Commit 16609980 authored by Gilad Ben-Yossef's avatar Gilad Ben-Yossef Committed by Greg Kroah-Hartman

staging: ccree: add FIPS support

Add FIPS mode support to CryptoCell driver
Signed-off-by: default avatarGilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent fe0a1951
......@@ -24,6 +24,15 @@ config CRYPTO_DEV_CCREE
cryptographic operations on the system REE.
If unsure say Y.
config CCREE_FIPS_SUPPORT
bool "Turn on CryptoCell 7XX REE FIPS mode support"
depends on CRYPTO_DEV_CCREE
default n
help
Say 'Y' to enable support for FIPS compliant mode by the
CCREE driver.
If unsure say N.
config CCREE_DISABLE_COHERENT_DMA_OPS
bool "Disable Coherent DMA operations for the CCREE driver"
depends on CRYPTO_DEV_CCREE
......
obj-$(CONFIG_CRYPTO_DEV_CCREE) := ccree.o
ccree-y := ssi_driver.o ssi_sysfs.o ssi_buffer_mgr.o ssi_request_mgr.o ssi_cipher.o ssi_hash.o ssi_aead.o ssi_ivgen.o ssi_sram_mgr.o ssi_pm.o ssi_pm_ext.o
ccree-$(CCREE_FIPS_SUPPORT) += ssi_fips.o ssi_fips_ll.o ssi_fips_ext.o ssi_fips_local.o
......@@ -36,6 +36,7 @@
#include "ssi_hash.h"
#include "ssi_sysfs.h"
#include "ssi_sram_mgr.h"
#include "ssi_fips_local.h"
#define template_aead template_u.aead
......@@ -153,6 +154,8 @@ static int ssi_aead_init(struct crypto_aead *tfm)
container_of(alg, struct ssi_crypto_alg, aead_alg);
SSI_LOG_DEBUG("Initializing context @%p for %s\n", ctx, crypto_tfm_alg_name(&(tfm->base)));
CHECK_AND_RETURN_UPON_FIPS_ERROR();
/* Initialize modes in instance */
ctx->cipher_mode = ssi_alg->cipher_mode;
ctx->flow_mode = ssi_alg->flow_mode;
......@@ -572,6 +575,7 @@ ssi_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)
SSI_LOG_DEBUG("Setting key in context @%p for %s. key=%p keylen=%u\n",
ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
/* STAT_PHASE_0: Init and sanity checks */
START_CYCLE_COUNT();
......@@ -699,6 +703,7 @@ static int ssi_aead_setauthsize(
{
struct ssi_aead_ctx *ctx = crypto_aead_ctx(authenc);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
/* Unsupported auth. sizes */
if ((authsize == 0) ||
(authsize >crypto_aead_maxauthsize(authenc))) {
......@@ -2006,6 +2011,7 @@ static int ssi_aead_process(struct aead_request *req, enum drv_crypto_direction
SSI_LOG_DEBUG("%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
((direct==DRV_CRYPTO_DIRECTION_ENCRYPT)?"Encrypt":"Decrypt"), ctx, req, req->iv,
sg_virt(req->src), req->src->offset, sg_virt(req->dst), req->dst->offset, req->cryptlen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
/* STAT_PHASE_0: Init and sanity checks */
START_CYCLE_COUNT();
......
......@@ -31,6 +31,7 @@
#include "ssi_cipher.h"
#include "ssi_request_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_fips_local.h"
#define MAX_ABLKCIPHER_SEQ_LEN 6
......@@ -191,6 +192,7 @@ static int ssi_blkcipher_init(struct crypto_tfm *tfm)
SSI_LOG_DEBUG("Initializing context @%p for %s\n", ctx_p,
crypto_tfm_alg_name(tfm));
CHECK_AND_RETURN_UPON_FIPS_ERROR();
ctx_p->cipher_mode = ssi_alg->cipher_mode;
ctx_p->flow_mode = ssi_alg->flow_mode;
ctx_p->drvdata = ssi_alg->drvdata;
......@@ -269,6 +271,37 @@ static const u8 zero_buff[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
/* The function verifies that tdes keys are not weak.*/
static int ssi_fips_verify_3des_keys(const u8 *key, unsigned int keylen)
{
#ifdef CCREE_FIPS_SUPPORT
tdes_keys_t *tdes_key = (tdes_keys_t*)key;
/* verify key1 != key2 and key3 != key2*/
if (unlikely( (memcmp((u8*)tdes_key->key1, (u8*)tdes_key->key2, sizeof(tdes_key->key1)) == 0) ||
(memcmp((u8*)tdes_key->key3, (u8*)tdes_key->key2, sizeof(tdes_key->key3)) == 0) )) {
return -ENOEXEC;
}
#endif /* CCREE_FIPS_SUPPORT */
return 0;
}
/* The function verifies that xts keys are not weak.*/
static int ssi_fips_verify_xts_keys(const u8 *key, unsigned int keylen)
{
#ifdef CCREE_FIPS_SUPPORT
/* Weak key is define as key that its first half (128/256 lsb) equals its second half (128/256 msb) */
int singleKeySize = keylen >> 1;
if (unlikely(memcmp(key, &key[singleKeySize], singleKeySize) == 0)) {
return -ENOEXEC;
}
#endif /* CCREE_FIPS_SUPPORT */
return 0;
}
static enum HwCryptoKey hw_key_to_cc_hw_key(int slot_num)
{
switch (slot_num) {
......@@ -298,6 +331,10 @@ static int ssi_blkcipher_setkey(struct crypto_tfm *tfm,
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", (uint8_t *)key, keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
SSI_LOG_DEBUG("ssi_blkcipher_setkey: after FIPS check");
/* STAT_PHASE_0: Init and sanity checks */
START_CYCLE_COUNT();
......@@ -359,6 +396,18 @@ static int ssi_blkcipher_setkey(struct crypto_tfm *tfm,
return -EINVAL;
}
}
if ((ctx_p->cipher_mode == DRV_CIPHER_XTS) &&
ssi_fips_verify_xts_keys(key, keylen) != 0) {
SSI_LOG_DEBUG("ssi_blkcipher_setkey: weak XTS key");
return -EINVAL;
}
if ((ctx_p->flow_mode == S_DIN_to_DES) &&
(keylen == DES3_EDE_KEY_SIZE) &&
ssi_fips_verify_3des_keys(key, keylen) != 0) {
SSI_LOG_DEBUG("ssi_blkcipher_setkey: weak 3DES key");
return -EINVAL;
}
END_CYCLE_COUNT(STAT_OP_TYPE_SETKEY, STAT_PHASE_0);
......@@ -744,6 +793,7 @@ static int ssi_blkcipher_process(
((direction==DRV_CRYPTO_DIRECTION_ENCRYPT)?"Encrypt":"Decrypt"),
areq, info, nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
/* STAT_PHASE_0: Init and sanity checks */
START_CYCLE_COUNT();
......@@ -864,6 +914,8 @@ static void ssi_ablkcipher_complete(struct device *dev, void *ssi_req, void __io
struct ssi_ablkcipher_ctx *ctx_p = crypto_ablkcipher_ctx(tfm);
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
CHECK_AND_RETURN_VOID_UPON_FIPS_ERROR();
ssi_blkcipher_complete(dev, ctx_p, req_ctx, areq->dst, areq->src, areq->info, ivsize, areq, cc_base);
}
......
......@@ -69,6 +69,7 @@
#include "ssi_ivgen.h"
#include "ssi_sram_mgr.h"
#include "ssi_pm.h"
#include "ssi_fips_local.h"
#ifdef DX_DUMP_BYTES
......@@ -142,7 +143,15 @@ static irqreturn_t cc_isr(int irq, void *dev_id)
irr &= ~SSI_COMP_IRQ_MASK;
complete_request(drvdata);
}
#ifdef CC_SUPPORT_FIPS
/* TEE FIPS interrupt */
if (likely((irr & SSI_GPR0_IRQ_MASK) != 0)) {
/* Mask interrupt - will be unmasked in Deferred service handler */
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR), imr | SSI_GPR0_IRQ_MASK);
irr &= ~SSI_GPR0_IRQ_MASK;
fips_handler(drvdata);
}
#endif
/* AXI error interrupt */
if (unlikely((irr & SSI_AXI_ERR_IRQ_MASK) != 0)) {
uint32_t axi_err;
......@@ -351,6 +360,12 @@ static int init_cc_resources(struct platform_device *plat_dev)
goto init_cc_res_err;
}
rc = ssi_fips_init(new_drvdata);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("SSI_FIPS_INIT failed 0x%x\n", rc);
goto init_cc_res_err;
}
rc = ssi_ivgen_init(new_drvdata);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("ssi_ivgen_init failed\n");
......@@ -391,6 +406,7 @@ static int init_cc_resources(struct platform_device *plat_dev)
ssi_buffer_mgr_fini(new_drvdata);
request_mgr_fini(new_drvdata);
ssi_sram_mgr_fini(new_drvdata);
ssi_fips_fini(new_drvdata);
#ifdef ENABLE_CC_SYSFS
ssi_sysfs_fini();
#endif
......@@ -434,6 +450,7 @@ static void cleanup_cc_resources(struct platform_device *plat_dev)
ssi_buffer_mgr_fini(drvdata);
request_mgr_fini(drvdata);
ssi_sram_mgr_fini(drvdata);
ssi_fips_fini(drvdata);
#ifdef ENABLE_CC_SYSFS
ssi_sysfs_fini();
#endif
......
......@@ -54,6 +54,7 @@
#include "cc_crypto_ctx.h"
#include "ssi_sysfs.h"
#include "hash_defs.h"
#include "ssi_fips_local.h"
#define DRV_MODULE_VERSION "3.0"
......@@ -152,6 +153,7 @@ struct ssi_drvdata {
void *aead_handle;
void *blkcipher_handle;
void *request_mgr_handle;
void *fips_handle;
void *ivgen_handle;
void *sram_mgr_handle;
......
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/**************************************************************
This file defines the driver FIPS APIs *
***************************************************************/
#include <linux/module.h>
#include "ssi_fips.h"
extern int ssi_fips_ext_get_state(ssi_fips_state_t *p_state);
extern int ssi_fips_ext_get_error(ssi_fips_error_t *p_err);
/*
This function returns the REE FIPS state.
It should be called by kernel module.
*/
int ssi_fips_get_state(ssi_fips_state_t *p_state)
{
int rc = 0;
if (p_state == NULL) {
return -EINVAL;
}
rc = ssi_fips_ext_get_state(p_state);
return rc;
}
EXPORT_SYMBOL(ssi_fips_get_state);
/*
This function returns the REE FIPS error.
It should be called by kernel module.
*/
int ssi_fips_get_error(ssi_fips_error_t *p_err)
{
int rc = 0;
if (p_err == NULL) {
return -EINVAL;
}
rc = ssi_fips_ext_get_error(p_err);
return rc;
}
EXPORT_SYMBOL(ssi_fips_get_error);
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __SSI_FIPS_H__
#define __SSI_FIPS_H__
#ifndef INT32_MAX /* Missing in Linux kernel */
#define INT32_MAX 0x7FFFFFFFL
#endif
/*!
@file
@brief This file contains FIPS related defintions and APIs.
