;
/* skip internal command slot. */
if (unlikely(tag == MTIP_TAG_INTERNAL))
continue;
command = &port->commands[tag];
/* make internal callback */
if (likely(command->comp_func)) {
command->comp_func(
port,
tag,
command->comp_data,
0);
} else {
dev_warn(&dd->pdev->dev,
"Null completion "
"for tag %d",
tag);
if (mtip_check_surprise_removal(
dd->pdev)) {
mtip_command_cleanup(dd);
return;
}
}
}
}
}
}
/*
* Process legacy pio and d2h interrupts
*/
static inline void mtip_process_legacy(struct driver_data *dd, u32 port_stat)
{
struct mtip_port *port = dd->port;
struct mtip_cmd *cmd = &port->commands[MTIP_TAG_INTERNAL];
if (test_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags) &&
(cmd != NULL) && !(readl(port->cmd_issue[MTIP_TAG_INTERNAL])
& (1 << MTIP_TAG_INTERNAL))) {
if (cmd->comp_func) {
cmd->comp_func(port,
MTIP_TAG_INTERNAL,
cmd->comp_data,
0);
return;
}
}
dev_warn(&dd->pdev->dev, "IRQ status 0x%x ignored.\n", port_stat);
return;
}
/*
* Demux and handle errors
*/
static inline void mtip_process_errors(struct driver_data *dd, u32 port_stat)
{
if (likely(port_stat & (PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR)))
mtip_handle_tfe(dd);
if (unlikely(port_stat & PORT_IRQ_CONNECT)) {
dev_warn(&dd->pdev->dev,
"Clearing PxSERR.DIAG.x\n");
writel((1 << 26), dd->port->mmio + PORT_SCR_ERR);
}
if (unlikely(port_stat & PORT_IRQ_PHYRDY)) {
dev_warn(&dd->pdev->dev,
"Clearing PxSERR.DIAG.n\n");
writel((1 << 16), dd->port->mmio + PORT_SCR_ERR);
}
if (unlikely(port_stat & ~PORT_IRQ_HANDLED)) {
dev_warn(&dd->pdev->dev,
"Port stat errors %x unhandled\n",
(port_stat & ~PORT_IRQ_HANDLED));
}
}
static inline irqreturn_t mtip_handle_irq(struct driver_data *data)
{
struct driver_data *dd = (struct driver_data *) data;
struct mtip_port *port = dd->port;
u32 hba_stat, port_stat;
int rv = IRQ_NONE;
hba_stat = readl(dd->mmio + HOST_IRQ_STAT);
if (hba_stat) {
rv = IRQ_HANDLED;
/* Acknowledge the interrupt status on the port.*/
port_stat = readl(port->mmio + PORT_IRQ_STAT);
writel(port_stat, port->mmio + PORT_IRQ_STAT);
/* Demux port status */
if (likely(port_stat & PORT_IRQ_SDB_FIS))
mtip_process_sdbf(dd);
if (unlikely(port_stat & PORT_IRQ_ERR)) {
if (unlikely(mtip_check_surprise_removal(dd->pdev))) {
mtip_command_cleanup(dd);
/* don't proceed further */
return IRQ_HANDLED;
}
mtip_process_errors(dd, port_stat & PORT_IRQ_ERR);
}
if (unlikely(port_stat & PORT_IRQ_LEGACY))
mtip_process_legacy(dd, port_stat & PORT_IRQ_LEGACY);
}
/* acknowledge interrupt */
writel(hba_stat, dd->mmio + HOST_IRQ_STAT);
return rv;
}
/*
* Wrapper for mtip_handle_irq
* (ignores return code)
*/
static void mtip_tasklet(unsigned long data)
{
mtip_handle_irq((struct driver_data *) data);
}
/*
* HBA interrupt subroutine.
*
* @irq IRQ number.
* @instance Pointer to the driver data structure.
*
* return value
* IRQ_HANDLED A HBA interrupt was pending and handled.
* IRQ_NONE This interrupt was not for the HBA.
*/
static irqreturn_t mtip_irq_handler(int irq, void *instance)
{
struct driver_data *dd = instance;
tasklet_schedule(&dd->tasklet);
return IRQ_HANDLED;
}
static void mtip_issue_non_ncq_command(struct mtip_port *port, int tag)
{
atomic_set(&port->commands[tag].active, 1);
writel(1 << MTIP_TAG_BIT(tag),
port->cmd_issue[MTIP_TAG_INDEX(tag)]);
}
/*
* Wait for port to quiesce
*
* @port Pointer to port data structure
* @timeout Max duration to wait (ms)
*
* return value
* 0 Success
* -EBUSY Commands still active
*/
static int mtip_quiesce_io(struct mtip_port *port, unsigned long timeout)
{
unsigned long to;
unsigned int n;
unsigned int active = 1;
to = jiffies + msecs_to_jiffies(timeout);
do {
if (test_bit(MTIP_FLAG_SVC_THD_ACTIVE_BIT, &port->flags) &&
test_bit(MTIP_FLAG_ISSUE_CMDS_BIT, &port->flags)) {
msleep(20);
continue; /* svc thd is actively issuing commands */
}
/*
* Ignore s_active bit 0 of array element 0.
* This bit will always be set
*/
active = readl(port->s_active[0]) & 0xFFFFFFFE;
for (n = 1; n < port->dd->slot_groups; n++)
active |= readl(port->s_active[n]);
if (!active)
break;
msleep(20);
} while (time_before(jiffies, to));
return active ? -EBUSY : 0;
}
/*
* Execute an internal command and wait for the completion.
*
* @port Pointer to the port data structure.
* @fis Pointer to the FIS that describes the command.
* @fis_len Length in WORDS of the FIS.
* @buffer DMA accessible for command data.
* @buf_len Length, in bytes, of the data buffer.
* @opts Command header options, excluding the FIS length
* and the number of PRD entries.
* @timeout Time in ms to wait for the command to complete.
*
* return value
* 0 Command completed successfully.
* -EFAULT The buffer address is not correctly aligned.
* -EBUSY Internal command or other IO in progress.
* -EAGAIN Time out waiting for command to complete.
*/
static int mtip_exec_internal_command(struct mtip_port *port,
void *fis,
int fis_len,
dma_addr_t buffer,
int buf_len,
u32 opts,
gfp_t atomic,
unsigned long timeout)
{
struct mtip_cmd_sg *command_sg;
DECLARE_COMPLETION_ONSTACK(wait);
int rv = 0;
struct mtip_cmd *int_cmd = &port->commands[MTIP_TAG_INTERNAL];
/* Make sure the buffer is 8 byte aligned. This is asic specific. */
if (buffer & 0x00000007) {
dev_err(&port->dd->pdev->dev,
"SG buffer is not 8 byte aligned\n");
return -EFAULT;
}
/* Only one internal command should be running at a time */
if (test_and_set_bit(MTIP_TAG_INTERNAL, port->allocated)) {
dev_warn(&port->dd->pdev->dev,
"Internal command already active\n");
return -EBUSY;
}
set_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags);
if (atomic == GFP_KERNEL) {
/* wait for io to complete if non atomic */
if (mtip_quiesce_io(port, 5000) < 0) {
dev_warn(&port->dd->pdev->dev,
"Failed to quiesce IO\n");
release_slot(port, MTIP_TAG_INTERNAL);
clear_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags);
wake_up_interruptible(&port->svc_wait);
return -EBUSY;
}
/* Set the completion function and data for the command. */
int_cmd->comp_data = &wait;
int_cmd->comp_func = mtip_completion;
} else {
/* Clear completion - we're going to poll */
int_cmd->comp_data = NULL;
int_cmd->comp_func = NULL;
}
/* Copy the command to the command table */
memcpy(int_cmd->command, fis, fis_len*4);
/* Populate the SG list */
int_cmd->command_header->opts =
__force_bit2int cpu_to_le32(opts | fis_len);
if (buf_len) {
command_sg = int_cmd->command + AHCI_CMD_TBL_HDR_SZ;
command_sg->info =
__force_bit2int cpu_to_le32((buf_len-1) & 0x3FFFFF);
command_sg->dba =
__force_bit2int cpu_to_le32(buffer & 0xFFFFFFFF);
command_sg->dba_upper =
__force_bit2int cpu_to_le32((buffer >> 16) >> 16);
int_cmd->command_header->opts |=
__force_bit2int cpu_to_le32((1 << 16));
}
/* Populate the command header */
int_cmd->command_header->byte_count = 0;
/* Issue the command to the hardware */
mtip_issue_non_ncq_command(port, MTIP_TAG_INTERNAL);
/* Poll if atomic, wait_for_completion otherwise */
if (atomic == GFP_KERNEL) {
/* Wait for the command to complete or timeout. */
if (wait_for_completion_timeout(
&wait,
msecs_to_jiffies(timeout)) == 0) {
dev_err(&port->dd->pdev->dev,
"Internal command did not complete [%d] "
"within timeout of %lu ms\n",
atomic, timeout);
rv = -EAGAIN;
}
if (readl(port->cmd_issue[MTIP_TAG_INTERNAL])
& (1 << MTIP_TAG_INTERNAL)) {
dev_warn(&port->dd->pdev->dev,
"Retiring internal command but CI is 1.\n");
}
} else {
/* Spin for <timeout> checking if command still outstanding */
timeout = jiffies + msecs_to_jiffies(timeout);
while ((readl(
port->cmd_issue[MTIP_TAG_INTERNAL])
& (1 << MTIP_TAG_INTERNAL))
&& time_before(jiffies, timeout))
;
if (readl(port->cmd_issue[MTIP_TAG_INTERNAL])
& (1 << MTIP_TAG_INTERNAL)) {
dev_err(&port->dd->pdev->dev,
"Internal command did not complete [%d]\n",
atomic);
rv = -EAGAIN;
}
}
/* Clear the allocated and active bits for the internal command. */
atomic_set(&int_cmd->active, 0);
release_slot(port, MTIP_TAG_INTERNAL);
clear_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags);
wake_up_interruptible(&port->svc_wait);
return rv;
}
/*
* Byte-swap ATA ID strings.
*
* ATA identify data contains strings in byte-swapped 16-bit words.
* They must be swapped (on all architectures) to be usable as C strings.
* This function swaps bytes in-place.
*
* @buf The buffer location of the string
* @len The number of bytes to swap
*
* return value
* None
*/
static inline void ata_swap_string(u16 *buf, unsigned int len)
{
int i;
for (i = 0; i < (len/2); i++)
be16_to_cpus(&buf[i]);
}
/*
* Request the device identity information.
*
* If a user space buffer is not specified, i.e. is NULL, the
* identify information is still read from the drive and placed
* into the identify data buffer (@e port->identify) in the
* port data structure.
* When the identify buffer contains valid identify information @e
* port->identify_valid is non-zero.
*
* @port Pointer to the port structure.
* @user_buffer A user space buffer where the identify data should be
* copied.
*
* return value
* 0 Command completed successfully.
* -EFAULT An error occurred while coping data to the user buffer.
* -1 Command failed.
*/
static int mtip_get_identify(struct mtip_port *port, void __user *user_buffer)
{
int rv = 0;
struct host_to_dev_fis fis;
/* Build the FIS. */
memset(&fis, 0, sizeof(struct host_to_dev_fis));
fis.type = 0x27;
fis.opts = 1 << 7;
fis.command = ATA_CMD_ID_ATA;
/* Set the identify information as invalid. */
port->identify_valid = 0;
/* Clear the identify information. */
memset(port->identify, 0, sizeof(u16) * ATA_ID_WORDS);
/* Execute the command. */
if (mtip_exec_internal_command(port,
&fis,
5,
port->identify_dma,
sizeof(u16) * ATA_ID_WORDS,
0,
GFP_KERNEL,
MTIP_INTERNAL_COMMAND_TIMEOUT_MS)
< 0) {
rv = -1;
goto out;
}
/*
* Perform any necessary byte-swapping. Yes, the kernel does in fact
* perform field-sensitive swapping on the string fields.
* See the kernel use of ata_id_string() for proof of this.
*/
#ifdef __LITTLE_ENDIAN
ata_swap_string(port->identify + 27, 40); /* model string*/
ata_swap_string(port->identify + 23, 8); /* firmware string*/
ata_swap_string(port->identify + 10, 20); /* serial# string*/
#else
{
int i;
for (i = 0; i < ATA_ID_WORDS; i++)
port->identify[i] = le16_to_cpu(port->identify[i]);
}
#endif
/* Set the identify buffer as valid. */
port->identify_valid = 1;
if (user_buffer) {
if (copy_to_user(
user_buffer,
port->identify,
ATA_ID_WORDS * sizeof(u16))) {
rv = -EFAULT;
goto out;
}
}
out:
return rv;
}
/*
* Issue a standby immediate command to the device.
*
* @port Pointer to the port structure.
*
* return value
* 0 Command was executed successfully.
* -1 An error occurred while executing the command.
*/
static int mtip_standby_immediate(struct mtip_port *port)
{
int rv;
struct host_to_dev_fis fis;
/* Build the FIS. */
memset(&fis, 0, sizeof(struct host_to_dev_fis));
fis.type = 0x27;
fis.opts = 1 << 7;
fis.command = ATA_CMD_STANDBYNOW1;
/* Execute the command. Use a 15-second timeout for large drives. */
rv = mtip_exec_internal_command(port,
&fis,
5,
0,
0,
0,
GFP_KERNEL,
15000);
return rv;
}
/*
* Get the drive capacity.
*
* @dd Pointer to the device data structure.
* @sectors Pointer to the variable that will receive the sector count.
*
* return value
* 1 Capacity was returned successfully.
* 0 The identify information is invalid.
*/
static bool mtip_hw_get_capacity(struct driver_data *dd, sector_t *sectors)
{
struct mtip_port *port = dd->port;
u64 total, raw0, raw1, raw2, raw3;
raw0 = port->identify[100];
raw1 = port->identify[101];
raw2 = port->identify[102];
raw3 = port->identify[103];
total = raw0 | raw1<<16 | raw2<<32 | raw3<<48;
*sectors = total;
return (bool) !!port->identify_valid;
}
/*
* Reset the HBA.
*
* Resets the HBA by setting the HBA Reset bit in the Global
* HBA Control register. After setting the HBA Reset bit the
* function waits for 1 second before reading the HBA Reset
* bit to make sure it has cleared. If HBA Reset is not clear
* an error is returned. Cannot be used in non-blockable
* context.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 The reset was successful.
* -1 The HBA Reset bit did not clear.
*/
static int mtip_hba_reset(struct driver_data *dd)
{
mtip_deinit_port(dd->port);
/* Set the reset bit */
writel(HOST_RESET, dd->mmio + HOST_CTL);
/* Flush */
readl(dd->mmio + HOST_CTL);
/* Wait for reset to clear */
ssleep(1);
/* Check the bit has cleared */
if (readl(dd->mmio + HOST_CTL) & HOST_RESET) {
dev_err(&dd->pdev->dev,
"Reset bit did not clear.\n");
return -1;
}
return 0;
}
/*
* Display the identify command data.
*
* @port Pointer to the port data structure.