*/
typedef enum ssi_fips_state {
CC_FIPS_STATE_NOT_SUPPORTED = 0,
CC_FIPS_STATE_SUPPORTED,
CC_FIPS_STATE_ERROR,
CC_FIPS_STATE_RESERVE32B = INT32_MAX
} ssi_fips_state_t;
typedef enum ssi_fips_error {
CC_REE_FIPS_ERROR_OK = 0,
CC_REE_FIPS_ERROR_GENERAL,
CC_REE_FIPS_ERROR_FROM_TEE,
CC_REE_FIPS_ERROR_AES_ECB_PUT,
CC_REE_FIPS_ERROR_AES_CBC_PUT,
CC_REE_FIPS_ERROR_AES_OFB_PUT,
CC_REE_FIPS_ERROR_AES_CTR_PUT,
CC_REE_FIPS_ERROR_AES_CBC_CTS_PUT,
CC_REE_FIPS_ERROR_AES_XTS_PUT,
CC_REE_FIPS_ERROR_AES_CMAC_PUT,
CC_REE_FIPS_ERROR_AESCCM_PUT,
CC_REE_FIPS_ERROR_AESGCM_PUT,
CC_REE_FIPS_ERROR_DES_ECB_PUT,
CC_REE_FIPS_ERROR_DES_CBC_PUT,
CC_REE_FIPS_ERROR_SHA1_PUT,
CC_REE_FIPS_ERROR_SHA256_PUT,
CC_REE_FIPS_ERROR_SHA512_PUT,
CC_REE_FIPS_ERROR_HMAC_SHA1_PUT,
CC_REE_FIPS_ERROR_HMAC_SHA256_PUT,
CC_REE_FIPS_ERROR_HMAC_SHA512_PUT,
CC_REE_FIPS_ERROR_ROM_CHECKSUM,
CC_REE_FIPS_ERROR_RESERVE32B = INT32_MAX
} ssi_fips_error_t;
int ssi_fips_get_state(ssi_fips_state_t *p_state);
int ssi_fips_get_error(ssi_fips_error_t *p_err);
#endif /*__SSI_FIPS_H__*/
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
The test vectors were taken from:
* AES
NIST Special Publication 800-38A 2001 Edition
Recommendation for Block Cipher Modes of Operation
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
Appendix F: Example Vectors for Modes of Operation of the AES
* AES CTS
Advanced Encryption Standard (AES) Encryption for Kerberos 5
February 2005
https://tools.ietf.org/html/rfc3962#appendix-B
B. Sample Test Vectors
* AES XTS
http://csrc.nist.gov/groups/STM/cavp/#08
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip
* AES CMAC
http://csrc.nist.gov/groups/STM/cavp/index.html#07
http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip
* AES-CCM
http://csrc.nist.gov/groups/STM/cavp/#07
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip
* AES-GCM
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip
* Triple-DES
NIST Special Publication 800-67 January 2012
Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
APPENDIX B: EXAMPLE OF TDEA FORWARD AND INVERSE CIPHER OPERATIONS
and
http://csrc.nist.gov/groups/STM/cavp/#01
http://csrc.nist.gov/groups/STM/cavp/documents/des/tdesmct_intermediate.zip
* HASH
http://csrc.nist.gov/groups/STM/cavp/#03
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shabytetestvectors.zip
* HMAC
http://csrc.nist.gov/groups/STM/cavp/#07
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmactestvectors.zip
*/
/* NIST AES */
#define AES_128_BIT_KEY_SIZE 16
#define AES_192_BIT_KEY_SIZE 24
#define AES_256_BIT_KEY_SIZE 32
#define AES_512_BIT_KEY_SIZE 64
#define NIST_AES_IV_SIZE 16
#define NIST_AES_128_KEY { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }
#define NIST_AES_192_KEY { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, \
0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b }
#define NIST_AES_256_KEY { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, \
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }
#define NIST_AES_VECTOR_SIZE 16
#define NIST_AES_PLAIN_DATA { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a }
#define NIST_AES_ECB_IV { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
#define NIST_AES_128_ECB_CIPHER { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 }
#define NIST_AES_192_ECB_CIPHER { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc }
#define NIST_AES_256_ECB_CIPHER { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 }
#define NIST_AES_CBC_IV { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }
#define NIST_AES_128_CBC_CIPHER { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d }
#define NIST_AES_192_CBC_CIPHER { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8 }
#define NIST_AES_256_CBC_CIPHER { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6 }
#define NIST_AES_OFB_IV { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }
#define NIST_AES_128_OFB_CIPHER { 0x3b, 0x3f, 0xd9, 0x2e, 0xb7, 0x2d, 0xad, 0x20, 0x33, 0x34, 0x49, 0xf8, 0xe8, 0x3c, 0xfb, 0x4a }
#define NIST_AES_192_OFB_CIPHER { 0xcd, 0xc8, 0x0d, 0x6f, 0xdd, 0xf1, 0x8c, 0xab, 0x34, 0xc2, 0x59, 0x09, 0xc9, 0x9a, 0x41, 0x74 }
#define NIST_AES_256_OFB_CIPHER { 0xdc, 0x7e, 0x84, 0xbf, 0xda, 0x79, 0x16, 0x4b, 0x7e, 0xcd, 0x84, 0x86, 0x98, 0x5d, 0x38, 0x60 }
#define NIST_AES_CTR_IV { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }
#define NIST_AES_128_CTR_CIPHER { 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce }
#define NIST_AES_192_CTR_CIPHER { 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b }
#define NIST_AES_256_CTR_CIPHER { 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28 }
#define RFC3962_AES_128_KEY { 0x63, 0x68, 0x69, 0x63, 0x6b, 0x65, 0x6e, 0x20, 0x74, 0x65, 0x72, 0x69, 0x79, 0x61, 0x6b, 0x69 }
#define RFC3962_AES_VECTOR_SIZE 17
#define RFC3962_AES_PLAIN_DATA { 0x49, 0x20, 0x77, 0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6c, 0x69, 0x6b, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20 }
#define RFC3962_AES_CBC_CTS_IV { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
#define RFC3962_AES_128_CBC_CTS_CIPHER { 0xc6, 0x35, 0x35, 0x68, 0xf2, 0xbf, 0x8c, 0xb4, 0xd8, 0xa5, 0x80, 0x36, 0x2d, 0xa7, 0xff, 0x7f, 0x97 }
#define NIST_AES_256_XTS_KEY { 0xa1, 0xb9, 0x0c, 0xba, 0x3f, 0x06, 0xac, 0x35, 0x3b, 0x2c, 0x34, 0x38, 0x76, 0x08, 0x17, 0x62, \
0x09, 0x09, 0x23, 0x02, 0x6e, 0x91, 0x77, 0x18, 0x15, 0xf2, 0x9d, 0xab, 0x01, 0x93, 0x2f, 0x2f }
#define NIST_AES_256_XTS_IV { 0x4f, 0xae, 0xf7, 0x11, 0x7c, 0xda, 0x59, 0xc6, 0x6e, 0x4b, 0x92, 0x01, 0x3e, 0x76, 0x8a, 0xd5 }
#define NIST_AES_256_XTS_VECTOR_SIZE 16
#define NIST_AES_256_XTS_PLAIN { 0xeb, 0xab, 0xce, 0x95, 0xb1, 0x4d, 0x3c, 0x8d, 0x6f, 0xb3, 0x50, 0x39, 0x07, 0x90, 0x31, 0x1c }
#define NIST_AES_256_XTS_CIPHER { 0x77, 0x8a, 0xe8, 0xb4, 0x3c, 0xb9, 0x8d, 0x5a, 0x82, 0x50, 0x81, 0xd5, 0xbe, 0x47, 0x1c, 0x63 }
#define NIST_AES_512_XTS_KEY { 0x1e, 0xa6, 0x61, 0xc5, 0x8d, 0x94, 0x3a, 0x0e, 0x48, 0x01, 0xe4, 0x2f, 0x4b, 0x09, 0x47, 0x14, \
0x9e, 0x7f, 0x9f, 0x8e, 0x3e, 0x68, 0xd0, 0xc7, 0x50, 0x52, 0x10, 0xbd, 0x31, 0x1a, 0x0e, 0x7c, \
0xd6, 0xe1, 0x3f, 0xfd, 0xf2, 0x41, 0x8d, 0x8d, 0x19, 0x11, 0xc0, 0x04, 0xcd, 0xa5, 0x8d, 0xa3, \
0xd6, 0x19, 0xb7, 0xe2, 0xb9, 0x14, 0x1e, 0x58, 0x31, 0x8e, 0xea, 0x39, 0x2c, 0xf4, 0x1b, 0x08 }
#define NIST_AES_512_XTS_IV { 0xad, 0xf8, 0xd9, 0x26, 0x27, 0x46, 0x4a, 0xd2, 0xf0, 0x42, 0x8e, 0x84, 0xa9, 0xf8, 0x75, 0x64, }
#define NIST_AES_512_XTS_VECTOR_SIZE 32
#define NIST_AES_512_XTS_PLAIN { 0x2e, 0xed, 0xea, 0x52, 0xcd, 0x82, 0x15, 0xe1, 0xac, 0xc6, 0x47, 0xe8, 0x10, 0xbb, 0xc3, 0x64, \
0x2e, 0x87, 0x28, 0x7f, 0x8d, 0x2e, 0x57, 0xe3, 0x6c, 0x0a, 0x24, 0xfb, 0xc1, 0x2a, 0x20, 0x2e }
#define NIST_AES_512_XTS_CIPHER { 0xcb, 0xaa, 0xd0, 0xe2, 0xf6, 0xce, 0xa3, 0xf5, 0x0b, 0x37, 0xf9, 0x34, 0xd4, 0x6a, 0x9b, 0x13, \
0x0b, 0x9d, 0x54, 0xf0, 0x7e, 0x34, 0xf3, 0x6a, 0xf7, 0x93, 0xe8, 0x6f, 0x73, 0xc6, 0xd7, 0xdb }
/* NIST AES-CMAC */
#define NIST_AES_128_CMAC_KEY { 0x67, 0x08, 0xc9, 0x88, 0x7b, 0x84, 0x70, 0x84, 0xf1, 0x23, 0xd3, 0xdd, 0x9c, 0x3a, 0x81, 0x36 }
#define NIST_AES_128_CMAC_PLAIN_DATA { 0xa8, 0xde, 0x55, 0x17, 0x0c, 0x6d, 0xc0, 0xd8, 0x0d, 0xe3, 0x2f, 0x50, 0x8b, 0xf4, 0x9b, 0x70 }
#define NIST_AES_128_CMAC_MAC { 0xcf, 0xef, 0x9b, 0x78, 0x39, 0x84, 0x1f, 0xdb, 0xcc, 0xbb, 0x6c, 0x2c, 0xf2, 0x38, 0xf7 }
#define NIST_AES_128_CMAC_VECTOR_SIZE 16
#define NIST_AES_128_CMAC_OUTPUT_SIZE 15
#define NIST_AES_192_CMAC_KEY { 0x20, 0x51, 0xaf, 0x34, 0x76, 0x2e, 0xbe, 0x55, 0x6f, 0x72, 0xa5, 0xc6, 0xed, 0xc7, 0x77, 0x1e, \
0xb9, 0x24, 0x5f, 0xad, 0x76, 0xf0, 0x34, 0xbe }
#define NIST_AES_192_CMAC_PLAIN_DATA { 0xae, 0x8e, 0x93, 0xc9, 0xc9, 0x91, 0xcf, 0x89, 0x6a, 0x49, 0x1a, 0x89, 0x07, 0xdf, 0x4e, 0x4b, \
0xe5, 0x18, 0x6a, 0xe4, 0x96, 0xcd, 0x34, 0x0d, 0xc1, 0x9b, 0x23, 0x78, 0x21, 0xdb, 0x7b, 0x60 }
#define NIST_AES_192_CMAC_MAC { 0x74, 0xf7, 0x46, 0x08, 0xc0, 0x4f, 0x0f, 0x4e, 0x47, 0xfa, 0x64, 0x04, 0x33, 0xb6, 0xe6, 0xfb }
#define NIST_AES_192_CMAC_VECTOR_SIZE 32
#define NIST_AES_192_CMAC_OUTPUT_SIZE 16
#define NIST_AES_256_CMAC_KEY { 0x3a, 0x75, 0xa9, 0xd2, 0xbd, 0xb8, 0xc8, 0x04, 0xba, 0x4a, 0xb4, 0x98, 0x35, 0x73, 0xa6, 0xb2, \
0x53, 0x16, 0x0d, 0xd9, 0x0f, 0x8e, 0xdd, 0xfb, 0x2f, 0xdc, 0x2a, 0xb1, 0x76, 0x04, 0xf5, 0xc5 }
#define NIST_AES_256_CMAC_PLAIN_DATA { 0x42, 0xf3, 0x5d, 0x5a, 0xa5, 0x33, 0xa7, 0xa0, 0xa5, 0xf7, 0x4e, 0x14, 0x4f, 0x2a, 0x5f, 0x20 }
#define NIST_AES_256_CMAC_MAC { 0xf1, 0x53, 0x2f, 0x87, 0x32, 0xd9, 0xf5, 0x90, 0x30, 0x07 }
#define NIST_AES_256_CMAC_VECTOR_SIZE 16
#define NIST_AES_256_CMAC_OUTPUT_SIZE 10
/* NIST TDES */
#define TDES_NUM_OF_KEYS 3
#define NIST_TDES_VECTOR_SIZE 8
#define NIST_TDES_IV_SIZE 8
#define NIST_TDES_ECB_IV { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
#define NIST_TDES_ECB3_KEY { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, \
0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, \
0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23 }
#define NIST_TDES_ECB3_PLAIN_DATA { 0x54, 0x68, 0x65, 0x20, 0x71, 0x75, 0x66, 0x63 }
#define NIST_TDES_ECB3_CIPHER { 0xa8, 0x26, 0xfd, 0x8c, 0xe5, 0x3b, 0x85, 0x5f }
#define NIST_TDES_CBC3_IV { 0xf8, 0xee, 0xe1, 0x35, 0x9c, 0x6e, 0x54, 0x40 }
#define NIST_TDES_CBC3_KEY { 0xe9, 0xda, 0x37, 0xf8, 0xdc, 0x97, 0x6d, 0x5b, \
0xb6, 0x8c, 0x04, 0xe3, 0xec, 0x98, 0x20, 0x15, \
0xf4, 0x0e, 0x08, 0xb5, 0x97, 0x29, 0xf2, 0x8f }
#define NIST_TDES_CBC3_PLAIN_DATA { 0x3b, 0xb7, 0xa7, 0xdb, 0xa3, 0xd5, 0x92, 0x91 }
#define NIST_TDES_CBC3_CIPHER { 0x5b, 0x84, 0x24, 0xd2, 0x39, 0x3e, 0x55, 0xa2 }
/* NIST AES-CCM */
#define NIST_AESCCM_128_BIT_KEY_SIZE 16
#define NIST_AESCCM_192_BIT_KEY_SIZE 24
#define NIST_AESCCM_256_BIT_KEY_SIZE 32
#define NIST_AESCCM_B0_VAL 0x79 /* L'[0:2]=1 , M'[3-5]=7 , Adata[6]=1, reserved[7]=0 */
#define NIST_AESCCM_NONCE_SIZE 13
#define NIST_AESCCM_IV_SIZE 16
#define NIST_AESCCM_ADATA_SIZE 32
#define NIST_AESCCM_TEXT_SIZE 16
#define NIST_AESCCM_TAG_SIZE 16
#define NIST_AESCCM_128_KEY { 0x70, 0x01, 0x0e, 0xd9, 0x0e, 0x61, 0x86, 0xec, 0xad, 0x41, 0xf0, 0xd3, 0xc7, 0xc4, 0x2f, 0xf8 }
#define NIST_AESCCM_128_NONCE { 0xa5, 0xf4, 0xf4, 0x98, 0x6e, 0x98, 0x47, 0x29, 0x65, 0xf5, 0xab, 0xcc, 0x4b }
#define NIST_AESCCM_128_ADATA { 0x3f, 0xec, 0x0e, 0x5c, 0xc2, 0x4d, 0x67, 0x13, 0x94, 0x37, 0xcb, 0xc8, 0x11, 0x24, 0x14, 0xfc, \
0x8d, 0xac, 0xcd, 0x1a, 0x94, 0xb4, 0x9a, 0x4c, 0x76, 0xe2, 0xd3, 0x93, 0x03, 0x54, 0x73, 0x17 }
#define NIST_AESCCM_128_PLAIN_TEXT { 0xbe, 0x32, 0x2f, 0x58, 0xef, 0xa7, 0xf8, 0xc6, 0x8a, 0x63, 0x5e, 0x0b, 0x9c, 0xce, 0x77, 0xf2 }
#define NIST_AESCCM_128_CIPHER { 0x8e, 0x44, 0x25, 0xae, 0x57, 0x39, 0x74, 0xf0, 0xf0, 0x69, 0x3a, 0x18, 0x8b, 0x52, 0x58, 0x12 }
#define NIST_AESCCM_128_MAC { 0xee, 0xf0, 0x8e, 0x3f, 0xb1, 0x5f, 0x42, 0x27, 0xe0, 0xd9, 0x89, 0xa4, 0xd5, 0x87, 0xa8, 0xcf }
#define NIST_AESCCM_192_KEY { 0x68, 0x73, 0xf1, 0xc6, 0xc3, 0x09, 0x75, 0xaf, 0xf6, 0xf0, 0x84, 0x70, 0x26, 0x43, 0x21, 0x13, \
0x0a, 0x6e, 0x59, 0x84, 0xad, 0xe3, 0x24, 0xe9 }
#define NIST_AESCCM_192_NONCE { 0x7c, 0x4d, 0x2f, 0x7c, 0xec, 0x04, 0x36, 0x1f, 0x18, 0x7f, 0x07, 0x26, 0xd5 }
#define NIST_AESCCM_192_ADATA { 0x77, 0x74, 0x3b, 0x5d, 0x83, 0xa0, 0x0d, 0x2c, 0x8d, 0x5f, 0x7e, 0x10, 0x78, 0x15, 0x31, 0xb4, \
0x96, 0xe0, 0x9f, 0x3b, 0xc9, 0x29, 0x5d, 0x7a, 0xe9, 0x79, 0x9e, 0x64, 0x66, 0x8e, 0xf8, 0xc5 }
#define NIST_AESCCM_192_PLAIN_TEXT { 0x50, 0x51, 0xa0, 0xb0, 0xb6, 0x76, 0x6c, 0xd6, 0xea, 0x29, 0xa6, 0x72, 0x76, 0x9d, 0x40, 0xfe }
#define NIST_AESCCM_192_CIPHER { 0x0c, 0xe5, 0xac, 0x8d, 0x6b, 0x25, 0x6f, 0xb7, 0x58, 0x0b, 0xf6, 0xac, 0xc7, 0x64, 0x26, 0xaf }
#define NIST_AESCCM_192_MAC { 0x40, 0xbc, 0xe5, 0x8f, 0xd4, 0xcd, 0x65, 0x48, 0xdf, 0x90, 0xa0, 0x33, 0x7c, 0x84, 0x20, 0x04 }
#define NIST_AESCCM_256_KEY { 0xee, 0x8c, 0xe1, 0x87, 0x16, 0x97, 0x79, 0xd1, 0x3e, 0x44, 0x3d, 0x64, 0x28, 0xe3, 0x8b, 0x38, \
0xb5, 0x5d, 0xfb, 0x90, 0xf0, 0x22, 0x8a, 0x8a, 0x4e, 0x62, 0xf8, 0xf5, 0x35, 0x80, 0x6e, 0x62 }
#define NIST_AESCCM_256_NONCE { 0x12, 0x16, 0x42, 0xc4, 0x21, 0x8b, 0x39, 0x1c, 0x98, 0xe6, 0x26, 0x9c, 0x8a }
#define NIST_AESCCM_256_ADATA { 0x71, 0x8d, 0x13, 0xe4, 0x75, 0x22, 0xac, 0x4c, 0xdf, 0x3f, 0x82, 0x80, 0x63, 0x98, 0x0b, 0x6d, \
0x45, 0x2f, 0xcd, 0xcd, 0x6e, 0x1a, 0x19, 0x04, 0xbf, 0x87, 0xf5, 0x48, 0xa5, 0xfd, 0x5a, 0x05 }
#define NIST_AESCCM_256_PLAIN_TEXT { 0xd1, 0x5f, 0x98, 0xf2, 0xc6, 0xd6, 0x70, 0xf5, 0x5c, 0x78, 0xa0, 0x66, 0x48, 0x33, 0x2b, 0xc9 }
#define NIST_AESCCM_256_CIPHER { 0xcc, 0x17, 0xbf, 0x87, 0x94, 0xc8, 0x43, 0x45, 0x7d, 0x89, 0x93, 0x91, 0x89, 0x8e, 0xd2, 0x2a }
#define NIST_AESCCM_256_MAC { 0x6f, 0x9d, 0x28, 0xfc, 0xb6, 0x42, 0x34, 0xe1, 0xcd, 0x79, 0x3c, 0x41, 0x44, 0xf1, 0xda, 0x50 }
/* NIST AES-GCM */
#define NIST_AESGCM_128_BIT_KEY_SIZE 16
#define NIST_AESGCM_192_BIT_KEY_SIZE 24
#define NIST_AESGCM_256_BIT_KEY_SIZE 32
#define NIST_AESGCM_IV_SIZE 12
#define NIST_AESGCM_ADATA_SIZE 16
#define NIST_AESGCM_TEXT_SIZE 16
#define NIST_AESGCM_TAG_SIZE 16
#define NIST_AESGCM_128_KEY { 0x81, 0x6e, 0x39, 0x07, 0x04, 0x10, 0xcf, 0x21, 0x84, 0x90, 0x4d, 0xa0, 0x3e, 0xa5, 0x07, 0x5a }
#define NIST_AESGCM_128_IV { 0x32, 0xc3, 0x67, 0xa3, 0x36, 0x26, 0x13, 0xb2, 0x7f, 0xc3, 0xe6, 0x7e }
#define NIST_AESGCM_128_ADATA { 0xf2, 0xa3, 0x07, 0x28, 0xed, 0x87, 0x4e, 0xe0, 0x29, 0x83, 0xc2, 0x94, 0x43, 0x5d, 0x3c, 0x16 }
#define NIST_AESGCM_128_PLAIN_TEXT { 0xec, 0xaf, 0xe9, 0x6c, 0x67, 0xa1, 0x64, 0x67, 0x44, 0xf1, 0xc8, 0x91, 0xf5, 0xe6, 0x94, 0x27 }
#define NIST_AESGCM_128_CIPHER { 0x55, 0x2e, 0xbe, 0x01, 0x2e, 0x7b, 0xcf, 0x90, 0xfc, 0xef, 0x71, 0x2f, 0x83, 0x44, 0xe8, 0xf1 }
#define NIST_AESGCM_128_MAC { 0xec, 0xaa, 0xe9, 0xfc, 0x68, 0x27, 0x6a, 0x45, 0xab, 0x0c, 0xa3, 0xcb, 0x9d, 0xd9, 0x53, 0x9f }
#define NIST_AESGCM_192_KEY { 0x0c, 0x44, 0xd6, 0xc9, 0x28, 0xee, 0x11, 0x2c, 0xe6, 0x65, 0xfe, 0x54, 0x7e, 0xbd, 0x38, 0x72, \
0x98, 0xa9, 0x54, 0xb4, 0x62, 0xf6, 0x95, 0xd8 }
#define NIST_AESGCM_192_IV { 0x18, 0xb8, 0xf3, 0x20, 0xfe, 0xf4, 0xae, 0x8c, 0xcb, 0xe8, 0xf9, 0x52 }
#define NIST_AESGCM_192_ADATA { 0x73, 0x41, 0xd4, 0x3f, 0x98, 0xcf, 0x38, 0x82, 0x21, 0x18, 0x09, 0x41, 0x97, 0x03, 0x76, 0xe8 }