*
* return value
* None
*/
static void mtip_dump_identify(struct mtip_port *port)
{
sector_t sectors;
unsigned short revid;
char cbuf[42];
if (!port->identify_valid)
return;
strlcpy(cbuf, (char *)(port->identify+10), 21);
dev_info(&port->dd->pdev->dev,
"Serial No.: %s\n", cbuf);
strlcpy(cbuf, (char *)(port->identify+23), 9);
dev_info(&port->dd->pdev->dev,
"Firmware Ver.: %s\n", cbuf);
strlcpy(cbuf, (char *)(port->identify+27), 41);
dev_info(&port->dd->pdev->dev, "Model: %s\n", cbuf);
if (mtip_hw_get_capacity(port->dd, &sectors))
dev_info(&port->dd->pdev->dev,
"Capacity: %llu sectors (%llu MB)\n",
(u64)sectors,
((u64)sectors) * ATA_SECT_SIZE >> 20);
pci_read_config_word(port->dd->pdev, PCI_REVISION_ID, &revid);
switch (revid & 0xFF) {
case 0x1:
strlcpy(cbuf, "A0", 3);
break;
case 0x3:
strlcpy(cbuf, "A2", 3);
break;
default:
strlcpy(cbuf, "?", 2);
break;
}
dev_info(&port->dd->pdev->dev,
"Card Type: %s\n", cbuf);
}
/*
* Map the commands scatter list into the command table.
*
* @command Pointer to the command.
* @nents Number of scatter list entries.
*
* return value
* None
*/
static inline void fill_command_sg(struct driver_data *dd,
struct mtip_cmd *command,
int nents)
{
int n;
unsigned int dma_len;
struct mtip_cmd_sg *command_sg;
struct scatterlist *sg = command->sg;
command_sg = command->command + AHCI_CMD_TBL_HDR_SZ;
for (n = 0; n < nents; n++) {
dma_len = sg_dma_len(sg);
if (dma_len > 0x400000)
dev_err(&dd->pdev->dev,
"DMA segment length truncated\n");
command_sg->info = __force_bit2int
cpu_to_le32((dma_len-1) & 0x3FFFFF);
command_sg->dba = __force_bit2int
cpu_to_le32(sg_dma_address(sg));
command_sg->dba_upper = __force_bit2int
cpu_to_le32((sg_dma_address(sg) >> 16) >> 16);
command_sg++;
sg++;
}
}
/*
* @brief Execute a drive command.
*
* return value 0 The command completed successfully.
* return value -1 An error occurred while executing the command.
*/
static int exec_drive_task(struct mtip_port *port, u8 *command)
{
struct host_to_dev_fis fis;
struct host_to_dev_fis *reply = (port->rxfis + RX_FIS_D2H_REG);
/* Build the FIS. */
memset(&fis, 0, sizeof(struct host_to_dev_fis));
fis.type = 0x27;
fis.opts = 1 << 7;
fis.command = command[0];
fis.features = command[1];
fis.sect_count = command[2];
fis.sector = command[3];
fis.cyl_low = command[4];
fis.cyl_hi = command[5];
fis.device = command[6] & ~0x10; /* Clear the dev bit*/
dbg_printk(MTIP_DRV_NAME "%s: User Command: cmd %x, feat %x, "
"nsect %x, sect %x, lcyl %x, "
"hcyl %x, sel %x\n",
__func__,
command[0],
command[1],
command[2],
command[3],
command[4],
command[5],
command[6]);
/* Execute the command. */
if (mtip_exec_internal_command(port,
&fis,
5,
0,
0,
0,
GFP_KERNEL,
MTIP_IOCTL_COMMAND_TIMEOUT_MS) < 0) {
return -1;
}
command[0] = reply->command; /* Status*/
command[1] = reply->features; /* Error*/
command[4] = reply->cyl_low;
command[5] = reply->cyl_hi;
dbg_printk(MTIP_DRV_NAME "%s: Completion Status: stat %x, "
"err %x , cyl_lo %x cyl_hi %x\n",
__func__,
command[0],
command[1],
command[4],
command[5]);
return 0;
}
/*
* @brief Execute a drive command.
*
* @param port Pointer to the port data structure.
* @param command Pointer to the user specified command parameters.
* @param user_buffer Pointer to the user space buffer where read sector
* data should be copied.
*
* return value 0 The command completed successfully.
* return value -EFAULT An error occurred while copying the completion
* data to the user space buffer.
* return value -1 An error occurred while executing the command.
*/
static int exec_drive_command(struct mtip_port *port, u8 *command,
void __user *user_buffer)
{
struct host_to_dev_fis fis;
struct host_to_dev_fis *reply = (port->rxfis + RX_FIS_D2H_REG);
/* Build the FIS. */
memset(&fis, 0, sizeof(struct host_to_dev_fis));
fis.type = 0x27;
fis.opts = 1 << 7;
fis.command = command[0];
fis.features = command[2];
fis.sect_count = command[3];
if (fis.command == ATA_CMD_SMART) {
fis.sector = command[1];
fis.cyl_low = 0x4F;
fis.cyl_hi = 0xC2;
}
dbg_printk(MTIP_DRV_NAME
"%s: User Command: cmd %x, sect %x, "
"feat %x, sectcnt %x\n",
__func__,
command[0],
command[1],
command[2],
command[3]);
memset(port->sector_buffer, 0x00, ATA_SECT_SIZE);
/* Execute the command. */
if (mtip_exec_internal_command(port,
&fis,
5,
port->sector_buffer_dma,
(command[3] != 0) ? ATA_SECT_SIZE : 0,
0,
GFP_KERNEL,
MTIP_IOCTL_COMMAND_TIMEOUT_MS)
< 0) {
return -1;
}
/* Collect the completion status. */
command[0] = reply->command; /* Status*/
command[1] = reply->features; /* Error*/
command[2] = command[3];
dbg_printk(MTIP_DRV_NAME
"%s: Completion Status: stat %x, "
"err %x, cmd %x\n",
__func__,
command[0],
command[1],
command[2]);
if (user_buffer && command[3]) {
if (copy_to_user(user_buffer,
port->sector_buffer,
ATA_SECT_SIZE * command[3])) {
return -EFAULT;
}
}
return 0;
}
/*
* Indicates whether a command has a single sector payload.
*
* @command passed to the device to perform the certain event.
* @features passed to the device to perform the certain event.
*
* return value
* 1 command is one that always has a single sector payload,
* regardless of the value in the Sector Count field.
* 0 otherwise
*
*/
static unsigned int implicit_sector(unsigned char command,
unsigned char features)
{
unsigned int rv = 0;
/* list of commands that have an implicit sector count of 1 */
switch (command) {
case ATA_CMD_SEC_SET_PASS:
case ATA_CMD_SEC_UNLOCK:
case ATA_CMD_SEC_ERASE_PREP:
case ATA_CMD_SEC_ERASE_UNIT:
case ATA_CMD_SEC_FREEZE_LOCK:
case ATA_CMD_SEC_DISABLE_PASS:
case ATA_CMD_PMP_READ:
case ATA_CMD_PMP_WRITE:
rv = 1;
break;
case ATA_CMD_SET_MAX:
if (features == ATA_SET_MAX_UNLOCK)
rv = 1;
break;
case ATA_CMD_SMART:
if ((features == ATA_SMART_READ_VALUES) ||
(features == ATA_SMART_READ_THRESHOLDS))
rv = 1;
break;
case ATA_CMD_CONF_OVERLAY:
if ((features == ATA_DCO_IDENTIFY) ||
(features == ATA_DCO_SET))
rv = 1;
break;
}
return rv;
}
/*
* Executes a taskfile
* See ide_taskfile_ioctl() for derivation
*/
static int exec_drive_taskfile(struct driver_data *dd,
void __user *buf,
ide_task_request_t *req_task,
int outtotal)
{
struct host_to_dev_fis fis;
struct host_to_dev_fis *reply;
u8 *outbuf = NULL;
u8 *inbuf = NULL;
dma_addr_t outbuf_dma = 0;
dma_addr_t inbuf_dma = 0;
dma_addr_t dma_buffer = 0;
int err = 0;
unsigned int taskin = 0;
unsigned int taskout = 0;
u8 nsect = 0;
unsigned int timeout = MTIP_IOCTL_COMMAND_TIMEOUT_MS;
unsigned int force_single_sector;
unsigned int transfer_size;
unsigned long task_file_data;
int intotal = outtotal + req_task->out_size;
taskout = req_task->out_size;
taskin = req_task->in_size;
/* 130560 = 512 * 0xFF*/
if (taskin > 130560 || taskout > 130560) {
err = -EINVAL;
goto abort;
}
if (taskout) {
outbuf = kzalloc(taskout, GFP_KERNEL);
if (outbuf == NULL) {
err = -ENOMEM;
goto abort;
}
if (copy_from_user(outbuf, buf + outtotal, taskout)) {
err = -EFAULT;
goto abort;
}
outbuf_dma = pci_map_single(dd->pdev,
outbuf,
taskout,
DMA_TO_DEVICE);
if (outbuf_dma == 0) {
err = -ENOMEM;
goto abort;
}
dma_buffer = outbuf_dma;
}
if (taskin) {
inbuf = kzalloc(taskin, GFP_KERNEL);
if (inbuf == NULL) {
err = -ENOMEM;
goto abort;
}
if (copy_from_user(inbuf, buf + intotal, taskin)) {
err = -EFAULT;
goto abort;
}
inbuf_dma = pci_map_single(dd->pdev,
inbuf,
taskin, DMA_FROM_DEVICE);
if (inbuf_dma == 0) {
err = -ENOMEM;
goto abort;
}
dma_buffer = inbuf_dma;
}
/* only supports PIO and non-data commands from this ioctl. */
switch (req_task->data_phase) {
case TASKFILE_OUT:
nsect = taskout / ATA_SECT_SIZE;
reply = (dd->port->rxfis + RX_FIS_PIO_SETUP);
break;
case TASKFILE_IN:
reply = (dd->port->rxfis + RX_FIS_PIO_SETUP);
break;
case TASKFILE_NO_DATA:
reply = (dd->port->rxfis + RX_FIS_D2H_REG);
break;
default:
err = -EINVAL;
goto abort;
}
/* Build the FIS. */
memset(&fis, 0, sizeof(struct host_to_dev_fis));
fis.type = 0x27;
fis.opts = 1 << 7;
fis.command = req_task->io_ports[7];
fis.features = req_task->io_ports[1];
fis.sect_count = req_task->io_ports[2];
fis.lba_low = req_task->io_ports[3];
fis.lba_mid = req_task->io_ports[4];
fis.lba_hi = req_task->io_ports[5];
/* Clear the dev bit*/
fis.device = req_task->io_ports[6] & ~0x10;
if ((req_task->in_flags.all == 0) && (req_task->out_flags.all & 1)) {
req_task->in_flags.all =
IDE_TASKFILE_STD_IN_FLAGS |
(IDE_HOB_STD_IN_FLAGS << 8);
fis.lba_low_ex = req_task->hob_ports[3];
fis.lba_mid_ex = req_task->hob_ports[4];
fis.lba_hi_ex = req_task->hob_ports[5];
fis.features_ex = req_task->hob_ports[1];
fis.sect_cnt_ex = req_task->hob_ports[2];
} else {
req_task->in_flags.all = IDE_TASKFILE_STD_IN_FLAGS;
}
force_single_sector = implicit_sector(fis.command, fis.features);
if ((taskin || taskout) && (!fis.sect_count)) {
if (nsect)
fis.sect_count = nsect;
else {
if (!force_single_sector) {
dev_warn(&dd->pdev->dev,
"data movement but "
"sect_count is 0\n");
err = -EINVAL;
goto abort;
}
}
}
dbg_printk(MTIP_DRV_NAME
"taskfile: cmd %x, feat %x, nsect %x,"
" sect/lbal %x, lcyl/lbam %x, hcyl/lbah %x,"
" head/dev %x\n",
fis.command,
fis.features,
fis.sect_count,
fis.lba_low,
fis.lba_mid,
fis.lba_hi,
fis.device);
switch (fis.command) {
case ATA_CMD_DOWNLOAD_MICRO:
/* Change timeout for Download Microcode to 60 seconds.*/
timeout = 60000;
break;
case ATA_CMD_SEC_ERASE_UNIT:
/* Change timeout for Security Erase Unit to 4 minutes.*/
timeout = 240000;
break;
case ATA_CMD_STANDBYNOW1:
/* Change timeout for standby immediate to 10 seconds.*/
timeout = 10000;
break;
case 0xF7:
case 0xFA:
/* Change timeout for vendor unique command to 10 secs */
timeout = 10000;
break;
case ATA_CMD_SMART:
/* Change timeout for vendor unique command to 10 secs */
timeout = 10000;
break;
default:
timeout = MTIP_IOCTL_COMMAND_TIMEOUT_MS;
break;
}
/* Determine the correct transfer size.*/
if (force_single_sector)
transfer_size = ATA_SECT_SIZE;
else
transfer_size = ATA_SECT_SIZE * fis.sect_count;
/* Execute the command.*/
if (mtip_exec_internal_command(dd->port,
&fis,
5,
dma_buffer,
transfer_size,
0,
GFP_KERNEL,
timeout) < 0) {
err = -EIO;
goto abort;
}
task_file_data = readl(dd->port->mmio+PORT_TFDATA);
if ((req_task->data_phase == TASKFILE_IN) && !(task_file_data & 1)) {
reply = dd->port->rxfis + RX_FIS_PIO_SETUP;
req_task->io_ports[7] = reply->control;
} else {
reply = dd->port->rxfis + RX_FIS_D2H_REG;
req_task->io_ports[7] = reply->command;
}
/* reclaim the DMA buffers.*/
if (inbuf_dma)
pci_unmap_single(dd->pdev, inbuf_dma,
taskin, DMA_FROM_DEVICE);
if (outbuf_dma)
pci_unmap_single(dd->pdev, outbuf_dma,
taskout, DMA_TO_DEVICE);
inbuf_dma = 0;
outbuf_dma = 0;
/* return the ATA registers to the caller.*/
req_task->io_ports[1] = reply->features;
req_task->io_ports[2] = reply->sect_count;
req_task->io_ports[3] = reply->lba_low;
req_task->io_ports[4] = reply->lba_mid;
req_task->io_ports[5] = reply->lba_hi;
req_task->io_ports[6] = reply->device;
if (req_task->out_flags.all & 1) {
req_task->hob_ports[3] = reply->lba_low_ex;
req_task->hob_ports[4] = reply->lba_mid_ex;
req_task->hob_ports[5] = reply->lba_hi_ex;
req_task->hob_ports[1] = reply->features_ex;
req_task->hob_ports[2] = reply->sect_cnt_ex;
}
/* Com rest after secure erase or lowlevel format */
if (((fis.command == ATA_CMD_SEC_ERASE_UNIT) ||
((fis.command == 0xFC) &&
(fis.features == 0x27 || fis.features == 0x72 ||
fis.features == 0x62 || fis.features == 0x26))) &&
!(reply->command & 1)) {
mtip_restart_port(dd->port);
}
dbg_printk(MTIP_DRV_NAME
"%s: Completion: stat %x,"
"err %x, sect_cnt %x, lbalo %x,"
"lbamid %x, lbahi %x, dev %x\n",
__func__,
req_task->io_ports[7],
req_task->io_ports[1],
req_task->io_ports[2],
req_task->io_ports[3],
req_task->io_ports[4],
req_task->io_ports[5],
req_task->io_ports[6]);
if (taskout) {
if (copy_to_user(buf + outtotal, outbuf, taskout)) {
err = -EFAULT;
goto abort;
}
}
if (taskin) {
if (copy_to_user(buf + intotal, inbuf, taskin)) {
err = -EFAULT;
goto abort;
}
}
abort:
if (inbuf_dma)
pci_unmap_single(dd->pdev, inbuf_dma,
taskin, DMA_FROM_DEVICE);
if (outbuf_dma)
pci_unmap_single(dd->pdev, outbuf_dma,
taskout, DMA_TO_DEVICE);
kfree(outbuf);
kfree(inbuf);
return err;
}
/*
* Handle IOCTL calls from the Block Layer.