#define NIST_AESGCM_192_PLAIN_TEXT { 0x96, 0xad, 0x07, 0xf9, 0xb6, 0x28, 0xb6, 0x52, 0xcf, 0x86, 0xcb, 0x73, 0x17, 0x88, 0x6f, 0x51 }
#define NIST_AESGCM_192_CIPHER { 0xa6, 0x64, 0x07, 0x81, 0x33, 0x40, 0x5e, 0xb9, 0x09, 0x4d, 0x36, 0xf7, 0xe0, 0x70, 0x19, 0x1f }
#define NIST_AESGCM_192_MAC { 0xe8, 0xf9, 0xc3, 0x17, 0x84, 0x7c, 0xe3, 0xf3, 0xc2, 0x39, 0x94, 0xa4, 0x02, 0xf0, 0x65, 0x81 }
#define NIST_AESGCM_256_KEY { 0x54, 0xe3, 0x52, 0xea, 0x1d, 0x84, 0xbf, 0xe6, 0x4a, 0x10, 0x11, 0x09, 0x61, 0x11, 0xfb, 0xe7, \
0x66, 0x8a, 0xd2, 0x20, 0x3d, 0x90, 0x2a, 0x01, 0x45, 0x8c, 0x3b, 0xbd, 0x85, 0xbf, 0xce, 0x14 }
#define NIST_AESGCM_256_IV { 0xdf, 0x7c, 0x3b, 0xca, 0x00, 0x39, 0x6d, 0x0c, 0x01, 0x84, 0x95, 0xd9 }
#define NIST_AESGCM_256_ADATA { 0x7e, 0x96, 0x8d, 0x71, 0xb5, 0x0c, 0x1f, 0x11, 0xfd, 0x00, 0x1f, 0x3f, 0xef, 0x49, 0xd0, 0x45 }
#define NIST_AESGCM_256_PLAIN_TEXT { 0x85, 0xfc, 0x3d, 0xfa, 0xd9, 0xb5, 0xa8, 0xd3, 0x25, 0x8e, 0x4f, 0xc4, 0x45, 0x71, 0xbd, 0x3b }
#define NIST_AESGCM_256_CIPHER { 0x42, 0x6e, 0x0e, 0xfc, 0x69, 0x3b, 0x7b, 0xe1, 0xf3, 0x01, 0x8d, 0xb7, 0xdd, 0xbb, 0x7e, 0x4d }
#define NIST_AESGCM_256_MAC { 0xee, 0x82, 0x57, 0x79, 0x5b, 0xe6, 0xa1, 0x16, 0x4d, 0x7e, 0x1d, 0x2d, 0x6c, 0xac, 0x77, 0xa7 }
/* NIST HASH */
#define NIST_SHA_MSG_SIZE 16
#define NIST_SHA_1_MSG { 0x35, 0x52, 0x69, 0x4c, 0xdf, 0x66, 0x3f, 0xd9, 0x4b, 0x22, 0x47, 0x47, 0xac, 0x40, 0x6a, 0xaf }
#define NIST_SHA_1_MD { 0xa1, 0x50, 0xde, 0x92, 0x74, 0x54, 0x20, 0x2d, 0x94, 0xe6, 0x56, 0xde, 0x4c, 0x7c, 0x0c, 0xa6, \
0x91, 0xde, 0x95, 0x5d }
#define NIST_SHA_256_MSG { 0x0a, 0x27, 0x84, 0x7c, 0xdc, 0x98, 0xbd, 0x6f, 0x62, 0x22, 0x0b, 0x04, 0x6e, 0xdd, 0x76, 0x2b }
#define NIST_SHA_256_MD { 0x80, 0xc2, 0x5e, 0xc1, 0x60, 0x05, 0x87, 0xe7, 0xf2, 0x8b, 0x18, 0xb1, 0xb1, 0x8e, 0x3c, 0xdc, \
0x89, 0x92, 0x8e, 0x39, 0xca, 0xb3, 0xbc, 0x25, 0xe4, 0xd4, 0xa4, 0xc1, 0x39, 0xbc, 0xed, 0xc4 }
#define NIST_SHA_512_MSG { 0xcd, 0x67, 0xbd, 0x40, 0x54, 0xaa, 0xa3, 0xba, 0xa0, 0xdb, 0x17, 0x8c, 0xe2, 0x32, 0xfd, 0x5a }
#define NIST_SHA_512_MD { 0x0d, 0x85, 0x21, 0xf8, 0xf2, 0xf3, 0x90, 0x03, 0x32, 0xd1, 0xa1, 0xa5, 0x5c, 0x60, 0xba, 0x81, \
0xd0, 0x4d, 0x28, 0xdf, 0xe8, 0xc5, 0x04, 0xb6, 0x32, 0x8a, 0xe7, 0x87, 0x92, 0x5f, 0xe0, 0x18, \
0x8f, 0x2b, 0xa9, 0x1c, 0x3a, 0x9f, 0x0c, 0x16, 0x53, 0xc4, 0xbf, 0x0a, 0xda, 0x35, 0x64, 0x55, \
0xea, 0x36, 0xfd, 0x31, 0xf8, 0xe7, 0x3e, 0x39, 0x51, 0xca, 0xd4, 0xeb, 0xba, 0x8c, 0x6e, 0x04 }
/* NIST HMAC */
#define NIST_HMAC_MSG_SIZE 128
#define NIST_HMAC_SHA1_KEY_SIZE 10
#define NIST_HMAC_SHA1_KEY { 0x59, 0x78, 0x59, 0x28, 0xd7, 0x25, 0x16, 0xe3, 0x12, 0x72 }
#define NIST_HMAC_SHA1_MSG { 0xa3, 0xce, 0x88, 0x99, 0xdf, 0x10, 0x22, 0xe8, 0xd2, 0xd5, 0x39, 0xb4, 0x7b, 0xf0, 0xe3, 0x09, \
0xc6, 0x6f, 0x84, 0x09, 0x5e, 0x21, 0x43, 0x8e, 0xc3, 0x55, 0xbf, 0x11, 0x9c, 0xe5, 0xfd, 0xcb, \
0x4e, 0x73, 0xa6, 0x19, 0xcd, 0xf3, 0x6f, 0x25, 0xb3, 0x69, 0xd8, 0xc3, 0x8f, 0xf4, 0x19, 0x99, \
0x7f, 0x0c, 0x59, 0x83, 0x01, 0x08, 0x22, 0x36, 0x06, 0xe3, 0x12, 0x23, 0x48, 0x3f, 0xd3, 0x9e, \
0xde, 0xaa, 0x4d, 0x3f, 0x0d, 0x21, 0x19, 0x88, 0x62, 0xd2, 0x39, 0xc9, 0xfd, 0x26, 0x07, 0x41, \
0x30, 0xff, 0x6c, 0x86, 0x49, 0x3f, 0x52, 0x27, 0xab, 0x89, 0x5c, 0x8f, 0x24, 0x4b, 0xd4, 0x2c, \
0x7a, 0xfc, 0xe5, 0xd1, 0x47, 0xa2, 0x0a, 0x59, 0x07, 0x98, 0xc6, 0x8e, 0x70, 0x8e, 0x96, 0x49, \
0x02, 0xd1, 0x24, 0xda, 0xde, 0xcd, 0xbd, 0xa9, 0xdb, 0xd0, 0x05, 0x1e, 0xd7, 0x10, 0xe9, 0xbf }
#define NIST_HMAC_SHA1_MD { 0x3c, 0x81, 0x62, 0x58, 0x9a, 0xaf, 0xae, 0xe0, 0x24, 0xfc, 0x9a, 0x5c, 0xa5, 0x0d, 0xd2, 0x33, \
0x6f, 0xe3, 0xeb, 0x28 }
#define NIST_HMAC_SHA256_KEY_SIZE 40
#define NIST_HMAC_SHA256_KEY { 0x97, 0x79, 0xd9, 0x12, 0x06, 0x42, 0x79, 0x7f, 0x17, 0x47, 0x02, 0x5d, 0x5b, 0x22, 0xb7, 0xac, \
0x60, 0x7c, 0xab, 0x08, 0xe1, 0x75, 0x8f, 0x2f, 0x3a, 0x46, 0xc8, 0xbe, 0x1e, 0x25, 0xc5, 0x3b, \
0x8c, 0x6a, 0x8f, 0x58, 0xff, 0xef, 0xa1, 0x76 }
#define NIST_HMAC_SHA256_MSG { 0xb1, 0x68, 0x9c, 0x25, 0x91, 0xea, 0xf3, 0xc9, 0xe6, 0x60, 0x70, 0xf8, 0xa7, 0x79, 0x54, 0xff, \
0xb8, 0x17, 0x49, 0xf1, 0xb0, 0x03, 0x46, 0xf9, 0xdf, 0xe0, 0xb2, 0xee, 0x90, 0x5d, 0xcc, 0x28, \
0x8b, 0xaf, 0x4a, 0x92, 0xde, 0x3f, 0x40, 0x01, 0xdd, 0x9f, 0x44, 0xc4, 0x68, 0xc3, 0xd0, 0x7d, \
0x6c, 0x6e, 0xe8, 0x2f, 0xac, 0xea, 0xfc, 0x97, 0xc2, 0xfc, 0x0f, 0xc0, 0x60, 0x17, 0x19, 0xd2, \
0xdc, 0xd0, 0xaa, 0x2a, 0xec, 0x92, 0xd1, 0xb0, 0xae, 0x93, 0x3c, 0x65, 0xeb, 0x06, 0xa0, 0x3c, \
0x9c, 0x93, 0x5c, 0x2b, 0xad, 0x04, 0x59, 0x81, 0x02, 0x41, 0x34, 0x7a, 0xb8, 0x7e, 0x9f, 0x11, \
0xad, 0xb3, 0x04, 0x15, 0x42, 0x4c, 0x6c, 0x7f, 0x5f, 0x22, 0xa0, 0x03, 0xb8, 0xab, 0x8d, 0xe5, \
0x4f, 0x6d, 0xed, 0x0e, 0x3a, 0xb9, 0x24, 0x5f, 0xa7, 0x95, 0x68, 0x45, 0x1d, 0xfa, 0x25, 0x8e }
#define NIST_HMAC_SHA256_MD { 0x76, 0x9f, 0x00, 0xd3, 0xe6, 0xa6, 0xcc, 0x1f, 0xb4, 0x26, 0xa1, 0x4a, 0x4f, 0x76, 0xc6, 0x46, \
0x2e, 0x61, 0x49, 0x72, 0x6e, 0x0d, 0xee, 0x0e, 0xc0, 0xcf, 0x97, 0xa1, 0x66, 0x05, 0xac, 0x8b }
#define NIST_HMAC_SHA512_KEY_SIZE 100
#define NIST_HMAC_SHA512_KEY { 0x57, 0xc2, 0xeb, 0x67, 0x7b, 0x50, 0x93, 0xb9, 0xe8, 0x29, 0xea, 0x4b, 0xab, 0xb5, 0x0b, 0xde, \
0x55, 0xd0, 0xad, 0x59, 0xfe, 0xc3, 0x4a, 0x61, 0x89, 0x73, 0x80, 0x2b, 0x2a, 0xd9, 0xb7, 0x8e, \
0x26, 0xb2, 0x04, 0x5d, 0xda, 0x78, 0x4d, 0xf3, 0xff, 0x90, 0xae, 0x0f, 0x2c, 0xc5, 0x1c, 0xe3, \
0x9c, 0xf5, 0x48, 0x67, 0x32, 0x0a, 0xc6, 0xf3, 0xba, 0x2c, 0x6f, 0x0d, 0x72, 0x36, 0x04, 0x80, \
0xc9, 0x66, 0x14, 0xae, 0x66, 0x58, 0x1f, 0x26, 0x6c, 0x35, 0xfb, 0x79, 0xfd, 0x28, 0x77, 0x4a, \
0xfd, 0x11, 0x3f, 0xa5, 0x18, 0x7e, 0xff, 0x92, 0x06, 0xd7, 0xcb, 0xe9, 0x0d, 0xd8, 0xbf, 0x67, \
0xc8, 0x44, 0xe2, 0x02 }
#define NIST_HMAC_SHA512_MSG { 0x24, 0x23, 0xdf, 0xf4, 0x8b, 0x31, 0x2b, 0xe8, 0x64, 0xcb, 0x34, 0x90, 0x64, 0x1f, 0x79, 0x3d, \
0x2b, 0x9f, 0xb6, 0x8a, 0x77, 0x63, 0xb8, 0xe2, 0x98, 0xc8, 0x6f, 0x42, 0x24, 0x5e, 0x45, 0x40, \
0xeb, 0x01, 0xae, 0x4d, 0x2d, 0x45, 0x00, 0x37, 0x0b, 0x18, 0x86, 0xf2, 0x3c, 0xa2, 0xcf, 0x97, \
0x01, 0x70, 0x4c, 0xad, 0x5b, 0xd2, 0x1b, 0xa8, 0x7b, 0x81, 0x1d, 0xaf, 0x7a, 0x85, 0x4e, 0xa2, \
0x4a, 0x56, 0x56, 0x5c, 0xed, 0x42, 0x5b, 0x35, 0xe4, 0x0e, 0x1a, 0xcb, 0xeb, 0xe0, 0x36, 0x03, \
0xe3, 0x5d, 0xcf, 0x4a, 0x10, 0x0e, 0x57, 0x21, 0x84, 0x08, 0xa1, 0xd8, 0xdb, 0xcc, 0x3b, 0x99, \
0x29, 0x6c, 0xfe, 0xa9, 0x31, 0xef, 0xe3, 0xeb, 0xd8, 0xf7, 0x19, 0xa6, 0xd9, 0xa1, 0x54, 0x87, \
0xb9, 0xad, 0x67, 0xea, 0xfe, 0xdf, 0x15, 0x55, 0x9c, 0xa4, 0x24, 0x45, 0xb0, 0xf9, 0xb4, 0x2e }
#define NIST_HMAC_SHA512_MD { 0x33, 0xc5, 0x11, 0xe9, 0xbc, 0x23, 0x07, 0xc6, 0x27, 0x58, 0xdf, 0x61, 0x12, 0x5a, 0x98, 0x0e, \
0xe6, 0x4c, 0xef, 0xeb, 0xd9, 0x09, 0x31, 0xcb, 0x91, 0xc1, 0x37, 0x42, 0xd4, 0x71, 0x4c, 0x06, \
0xde, 0x40, 0x03, 0xfa, 0xf3, 0xc4, 0x1c, 0x06, 0xae, 0xfc, 0x63, 0x8a, 0xd4, 0x7b, 0x21, 0x90, \
0x6e, 0x6b, 0x10, 0x48, 0x16, 0xb7, 0x2d, 0xe6, 0x26, 0x9e, 0x04, 0x5a, 0x1f, 0x44, 0x29, 0xd4 }
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/**************************************************************
This file defines the driver FIPS functions that should be
implemented by the driver user. Current implementation is sample code only.