*
* This function is called by the Block Layer when it receives an IOCTL
* command that it does not understand. If the IOCTL command is not supported
* this function returns -ENOTTY.
*
* @dd Pointer to the driver data structure.
* @cmd IOCTL command passed from the Block Layer.
* @arg IOCTL argument passed from the Block Layer.
*
* return value
* 0 The IOCTL completed successfully.
* -ENOTTY The specified command is not supported.
* -EFAULT An error occurred copying data to a user space buffer.
* -EIO An error occurred while executing the command.
*/
static int mtip_hw_ioctl(struct driver_data *dd, unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case HDIO_GET_IDENTITY:
if (mtip_get_identify(dd->port, (void __user *) arg) < 0) {
dev_warn(&dd->pdev->dev,
"Unable to read identity\n");
return -EIO;
}
break;
case HDIO_DRIVE_CMD:
{
u8 drive_command[4];
/* Copy the user command info to our buffer. */
if (copy_from_user(drive_command,
(void __user *) arg,
sizeof(drive_command)))
return -EFAULT;
/* Execute the drive command. */
if (exec_drive_command(dd->port,
drive_command,
(void __user *) (arg+4)))
return -EIO;
/* Copy the status back to the users buffer. */
if (copy_to_user((void __user *) arg,
drive_command,
sizeof(drive_command)))
return -EFAULT;
break;
}
case HDIO_DRIVE_TASK:
{
u8 drive_command[7];
/* Copy the user command info to our buffer. */
if (copy_from_user(drive_command,
(void __user *) arg,
sizeof(drive_command)))
return -EFAULT;
/* Execute the drive command. */
if (exec_drive_task(dd->port, drive_command))
return -EIO;
/* Copy the status back to the users buffer. */
if (copy_to_user((void __user *) arg,
drive_command,
sizeof(drive_command)))
return -EFAULT;
break;
}
case HDIO_DRIVE_TASKFILE: {
ide_task_request_t req_task;
int ret, outtotal;
if (copy_from_user(&req_task, (void __user *) arg,
sizeof(req_task)))
return -EFAULT;
outtotal = sizeof(req_task);
ret = exec_drive_taskfile(dd, (void __user *) arg,
&req_task, outtotal);
if (copy_to_user((void __user *) arg, &req_task,
sizeof(req_task)))
return -EFAULT;
return ret;
}
default:
return -EINVAL;
}
return 0;
}
/*
* Submit an IO to the hw
*
* This function is called by the block layer to issue an io
* to the device. Upon completion, the callback function will
* be called with the data parameter passed as the callback data.
*
* @dd Pointer to the driver data structure.
* @start First sector to read.
* @nsect Number of sectors to read.
* @nents Number of entries in scatter list for the read command.
* @tag The tag of this read command.
* @callback Pointer to the function that should be called
* when the read completes.
* @data Callback data passed to the callback function
* when the read completes.
* @barrier If non-zero, this command must be completed before
* issuing any other commands.
* @dir Direction (read or write)
*
* return value
* None
*/
static void mtip_hw_submit_io(struct driver_data *dd, sector_t start,
int nsect, int nents, int tag, void *callback,
void *data, int barrier, int dir)
{
struct host_to_dev_fis *fis;
struct mtip_port *port = dd->port;
struct mtip_cmd *command = &port->commands[tag];
/* Map the scatter list for DMA access */
if (dir == READ)
nents = dma_map_sg(&dd->pdev->dev, command->sg,
nents, DMA_FROM_DEVICE);
else
nents = dma_map_sg(&dd->pdev->dev, command->sg,
nents, DMA_TO_DEVICE);
command->scatter_ents = nents;
/*
* The number of retries for this command before it is
* reported as a failure to the upper layers.
*/
command->retries = MTIP_MAX_RETRIES;
/* Fill out fis */
fis = command->command;
fis->type = 0x27;
fis->opts = 1 << 7;
fis->command =
(dir == READ ? ATA_CMD_FPDMA_READ : ATA_CMD_FPDMA_WRITE);
*((unsigned int *) &fis->lba_low) = (start & 0xFFFFFF);
*((unsigned int *) &fis->lba_low_ex) = ((start >> 24) & 0xFFFFFF);
fis->device = 1 << 6;
if (barrier)
fis->device |= FUA_BIT;
fis->features = nsect & 0xFF;
fis->features_ex = (nsect >> 8) & 0xFF;
fis->sect_count = ((tag << 3) | (tag >> 5));
fis->sect_cnt_ex = 0;
fis->control = 0;
fis->res2 = 0;
fis->res3 = 0;
fill_command_sg(dd, command, nents);
/* Populate the command header */
command->command_header->opts =
__force_bit2int cpu_to_le32(
(nents << 16) | 5 | AHCI_CMD_PREFETCH);
command->command_header->byte_count = 0;
/*
* Set the completion function and data for the command
* within this layer.
*/
command->comp_data = dd;
command->comp_func = mtip_async_complete;
command->direction = (dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
/*
* Set the completion function and data for the command passed
* from the upper layer.
*/
command->async_data = data;
command->async_callback = callback;
/*
* To prevent this command from being issued
* if an internal command is in progress or error handling is active.
*/
if (unlikely(test_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags) ||
test_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags))) {
set_bit(tag, port->cmds_to_issue);
set_bit(MTIP_FLAG_ISSUE_CMDS_BIT, &port->flags);
return;
}
/* Issue the command to the hardware */
mtip_issue_ncq_command(port, tag);
/* Set the command's timeout value.*/
port->commands[tag].comp_time = jiffies + msecs_to_jiffies(
MTIP_NCQ_COMMAND_TIMEOUT_MS);
}
/*
* Release a command slot.
*
* @dd Pointer to the driver data structure.
* @tag Slot tag
*
* return value
* None
*/
static void mtip_hw_release_scatterlist(struct driver_data *dd, int tag)
{
release_slot(dd->port, tag);
}
/*
* Obtain a command slot and return its associated scatter list.
*
* @dd Pointer to the driver data structure.
* @tag Pointer to an int that will receive the allocated command
* slot tag.
*
* return value
* Pointer to the scatter list for the allocated command slot
* or NULL if no command slots are available.
*/
static struct scatterlist *mtip_hw_get_scatterlist(struct driver_data *dd,
int *tag)
{
/*
* It is possible that, even with this semaphore, a thread
* may think that no command slots are available. Therefore, we
* need to make an attempt to get_slot().
*/
down(&dd->port->cmd_slot);
*tag = get_slot(dd->port);
if (unlikely(*tag < 0))
return NULL;
return dd->port->commands[*tag].sg;
}
/*
* Sysfs register/status dump.
*
* @dev Pointer to the device structure, passed by the kernrel.
* @attr Pointer to the device_attribute structure passed by the kernel.
* @buf Pointer to the char buffer that will receive the stats info.
*
* return value
* The size, in bytes, of the data copied into buf.
*/
static ssize_t hw_show_registers(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u32 group_allocated;
struct driver_data *dd = dev_to_disk(dev)->private_data;
int size = 0;
int n;
size += sprintf(&buf[size], "%s:\ns_active:\n", __func__);
for (n = 0; n < dd->slot_groups; n++)
size += sprintf(&buf[size], "0x%08x\n",
readl(dd->port->s_active[n]));
size += sprintf(&buf[size], "Command Issue:\n");
for (n = 0; n < dd->slot_groups; n++)
size += sprintf(&buf[size], "0x%08x\n",
readl(dd->port->cmd_issue[n]));
size += sprintf(&buf[size], "Allocated:\n");
for (n = 0; n < dd->slot_groups; n++) {
if (sizeof(long) > sizeof(u32))
group_allocated =
dd->port->allocated[n/2] >> (32*(n&1));
else
group_allocated = dd->port->allocated[n];
size += sprintf(&buf[size], "0x%08x\n",
group_allocated);
}
size += sprintf(&buf[size], "completed:\n");
for (n = 0; n < dd->slot_groups; n++)
size += sprintf(&buf[size], "0x%08x\n",
readl(dd->port->completed[n]));
size += sprintf(&buf[size], "PORT_IRQ_STAT 0x%08x\n",
readl(dd->port->mmio + PORT_IRQ_STAT));
size += sprintf(&buf[size], "HOST_IRQ_STAT 0x%08x\n",
readl(dd->mmio + HOST_IRQ_STAT));
return size;
}
static DEVICE_ATTR(registers, S_IRUGO, hw_show_registers, NULL);
/*
* Create the sysfs related attributes.
*
* @dd Pointer to the driver data structure.
* @kobj Pointer to the kobj for the block device.
*
* return value
* 0 Operation completed successfully.
* -EINVAL Invalid parameter.
*/
static int mtip_hw_sysfs_init(struct driver_data *dd, struct kobject *kobj)
{
if (!kobj || !dd)
return -EINVAL;
if (sysfs_create_file(kobj, &dev_attr_registers.attr))
dev_warn(&dd->pdev->dev,
"Error creating registers sysfs entry\n");
return 0;
}
/*
* Remove the sysfs related attributes.
*
* @dd Pointer to the driver data structure.
* @kobj Pointer to the kobj for the block device.
*
* return value
* 0 Operation completed successfully.
* -EINVAL Invalid parameter.
*/
static int mtip_hw_sysfs_exit(struct driver_data *dd, struct kobject *kobj)
{
if (!kobj || !dd)
return -EINVAL;
sysfs_remove_file(kobj, &dev_attr_registers.attr);
return 0;
}
/*
* Perform any init/resume time hardware setup
*
* @dd Pointer to the driver data structure.
*
* return value
* None
*/
static inline void hba_setup(struct driver_data *dd)
{
u32 hwdata;
hwdata = readl(dd->mmio + HOST_HSORG);
/* interrupt bug workaround: use only 1 IS bit.*/
writel(hwdata |
HSORG_DISABLE_SLOTGRP_INTR |
HSORG_DISABLE_SLOTGRP_PXIS,
dd->mmio + HOST_HSORG);
}
/*
* Detect the details of the product, and store anything needed
* into the driver data structure. This includes product type and
* version and number of slot groups.
*
* @dd Pointer to the driver data structure.
*
* return value
* None
*/
static void mtip_detect_product(struct driver_data *dd)
{
u32 hwdata;
unsigned int rev, slotgroups;
/*
* HBA base + 0xFC [15:0] - vendor-specific hardware interface
* info register:
* [15:8] hardware/software interface rev#
* [ 3] asic-style interface
* [ 2:0] number of slot groups, minus 1 (only valid for asic-style).
*/
hwdata = readl(dd->mmio + HOST_HSORG);
dd->product_type = MTIP_PRODUCT_UNKNOWN;
dd->slot_groups = 1;
if (hwdata & 0x8) {
dd->product_type = MTIP_PRODUCT_ASICFPGA;
rev = (hwdata & HSORG_HWREV) >> 8;
slotgroups = (hwdata & HSORG_SLOTGROUPS) + 1;
dev_info(&dd->pdev->dev,
"ASIC-FPGA design, HS rev 0x%x, "
"%i slot groups [%i slots]\n",
rev,
slotgroups,
slotgroups * 32);
if (slotgroups > MTIP_MAX_SLOT_GROUPS) {
dev_warn(&dd->pdev->dev,
"Warning: driver only supports "
"%i slot groups.\n", MTIP_MAX_SLOT_GROUPS);
slotgroups = MTIP_MAX_SLOT_GROUPS;
}
dd->slot_groups = slotgroups;
return;
}
dev_warn(&dd->pdev->dev, "Unrecognized product id\n");
}
/*
* Blocking wait for FTL rebuild to complete
*
* @dd Pointer to the DRIVER_DATA structure.
*
* return value
* 0 FTL rebuild completed successfully
* -EFAULT FTL rebuild error/timeout/interruption
*/
static int mtip_ftl_rebuild_poll(struct driver_data *dd)
{
unsigned long timeout, cnt = 0, start;
dev_warn(&dd->pdev->dev,
"FTL rebuild in progress. Polling for completion.\n");
start = jiffies;
dd->ftlrebuildflag = 1;
timeout = jiffies + msecs_to_jiffies(MTIP_FTL_REBUILD_TIMEOUT_MS);
do {
if (mtip_check_surprise_removal(dd->pdev))
return -EFAULT;
if (mtip_get_identify(dd->port, NULL) < 0)
return -EFAULT;
if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) ==
MTIP_FTL_REBUILD_MAGIC) {
ssleep(1);
/* Print message every 3 minutes */
if (cnt++ >= 180) {
dev_warn(&dd->pdev->dev,
"FTL rebuild in progress (%d secs).\n",
jiffies_to_msecs(jiffies - start) / 1000);
cnt = 0;
}
} else {
dev_warn(&dd->pdev->dev,
"FTL rebuild complete (%d secs).\n",
jiffies_to_msecs(jiffies - start) / 1000);
dd->ftlrebuildflag = 0;
mtip_block_initialize(dd);
break;
}
ssleep(10);
} while (time_before(jiffies, timeout));
/* Check for timeout */
if (dd->ftlrebuildflag) {
dev_err(&dd->pdev->dev,
"Timed out waiting for FTL rebuild to complete (%d secs).\n",
jiffies_to_msecs(jiffies - start) / 1000);
return -EFAULT;
}
return 0;
}
/*
* service thread to issue queued commands
*
* @data Pointer to the driver data structure.
*
* return value
* 0
*/
static int mtip_service_thread(void *data)
{
struct driver_data *dd = (struct driver_data *)data;
unsigned long slot, slot_start, slot_wrap;
unsigned int num_cmd_slots = dd->slot_groups * 32;
struct mtip_port *port = dd->port;
while (1) {
/*
* the condition is to check neither an internal command is
* is in progress nor error handling is active
*/
wait_event_interruptible(port->svc_wait, (port->flags) &&
!test_bit(MTIP_FLAG_IC_ACTIVE_BIT, &port->flags) &&
!test_bit(MTIP_FLAG_EH_ACTIVE_BIT, &port->flags));
if (kthread_should_stop())
break;
set_bit(MTIP_FLAG_SVC_THD_ACTIVE_BIT, &port->flags);
if (test_bit(MTIP_FLAG_ISSUE_CMDS_BIT, &port->flags)) {
slot = 1;
/* used to restrict the loop to one iteration */
slot_start = num_cmd_slots;
slot_wrap = 0;
while (1) {
slot = find_next_bit(port->cmds_to_issue,
num_cmd_slots, slot);
if (slot_wrap == 1) {
if ((slot_start >= slot) ||
(slot >= num_cmd_slots))
break;
}
if (unlikely(slot_start == num_cmd_slots))
slot_start = slot;
if (unlikely(slot == num_cmd_slots)) {
slot = 1;
slot_wrap = 1;
continue;
}
/* Issue the command to the hardware */
mtip_issue_ncq_command(port, slot);
/* Set the command's timeout value.*/
port->commands[slot].comp_time = jiffies +
msecs_to_jiffies(MTIP_NCQ_COMMAND_TIMEOUT_MS);
clear_bit(slot, port->cmds_to_issue);
}
clear_bit(MTIP_FLAG_ISSUE_CMDS_BIT, &port->flags);
} else if (test_bit(MTIP_FLAG_REBUILD_BIT, &port->flags)) {
mtip_ftl_rebuild_poll(dd);
clear_bit(MTIP_FLAG_REBUILD_BIT, &port->flags);
}
clear_bit(MTIP_FLAG_SVC_THD_ACTIVE_BIT, &port->flags);
if (test_bit(MTIP_FLAG_SVC_THD_SHOULD_STOP_BIT, &port->flags))
break;
}
return 0;
}
/*
* Called once for each card.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 on success, else an error code.
*/
static int mtip_hw_init(struct driver_data *dd)
{
int i;
int rv;
unsigned int num_command_slots;
dd->mmio = pcim_iomap_table(dd->pdev)[MTIP_ABAR];
mtip_detect_product(dd);
if (dd->product_type == MTIP_PRODUCT_UNKNOWN) {
rv = -EIO;
goto out1;
}
num_command_slots = dd->slot_groups * 32;
hba_setup(dd);
tasklet_init(&dd->tasklet, mtip_tasklet, (unsigned long)dd);
dd->port = kzalloc(sizeof(struct mtip_port), GFP_KERNEL);
if (!dd->port) {
dev_err(&dd->pdev->dev,
"Memory allocation: port structure\n");
return -ENOMEM;
}
/* Counting semaphore to track command slot usage */
sema_init(&dd->port->cmd_slot, num_command_slots - 1);
/* Spinlock to prevent concurrent issue */
spin_lock_init(&dd->port->cmd_issue_lock);
/* Set the port mmio base address. */
dd->port->mmio = dd->mmio + PORT_OFFSET;
dd->port->dd = dd;
/* Allocate memory for the command list. */
dd->port->command_list =
dmam_alloc_coherent(&dd->pdev->dev,
HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2),
&dd->port->command_list_dma,
GFP_KERNEL);
if (!dd->port->command_list) {
dev_err(&dd->pdev->dev,
"Memory allocation: command list\n");
rv = -ENOMEM;
goto out1;
}
/* Clear the memory we have allocated. */
memset(dd->port->command_list,
0,
HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2));
/* Setup the addresse of the RX FIS. */
dd->port->rxfis = dd->port->command_list + HW_CMD_SLOT_SZ;
dd->port->rxfis_dma = dd->port->command_list_dma + HW_CMD_SLOT_SZ;
/* Setup the address of the command tables. */
dd->port->command_table = dd->port->rxfis + AHCI_RX_FIS_SZ;
dd->port->command_tbl_dma = dd->port->rxfis_dma + AHCI_RX_FIS_SZ;
/* Setup the address of the identify data. */
dd->port->identify = dd->port->command_table +
HW_CMD_TBL_AR_SZ;
dd->port->identify_dma = dd->port->command_tbl_dma +
HW_CMD_TBL_AR_SZ;
/* Setup the address of the sector buffer. */
dd->port->sector_buffer = (void *) dd->port->identify + ATA_SECT_SIZE;
dd->port->sector_buffer_dma = dd->port->identify_dma + ATA_SECT_SIZE;
/* Point the command headers at the command tables. */
for (i = 0; i < num_command_slots; i++) {
dd->port->commands[i].command_header =
dd->port->command_list +
(sizeof(struct mtip_cmd_hdr) * i);
dd->port->commands[i].command_header_dma =
dd->port->command_list_dma +
(sizeof(struct mtip_cmd_hdr) * i);
dd->port->commands[i].command =
dd->port->command_table + (HW_CMD_TBL_SZ * i);
dd->port->commands[i].command_dma =
dd->port->command_tbl_dma + (HW_CMD_TBL_SZ * i);
if (readl(dd->mmio + HOST_CAP) & HOST_CAP_64)
dd->port->commands[i].command_header->ctbau =
__force_bit2int cpu_to_le32(
(dd->port->commands[i].command_dma >> 16) >> 16);
dd->port->commands[i].command_header->ctba =
__force_bit2int cpu_to_le32(
dd->port->commands[i].command_dma & 0xFFFFFFFF);
/*
* If this is not done, a bug is reported by the stock
* FC11 i386. Due to the fact that it has lots of kernel
* debugging enabled.
*/
sg_init_table(dd->port->commands[i].sg, MTIP_MAX_SG);
/* Mark all commands as currently inactive.*/
atomic_set(&dd->port->commands[i].active, 0);
}
/* Setup the pointers to the extended s_active and CI registers. */
for (i = 0; i < dd->slot_groups; i++) {
dd->port->s_active[i] =
dd->port->mmio + i*0x80 + PORT_SCR_ACT;
dd->port->cmd_issue[i] =
dd->port->mmio + i*0x80 + PORT_COMMAND_ISSUE;
dd->port->completed[i] =
dd->port->mmio + i*0x80 + PORT_SDBV;
}
/* Reset the HBA. */
if (mtip_hba_reset(dd) < 0) {
dev_err(&dd->pdev->dev,
"Card did not reset within timeout\n");
rv = -EIO;
goto out2;
}
mtip_init_port(dd->port);
mtip_start_port(dd->port);
/* Setup the ISR and enable interrupts. */
rv = devm_request_irq(&dd->pdev->dev,
dd->pdev->irq,
mtip_irq_handler,
IRQF_SHARED,
dev_driver_string(&dd->pdev->dev),
dd);
if (rv) {
dev_err(&dd->pdev->dev,
"Unable to allocate IRQ %d\n", dd->pdev->irq);
goto out2;
}
/* Enable interrupts on the HBA. */
writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN,
dd->mmio + HOST_CTL);
init_timer(&dd->port->cmd_timer);
init_waitqueue_head(&dd->port->svc_wait);
dd->port->cmd_timer.data = (unsigned long int) dd->port;
dd->port->cmd_timer.function = mtip_timeout_function;
mod_timer(&dd->port->cmd_timer,
jiffies + msecs_to_jiffies(MTIP_TIMEOUT_CHECK_PERIOD));
if (mtip_get_identify(dd->port, NULL) < 0) {
rv = -EFAULT;
goto out3;
}
if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) ==
MTIP_FTL_REBUILD_MAGIC) {
set_bit(MTIP_FLAG_REBUILD_BIT, &dd->port->flags);
return MTIP_FTL_REBUILD_MAGIC;
}
mtip_dump_identify(dd->port);
return rv;
out3:
del_timer_sync(&dd->port->cmd_timer);
/* Disable interrupts on the HBA. */
writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN,
dd->mmio + HOST_CTL);
/*Release the IRQ. */
devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd);
out2:
mtip_deinit_port(dd->port);
/* Free the command/command header memory. */
dmam_free_coherent(&dd->pdev->dev,
HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2),
dd->port->command_list,
dd->port->command_list_dma);
out1:
/* Free the memory allocated for the for structure. */
kfree(dd->port);
return rv;
}
/*
* Called to deinitialize an interface.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0
*/
static int mtip_hw_exit(struct driver_data *dd)
{
/*
* Send standby immediate (E0h) to the drive so that it
* saves its state.
*/
if (atomic_read(&dd->drv_cleanup_done) != true) {
mtip_standby_immediate(dd->port);
/* de-initialize the port. */
mtip_deinit_port(dd->port);
/* Disable interrupts on the HBA. */
writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN,
dd->mmio + HOST_CTL);
}
del_timer_sync(&dd->port->cmd_timer);
/* Release the IRQ. */
devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd);
/* Stop the bottom half tasklet. */
tasklet_kill(&dd->tasklet);
/* Free the command/command header memory. */
dmam_free_coherent(&dd->pdev->dev,
HW_PORT_PRIV_DMA_SZ + (ATA_SECT_SIZE * 2),
dd->port->command_list,
dd->port->command_list_dma);
/* Free the memory allocated for the for structure. */
kfree(dd->port);
return 0;
}
/*
* Issue a Standby Immediate command to the device.
*
* This function is called by the Block Layer just before the
* system powers off during a shutdown.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0
*/
static int mtip_hw_shutdown(struct driver_data *dd)
{
/*
* Send standby immediate (E0h) to the drive so that it
* saves its state.
*/
mtip_standby_immediate(dd->port);
return 0;
}
/*
* Suspend function
*
* This function is called by the Block Layer just before the
* system hibernates.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 Suspend was successful
* -EFAULT Suspend was not successful
*/
static int mtip_hw_suspend(struct driver_data *dd)
{
/*
* Send standby immediate (E0h) to the drive
* so that it saves its state.
*/
if (mtip_standby_immediate(dd->port) != 0) {
dev_err(&dd->pdev->dev,
"Failed standby-immediate command\n");
return -EFAULT;
}
/* Disable interrupts on the HBA.*/
writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN,
dd->mmio + HOST_CTL);
mtip_deinit_port(dd->port);
return 0;
}
/*
* Resume function
*
* This function is called by the Block Layer as the
* system resumes.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 Resume was successful
* -EFAULT Resume was not successful
*/
static int mtip_hw_resume(struct driver_data *dd)
{
/* Perform any needed hardware setup steps */
hba_setup(dd);
/* Reset the HBA */
if (mtip_hba_reset(dd) != 0) {
dev_err(&dd->pdev->dev,
"Unable to reset the HBA\n");
return -EFAULT;
}
/*
* Enable the port, DMA engine, and FIS reception specific
* h/w in controller.
*/
mtip_init_port(dd->port);
mtip_start_port(dd->port);
/* Enable interrupts on the HBA.*/
writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN,
dd->mmio + HOST_CTL);
return 0;
}
/*
* Helper function for reusing disk name
* upon hot insertion.
*/
static int rssd_disk_name_format(char *prefix,
int index,
char *buf,
int buflen)
{
const int base = 'z' - 'a' + 1;
char *begin = buf + strlen(prefix);
char *end = buf + buflen;
char *p;
int unit;
p = end - 1;
*p = '\0';
unit = base;
do {
if (p == begin)
return -EINVAL;
*--p = 'a' + (index % unit);
index = (index / unit) - 1;
} while (index >= 0);
memmove(begin, p, end - p);
memcpy(buf, prefix, strlen(prefix));
return 0;
}
/*
* Block layer IOCTL handler.
*
* @dev Pointer to the block_device structure.
* @mode ignored
* @cmd IOCTL command passed from the user application.
* @arg Argument passed from the user application.
*
* return value
* 0 IOCTL completed successfully.
* -ENOTTY IOCTL not supported or invalid driver data
* structure pointer.
*/
static int mtip_block_ioctl(struct block_device *dev,
fmode_t mode,
unsigned cmd,
unsigned long arg)
{
struct driver_data *dd = dev->bd_disk->private_data;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!dd)
return -ENOTTY;
switch (cmd) {
case BLKFLSBUF:
return -ENOTTY;
default:
return mtip_hw_ioctl(dd, cmd, arg);
}
}
#ifdef CONFIG_COMPAT
/*
* Block layer compat IOCTL handler.
*
* @dev Pointer to the block_device structure.
* @mode ignored
* @cmd IOCTL command passed from the user application.
* @arg Argument passed from the user application.
*
* return value
* 0 IOCTL completed successfully.
* -ENOTTY IOCTL not supported or invalid driver data
* structure pointer.
*/
static int mtip_block_compat_ioctl(struct block_device *dev,
fmode_t mode,
unsigned cmd,
unsigned long arg)
{
struct driver_data *dd = dev->bd_disk->private_data;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!dd)
return -ENOTTY;
switch (cmd) {
case BLKFLSBUF:
return -ENOTTY;
case HDIO_DRIVE_TASKFILE: {
struct mtip_compat_ide_task_request_s __user *compat_req_task;
ide_task_request_t req_task;
int compat_tasksize, outtotal, ret;
compat_tasksize =
sizeof(struct mtip_compat_ide_task_request_s);
compat_req_task =
(struct mtip_compat_ide_task_request_s __user *) arg;
if (copy_from_user(&req_task, (void __user *) arg,
compat_tasksize - (2 * sizeof(compat_long_t))))
return -EFAULT;
if (get_user(req_task.out_size, &compat_req_task->out_size))
return -EFAULT;
if (get_user(req_task.in_size, &compat_req_task->in_size))
return -EFAULT;
outtotal = sizeof(struct mtip_compat_ide_task_request_s);
ret = exec_drive_taskfile(dd, (void __user *) arg,
&req_task, outtotal);
if (copy_to_user((void __user *) arg, &req_task,
compat_tasksize -
(2 * sizeof(compat_long_t))))
return -EFAULT;
if (put_user(req_task.out_size, &compat_req_task->out_size))
return -EFAULT;
if (put_user(req_task.in_size, &compat_req_task->in_size))
return -EFAULT;
return ret;
}
default:
return mtip_hw_ioctl(dd, cmd, arg);
}
}
#endif
/*
* Obtain the geometry of the device.
*
* You may think that this function is obsolete, but some applications,
* fdisk for example still used CHS values. This function describes the
* device as having 224 heads and 56 sectors per cylinder. These values are
* chosen so that each cylinder is aligned on a 4KB boundary. Since a
* partition is described in terms of a start and end cylinder this means
* that each partition is also 4KB aligned. Non-aligned partitions adversely
* affects performance.
*
* @dev Pointer to the block_device strucutre.
* @geo Pointer to a hd_geometry structure.
*
* return value
* 0 Operation completed successfully.
* -ENOTTY An error occurred while reading the drive capacity.
*/
static int mtip_block_getgeo(struct block_device *dev,
struct hd_geometry *geo)
{
struct driver_data *dd = dev->bd_disk->private_data;
sector_t capacity;
if (!dd)
return -ENOTTY;
if (!(mtip_hw_get_capacity(dd, &capacity))) {
dev_warn(&dd->pdev->dev,
"Could not get drive capacity.\n");
return -ENOTTY;
}
geo->heads = 224;
geo->sectors = 56;
sector_div(capacity, (geo->heads * geo->sectors));
geo->cylinders = capacity;
return 0;
}
/*
* Block device operation function.
*
* This structure contains pointers to the functions required by the block
* layer.
*/
static const struct block_device_operations mtip_block_ops = {
.ioctl = mtip_block_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mtip_block_compat_ioctl,
#endif
.getgeo = mtip_block_getgeo,
.owner = THIS_MODULE
};
/*
* Block layer make request function.
*
* This function is called by the kernel to process a BIO for
* the P320 device.