***************************************************************/
#include <linux/module.h>
#include "ssi_fips_local.h"
#include "ssi_driver.h"
static bool tee_error;
module_param(tee_error, bool, 0644);
MODULE_PARM_DESC(tee_error, "Simulate TEE library failure flag: 0 - no error (default), 1 - TEE error occured ");
static ssi_fips_state_t fips_state = CC_FIPS_STATE_NOT_SUPPORTED;
static ssi_fips_error_t fips_error = CC_REE_FIPS_ERROR_OK;
/*
This function returns the FIPS REE state.
The function should be implemented by the driver user, depends on where .
the state value is stored.
The reference code uses global variable.
*/
int ssi_fips_ext_get_state(ssi_fips_state_t *p_state)
{
int rc = 0;
if (p_state == NULL) {
return -EINVAL;
}
*p_state = fips_state;
return rc;
}
/*
This function returns the FIPS REE error.
The function should be implemented by the driver user, depends on where .
the error value is stored.
The reference code uses global variable.
*/
int ssi_fips_ext_get_error(ssi_fips_error_t *p_err)
{
int rc = 0;
if (p_err == NULL) {
return -EINVAL;
}
*p_err = fips_error;
return rc;
}
/*
This function sets the FIPS REE state.
The function should be implemented by the driver user, depends on where .
the state value is stored.
The reference code uses global variable.
*/
int ssi_fips_ext_set_state(ssi_fips_state_t state)
{
fips_state = state;
return 0;
}
/*
This function sets the FIPS REE error.
The function should be implemented by the driver user, depends on where .
the error value is stored.
The reference code uses global variable.
*/
int ssi_fips_ext_set_error(ssi_fips_error_t err)
{
fips_error = err;
return 0;
}
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/**************************************************************
This file defines the driver FIPS Low Level implmentaion functions,
that executes the KAT.
***************************************************************/
#include <linux/kernel.h>
#include "ssi_driver.h"
#include "ssi_fips_local.h"
#include "ssi_fips_data.h"
#include "cc_crypto_ctx.h"
#include "ssi_hash.h"
#include "ssi_request_mgr.h"
static const uint32_t digest_len_init[] = {
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
static const uint32_t sha1_init[] = {
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const uint32_t sha256_init[] = {
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
#if (CC_SUPPORT_SHA > 256)
static const uint32_t digest_len_sha512_init[] = {
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
static const uint64_t sha512_init[] = {
SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
#endif
#define NIST_CIPHER_AES_MAX_VECTOR_SIZE 32
struct fips_cipher_ctx {
uint8_t iv[CC_AES_IV_SIZE];
uint8_t key[AES_512_BIT_KEY_SIZE];
uint8_t din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t dout[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
};
typedef struct _FipsCipherData {
uint8_t isAes;
uint8_t key[AES_512_BIT_KEY_SIZE];
size_t keySize;
uint8_t iv[CC_AES_IV_SIZE];
enum drv_crypto_direction direction;
enum drv_cipher_mode oprMode;
uint8_t dataIn[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t dataOut[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
size_t dataInSize;
} FipsCipherData;
struct fips_cmac_ctx {
uint8_t key[AES_256_BIT_KEY_SIZE];
uint8_t din[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsCmacData {
enum drv_crypto_direction direction;
uint8_t key[AES_256_BIT_KEY_SIZE];
size_t key_size;
uint8_t data_in[NIST_CIPHER_AES_MAX_VECTOR_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
size_t mac_res_size;
} FipsCmacData;
struct fips_hash_ctx {
uint8_t initial_digest[CC_DIGEST_SIZE_MAX];
uint8_t din[NIST_SHA_MSG_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsHashData {
enum drv_hash_mode hash_mode;
uint8_t data_in[NIST_SHA_MSG_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
} FipsHashData;
/* note that the hmac key length must be equal or less than block size (block size is 64 up to sha256 and 128 for sha384/512) */
struct fips_hmac_ctx {
uint8_t initial_digest[CC_DIGEST_SIZE_MAX];
uint8_t key[CC_HMAC_BLOCK_SIZE_MAX];
uint8_t k0[CC_HMAC_BLOCK_SIZE_MAX];
uint8_t digest_bytes_len[HASH_LEN_SIZE];
uint8_t tmp_digest[CC_DIGEST_SIZE_MAX];
uint8_t din[NIST_HMAC_MSG_SIZE];
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
};
typedef struct _FipsHmacData {
enum drv_hash_mode hash_mode;
uint8_t key[CC_HMAC_BLOCK_SIZE_MAX];
size_t key_size;
uint8_t data_in[NIST_HMAC_MSG_SIZE];
size_t data_in_size;
uint8_t mac_res[CC_DIGEST_SIZE_MAX];
} FipsHmacData;
#define FIPS_CCM_B0_A0_ADATA_SIZE (NIST_AESCCM_IV_SIZE + NIST_AESCCM_IV_SIZE + NIST_AESCCM_ADATA_SIZE)
struct fips_ccm_ctx {
uint8_t b0_a0_adata[FIPS_CCM_B0_A0_ADATA_SIZE];
uint8_t iv[NIST_AESCCM_IV_SIZE];
uint8_t ctr_cnt_0[NIST_AESCCM_IV_SIZE];
uint8_t key[CC_AES_KEY_SIZE_MAX];
uint8_t din[NIST_AESCCM_TEXT_SIZE];
uint8_t dout[NIST_AESCCM_TEXT_SIZE];
uint8_t mac_res[NIST_AESCCM_TAG_SIZE];
};
typedef struct _FipsCcmData {
enum drv_crypto_direction direction;
uint8_t key[CC_AES_KEY_SIZE_MAX];
size_t keySize;
uint8_t nonce[NIST_AESCCM_NONCE_SIZE];
uint8_t adata[NIST_AESCCM_ADATA_SIZE];
size_t adataSize;
uint8_t dataIn[NIST_AESCCM_TEXT_SIZE];
size_t dataInSize;
uint8_t dataOut[NIST_AESCCM_TEXT_SIZE];
uint8_t tagSize;
uint8_t macResOut[NIST_AESCCM_TAG_SIZE];
} FipsCcmData;
struct fips_gcm_ctx {
uint8_t adata[NIST_AESGCM_ADATA_SIZE];
uint8_t key[CC_AES_KEY_SIZE_MAX];
uint8_t hkey[CC_AES_KEY_SIZE_MAX];
uint8_t din[NIST_AESGCM_TEXT_SIZE];
uint8_t dout[NIST_AESGCM_TEXT_SIZE];
uint8_t mac_res[NIST_AESGCM_TAG_SIZE];
uint8_t len_block[AES_BLOCK_SIZE];
uint8_t iv_inc1[AES_BLOCK_SIZE];
uint8_t iv_inc2[AES_BLOCK_SIZE];
};
typedef struct _FipsGcmData {
enum drv_crypto_direction direction;
uint8_t key[CC_AES_KEY_SIZE_MAX];
size_t keySize;
uint8_t iv[NIST_AESGCM_IV_SIZE];
uint8_t adata[NIST_AESGCM_ADATA_SIZE];
size_t adataSize;
uint8_t dataIn[NIST_AESGCM_TEXT_SIZE];
size_t dataInSize;
uint8_t dataOut[NIST_AESGCM_TEXT_SIZE];
uint8_t tagSize;
uint8_t macResOut[NIST_AESGCM_TAG_SIZE];
} FipsGcmData;
typedef union _fips_ctx {
struct fips_cipher_ctx cipher;
struct fips_cmac_ctx cmac;
struct fips_hash_ctx hash;
struct fips_hmac_ctx hmac;
struct fips_ccm_ctx ccm;
struct fips_gcm_ctx gcm;
} fips_ctx;
/* test data tables */
static const FipsCipherData FipsCipherDataTable[] = {
/* AES */
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_ECB, NIST_AES_PLAIN_DATA, NIST_AES_128_ECB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_ECB, NIST_AES_128_ECB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_ECB, NIST_AES_PLAIN_DATA, NIST_AES_192_ECB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_ECB, NIST_AES_192_ECB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_ECB, NIST_AES_PLAIN_DATA, NIST_AES_256_ECB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_ECB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_ECB, NIST_AES_256_ECB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CBC, NIST_AES_PLAIN_DATA, NIST_AES_128_CBC_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CBC, NIST_AES_128_CBC_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CBC, NIST_AES_PLAIN_DATA, NIST_AES_192_CBC_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CBC, NIST_AES_192_CBC_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CBC, NIST_AES_PLAIN_DATA, NIST_AES_256_CBC_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_CBC_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CBC, NIST_AES_256_CBC_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_OFB, NIST_AES_PLAIN_DATA, NIST_AES_128_OFB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_OFB, NIST_AES_128_OFB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_OFB, NIST_AES_PLAIN_DATA, NIST_AES_192_OFB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_OFB, NIST_AES_192_OFB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_OFB, NIST_AES_PLAIN_DATA, NIST_AES_256_OFB_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_OFB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_OFB, NIST_AES_256_OFB_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CTR, NIST_AES_PLAIN_DATA, NIST_AES_128_CTR_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CTR, NIST_AES_128_CTR_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CTR, NIST_AES_PLAIN_DATA, NIST_AES_192_CTR_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_192_KEY, CC_AES_192_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CTR, NIST_AES_192_CTR_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CTR, NIST_AES_PLAIN_DATA, NIST_AES_256_CTR_CIPHER, NIST_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_CTR_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CTR, NIST_AES_256_CTR_CIPHER, NIST_AES_PLAIN_DATA, NIST_AES_VECTOR_SIZE },
{ 1, RFC3962_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, RFC3962_AES_CBC_CTS_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CBC_CTS, RFC3962_AES_PLAIN_DATA, RFC3962_AES_128_CBC_CTS_CIPHER, RFC3962_AES_VECTOR_SIZE },
{ 1, RFC3962_AES_128_KEY, CC_AES_128_BIT_KEY_SIZE, RFC3962_AES_CBC_CTS_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CBC_CTS, RFC3962_AES_128_CBC_CTS_CIPHER, RFC3962_AES_PLAIN_DATA, RFC3962_AES_VECTOR_SIZE },
{ 1, NIST_AES_256_XTS_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_256_XTS_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_XTS, NIST_AES_256_XTS_PLAIN, NIST_AES_256_XTS_CIPHER, NIST_AES_256_XTS_VECTOR_SIZE },
{ 1, NIST_AES_256_XTS_KEY, CC_AES_256_BIT_KEY_SIZE, NIST_AES_256_XTS_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_XTS, NIST_AES_256_XTS_CIPHER, NIST_AES_256_XTS_PLAIN, NIST_AES_256_XTS_VECTOR_SIZE },
#if (CC_SUPPORT_SHA > 256)
{ 1, NIST_AES_512_XTS_KEY, 2*CC_AES_256_BIT_KEY_SIZE, NIST_AES_512_XTS_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_XTS, NIST_AES_512_XTS_PLAIN, NIST_AES_512_XTS_CIPHER, NIST_AES_512_XTS_VECTOR_SIZE },
{ 1, NIST_AES_512_XTS_KEY, 2*CC_AES_256_BIT_KEY_SIZE, NIST_AES_512_XTS_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_XTS, NIST_AES_512_XTS_CIPHER, NIST_AES_512_XTS_PLAIN, NIST_AES_512_XTS_VECTOR_SIZE },
#endif
/* DES */
{ 0, NIST_TDES_ECB3_KEY, CC_DRV_DES_TRIPLE_KEY_SIZE, NIST_TDES_ECB_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_ECB, NIST_TDES_ECB3_PLAIN_DATA, NIST_TDES_ECB3_CIPHER, NIST_TDES_VECTOR_SIZE },
{ 0, NIST_TDES_ECB3_KEY, CC_DRV_DES_TRIPLE_KEY_SIZE, NIST_TDES_ECB_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_ECB, NIST_TDES_ECB3_CIPHER, NIST_TDES_ECB3_PLAIN_DATA, NIST_TDES_VECTOR_SIZE },