*
* @queue Pointer to the request queue. Unused other than to obtain
* the driver data structure.
* @bio Pointer to the BIO.
*
*/
static void mtip_make_request(struct request_queue *queue, struct bio *bio)
{
struct driver_data *dd = queue->queuedata;
struct scatterlist *sg;
struct bio_vec *bvec;
int nents = 0;
int tag = 0;
if (unlikely(!bio_has_data(bio))) {
blk_queue_flush(queue, 0);
bio_endio(bio, 0);
return;
}
sg = mtip_hw_get_scatterlist(dd, &tag);
if (likely(sg != NULL)) {
blk_queue_bounce(queue, &bio);
if (unlikely((bio)->bi_vcnt > MTIP_MAX_SG)) {
dev_warn(&dd->pdev->dev,
"Maximum number of SGL entries exceeded");
bio_io_error(bio);
mtip_hw_release_scatterlist(dd, tag);
return;
}
/* Create the scatter list for this bio. */
bio_for_each_segment(bvec, bio, nents) {
sg_set_page(&sg[nents],
bvec->bv_page,
bvec->bv_len,
bvec->bv_offset);
}
/* Issue the read/write. */
mtip_hw_submit_io(dd,
bio->bi_sector,
bio_sectors(bio),
nents,
tag,
bio_endio,
bio,
bio->bi_rw & REQ_FUA,
bio_data_dir(bio));
} else
bio_io_error(bio);
}
/*
* Block layer initialization function.
*
* This function is called once by the PCI layer for each P320
* device that is connected to the system.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0 on success else an error code.
*/
static int mtip_block_initialize(struct driver_data *dd)
{
int rv = 0, wait_for_rebuild = 0;
sector_t capacity;
unsigned int index = 0;
struct kobject *kobj;
unsigned char thd_name[16];
if (dd->disk)
goto skip_create_disk; /* hw init done, before rebuild */
/* Initialize the protocol layer. */
wait_for_rebuild = mtip_hw_init(dd);
if (wait_for_rebuild < 0) {
dev_err(&dd->pdev->dev,
"Protocol layer initialization failed\n");
rv = -EINVAL;
goto protocol_init_error;
}
dd->disk = alloc_disk(MTIP_MAX_MINORS);
if (dd->disk == NULL) {
dev_err(&dd->pdev->dev,
"Unable to allocate gendisk structure\n");
rv = -EINVAL;
goto alloc_disk_error;
}
/* Generate the disk name, implemented same as in sd.c */
do {
if (!ida_pre_get(&rssd_index_ida, GFP_KERNEL))
goto ida_get_error;
spin_lock(&rssd_index_lock);
rv = ida_get_new(&rssd_index_ida, &index);
spin_unlock(&rssd_index_lock);
} while (rv == -EAGAIN);
if (rv)
goto ida_get_error;
rv = rssd_disk_name_format("rssd",
index,
dd->disk->disk_name,
DISK_NAME_LEN);
if (rv)
goto disk_index_error;
dd->disk->driverfs_dev = &dd->pdev->dev;
dd->disk->major = dd->major;
dd->disk->first_minor = dd->instance * MTIP_MAX_MINORS;
dd->disk->fops = &mtip_block_ops;
dd->disk->private_data = dd;
dd->index = index;
/*
* if rebuild pending, start the service thread, and delay the block
* queue creation and add_disk()
*/
if (wait_for_rebuild == MTIP_FTL_REBUILD_MAGIC)
goto start_service_thread;
skip_create_disk:
/* Allocate the request queue. */
dd->queue = blk_alloc_queue(GFP_KERNEL);
if (dd->queue == NULL) {
dev_err(&dd->pdev->dev,
"Unable to allocate request queue\n");
rv = -ENOMEM;
goto block_queue_alloc_init_error;
}
/* Attach our request function to the request queue. */
blk_queue_make_request(dd->queue, mtip_make_request);
dd->disk->queue = dd->queue;
dd->queue->queuedata = dd;
/* Set device limits. */
set_bit(QUEUE_FLAG_NONROT, &dd->queue->queue_flags);
blk_queue_max_segments(dd->queue, MTIP_MAX_SG);
blk_queue_physical_block_size(dd->queue, 4096);
blk_queue_io_min(dd->queue, 4096);
blk_queue_flush(dd->queue, 0);
/* Set the capacity of the device in 512 byte sectors. */
if (!(mtip_hw_get_capacity(dd, &capacity))) {
dev_warn(&dd->pdev->dev,
"Could not read drive capacity\n");
rv = -EIO;
goto read_capacity_error;
}
set_capacity(dd->disk, capacity);
/* Enable the block device and add it to /dev */
add_disk(dd->disk);
/*
* Now that the disk is active, initialize any sysfs attributes
* managed by the protocol layer.
*/
kobj = kobject_get(&disk_to_dev(dd->disk)->kobj);
if (kobj) {
mtip_hw_sysfs_init(dd, kobj);
kobject_put(kobj);
}
if (dd->mtip_svc_handler)
return rv; /* service thread created for handling rebuild */
start_service_thread:
sprintf(thd_name, "mtip_svc_thd_%02d", index);
dd->mtip_svc_handler = kthread_run(mtip_service_thread,
dd, thd_name);
if (IS_ERR(dd->mtip_svc_handler)) {
printk(KERN_ERR "mtip32xx: service thread failed to start\n");
dd->mtip_svc_handler = NULL;
rv = -EFAULT;
goto kthread_run_error;
}
return rv;
kthread_run_error:
/* Delete our gendisk. This also removes the device from /dev */
del_gendisk(dd->disk);
read_capacity_error:
blk_cleanup_queue(dd->queue);
block_queue_alloc_init_error:
disk_index_error:
spin_lock(&rssd_index_lock);
ida_remove(&rssd_index_ida, index);
spin_unlock(&rssd_index_lock);
ida_get_error:
put_disk(dd->disk);
alloc_disk_error:
mtip_hw_exit(dd); /* De-initialize the protocol layer. */
protocol_init_error:
return rv;
}
/*
* Block layer deinitialization function.
*
* Called by the PCI layer as each P320 device is removed.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0
*/
static int mtip_block_remove(struct driver_data *dd)
{
struct kobject *kobj;
if (dd->mtip_svc_handler) {
set_bit(MTIP_FLAG_SVC_THD_SHOULD_STOP_BIT, &dd->port->flags);
wake_up_interruptible(&dd->port->svc_wait);
kthread_stop(dd->mtip_svc_handler);
}
/* Clean up the sysfs attributes managed by the protocol layer. */
kobj = kobject_get(&disk_to_dev(dd->disk)->kobj);
if (kobj) {
mtip_hw_sysfs_exit(dd, kobj);
kobject_put(kobj);
}
/*
* Delete our gendisk structure. This also removes the device
* from /dev
*/
del_gendisk(dd->disk);
blk_cleanup_queue(dd->queue);
dd->disk = NULL;
dd->queue = NULL;
/* De-initialize the protocol layer. */
mtip_hw_exit(dd);
return 0;
}
/*
* Function called by the PCI layer when just before the
* machine shuts down.
*
* If a protocol layer shutdown function is present it will be called
* by this function.
*
* @dd Pointer to the driver data structure.
*
* return value
* 0
*/
static int mtip_block_shutdown(struct driver_data *dd)
{
dev_info(&dd->pdev->dev,
"Shutting down %s ...\n", dd->disk->disk_name);
/* Delete our gendisk structure, and cleanup the blk queue. */
del_gendisk(dd->disk);
blk_cleanup_queue(dd->queue);
dd->disk = NULL;
dd->queue = NULL;
mtip_hw_shutdown(dd);
return 0;
}
static int mtip_block_suspend(struct driver_data *dd)
{
dev_info(&dd->pdev->dev,
"Suspending %s ...\n", dd->disk->disk_name);
mtip_hw_suspend(dd);
return 0;
}
static int mtip_block_resume(struct driver_data *dd)
{
dev_info(&dd->pdev->dev, "Resuming %s ...\n",
dd->disk->disk_name);
mtip_hw_resume(dd);
return 0;
}
/*
* Called for each supported PCI device detected.
*
* This function allocates the private data structure, enables the
* PCI device and then calls the block layer initialization function.
*
* return value
* 0 on success else an error code.
*/
static int mtip_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rv = 0;
struct driver_data *dd = NULL;
/* Allocate memory for this devices private data. */
dd = kzalloc(sizeof(struct driver_data), GFP_KERNEL);
if (dd == NULL) {
dev_err(&pdev->dev,
"Unable to allocate memory for driver data\n");
return -ENOMEM;
}
/* Set the atomic variable as 1 in case of SRSI */
atomic_set(&dd->drv_cleanup_done, true);
atomic_set(&dd->resumeflag, false);
/* Attach the private data to this PCI device. */
pci_set_drvdata(pdev, dd);
rv = pcim_enable_device(pdev);
if (rv < 0) {
dev_err(&pdev->dev, "Unable to enable device\n");
goto iomap_err;
}
/* Map BAR5 to memory. */
rv = pcim_iomap_regions(pdev, 1 << MTIP_ABAR, MTIP_DRV_NAME);
if (rv < 0) {
dev_err(&pdev->dev, "Unable to map regions\n");
goto iomap_err;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
rv = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (rv) {
rv = pci_set_consistent_dma_mask(pdev,
DMA_BIT_MASK(32));
if (rv) {
dev_warn(&pdev->dev,
"64-bit DMA enable failed\n");
goto setmask_err;
}
}
}
pci_set_master(pdev);
if (pci_enable_msi(pdev)) {
dev_warn(&pdev->dev,
"Unable to enable MSI interrupt.\n");
goto block_initialize_err;
}
/* Copy the info we may need later into the private data structure. */
dd->major = mtip_major;
dd->instance = instance;
dd->pdev = pdev;
/* Initialize the block layer. */
rv = mtip_block_initialize(dd);
if (rv < 0) {
dev_err(&pdev->dev,
"Unable to initialize block layer\n");
goto block_initialize_err;
}
/*
* Increment the instance count so that each device has a unique
* instance number.
*/
instance++;
goto done;
block_initialize_err:
pci_disable_msi(pdev);
setmask_err:
pcim_iounmap_regions(pdev, 1 << MTIP_ABAR);
iomap_err:
kfree(dd);
pci_set_drvdata(pdev, NULL);
return rv;
done:
/* Set the atomic variable as 0 in case of SRSI */
atomic_set(&dd->drv_cleanup_done, true);
return rv;
}
/*
* Called for each probed device when the device is removed or the
* driver is unloaded.
*
* return value
* None
*/
static void mtip_pci_remove(struct pci_dev *pdev)
{
struct driver_data *dd = pci_get_drvdata(pdev);
int counter = 0;
if (mtip_check_surprise_removal(pdev)) {
while (atomic_read(&dd->drv_cleanup_done) == false) {
counter++;
msleep(20);
if (counter == 10) {
/* Cleanup the outstanding commands */
mtip_command_cleanup(dd);
break;
}
}
}
/* Set the atomic variable as 1 in case of SRSI */
atomic_set(&dd->drv_cleanup_done, true);
/* Clean up the block layer. */
mtip_block_remove(dd);
pci_disable_msi(pdev);
kfree(dd);
pcim_iounmap_regions(pdev, 1 << MTIP_ABAR);
}
/*
* Called for each probed device when the device is suspended.
*
* return value
* 0 Success
* <0 Error
*/
static int mtip_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
int rv = 0;
struct driver_data *dd = pci_get_drvdata(pdev);
if (!dd) {
dev_err(&pdev->dev,
"Driver private datastructure is NULL\n");
return -EFAULT;
}
atomic_set(&dd->resumeflag, true);
/* Disable ports & interrupts then send standby immediate */
rv = mtip_block_suspend(dd);
if (rv < 0) {
dev_err(&pdev->dev,
"Failed to suspend controller\n");
return rv;
}
/*
* Save the pci config space to pdev structure &
* disable the device
*/
pci_save_state(pdev);
pci_disable_device(pdev);
/* Move to Low power state*/
pci_set_power_state(pdev, PCI_D3hot);
return rv;
}
/*
* Called for each probed device when the device is resumed.
*
* return value
* 0 Success
* <0 Error
*/
static int mtip_pci_resume(struct pci_dev *pdev)
{
int rv = 0;
struct driver_data *dd;
dd = pci_get_drvdata(pdev);
if (!dd) {
dev_err(&pdev->dev,
"Driver private datastructure is NULL\n");
return -EFAULT;
}
/* Move the device to active State */
pci_set_power_state(pdev, PCI_D0);
/* Restore PCI configuration space */
pci_restore_state(pdev);
/* Enable the PCI device*/
rv = pcim_enable_device(pdev);
if (rv < 0) {
dev_err(&pdev->dev,
"Failed to enable card during resume\n");
goto err;
}
pci_set_master(pdev);
/*
* Calls hbaReset, initPort, & startPort function
* then enables interrupts
*/
rv = mtip_block_resume(dd);
if (rv < 0)
dev_err(&pdev->dev, "Unable to resume\n");
err:
atomic_set(&dd->resumeflag, false);
return rv;
}
/*
* Shutdown routine
*
* return value
* None
*/
static void mtip_pci_shutdown(struct pci_dev *pdev)
{
struct driver_data *dd = pci_get_drvdata(pdev);
if (dd)
mtip_block_shutdown(dd);
}
/* Table of device ids supported by this driver. */
static DEFINE_PCI_DEVICE_TABLE(mtip_pci_tbl) = {
{ PCI_DEVICE(PCI_VENDOR_ID_MICRON, P320_DEVICE_ID) },
{ 0 }
};
/* Structure that describes the PCI driver functions. */
static struct pci_driver mtip_pci_driver = {
.name = MTIP_DRV_NAME,
.id_table = mtip_pci_tbl,
.probe = mtip_pci_probe,
.remove = mtip_pci_remove,
.suspend = mtip_pci_suspend,
.resume = mtip_pci_resume,
.shutdown = mtip_pci_shutdown,
};
MODULE_DEVICE_TABLE(pci, mtip_pci_tbl);
/*
* Module initialization function.
*
* Called once when the module is loaded. This function allocates a major
* block device number to the Cyclone devices and registers the PCI layer
* of the driver.
*
* Return value
* 0 on success else error code.
*/
static int __init mtip_init(void)
{
printk(KERN_INFO MTIP_DRV_NAME " Version " MTIP_DRV_VERSION "\n");
/* Allocate a major block device number to use with this driver. */
mtip_major = register_blkdev(0, MTIP_DRV_NAME);
if (mtip_major < 0) {
printk(KERN_ERR "Unable to register block device (%d)\n",
mtip_major);
return -EBUSY;
}
/* Register our PCI operations. */
return pci_register_driver(&mtip_pci_driver);
}
/*
* Module de-initialization function.
*
* Called once when the module is unloaded. This function deallocates
* the major block device number allocated by mtip_init() and
* unregisters the PCI layer of the driver.
*
* Return value
* none
*/
static void __exit mtip_exit(void)
{
/* Release the allocated major block device number. */
unregister_blkdev(mtip_major, MTIP_DRV_NAME);
/* Unregister the PCI driver. */
pci_unregister_driver(&mtip_pci_driver);
}
MODULE_AUTHOR("Micron Technology, Inc");
MODULE_DESCRIPTION("Micron RealSSD PCIe Block Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(MTIP_DRV_VERSION);
module_init(mtip_init);
module_exit(mtip_exit);
/*
* mtip32xx.h - Header file for the P320 SSD Block Driver
* Copyright (C) 2011 Micron Technology, Inc.
*
* Portions of this code were derived from works subjected to the
* following copyright:
* Copyright (C) 2009 Integrated Device Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __MTIP32XX_H__
#define __MTIP32XX_H__
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/ata.h>
#include <linux/interrupt.h>
#include <linux/genhd.h>
#include <linux/version.h>
/* Offset of Subsystem Device ID in pci confoguration space */
#define PCI_SUBSYSTEM_DEVICEID 0x2E
/* offset of Device Control register in PCIe extended capabilites space */
#define PCIE_CONFIG_EXT_DEVICE_CONTROL_OFFSET 0x48
/* # of times to retry timed out IOs */
#define MTIP_MAX_RETRIES 5
/* Various timeout values in ms */
#define MTIP_NCQ_COMMAND_TIMEOUT_MS 5000
#define MTIP_IOCTL_COMMAND_TIMEOUT_MS 5000
#define MTIP_INTERNAL_COMMAND_TIMEOUT_MS 5000
/* check for timeouts every 500ms */
#define MTIP_TIMEOUT_CHECK_PERIOD 500
/* ftl rebuild */
#define MTIP_FTL_REBUILD_OFFSET 142
#define MTIP_FTL_REBUILD_MAGIC 0xED51
#define MTIP_FTL_REBUILD_TIMEOUT_MS 2400000
/* Macro to extract the tag bit number from a tag value. */
#define MTIP_TAG_BIT(tag) (tag & 0x1F)
/*
* Macro to extract the tag index from a tag value. The index
* is used to access the correct s_active/Command Issue register based
* on the tag value.
*/
#define MTIP_TAG_INDEX(tag) (tag >> 5)
/*
* Maximum number of scatter gather entries
* a single command may have.
*/
#define MTIP_MAX_SG 128
/*
* Maximum number of slot groups (Command Issue & s_active registers)
* NOTE: This is the driver maximum; check dd->slot_groups for actual value.
*/
#define MTIP_MAX_SLOT_GROUPS 8
/* Internal command tag. */
#define MTIP_TAG_INTERNAL 0
/* Micron Vendor ID & P320x SSD Device ID */
#define PCI_VENDOR_ID_MICRON 0x1344
#define P320_DEVICE_ID 0x5150
/* Driver name and version strings */
#define MTIP_DRV_NAME "mtip32xx"
#define MTIP_DRV_VERSION "1.2.6os3"
/* Maximum number of minor device numbers per device. */
#define MTIP_MAX_MINORS 16
/* Maximum number of supported command slots. */
#define MTIP_MAX_COMMAND_SLOTS (MTIP_MAX_SLOT_GROUPS * 32)
/*
* Per-tag bitfield size in longs.
* Linux bit manipulation functions
* (i.e. test_and_set_bit, find_next_zero_bit)
* manipulate memory in longs, so we try to make the math work.
* take the slot groups and find the number of longs, rounding up.
* Careful! i386 and x86_64 use different size longs!
*/
#define U32_PER_LONG (sizeof(long) / sizeof(u32))
#define SLOTBITS_IN_LONGS ((MTIP_MAX_SLOT_GROUPS + \
(U32_PER_LONG-1))/U32_PER_LONG)
/* BAR number used to access the HBA registers. */
#define MTIP_ABAR 5
/* Forced Unit Access Bit */
#define FUA_BIT 0x80
#ifdef DEBUG
#define dbg_printk(format, arg...) \
printk(pr_fmt(format), ##arg);
#else
#define dbg_printk(format, arg...)
#endif
#define __force_bit2int (unsigned int __force)
/* below are bit numbers in 'flags' defined in mtip_port */
#define MTIP_FLAG_IC_ACTIVE_BIT 0
#define MTIP_FLAG_EH_ACTIVE_BIT 1
#define MTIP_FLAG_SVC_THD_ACTIVE_BIT 2
#define MTIP_FLAG_ISSUE_CMDS_BIT 4
#define MTIP_FLAG_REBUILD_BIT 5
#define MTIP_FLAG_SVC_THD_SHOULD_STOP_BIT 8
/* Register Frame Information Structure (FIS), host to device. */
struct host_to_dev_fis {
/*
* FIS type.
* - 27h Register FIS, host to device.
* - 34h Register FIS, device to host.
* - 39h DMA Activate FIS, device to host.
* - 41h DMA Setup FIS, bi-directional.
* - 46h Data FIS, bi-directional.
* - 58h BIST Activate FIS, bi-directional.
* - 5Fh PIO Setup FIS, device to host.
* - A1h Set Device Bits FIS, device to host.
*/
unsigned char type;
unsigned char opts;
unsigned char command;
unsigned char features;
union {
unsigned char lba_low;
unsigned char sector;
};
union {
unsigned char lba_mid;
unsigned char cyl_low;
};
union {
unsigned char lba_hi;
unsigned char cyl_hi;
};
union {
unsigned char device;
unsigned char head;
};
union {
unsigned char lba_low_ex;
unsigned char sector_ex;
};
union {
unsigned char lba_mid_ex;
unsigned char cyl_low_ex;
};
union {
unsigned char lba_hi_ex;
unsigned char cyl_hi_ex;
};
unsigned char features_ex;
unsigned char sect_count;
unsigned char sect_cnt_ex;
unsigned char res2;
unsigned char control;
unsigned int res3;
};
/* Command header structure. */
struct mtip_cmd_hdr {
/*
* Command options.
* - Bits 31:16 Number of PRD entries.
* - Bits 15:8 Unused in this implementation.
* - Bit 7 Prefetch bit, informs the drive to prefetch PRD entries.
* - Bit 6 Write bit, should be set when writing data to the device.
* - Bit 5 Unused in this implementation.
* - Bits 4:0 Length of the command FIS in DWords (DWord = 4 bytes).
*/
unsigned int opts;
/* This field is unsed when using NCQ. */
union {
unsigned int byte_count;
unsigned int status;
};
/*
* Lower 32 bits of the command table address associated with this
* header. The command table addresses must be 128 byte aligned.
*/
unsigned int ctba;
/*
* If 64 bit addressing is used this field is the upper 32 bits
* of the command table address associated with this command.
*/
unsigned int ctbau;
/* Reserved and unused. */
unsigned int res[4];
};
/* Command scatter gather structure (PRD). */
struct mtip_cmd_sg {
/*
* Low 32 bits of the data buffer address. For P320 this
* address must be 8 byte aligned signified by bits 2:0 being
* set to 0.
*/
unsigned int dba;
/*
* When 64 bit addressing is used this field is the upper
* 32 bits of the data buffer address.
*/
unsigned int dba_upper;
/* Unused. */
unsigned int reserved;
/*
* Bit 31: interrupt when this data block has been transferred.
* Bits 30..22: reserved
* Bits 21..0: byte count (minus 1). For P320 the byte count must be
* 8 byte aligned signified by bits 2:0 being set to 1.
*/
unsigned int info;
};
struct mtip_port;
/* Structure used to describe a command. */
struct mtip_cmd {
struct mtip_cmd_hdr *command_header; /* ptr to command header entry */
dma_addr_t command_header_dma; /* corresponding physical address */
void *command; /* ptr to command table entry */
dma_addr_t command_dma; /* corresponding physical address */
void *comp_data; /* data passed to completion function comp_func() */
/*
* Completion function called by the ISR upon completion of
* a command.
*/
void (*comp_func)(struct mtip_port *port,
int tag,
void *data,
int status);
/* Additional callback function that may be called by comp_func() */
void (*async_callback)(void *data, int status);
void *async_data; /* Addl. data passed to async_callback() */
int scatter_ents; /* Number of scatter list entries used */
struct scatterlist sg[MTIP_MAX_SG]; /* Scatter list entries */
int retries; /* The number of retries left for this command. */
int direction; /* Data transfer direction */
unsigned long comp_time; /* command completion time, in jiffies */
atomic_t active; /* declares if this command sent to the drive. */
};
/* Structure used to describe a port. */
struct mtip_port {
/* Pointer back to the driver data for this port. */
struct driver_data *dd;
/*
* Used to determine if the data pointed to by the
* identify field is valid.
*/
unsigned long identify_valid;
/* Base address of the memory mapped IO for the port. */
void __iomem *mmio;
/* Array of pointers to the memory mapped s_active registers. */
void __iomem *s_active[MTIP_MAX_SLOT_GROUPS];
/* Array of pointers to the memory mapped completed registers. */
void __iomem *completed[MTIP_MAX_SLOT_GROUPS];
/* Array of pointers to the memory mapped Command Issue registers. */
void __iomem *cmd_issue[MTIP_MAX_SLOT_GROUPS];
/*
* Pointer to the beginning of the command header memory as used
* by the driver.
*/
void *command_list;
/*
* Pointer to the beginning of the command header memory as used
* by the DMA.
*/
dma_addr_t command_list_dma;
/*
* Pointer to the beginning of the RX FIS memory as used
* by the driver.
*/
void *rxfis;
/*
* Pointer to the beginning of the RX FIS memory as used
* by the DMA.
*/
dma_addr_t rxfis_dma;
/*
* Pointer to the beginning of the command table memory as used
* by the driver.
*/
void *command_table;
/*
* Pointer to the beginning of the command table memory as used
* by the DMA.
*/
dma_addr_t command_tbl_dma;
/*
* Pointer to the beginning of the identify data memory as used
* by the driver.
*/
u16 *identify;
/*
* Pointer to the beginning of the identify data memory as used
* by the DMA.
*/
dma_addr_t identify_dma;
/*
* Pointer to the beginning of a sector buffer that is used
* by the driver when issuing internal commands.
*/
u16 *sector_buffer;
/*
* Pointer to the beginning of a sector buffer that is used
* by the DMA when the driver issues internal commands.
*/
dma_addr_t sector_buffer_dma;
/*
* Bit significant, used to determine if a command slot has
* been allocated. i.e. the slot is in use. Bits are cleared
* when the command slot and all associated data structures
* are no longer needed.
*/
unsigned long allocated[SLOTBITS_IN_LONGS];
/*
* used to queue commands when an internal command is in progress
* or error handling is active
*/
unsigned long cmds_to_issue[SLOTBITS_IN_LONGS];
/*
* Array of command slots. Structure includes pointers to the
* command header and command table, and completion function and data
* pointers.
*/
struct mtip_cmd commands[MTIP_MAX_COMMAND_SLOTS];
/* Used by mtip_service_thread to wait for an event */
wait_queue_head_t svc_wait;
/*
* indicates the state of the port. Also, helps the service thread
* to determine its action on wake up.
*/
unsigned long flags;
/*
* Timer used to complete commands that have been active for too long.
*/
struct timer_list cmd_timer;
/*
* Semaphore used to block threads if there are no
* command slots available.
*/
struct semaphore cmd_slot;
/* Spinlock for working around command-issue bug. */
spinlock_t cmd_issue_lock;
};
/*
* Driver private data structure.
*
* One structure is allocated per probed device.
*/
struct driver_data {
void __iomem *mmio; /* Base address of the HBA registers. */
int major; /* Major device number. */
int instance; /* Instance number. First device probed is 0, ... */
struct gendisk *disk; /* Pointer to our gendisk structure. */
struct pci_dev *pdev; /* Pointer to the PCI device structure. */
struct request_queue *queue; /* Our request queue. */
struct mtip_port *port; /* Pointer to the port data structure. */
/* Tasklet used to process the bottom half of the ISR. */
struct tasklet_struct tasklet;
unsigned product_type; /* magic value declaring the product type */
unsigned slot_groups; /* number of slot groups the product supports */
atomic_t drv_cleanup_done; /* Atomic variable for SRSI */
unsigned long index; /* Index to determine the disk name */
unsigned int ftlrebuildflag; /* FTL rebuild flag */
atomic_t resumeflag; /* Atomic variable to track suspend/resume */
atomic_t eh_active; /* Flag for error handling tracking */
struct task_struct *mtip_svc_handler; /* task_struct of svc thd */
};
#endif
...@@ -39,9 +39,6 @@ ...@@ -39,9 +39,6 @@
#include <linux/list.h> #include <linux/list.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/freezer.h> #include <linux/freezer.h>
#include <linux/loop.h>
#include <linux/falloc.h>
#include <linux/fs.h>
#include <xen/events.h> #include <xen/events.h>
#include <xen/page.h> #include <xen/page.h>
...@@ -362,7 +359,7 @@ static int xen_blkbk_map(struct blkif_request *req, ...@@ -362,7 +359,7 @@ static int xen_blkbk_map(struct blkif_request *req,
{ {
struct gnttab_map_grant_ref map[BLKIF_MAX_SEGMENTS_PER_REQUEST]; struct gnttab_map_grant_ref map[BLKIF_MAX_SEGMENTS_PER_REQUEST];
int i; int i;
int nseg = req->nr_segments; int nseg = req->u.rw.nr_segments;
int ret = 0; int ret = 0;
/* /*
...@@ -416,30 +413,25 @@ static int xen_blkbk_map(struct blkif_request *req, ...@@ -416,30 +413,25 @@ static int xen_blkbk_map(struct blkif_request *req,
return ret; return ret;
} }
static void xen_blk_discard(struct xen_blkif *blkif, struct blkif_request *req) static int dispatch_discard_io(struct xen_blkif *blkif,
struct blkif_request *req)
{ {
int err = 0; int err = 0;
int status = BLKIF_RSP_OKAY; int status = BLKIF_RSP_OKAY;
struct block_device *bdev = blkif->vbd.bdev; struct block_device *bdev = blkif->vbd.bdev;
if (blkif->blk_backend_type == BLKIF_BACKEND_PHY) blkif->st_ds_req++;
/* just forward the discard request */
xen_blkif_get(blkif);
if (blkif->blk_backend_type == BLKIF_BACKEND_PHY ||
blkif->blk_backend_type == BLKIF_BACKEND_FILE) {
unsigned long secure = (blkif->vbd.discard_secure &&
(req->u.discard.flag & BLKIF_DISCARD_SECURE)) ?