{ 0, NIST_TDES_CBC3_KEY, CC_DRV_DES_TRIPLE_KEY_SIZE, NIST_TDES_CBC3_IV, DRV_CRYPTO_DIRECTION_ENCRYPT, DRV_CIPHER_CBC, NIST_TDES_CBC3_PLAIN_DATA, NIST_TDES_CBC3_CIPHER, NIST_TDES_VECTOR_SIZE },
{ 0, NIST_TDES_CBC3_KEY, CC_DRV_DES_TRIPLE_KEY_SIZE, NIST_TDES_CBC3_IV, DRV_CRYPTO_DIRECTION_DECRYPT, DRV_CIPHER_CBC, NIST_TDES_CBC3_CIPHER, NIST_TDES_CBC3_PLAIN_DATA, NIST_TDES_VECTOR_SIZE },
};
#define FIPS_CIPHER_NUM_OF_TESTS (sizeof(FipsCipherDataTable) / sizeof(FipsCipherData))
static const FipsCmacData FipsCmacDataTable[] = {
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AES_128_CMAC_KEY, AES_128_BIT_KEY_SIZE, NIST_AES_128_CMAC_PLAIN_DATA, NIST_AES_128_CMAC_VECTOR_SIZE, NIST_AES_128_CMAC_MAC, NIST_AES_128_CMAC_OUTPUT_SIZE },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AES_192_CMAC_KEY, AES_192_BIT_KEY_SIZE, NIST_AES_192_CMAC_PLAIN_DATA, NIST_AES_192_CMAC_VECTOR_SIZE, NIST_AES_192_CMAC_MAC, NIST_AES_192_CMAC_OUTPUT_SIZE },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AES_256_CMAC_KEY, AES_256_BIT_KEY_SIZE, NIST_AES_256_CMAC_PLAIN_DATA, NIST_AES_256_CMAC_VECTOR_SIZE, NIST_AES_256_CMAC_MAC, NIST_AES_256_CMAC_OUTPUT_SIZE },
};
#define FIPS_CMAC_NUM_OF_TESTS (sizeof(FipsCmacDataTable) / sizeof(FipsCmacData))
static const FipsHashData FipsHashDataTable[] = {
{ DRV_HASH_SHA1, NIST_SHA_1_MSG, NIST_SHA_MSG_SIZE, NIST_SHA_1_MD },
{ DRV_HASH_SHA256, NIST_SHA_256_MSG, NIST_SHA_MSG_SIZE, NIST_SHA_256_MD },
#if (CC_SUPPORT_SHA > 256)
// { DRV_HASH_SHA512, NIST_SHA_512_MSG, NIST_SHA_MSG_SIZE, NIST_SHA_512_MD },
#endif
};
#define FIPS_HASH_NUM_OF_TESTS (sizeof(FipsHashDataTable) / sizeof(FipsHashData))
static const FipsHmacData FipsHmacDataTable[] = {
{ DRV_HASH_SHA1, NIST_HMAC_SHA1_KEY, NIST_HMAC_SHA1_KEY_SIZE, NIST_HMAC_SHA1_MSG, NIST_HMAC_MSG_SIZE, NIST_HMAC_SHA1_MD },
{ DRV_HASH_SHA256, NIST_HMAC_SHA256_KEY, NIST_HMAC_SHA256_KEY_SIZE, NIST_HMAC_SHA256_MSG, NIST_HMAC_MSG_SIZE, NIST_HMAC_SHA256_MD },
#if (CC_SUPPORT_SHA > 256)
// { DRV_HASH_SHA512, NIST_HMAC_SHA512_KEY, NIST_HMAC_SHA512_KEY_SIZE, NIST_HMAC_SHA512_MSG, NIST_HMAC_MSG_SIZE, NIST_HMAC_SHA512_MD },
#endif
};
#define FIPS_HMAC_NUM_OF_TESTS (sizeof(FipsHmacDataTable) / sizeof(FipsHmacData))
static const FipsCcmData FipsCcmDataTable[] = {
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESCCM_128_KEY, NIST_AESCCM_128_BIT_KEY_SIZE, NIST_AESCCM_128_NONCE, NIST_AESCCM_128_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_128_PLAIN_TEXT, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_128_CIPHER, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_128_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESCCM_128_KEY, NIST_AESCCM_128_BIT_KEY_SIZE, NIST_AESCCM_128_NONCE, NIST_AESCCM_128_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_128_CIPHER, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_128_PLAIN_TEXT, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_128_MAC },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESCCM_192_KEY, NIST_AESCCM_192_BIT_KEY_SIZE, NIST_AESCCM_192_NONCE, NIST_AESCCM_192_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_192_PLAIN_TEXT, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_192_CIPHER, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_192_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESCCM_192_KEY, NIST_AESCCM_192_BIT_KEY_SIZE, NIST_AESCCM_192_NONCE, NIST_AESCCM_192_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_192_CIPHER, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_192_PLAIN_TEXT, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_192_MAC },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESCCM_256_KEY, NIST_AESCCM_256_BIT_KEY_SIZE, NIST_AESCCM_256_NONCE, NIST_AESCCM_256_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_256_PLAIN_TEXT, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_256_CIPHER, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_256_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESCCM_256_KEY, NIST_AESCCM_256_BIT_KEY_SIZE, NIST_AESCCM_256_NONCE, NIST_AESCCM_256_ADATA, NIST_AESCCM_ADATA_SIZE, NIST_AESCCM_256_CIPHER, NIST_AESCCM_TEXT_SIZE, NIST_AESCCM_256_PLAIN_TEXT, NIST_AESCCM_TAG_SIZE, NIST_AESCCM_256_MAC },
};
#define FIPS_CCM_NUM_OF_TESTS (sizeof(FipsCcmDataTable) / sizeof(FipsCcmData))
static const FipsGcmData FipsGcmDataTable[] = {
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESGCM_128_KEY, NIST_AESGCM_128_BIT_KEY_SIZE, NIST_AESGCM_128_IV, NIST_AESGCM_128_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_128_PLAIN_TEXT, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_128_CIPHER, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_128_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESGCM_128_KEY, NIST_AESGCM_128_BIT_KEY_SIZE, NIST_AESGCM_128_IV, NIST_AESGCM_128_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_128_CIPHER, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_128_PLAIN_TEXT, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_128_MAC },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESGCM_192_KEY, NIST_AESGCM_192_BIT_KEY_SIZE, NIST_AESGCM_192_IV, NIST_AESGCM_192_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_192_PLAIN_TEXT, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_192_CIPHER, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_192_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESGCM_192_KEY, NIST_AESGCM_192_BIT_KEY_SIZE, NIST_AESGCM_192_IV, NIST_AESGCM_192_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_192_CIPHER, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_192_PLAIN_TEXT, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_192_MAC },
{ DRV_CRYPTO_DIRECTION_ENCRYPT, NIST_AESGCM_256_KEY, NIST_AESGCM_256_BIT_KEY_SIZE, NIST_AESGCM_256_IV, NIST_AESGCM_256_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_256_PLAIN_TEXT, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_256_CIPHER, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_256_MAC },
{ DRV_CRYPTO_DIRECTION_DECRYPT, NIST_AESGCM_256_KEY, NIST_AESGCM_256_BIT_KEY_SIZE, NIST_AESGCM_256_IV, NIST_AESGCM_256_ADATA, NIST_AESGCM_ADATA_SIZE, NIST_AESGCM_256_CIPHER, NIST_AESGCM_TEXT_SIZE, NIST_AESGCM_256_PLAIN_TEXT, NIST_AESGCM_TAG_SIZE, NIST_AESGCM_256_MAC },
};
#define FIPS_GCM_NUM_OF_TESTS (sizeof(FipsGcmDataTable) / sizeof(FipsGcmData))
static inline ssi_fips_error_t
FIPS_CipherToFipsError(enum drv_cipher_mode mode, bool is_aes)
{
switch (mode)
{
case DRV_CIPHER_ECB:
return is_aes ? CC_REE_FIPS_ERROR_AES_ECB_PUT : CC_REE_FIPS_ERROR_DES_ECB_PUT ;
case DRV_CIPHER_CBC:
return is_aes ? CC_REE_FIPS_ERROR_AES_CBC_PUT : CC_REE_FIPS_ERROR_DES_CBC_PUT ;
case DRV_CIPHER_OFB:
return CC_REE_FIPS_ERROR_AES_OFB_PUT;
case DRV_CIPHER_CTR:
return CC_REE_FIPS_ERROR_AES_CTR_PUT;
case DRV_CIPHER_CBC_CTS:
return CC_REE_FIPS_ERROR_AES_CBC_CTS_PUT;
case DRV_CIPHER_XTS:
return CC_REE_FIPS_ERROR_AES_XTS_PUT;
default:
return CC_REE_FIPS_ERROR_GENERAL;
}
return CC_REE_FIPS_ERROR_GENERAL;
}
static inline int
ssi_cipher_fips_run_test(struct ssi_drvdata *drvdata,
bool is_aes,
int cipher_mode,
int direction,
dma_addr_t key_dma_addr,
size_t key_len,
dma_addr_t iv_dma_addr,
size_t iv_len,
dma_addr_t din_dma_addr,
dma_addr_t dout_dma_addr,
size_t data_size)
{
/* max number of descriptors used for the flow */
#define FIPS_CIPHER_MAX_SEQ_LEN 6
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_CIPHER_MAX_SEQ_LEN];
int idx = 0;
int s_flow_mode = is_aes ? S_DIN_to_AES : S_DIN_to_DES;
/* create setup descriptors */
switch (cipher_mode) {
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Load cipher state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
iv_dma_addr, iv_len, NS_BIT);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], direction);
HW_DESC_SET_FLOW_MODE(&desc[idx], s_flow_mode);
HW_DESC_SET_CIPHER_MODE(&desc[idx], cipher_mode);
if ((cipher_mode == DRV_CIPHER_CTR) ||
(cipher_mode == DRV_CIPHER_OFB) ) {
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
} else {
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
}
idx++;
/*FALLTHROUGH*/
case DRV_CIPHER_ECB:
/* Load key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], cipher_mode);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], direction);
if (is_aes) {
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
key_dma_addr,
((key_len == 24) ? AES_MAX_KEY_SIZE : key_len),
NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len);
} else {/*des*/
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
key_dma_addr, key_len,
NS_BIT);
HW_DESC_SET_KEY_SIZE_DES(&desc[idx], key_len);
}
HW_DESC_SET_FLOW_MODE(&desc[idx], s_flow_mode);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
break;
case DRV_CIPHER_XTS:
/* Load AES key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], cipher_mode);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], direction);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
key_dma_addr, key_len/2, NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len/2);
HW_DESC_SET_FLOW_MODE(&desc[idx], s_flow_mode);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* load XEX key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], cipher_mode);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], direction);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
(key_dma_addr+key_len/2), key_len/2, NS_BIT);
HW_DESC_SET_XEX_DATA_UNIT_SIZE(&desc[idx], data_size);
HW_DESC_SET_FLOW_MODE(&desc[idx], s_flow_mode);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len/2);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_XEX_KEY);
idx++;
/* Set state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_CIPHER_MODE(&desc[idx], cipher_mode);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], direction);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len/2);
HW_DESC_SET_FLOW_MODE(&desc[idx], s_flow_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
iv_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT);
idx++;
break;
default:
FIPS_LOG("Unsupported cipher mode (%d)\n", cipher_mode);
BUG();
}
/* create data descriptor */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, din_dma_addr, data_size, NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], dout_dma_addr, data_size, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], is_aes ? DIN_AES_DOUT : DIN_DES_DOUT);
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_CIPHER_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
// send_request returns error just in some corner cases which should not appear in this flow.
return rc;
}
ssi_fips_error_t
ssi_cipher_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_cipher_ctx *virt_ctx = (struct fips_cipher_ctx *)cpu_addr_buffer;
/* set the phisical pointers for iv, key, din, dout */
dma_addr_t iv_dma_addr = dma_coherent_buffer + offsetof(struct fips_cipher_ctx, iv);
dma_addr_t key_dma_addr = dma_coherent_buffer + offsetof(struct fips_cipher_ctx, key);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_cipher_ctx, din);
dma_addr_t dout_dma_addr = dma_coherent_buffer + offsetof(struct fips_cipher_ctx, dout);
for (i = 0; i < FIPS_CIPHER_NUM_OF_TESTS; ++i)
{
FipsCipherData *cipherData = (FipsCipherData*)&FipsCipherDataTable[i];
int rc = 0;
size_t iv_size = cipherData->isAes ? NIST_AES_IV_SIZE : NIST_TDES_IV_SIZE ;
memset(cpu_addr_buffer, 0, sizeof(struct fips_cipher_ctx));
/* copy into the allocated buffer */
memcpy(virt_ctx->iv, cipherData->iv, iv_size);
memcpy(virt_ctx->key, cipherData->key, cipherData->keySize);
memcpy(virt_ctx->din, cipherData->dataIn, cipherData->dataInSize);
FIPS_DBG("ssi_cipher_fips_run_test - (i = %d) \n", i);
rc = ssi_cipher_fips_run_test(drvdata,
cipherData->isAes,
cipherData->oprMode,
cipherData->direction,
key_dma_addr,
cipherData->keySize,
iv_dma_addr,
iv_size,
din_dma_addr,
dout_dma_addr,
cipherData->dataInSize);
if (rc != 0)
{
FIPS_LOG("ssi_cipher_fips_run_test %d returned error - rc = %d \n", i, rc);
error = FIPS_CipherToFipsError(cipherData->oprMode, cipherData->isAes);
break;
}
/* compare actual dout to expected */
if (memcmp(virt_ctx->dout, cipherData->dataOut, cipherData->dataInSize) != 0)
{
FIPS_LOG("dout comparison error %d - oprMode=%d, isAes=%d\n", i, cipherData->oprMode, cipherData->isAes);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x (size=%d) \n", (size_t)cipherData->dataOut, (size_t)virt_ctx->dout, cipherData->dataInSize);
for (i = 0; i < cipherData->dataInSize; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, cipherData->dataOut[i], virt_ctx->dout[i]);
}
error = FIPS_CipherToFipsError(cipherData->oprMode, cipherData->isAes);
break;
}
}
return error;
}
static inline int
ssi_cmac_fips_run_test(struct ssi_drvdata *drvdata,
dma_addr_t key_dma_addr,
size_t key_len,
dma_addr_t din_dma_addr,
size_t din_len,
dma_addr_t digest_dma_addr,
size_t digest_len)
{
/* max number of descriptors used for the flow */
#define FIPS_CMAC_MAX_SEQ_LEN 4
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_CMAC_MAX_SEQ_LEN];
int idx = 0;
/* Setup CMAC Key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, key_dma_addr,
((key_len == 24) ? AES_MAX_KEY_SIZE : key_len), NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CMAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Load MAC state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, digest_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CMAC);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_len);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
//ssi_hash_create_data_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
din_dma_addr,
din_len, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DOUT_DLLI(&desc[idx], digest_dma_addr, CC_AES_BLOCK_SIZE, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_AES_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CMAC);
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_CMAC_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
// send_request returns error just in some corner cases which should not appear in this flow.
return rc;
}
ssi_fips_error_t
ssi_cmac_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_cmac_ctx *virt_ctx = (struct fips_cmac_ctx *)cpu_addr_buffer;
/* set the phisical pointers for key, din, dout */
dma_addr_t key_dma_addr = dma_coherent_buffer + offsetof(struct fips_cmac_ctx, key);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_cmac_ctx, din);
dma_addr_t mac_res_dma_addr = dma_coherent_buffer + offsetof(struct fips_cmac_ctx, mac_res);
for (i = 0; i < FIPS_CMAC_NUM_OF_TESTS; ++i)
{
FipsCmacData *cmac_data = (FipsCmacData*)&FipsCmacDataTable[i];
int rc = 0;
memset(cpu_addr_buffer, 0, sizeof(struct fips_cmac_ctx));
/* copy into the allocated buffer */
memcpy(virt_ctx->key, cmac_data->key, cmac_data->key_size);
memcpy(virt_ctx->din, cmac_data->data_in, cmac_data->data_in_size);
BUG_ON(cmac_data->direction != DRV_CRYPTO_DIRECTION_ENCRYPT);
FIPS_DBG("ssi_cmac_fips_run_test - (i = %d) \n", i);
rc = ssi_cmac_fips_run_test(drvdata,
key_dma_addr,
cmac_data->key_size,
din_dma_addr,
cmac_data->data_in_size,
mac_res_dma_addr,
cmac_data->mac_res_size);
if (rc != 0)
{
FIPS_LOG("ssi_cmac_fips_run_test %d returned error - rc = %d \n", i, rc);
error = CC_REE_FIPS_ERROR_AES_CMAC_PUT;
break;
}
/* compare actual mac result to expected */
if (memcmp(virt_ctx->mac_res, cmac_data->mac_res, cmac_data->mac_res_size) != 0)
{
FIPS_LOG("comparison error %d - digest_size=%d \n", i, cmac_data->mac_res_size);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)cmac_data->mac_res, (size_t)virt_ctx->mac_res);
for (i = 0; i < cmac_data->mac_res_size; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, cmac_data->mac_res[i], virt_ctx->mac_res[i]);
}
error = CC_REE_FIPS_ERROR_AES_CMAC_PUT;
break;
}
}
return error;
}
static inline ssi_fips_error_t
FIPS_HashToFipsError(enum drv_hash_mode hash_mode)
{
switch (hash_mode) {
case DRV_HASH_SHA1:
return CC_REE_FIPS_ERROR_SHA1_PUT;
case DRV_HASH_SHA256:
return CC_REE_FIPS_ERROR_SHA256_PUT;
#if (CC_SUPPORT_SHA > 256)
case DRV_HASH_SHA512:
return CC_REE_FIPS_ERROR_SHA512_PUT;
#endif
default:
return CC_REE_FIPS_ERROR_GENERAL;
}
return CC_REE_FIPS_ERROR_GENERAL;
}
static inline int
ssi_hash_fips_run_test(struct ssi_drvdata *drvdata,
dma_addr_t initial_digest_dma_addr,
dma_addr_t din_dma_addr,
size_t data_in_size,
dma_addr_t mac_res_dma_addr,
enum drv_hash_mode hash_mode,
enum drv_hash_hw_mode hw_mode,
int digest_size,
int inter_digestsize)
{
/* max number of descriptors used for the flow */
#define FIPS_HASH_MAX_SEQ_LEN 4
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_HASH_MAX_SEQ_LEN];
int idx = 0;
/* Load initial digest */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, initial_digest_dma_addr, inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, HASH_LEN_SIZE);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* data descriptor */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, din_dma_addr, data_in_size, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], mac_res_dma_addr, digest_size, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
if (unlikely((hash_mode == DRV_HASH_MD5) ||
(hash_mode == DRV_HASH_SHA384) ||
(hash_mode == DRV_HASH_SHA512))) {
HW_DESC_SET_BYTES_SWAP(&desc[idx], 1);
} else {
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
}
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_HASH_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
return rc;
}
ssi_fips_error_t
ssi_hash_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_hash_ctx *virt_ctx = (struct fips_hash_ctx *)cpu_addr_buffer;
/* set the phisical pointers for initial_digest, din, mac_res */
dma_addr_t initial_digest_dma_addr = dma_coherent_buffer + offsetof(struct fips_hash_ctx, initial_digest);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_hash_ctx, din);
dma_addr_t mac_res_dma_addr = dma_coherent_buffer + offsetof(struct fips_hash_ctx, mac_res);
for (i = 0; i < FIPS_HASH_NUM_OF_TESTS; ++i)
{
FipsHashData *hash_data = (FipsHashData*)&FipsHashDataTable[i];
int rc = 0;
enum drv_hash_hw_mode hw_mode = 0;
int digest_size = 0;
int inter_digestsize = 0;
memset(cpu_addr_buffer, 0, sizeof(struct fips_hash_ctx));
switch (hash_data->hash_mode) {
case DRV_HASH_SHA1:
hw_mode = DRV_HASH_HW_SHA1;
digest_size = CC_SHA1_DIGEST_SIZE;
inter_digestsize = CC_SHA1_DIGEST_SIZE;
/* copy the initial digest into the allocated cache coherent buffer */
memcpy(virt_ctx->initial_digest, (void*)sha1_init, CC_SHA1_DIGEST_SIZE);
break;
case DRV_HASH_SHA256:
hw_mode = DRV_HASH_HW_SHA256;
digest_size = CC_SHA256_DIGEST_SIZE;
inter_digestsize = CC_SHA256_DIGEST_SIZE;
memcpy(virt_ctx->initial_digest, (void*)sha256_init, CC_SHA256_DIGEST_SIZE);
break;
#if (CC_SUPPORT_SHA > 256)
case DRV_HASH_SHA512:
hw_mode = DRV_HASH_HW_SHA512;
digest_size = CC_SHA512_DIGEST_SIZE;
inter_digestsize = CC_SHA512_DIGEST_SIZE;
memcpy(virt_ctx->initial_digest, (void*)sha512_init, CC_SHA512_DIGEST_SIZE);
break;
#endif
default:
error = FIPS_HashToFipsError(hash_data->hash_mode);
break;
}
/* copy the din data into the allocated buffer */
memcpy(virt_ctx->din, hash_data->data_in, hash_data->data_in_size);
/* run the test on HW */
FIPS_DBG("ssi_hash_fips_run_test - (i = %d) \n", i);
rc = ssi_hash_fips_run_test(drvdata,
initial_digest_dma_addr,
din_dma_addr,
hash_data->data_in_size,
mac_res_dma_addr,
hash_data->hash_mode,
hw_mode,
digest_size,
inter_digestsize);
if (rc != 0)
{
FIPS_LOG("ssi_hash_fips_run_test %d returned error - rc = %d \n", i, rc);
error = FIPS_HashToFipsError(hash_data->hash_mode);
break;
}
/* compare actual mac result to expected */
if (memcmp(virt_ctx->mac_res, hash_data->mac_res, digest_size) != 0)
{
FIPS_LOG("comparison error %d - hash_mode=%d digest_size=%d \n", i, hash_data->hash_mode, digest_size);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)hash_data->mac_res, (size_t)virt_ctx->mac_res);
for (i = 0; i < digest_size; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, hash_data->mac_res[i], virt_ctx->mac_res[i]);
}
error = FIPS_HashToFipsError(hash_data->hash_mode);
break;
}
}
return error;
}
static inline ssi_fips_error_t
FIPS_HmacToFipsError(enum drv_hash_mode hash_mode)
{
switch (hash_mode) {
case DRV_HASH_SHA1:
return CC_REE_FIPS_ERROR_HMAC_SHA1_PUT;
case DRV_HASH_SHA256:
return CC_REE_FIPS_ERROR_HMAC_SHA256_PUT;
#if (CC_SUPPORT_SHA > 256)
case DRV_HASH_SHA512:
return CC_REE_FIPS_ERROR_HMAC_SHA512_PUT;
#endif
default:
return CC_REE_FIPS_ERROR_GENERAL;
}
return CC_REE_FIPS_ERROR_GENERAL;
}
static inline int
ssi_hmac_fips_run_test(struct ssi_drvdata *drvdata,
dma_addr_t initial_digest_dma_addr,
dma_addr_t key_dma_addr,
size_t key_size,
dma_addr_t din_dma_addr,
size_t data_in_size,
dma_addr_t mac_res_dma_addr,
enum drv_hash_mode hash_mode,
enum drv_hash_hw_mode hw_mode,
size_t digest_size,
size_t inter_digestsize,
size_t block_size,
dma_addr_t k0_dma_addr,
dma_addr_t tmp_digest_dma_addr,
dma_addr_t digest_bytes_len_dma_addr)
{
/* The implemented flow is not the same as the one implemented in ssi_hash.c (setkey + digest flows).
In this flow, there is no need to store and reload some of the intermidiate results. */
/* max number of descriptors used for the flow */
#define FIPS_HMAC_MAX_SEQ_LEN 12
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_HMAC_MAX_SEQ_LEN];
int idx = 0;
int i;
/* calc the hash opad first and ipad only afterwards (unlike the flow in ssi_hash.c) */
unsigned int hmacPadConst[2] = { HMAC_OPAD_CONST, HMAC_IPAD_CONST };
// assume (key_size <= block_size)
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, key_dma_addr, key_size, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx], k0_dma_addr, key_size, NS_BIT, 0);
idx++;
// if needed, append Key with zeros to create K0
if ((block_size - key_size) != 0) {
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, (block_size - key_size));
HW_DESC_SET_FLOW_MODE(&desc[idx], BYPASS);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
(k0_dma_addr + key_size), (block_size - key_size),
NS_BIT, 0);
idx++;
}
BUG_ON(idx > FIPS_HMAC_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, 0);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
return rc;
}
idx = 0;
/* calc derived HMAC key */
for (i = 0; i < 2; i++) {
/* Load hash initial state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, initial_digest_dma_addr, inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_CONST(&desc[idx], 0, HASH_LEN_SIZE);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Prepare opad/ipad key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_XOR_VAL(&desc[idx], hmacPadConst[i]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
idx++;
/* Perform HASH update */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
k0_dma_addr,
block_size, NS_BIT);
HW_DESC_SET_CIPHER_MODE(&desc[idx],hw_mode);
HW_DESC_SET_XOR_ACTIVE(&desc[idx]);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
if (i == 0) {
/* First iteration - calc H(K0^opad) into tmp_digest_dma_addr */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
tmp_digest_dma_addr,
inter_digestsize,
NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
// is this needed?? or continue with current descriptors??
BUG_ON(idx > FIPS_HMAC_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, 0);
if (unlikely(rc != 0)) {
SSI_LOG_ERR("send_request() failed (rc=%d)\n", rc);
return rc;
}
idx = 0;
}
}
/* data descriptor */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
din_dma_addr, data_in_size,
NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* HW last hash block padding (aka. "DO_PAD") */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], k0_dma_addr, HASH_LEN_SIZE, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE1);
HW_DESC_SET_CIPHER_DO(&desc[idx], DO_PAD);
idx++;
/* store the hash digest result in the context */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], k0_dma_addr, digest_size, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
if (unlikely((hash_mode == DRV_HASH_MD5) ||
(hash_mode == DRV_HASH_SHA384) ||
(hash_mode == DRV_HASH_SHA512))) {
HW_DESC_SET_BYTES_SWAP(&desc[idx], 1);
} else {
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
}
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* at this point:
tmp_digest = H(o_key_pad)
k0 = H(i_key_pad || m)
*/
/* Loading hash opad xor key state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, tmp_digest_dma_addr, inter_digestsize, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, digest_bytes_len_dma_addr, HASH_LEN_SIZE, NS_BIT);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* Perform HASH update */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, k0_dma_addr, digest_size, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* Get final MAC result */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], hw_mode);
HW_DESC_SET_DOUT_DLLI(&desc[idx], mac_res_dma_addr, digest_size, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_DISABLED);
if (unlikely((hash_mode == DRV_HASH_MD5) ||
(hash_mode == DRV_HASH_SHA384) ||
(hash_mode == DRV_HASH_SHA512))) {
HW_DESC_SET_BYTES_SWAP(&desc[idx], 1);
} else {
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
}
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_HMAC_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
return rc;
}
ssi_fips_error_t
ssi_hmac_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_hmac_ctx *virt_ctx = (struct fips_hmac_ctx *)cpu_addr_buffer;
/* set the phisical pointers */
dma_addr_t initial_digest_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, initial_digest);
dma_addr_t key_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, key);
dma_addr_t k0_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, k0);
dma_addr_t tmp_digest_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, tmp_digest);
dma_addr_t digest_bytes_len_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, digest_bytes_len);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, din);
dma_addr_t mac_res_dma_addr = dma_coherent_buffer + offsetof(struct fips_hmac_ctx, mac_res);
for (i = 0; i < FIPS_HMAC_NUM_OF_TESTS; ++i)
{
FipsHmacData *hmac_data = (FipsHmacData*)&FipsHmacDataTable[i];
int rc = 0;
enum drv_hash_hw_mode hw_mode = 0;
int digest_size = 0;
int block_size = 0;
int inter_digestsize = 0;
memset(cpu_addr_buffer, 0, sizeof(struct fips_hmac_ctx));
switch (hmac_data->hash_mode) {
case DRV_HASH_SHA1:
hw_mode = DRV_HASH_HW_SHA1;
digest_size = CC_SHA1_DIGEST_SIZE;
block_size = CC_SHA1_BLOCK_SIZE;
inter_digestsize = CC_SHA1_DIGEST_SIZE;
memcpy(virt_ctx->initial_digest, (void*)sha1_init, CC_SHA1_DIGEST_SIZE);
memcpy(virt_ctx->digest_bytes_len, digest_len_init, HASH_LEN_SIZE);
break;
case DRV_HASH_SHA256:
hw_mode = DRV_HASH_HW_SHA256;
digest_size = CC_SHA256_DIGEST_SIZE;
block_size = CC_SHA256_BLOCK_SIZE;
inter_digestsize = CC_SHA256_DIGEST_SIZE;
memcpy(virt_ctx->initial_digest, (void*)sha256_init, CC_SHA256_DIGEST_SIZE);
memcpy(virt_ctx->digest_bytes_len, digest_len_init, HASH_LEN_SIZE);
break;
#if (CC_SUPPORT_SHA > 256)
case DRV_HASH_SHA512:
hw_mode = DRV_HASH_HW_SHA512;
digest_size = CC_SHA512_DIGEST_SIZE;
block_size = CC_SHA512_BLOCK_SIZE;
inter_digestsize = CC_SHA512_DIGEST_SIZE;
memcpy(virt_ctx->initial_digest, (void*)sha512_init, CC_SHA512_DIGEST_SIZE);
memcpy(virt_ctx->digest_bytes_len, digest_len_sha512_init, HASH_LEN_SIZE);
break;
#endif
default:
error = FIPS_HmacToFipsError(hmac_data->hash_mode);
break;
}
/* copy into the allocated buffer */
memcpy(virt_ctx->key, hmac_data->key, hmac_data->key_size);
memcpy(virt_ctx->din, hmac_data->data_in, hmac_data->data_in_size);
/* run the test on HW */
FIPS_DBG("ssi_hmac_fips_run_test - (i = %d) \n", i);
rc = ssi_hmac_fips_run_test(drvdata,
initial_digest_dma_addr,
key_dma_addr,
hmac_data->key_size,
din_dma_addr,
hmac_data->data_in_size,
mac_res_dma_addr,
hmac_data->hash_mode,
hw_mode,
digest_size,
inter_digestsize,
block_size,
k0_dma_addr,
tmp_digest_dma_addr,
digest_bytes_len_dma_addr);
if (rc != 0)
{
FIPS_LOG("ssi_hmac_fips_run_test %d returned error - rc = %d \n", i, rc);
error = FIPS_HmacToFipsError(hmac_data->hash_mode);
break;
}
/* compare actual mac result to expected */
if (memcmp(virt_ctx->mac_res, hmac_data->mac_res, digest_size) != 0)
{
FIPS_LOG("comparison error %d - hash_mode=%d digest_size=%d \n", i, hmac_data->hash_mode, digest_size);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)hmac_data->mac_res, (size_t)virt_ctx->mac_res);
for (i = 0; i < digest_size; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, hmac_data->mac_res[i], virt_ctx->mac_res[i]);
}
error = FIPS_HmacToFipsError(hmac_data->hash_mode);
break;
}
}
return error;
}
static inline int
ssi_ccm_fips_run_test(struct ssi_drvdata *drvdata,
enum drv_crypto_direction direction,
dma_addr_t key_dma_addr,
size_t key_size,
dma_addr_t iv_dma_addr,
dma_addr_t ctr_cnt_0_dma_addr,
dma_addr_t b0_a0_adata_dma_addr,
size_t b0_a0_adata_size,
dma_addr_t din_dma_addr,
size_t din_size,
dma_addr_t dout_dma_addr,
dma_addr_t mac_res_dma_addr)
{
/* max number of descriptors used for the flow */
#define FIPS_CCM_MAX_SEQ_LEN 10
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_CCM_MAX_SEQ_LEN];
unsigned int idx = 0;
unsigned int cipher_flow_mode;
if (direction == DRV_CRYPTO_DIRECTION_DECRYPT) {
cipher_flow_mode = AES_to_HASH_and_DOUT;
} else { /* Encrypt */
cipher_flow_mode = AES_and_HASH;
}
/* load key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CTR);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, key_dma_addr,
((key_size == NIST_AESCCM_192_BIT_KEY_SIZE) ? CC_AES_KEY_SIZE_MAX : key_size),
NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* load ctr state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CTR);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
iv_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* load MAC key */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CBC_MAC);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, key_dma_addr,
((key_size == NIST_AESCCM_192_BIT_KEY_SIZE) ? CC_AES_KEY_SIZE_MAX : key_size),
NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
idx++;
/* load MAC state */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CBC_MAC);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, mac_res_dma_addr, NIST_AESCCM_TAG_SIZE, NS_BIT);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
idx++;
/* prcess assoc data */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, b0_a0_adata_dma_addr, b0_a0_adata_size, NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* process the cipher */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, din_dma_addr, din_size, NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], dout_dma_addr, din_size, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], cipher_flow_mode);
idx++;
/* Read temporal MAC */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CBC_MAC);
HW_DESC_SET_DOUT_DLLI(&desc[idx], mac_res_dma_addr, NIST_AESCCM_TAG_SIZE, NS_BIT, 0);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
idx++;
/* load AES-CTR state (for last MAC calculation)*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_CTR);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
ctr_cnt_0_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Memory Barrier */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* encrypt the "T" value and store MAC inplace */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI, mac_res_dma_addr, NIST_AESCCM_TAG_SIZE, NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx], mac_res_dma_addr, NIST_AESCCM_TAG_SIZE, NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_CCM_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
return rc;
}
ssi_fips_error_t
ssi_ccm_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_ccm_ctx *virt_ctx = (struct fips_ccm_ctx *)cpu_addr_buffer;
/* set the phisical pointers */
dma_addr_t b0_a0_adata_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, b0_a0_adata);
dma_addr_t iv_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, iv);
dma_addr_t ctr_cnt_0_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, ctr_cnt_0);
dma_addr_t key_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, key);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, din);
dma_addr_t dout_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, dout);
dma_addr_t mac_res_dma_addr = dma_coherent_buffer + offsetof(struct fips_ccm_ctx, mac_res);
for (i = 0; i < FIPS_CCM_NUM_OF_TESTS; ++i)
{
FipsCcmData *ccmData = (FipsCcmData*)&FipsCcmDataTable[i];
int rc = 0;
memset(cpu_addr_buffer, 0, sizeof(struct fips_ccm_ctx));
/* copy the nonce, key, adata, din data into the allocated buffer */
memcpy(virt_ctx->key, ccmData->key, ccmData->keySize);
memcpy(virt_ctx->din, ccmData->dataIn, ccmData->dataInSize);
{
/* build B0 -- B0, nonce, l(m) */
__be16 data = cpu_to_be16(NIST_AESCCM_TEXT_SIZE);
virt_ctx->b0_a0_adata[0] = NIST_AESCCM_B0_VAL;
memcpy(virt_ctx->b0_a0_adata + 1, ccmData->nonce, NIST_AESCCM_NONCE_SIZE);
memcpy(virt_ctx->b0_a0_adata + 14, (u8 *)&data, sizeof(__be16));
/* build A0+ADATA */
virt_ctx->b0_a0_adata[NIST_AESCCM_IV_SIZE + 0] = (ccmData->adataSize >> 8) & 0xFF;
virt_ctx->b0_a0_adata[NIST_AESCCM_IV_SIZE + 1] = ccmData->adataSize & 0xFF;
memcpy(virt_ctx->b0_a0_adata + NIST_AESCCM_IV_SIZE + 2, ccmData->adata, ccmData->adataSize);
/* iv */
virt_ctx->iv[0] = 1; /* L' */
memcpy(virt_ctx->iv + 1, ccmData->nonce, NIST_AESCCM_NONCE_SIZE);
virt_ctx->iv[15] = 1;
/* ctr_count_0 */
memcpy(virt_ctx->ctr_cnt_0, virt_ctx->iv, NIST_AESCCM_IV_SIZE);
virt_ctx->ctr_cnt_0[15] = 0;
}
FIPS_DBG("ssi_ccm_fips_run_test - (i = %d) \n", i);
rc = ssi_ccm_fips_run_test(drvdata,
ccmData->direction,
key_dma_addr,
ccmData->keySize,
iv_dma_addr,
ctr_cnt_0_dma_addr,
b0_a0_adata_dma_addr,
FIPS_CCM_B0_A0_ADATA_SIZE,
din_dma_addr,
ccmData->dataInSize,
dout_dma_addr,
mac_res_dma_addr);
if (rc != 0)
{
FIPS_LOG("ssi_ccm_fips_run_test %d returned error - rc = %d \n", i, rc);
error = CC_REE_FIPS_ERROR_AESCCM_PUT;
break;
}
/* compare actual dout to expected */
if (memcmp(virt_ctx->dout, ccmData->dataOut, ccmData->dataInSize) != 0)
{
FIPS_LOG("dout comparison error %d - size=%d \n", i, ccmData->dataInSize);
error = CC_REE_FIPS_ERROR_AESCCM_PUT;
break;
}
/* compare actual mac result to expected */
if (memcmp(virt_ctx->mac_res, ccmData->macResOut, ccmData->tagSize) != 0)
{
FIPS_LOG("mac_res comparison error %d - mac_size=%d \n", i, ccmData->tagSize);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)ccmData->macResOut, (size_t)virt_ctx->mac_res);
for (i = 0; i < ccmData->tagSize; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, ccmData->macResOut[i], virt_ctx->mac_res[i]);
}