BLKDEV_DISCARD_SECURE : 0;
err = blkdev_issue_discard(bdev, err = blkdev_issue_discard(bdev,
req->u.discard.sector_number, req->u.discard.sector_number,
req->u.discard.nr_sectors, req->u.discard.nr_sectors,
GFP_KERNEL, 0); GFP_KERNEL, secure);
else if (blkif->blk_backend_type == BLKIF_BACKEND_FILE) {
/* punch a hole in the backing file */
struct loop_device *lo = bdev->bd_disk->private_data;
struct file *file = lo->lo_backing_file;
if (file->f_op->fallocate)
err = file->f_op->fallocate(file,
FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
req->u.discard.sector_number << 9,
req->u.discard.nr_sectors << 9);
else
err = -EOPNOTSUPP;
} else } else
err = -EOPNOTSUPP; err = -EOPNOTSUPP;
...@@ -449,7 +441,9 @@ static void xen_blk_discard(struct xen_blkif *blkif, struct blkif_request *req) ...@@ -449,7 +441,9 @@ static void xen_blk_discard(struct xen_blkif *blkif, struct blkif_request *req)
} else if (err) } else if (err)
status = BLKIF_RSP_ERROR; status = BLKIF_RSP_ERROR;
make_response(blkif, req->id, req->operation, status); make_response(blkif, req->u.discard.id, req->operation, status);
xen_blkif_put(blkif);
return err;
} }
static void xen_blk_drain_io(struct xen_blkif *blkif) static void xen_blk_drain_io(struct xen_blkif *blkif)
...@@ -573,8 +567,11 @@ __do_block_io_op(struct xen_blkif *blkif) ...@@ -573,8 +567,11 @@ __do_block_io_op(struct xen_blkif *blkif)
/* Apply all sanity checks to /private copy/ of request. */ /* Apply all sanity checks to /private copy/ of request. */
barrier(); barrier();
if (unlikely(req.operation == BLKIF_OP_DISCARD)) {
if (dispatch_rw_block_io(blkif, &req, pending_req)) free_req(pending_req);
if (dispatch_discard_io(blkif, &req))
break;
} else if (dispatch_rw_block_io(blkif, &req, pending_req))
break; break;
/* Yield point for this unbounded loop. */ /* Yield point for this unbounded loop. */
...@@ -633,10 +630,6 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -633,10 +630,6 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
blkif->st_f_req++; blkif->st_f_req++;
operation = WRITE_FLUSH; operation = WRITE_FLUSH;
break; break;
case BLKIF_OP_DISCARD:
blkif->st_ds_req++;
operation = REQ_DISCARD;
break;
default: default:
operation = 0; /* make gcc happy */ operation = 0; /* make gcc happy */
goto fail_response; goto fail_response;
...@@ -644,9 +637,9 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -644,9 +637,9 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
} }
/* Check that the number of segments is sane. */ /* Check that the number of segments is sane. */
nseg = req->nr_segments; nseg = req->u.rw.nr_segments;
if (unlikely(nseg == 0 && operation != WRITE_FLUSH &&
operation != REQ_DISCARD) || if (unlikely(nseg == 0 && operation != WRITE_FLUSH) ||
unlikely(nseg > BLKIF_MAX_SEGMENTS_PER_REQUEST)) { unlikely(nseg > BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
pr_debug(DRV_PFX "Bad number of segments in request (%d)\n", pr_debug(DRV_PFX "Bad number of segments in request (%d)\n",
nseg); nseg);
...@@ -654,12 +647,12 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -654,12 +647,12 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
goto fail_response; goto fail_response;
} }
preq.dev = req->handle; preq.dev = req->u.rw.handle;
preq.sector_number = req->u.rw.sector_number; preq.sector_number = req->u.rw.sector_number;
preq.nr_sects = 0; preq.nr_sects = 0;
pending_req->blkif = blkif; pending_req->blkif = blkif;
pending_req->id = req->id; pending_req->id = req->u.rw.id;
pending_req->operation = req->operation; pending_req->operation = req->operation;
pending_req->status = BLKIF_RSP_OKAY; pending_req->status = BLKIF_RSP_OKAY;
pending_req->nr_pages = nseg; pending_req->nr_pages = nseg;
...@@ -707,7 +700,7 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -707,7 +700,7 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
* the hypercall to unmap the grants - that is all done in * the hypercall to unmap the grants - that is all done in
* xen_blkbk_unmap. * xen_blkbk_unmap.
*/ */
if (operation != REQ_DISCARD && xen_blkbk_map(req, pending_req, seg)) if (xen_blkbk_map(req, pending_req, seg))
goto fail_flush; goto fail_flush;
/* /*
...@@ -739,23 +732,16 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -739,23 +732,16 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
/* This will be hit if the operation was a flush or discard. */ /* This will be hit if the operation was a flush or discard. */
if (!bio) { if (!bio) {
BUG_ON(operation != WRITE_FLUSH && operation != REQ_DISCARD); BUG_ON(operation != WRITE_FLUSH);
if (operation == WRITE_FLUSH) { bio = bio_alloc(GFP_KERNEL, 0);
bio = bio_alloc(GFP_KERNEL, 0); if (unlikely(bio == NULL))
if (unlikely(bio == NULL)) goto fail_put_bio;
goto fail_put_bio;
biolist[nbio++] = bio; biolist[nbio++] = bio;
bio->bi_bdev = preq.bdev; bio->bi_bdev = preq.bdev;
bio->bi_private = pending_req; bio->bi_private = pending_req;
bio->bi_end_io = end_block_io_op; bio->bi_end_io = end_block_io_op;
} else if (operation == REQ_DISCARD) {
xen_blk_discard(blkif, req);
xen_blkif_put(blkif);
free_req(pending_req);
return 0;
}
} }
/* /*
...@@ -784,7 +770,7 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif, ...@@ -784,7 +770,7 @@ static int dispatch_rw_block_io(struct xen_blkif *blkif,
xen_blkbk_unmap(pending_req); xen_blkbk_unmap(pending_req);
fail_response: fail_response:
/* Haven't submitted any bio's yet. */ /* Haven't submitted any bio's yet. */
make_response(blkif, req->id, req->operation, BLKIF_RSP_ERROR); make_response(blkif, req->u.rw.id, req->operation, BLKIF_RSP_ERROR);
free_req(pending_req); free_req(pending_req);
msleep(1); /* back off a bit */ msleep(1); /* back off a bit */
return -EIO; return -EIO;
......
...@@ -60,58 +60,66 @@ struct blkif_common_response { ...@@ -60,58 +60,66 @@ struct blkif_common_response {
char dummy; char dummy;
}; };
/* i386 protocol version */
#pragma pack(push, 4)
struct blkif_x86_32_request_rw { struct blkif_x86_32_request_rw {
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */ blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST]; struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
}; } __attribute__((__packed__));
struct blkif_x86_32_request_discard { struct blkif_x86_32_request_discard {
uint8_t flag; /* BLKIF_DISCARD_SECURE or zero */
blkif_vdev_t _pad1; /* was "handle" for read/write requests */
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */ blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
uint64_t nr_sectors; uint64_t nr_sectors;
}; } __attribute__((__packed__));
struct blkif_x86_32_request { struct blkif_x86_32_request {
uint8_t operation; /* BLKIF_OP_??? */ uint8_t operation; /* BLKIF_OP_??? */
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint64_t id; /* private guest value, echoed in resp */
union { union {
struct blkif_x86_32_request_rw rw; struct blkif_x86_32_request_rw rw;
struct blkif_x86_32_request_discard discard; struct blkif_x86_32_request_discard discard;
} u; } u;
}; } __attribute__((__packed__));
/* i386 protocol version */
#pragma pack(push, 4)
struct blkif_x86_32_response { struct blkif_x86_32_response {
uint64_t id; /* copied from request */ uint64_t id; /* copied from request */
uint8_t operation; /* copied from request */ uint8_t operation; /* copied from request */
int16_t status; /* BLKIF_RSP_??? */ int16_t status; /* BLKIF_RSP_??? */
}; };
#pragma pack(pop) #pragma pack(pop)
/* x86_64 protocol version */ /* x86_64 protocol version */
struct blkif_x86_64_request_rw { struct blkif_x86_64_request_rw {
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint32_t _pad1; /* offsetof(blkif_reqest..,u.rw.id)==8 */
uint64_t id;
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */ blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST]; struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
}; } __attribute__((__packed__));
struct blkif_x86_64_request_discard { struct blkif_x86_64_request_discard {
uint8_t flag; /* BLKIF_DISCARD_SECURE or zero */
blkif_vdev_t _pad1; /* was "handle" for read/write requests */
uint32_t _pad2; /* offsetof(blkif_..,u.discard.id)==8 */
uint64_t id;
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */ blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
uint64_t nr_sectors; uint64_t nr_sectors;
}; } __attribute__((__packed__));
struct blkif_x86_64_request { struct blkif_x86_64_request {
uint8_t operation; /* BLKIF_OP_??? */ uint8_t operation; /* BLKIF_OP_??? */
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint64_t __attribute__((__aligned__(8))) id;
union { union {
struct blkif_x86_64_request_rw rw; struct blkif_x86_64_request_rw rw;
struct blkif_x86_64_request_discard discard; struct blkif_x86_64_request_discard discard;
} u; } u;
}; } __attribute__((__packed__));
struct blkif_x86_64_response { struct blkif_x86_64_response {
uint64_t __attribute__((__aligned__(8))) id; uint64_t __attribute__((__aligned__(8))) id;
uint8_t operation; /* copied from request */ uint8_t operation; /* copied from request */
...@@ -156,6 +164,7 @@ struct xen_vbd { ...@@ -156,6 +164,7 @@ struct xen_vbd {
/* Cached size parameter. */ /* Cached size parameter. */
sector_t size; sector_t size;
bool flush_support; bool flush_support;
bool discard_secure;
}; };
struct backend_info; struct backend_info;
...@@ -237,22 +246,23 @@ static inline void blkif_get_x86_32_req(struct blkif_request *dst, ...@@ -237,22 +246,23 @@ static inline void blkif_get_x86_32_req(struct blkif_request *dst,
{ {
int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST; int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST;
dst->operation = src->operation; dst->operation = src->operation;
dst->nr_segments = src->nr_segments;
dst->handle = src->handle;
dst->id = src->id;
switch (src->operation) { switch (src->operation) {
case BLKIF_OP_READ: case BLKIF_OP_READ:
case BLKIF_OP_WRITE: case BLKIF_OP_WRITE:
case BLKIF_OP_WRITE_BARRIER: case BLKIF_OP_WRITE_BARRIER:
case BLKIF_OP_FLUSH_DISKCACHE: case BLKIF_OP_FLUSH_DISKCACHE:
dst->u.rw.nr_segments = src->u.rw.nr_segments;
dst->u.rw.handle = src->u.rw.handle;
dst->u.rw.id = src->u.rw.id;
dst->u.rw.sector_number = src->u.rw.sector_number; dst->u.rw.sector_number = src->u.rw.sector_number;
barrier(); barrier();
if (n > dst->nr_segments) if (n > dst->u.rw.nr_segments)
n = dst->nr_segments; n = dst->u.rw.nr_segments;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
dst->u.rw.seg[i] = src->u.rw.seg[i]; dst->u.rw.seg[i] = src->u.rw.seg[i];
break; break;
case BLKIF_OP_DISCARD: case BLKIF_OP_DISCARD:
dst->u.discard.flag = src->u.discard.flag;
dst->u.discard.sector_number = src->u.discard.sector_number; dst->u.discard.sector_number = src->u.discard.sector_number;
dst->u.discard.nr_sectors = src->u.discard.nr_sectors; dst->u.discard.nr_sectors = src->u.discard.nr_sectors;
break; break;
...@@ -266,22 +276,23 @@ static inline void blkif_get_x86_64_req(struct blkif_request *dst, ...@@ -266,22 +276,23 @@ static inline void blkif_get_x86_64_req(struct blkif_request *dst,
{ {
int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST; int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST;
dst->operation = src->operation; dst->operation = src->operation;
dst->nr_segments = src->nr_segments;
dst->handle = src->handle;
dst->id = src->id;
switch (src->operation) { switch (src->operation) {
case BLKIF_OP_READ: case BLKIF_OP_READ:
case BLKIF_OP_WRITE: case BLKIF_OP_WRITE:
case BLKIF_OP_WRITE_BARRIER: case BLKIF_OP_WRITE_BARRIER:
case BLKIF_OP_FLUSH_DISKCACHE: case BLKIF_OP_FLUSH_DISKCACHE:
dst->u.rw.nr_segments = src->u.rw.nr_segments;
dst->u.rw.handle = src->u.rw.handle;
dst->u.rw.id = src->u.rw.id;
dst->u.rw.sector_number = src->u.rw.sector_number; dst->u.rw.sector_number = src->u.rw.sector_number;
barrier(); barrier();
if (n > dst->nr_segments) if (n > dst->u.rw.nr_segments)
n = dst->nr_segments; n = dst->u.rw.nr_segments;
for (i = 0; i < n; i++) for (i = 0; i < n; i++)
dst->u.rw.seg[i] = src->u.rw.seg[i]; dst->u.rw.seg[i] = src->u.rw.seg[i];
break; break;
case BLKIF_OP_DISCARD: case BLKIF_OP_DISCARD:
dst->u.discard.flag = src->u.discard.flag;
dst->u.discard.sector_number = src->u.discard.sector_number; dst->u.discard.sector_number = src->u.discard.sector_number;
dst->u.discard.nr_sectors = src->u.discard.nr_sectors; dst->u.discard.nr_sectors = src->u.discard.nr_sectors;
break; break;
......
...@@ -338,6 +338,9 @@ static int xen_vbd_create(struct xen_blkif *blkif, blkif_vdev_t handle, ...@@ -338,6 +338,9 @@ static int xen_vbd_create(struct xen_blkif *blkif, blkif_vdev_t handle,
if (q && q->flush_flags) if (q && q->flush_flags)
vbd->flush_support = true; vbd->flush_support = true;
if (q && blk_queue_secdiscard(q))
vbd->discard_secure = true;
DPRINTK("Successful creation of handle=%04x (dom=%u)\n", DPRINTK("Successful creation of handle=%04x (dom=%u)\n",
handle, blkif->domid); handle, blkif->domid);
return 0; return 0;
...@@ -420,6 +423,15 @@ int xen_blkbk_discard(struct xenbus_transaction xbt, struct backend_info *be) ...@@ -420,6 +423,15 @@ int xen_blkbk_discard(struct xenbus_transaction xbt, struct backend_info *be)
state = 1; state = 1;
blkif->blk_backend_type = BLKIF_BACKEND_PHY; blkif->blk_backend_type = BLKIF_BACKEND_PHY;
} }
/* Optional. */
err = xenbus_printf(xbt, dev->nodename,
"discard-secure", "%d",
blkif->vbd.discard_secure);
if (err) {
xenbus_dev_fatal(dev, err,
"writting discard-secure");
goto kfree;
}
} }
} else { } else {
err = PTR_ERR(type); err = PTR_ERR(type);
......
...@@ -98,7 +98,8 @@ struct blkfront_info ...@@ -98,7 +98,8 @@ struct blkfront_info
unsigned long shadow_free; unsigned long shadow_free;
unsigned int feature_flush; unsigned int feature_flush;
unsigned int flush_op; unsigned int flush_op;
unsigned int feature_discard; unsigned int feature_discard:1;
unsigned int feature_secdiscard:1;
unsigned int discard_granularity; unsigned int discard_granularity;
unsigned int discard_alignment; unsigned int discard_alignment;
int is_ready; int is_ready;
...@@ -135,15 +136,15 @@ static int get_id_from_freelist(struct blkfront_info *info) ...@@ -135,15 +136,15 @@ static int get_id_from_freelist(struct blkfront_info *info)
{ {
unsigned long free = info->shadow_free; unsigned long free = info->shadow_free;
BUG_ON(free >= BLK_RING_SIZE); BUG_ON(free >= BLK_RING_SIZE);
info->shadow_free = info->shadow[free].req.id; info->shadow_free = info->shadow[free].req.u.rw.id;
info->shadow[free].req.id = 0x0fffffee; /* debug */ info->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
return free; return free;
} }
static void add_id_to_freelist(struct blkfront_info *info, static void add_id_to_freelist(struct blkfront_info *info,
unsigned long id) unsigned long id)
{ {
info->shadow[id].req.id = info->shadow_free; info->shadow[id].req.u.rw.id = info->shadow_free;
info->shadow[id].request = NULL; info->shadow[id].request = NULL;
info->shadow_free = id; info->shadow_free = id;
} }
...@@ -156,7 +157,7 @@ static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) ...@@ -156,7 +157,7 @@ static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
if (end > nr_minors) { if (end > nr_minors) {
unsigned long *bitmap, *old; unsigned long *bitmap, *old;
bitmap = kzalloc(BITS_TO_LONGS(end) * sizeof(*bitmap), bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
GFP_KERNEL); GFP_KERNEL);
if (bitmap == NULL) if (bitmap == NULL)
return -ENOMEM; return -ENOMEM;
...@@ -287,9 +288,9 @@ static int blkif_queue_request(struct request *req) ...@@ -287,9 +288,9 @@ static int blkif_queue_request(struct request *req)
id = get_id_from_freelist(info); id = get_id_from_freelist(info);
info->shadow[id].request = req; info->shadow[id].request = req;
ring_req->id = id; ring_req->u.rw.id = id;
ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
ring_req->handle = info->handle; ring_req->u.rw.handle = info->handle;
ring_req->operation = rq_data_dir(req) ? ring_req->operation = rq_data_dir(req) ?
BLKIF_OP_WRITE : BLKIF_OP_READ; BLKIF_OP_WRITE : BLKIF_OP_READ;
...@@ -305,16 +306,21 @@ static int blkif_queue_request(struct request *req) ...@@ -305,16 +306,21 @@ static int blkif_queue_request(struct request *req)
ring_req->operation = info->flush_op; ring_req->operation = info->flush_op;
} }
if (unlikely(req->cmd_flags & REQ_DISCARD)) { if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE))) {
/* id, sector_number and handle are set above. */ /* id, sector_number and handle are set above. */
ring_req->operation = BLKIF_OP_DISCARD; ring_req->operation = BLKIF_OP_DISCARD;
ring_req->nr_segments = 0;
ring_req->u.discard.nr_sectors = blk_rq_sectors(req); ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
else
ring_req->u.discard.flag = 0;
} else { } else {
ring_req->nr_segments = blk_rq_map_sg(req->q, req, info->sg); ring_req->u.rw.nr_segments = blk_rq_map_sg(req->q, req,
BUG_ON(ring_req->nr_segments > BLKIF_MAX_SEGMENTS_PER_REQUEST); info->sg);
BUG_ON(ring_req->u.rw.nr_segments >
BLKIF_MAX_SEGMENTS_PER_REQUEST);
for_each_sg(info->sg, sg, ring_req->nr_segments, i) { for_each_sg(info->sg, sg, ring_req->u.rw.nr_segments, i) {
buffer_mfn = pfn_to_mfn(page_to_pfn(sg_page(sg))); buffer_mfn = pfn_to_mfn(page_to_pfn(sg_page(sg)));
fsect = sg->offset >> 9; fsect = sg->offset >> 9;
lsect = fsect + (sg->length >> 9) - 1; lsect = fsect + (sg->length >> 9) - 1;
...@@ -424,6 +430,8 @@ static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size) ...@@ -424,6 +430,8 @@ static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size)
blk_queue_max_discard_sectors(rq, get_capacity(gd)); blk_queue_max_discard_sectors(rq, get_capacity(gd));
rq->limits.discard_granularity = info->discard_granularity; rq->limits.discard_granularity = info->discard_granularity;
rq->limits.discard_alignment = info->discard_alignment; rq->limits.discard_alignment = info->discard_alignment;
if (info->feature_secdiscard)
queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
} }
/* Hard sector size and max sectors impersonate the equiv. hardware. */ /* Hard sector size and max sectors impersonate the equiv. hardware. */
...@@ -705,7 +713,9 @@ static void blkif_free(struct blkfront_info *info, int suspend) ...@@ -705,7 +713,9 @@ static void blkif_free(struct blkfront_info *info, int suspend)
static void blkif_completion(struct blk_shadow *s) static void blkif_completion(struct blk_shadow *s)
{ {
int i; int i;
for (i = 0; i < s->req.nr_segments; i++) /* Do not let BLKIF_OP_DISCARD as nr_segment is in the same place
* flag. */
for (i = 0; i < s->req.u.rw.nr_segments; i++)
gnttab_end_foreign_access(s->req.u.rw.seg[i].gref, 0, 0UL); gnttab_end_foreign_access(s->req.u.rw.seg[i].gref, 0, 0UL);
} }
...@@ -736,7 +746,8 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id) ...@@ -736,7 +746,8 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id)
id = bret->id; id = bret->id;
req = info->shadow[id].request; req = info->shadow[id].request;
blkif_completion(&info->shadow[id]); if (bret->operation != BLKIF_OP_DISCARD)
blkif_completion(&info->shadow[id]);
add_id_to_freelist(info, id); add_id_to_freelist(info, id);
...@@ -749,7 +760,9 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id) ...@@ -749,7 +760,9 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id)
info->gd->disk_name); info->gd->disk_name);
error = -EOPNOTSUPP; error = -EOPNOTSUPP;
info->feature_discard = 0; info->feature_discard = 0;
info->feature_secdiscard = 0;
queue_flag_clear(QUEUE_FLAG_DISCARD, rq); queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
} }
__blk_end_request_all(req, error); __blk_end_request_all(req, error);
break; break;
...@@ -763,7 +776,7 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id) ...@@ -763,7 +776,7 @@ static irqreturn_t blkif_interrupt(int irq, void *dev_id)
error = -EOPNOTSUPP; error = -EOPNOTSUPP;
} }
if (unlikely(bret->status == BLKIF_RSP_ERROR && if (unlikely(bret->status == BLKIF_RSP_ERROR &&
info->shadow[id].req.nr_segments == 0)) { info->shadow[id].req.u.rw.nr_segments == 0)) {
printk(KERN_WARNING "blkfront: %s: empty write %s op failed\n", printk(KERN_WARNING "blkfront: %s: empty write %s op failed\n",
info->flush_op == BLKIF_OP_WRITE_BARRIER ? info->flush_op == BLKIF_OP_WRITE_BARRIER ?
"barrier" : "flush disk cache", "barrier" : "flush disk cache",
...@@ -984,8 +997,8 @@ static int blkfront_probe(struct xenbus_device *dev, ...@@ -984,8 +997,8 @@ static int blkfront_probe(struct xenbus_device *dev,
INIT_WORK(&info->work, blkif_restart_queue); INIT_WORK(&info->work, blkif_restart_queue);
for (i = 0; i < BLK_RING_SIZE; i++) for (i = 0; i < BLK_RING_SIZE; i++)
info->shadow[i].req.id = i+1; info->shadow[i].req.u.rw.id = i+1;
info->shadow[BLK_RING_SIZE-1].req.id = 0x0fffffff; info->shadow[BLK_RING_SIZE-1].req.u.rw.id = 0x0fffffff;
/* Front end dir is a number, which is used as the id. */ /* Front end dir is a number, which is used as the id. */
info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
...@@ -1019,9 +1032,9 @@ static int blkif_recover(struct blkfront_info *info) ...@@ -1019,9 +1032,9 @@ static int blkif_recover(struct blkfront_info *info)
/* Stage 2: Set up free list. */ /* Stage 2: Set up free list. */
memset(&info->shadow, 0, sizeof(info->shadow)); memset(&info->shadow, 0, sizeof(info->shadow));
for (i = 0; i < BLK_RING_SIZE; i++) for (i = 0; i < BLK_RING_SIZE; i++)
info->shadow[i].req.id = i+1; info->shadow[i].req.u.rw.id = i+1;
info->shadow_free = info->ring.req_prod_pvt; info->shadow_free = info->ring.req_prod_pvt;
info->shadow[BLK_RING_SIZE-1].req.id = 0x0fffffff; info->shadow[BLK_RING_SIZE-1].req.u.rw.id = 0x0fffffff;
/* Stage 3: Find pending requests and requeue them. */ /* Stage 3: Find pending requests and requeue them. */
for (i = 0; i < BLK_RING_SIZE; i++) { for (i = 0; i < BLK_RING_SIZE; i++) {
...@@ -1034,17 +1047,19 @@ static int blkif_recover(struct blkfront_info *info) ...@@ -1034,17 +1047,19 @@ static int blkif_recover(struct blkfront_info *info)
*req = copy[i].req; *req = copy[i].req;
/* We get a new request id, and must reset the shadow state. */ /* We get a new request id, and must reset the shadow state. */
req->id = get_id_from_freelist(info); req->u.rw.id = get_id_from_freelist(info);
memcpy(&info->shadow[req->id], &copy[i], sizeof(copy[i])); memcpy(&info->shadow[req->u.rw.id], &copy[i], sizeof(copy[i]));
if (req->operation != BLKIF_OP_DISCARD) {
/* Rewrite any grant references invalidated by susp/resume. */ /* Rewrite any grant references invalidated by susp/resume. */
for (j = 0; j < req->nr_segments; j++) for (j = 0; j < req->u.rw.nr_segments; j++)
gnttab_grant_foreign_access_ref( gnttab_grant_foreign_access_ref(
req->u.rw.seg[j].gref, req->u.rw.seg[j].gref,
info->xbdev->otherend_id, info->xbdev->otherend_id,
pfn_to_mfn(info->shadow[req->id].frame[j]), pfn_to_mfn(info->shadow[req->u.rw.id].frame[j]),
rq_data_dir(info->shadow[req->id].request)); rq_data_dir(info->shadow[req->u.rw.id].request));
info->shadow[req->id].req = *req; }
info->shadow[req->u.rw.id].req = *req;
info->ring.req_prod_pvt++; info->ring.req_prod_pvt++;
} }
...@@ -1135,11 +1150,13 @@ static void blkfront_setup_discard(struct blkfront_info *info) ...@@ -1135,11 +1150,13 @@ static void blkfront_setup_discard(struct blkfront_info *info)
char *type; char *type;
unsigned int discard_granularity; unsigned int discard_granularity;
unsigned int discard_alignment; unsigned int discard_alignment;
unsigned int discard_secure;
type = xenbus_read(XBT_NIL, info->xbdev->otherend, "type", NULL); type = xenbus_read(XBT_NIL, info->xbdev->otherend, "type", NULL);
if (IS_ERR(type)) if (IS_ERR(type))
return; return;
info->feature_secdiscard = 0;
if (strncmp(type, "phy", 3) == 0) { if (strncmp(type, "phy", 3) == 0) {
err = xenbus_gather(XBT_NIL, info->xbdev->otherend, err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
"discard-granularity", "%u", &discard_granularity, "discard-granularity", "%u", &discard_granularity,
...@@ -1150,6 +1167,12 @@ static void blkfront_setup_discard(struct blkfront_info *info) ...@@ -1150,6 +1167,12 @@ static void blkfront_setup_discard(struct blkfront_info *info)
info->discard_granularity = discard_granularity; info->discard_granularity = discard_granularity;
info->discard_alignment = discard_alignment; info->discard_alignment = discard_alignment;
} }
err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
"discard-secure", "%d", &discard_secure,
NULL);
if (!err)
info->feature_secdiscard = discard_secure;
} else if (strncmp(type, "file", 4) == 0) } else if (strncmp(type, "file", 4) == 0)
info->feature_discard = 1; info->feature_discard = 1;
......
...@@ -84,6 +84,21 @@ typedef uint64_t blkif_sector_t; ...@@ -84,6 +84,21 @@ typedef uint64_t blkif_sector_t;
* e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc * e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
* http://www.seagate.com/staticfiles/support/disc/manuals/ * http://www.seagate.com/staticfiles/support/disc/manuals/
* Interface%20manuals/100293068c.pdf * Interface%20manuals/100293068c.pdf
* The backend can optionally provide three extra XenBus attributes to
* further optimize the discard functionality:
* 'discard-aligment' - Devices that support discard functionality may
* internally allocate space in units that are bigger than the exported
* logical block size. The discard-alignment parameter indicates how many bytes
* the beginning of the partition is offset from the internal allocation unit's
* natural alignment.
* 'discard-granularity' - Devices that support discard functionality may
* internally allocate space using units that are bigger than the logical block
* size. The discard-granularity parameter indicates the size of the internal
* allocation unit in bytes if reported by the device. Otherwise the
* discard-granularity will be set to match the device's physical block size.
* 'discard-secure' - All copies of the discarded sectors (potentially created
* by garbage collection) must also be erased. To use this feature, the flag
* BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
*/ */
#define BLKIF_OP_DISCARD 5 #define BLKIF_OP_DISCARD 5
...@@ -95,6 +110,12 @@ typedef uint64_t blkif_sector_t; ...@@ -95,6 +110,12 @@ typedef uint64_t blkif_sector_t;
#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11 #define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
struct blkif_request_rw { struct blkif_request_rw {
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
#ifdef CONFIG_X86_64
uint32_t _pad1; /* offsetof(blkif_request,u.rw.id) == 8 */
#endif
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */ blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
struct blkif_request_segment { struct blkif_request_segment {
grant_ref_t gref; /* reference to I/O buffer frame */ grant_ref_t gref; /* reference to I/O buffer frame */
...@@ -102,23 +123,28 @@ struct blkif_request_rw { ...@@ -102,23 +123,28 @@ struct blkif_request_rw {
/* @last_sect: last sector in frame to transfer (inclusive). */ /* @last_sect: last sector in frame to transfer (inclusive). */
uint8_t first_sect, last_sect; uint8_t first_sect, last_sect;
} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST]; } seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
}; } __attribute__((__packed__));
struct blkif_request_discard { struct blkif_request_discard {
uint8_t flag; /* BLKIF_DISCARD_SECURE or zero. */
#define BLKIF_DISCARD_SECURE (1<<0) /* ignored if discard-secure=0 */
blkif_vdev_t _pad1; /* only for read/write requests */
#ifdef CONFIG_X86_64
uint32_t _pad2; /* offsetof(blkif_req..,u.discard.id)==8*/
#endif
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number; blkif_sector_t sector_number;
uint64_t nr_sectors; uint64_t nr_sectors;
}; uint8_t _pad3;
} __attribute__((__packed__));
struct blkif_request { struct blkif_request {
uint8_t operation; /* BLKIF_OP_??? */ uint8_t operation; /* BLKIF_OP_??? */
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint64_t id; /* private guest value, echoed in resp */
union { union {
struct blkif_request_rw rw; struct blkif_request_rw rw;
struct blkif_request_discard discard; struct blkif_request_discard discard;
} u; } u;
}; } __attribute__((__packed__));
struct blkif_response { struct blkif_response {
uint64_t id; /* copied from request */ uint64_t id; /* copied from request */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment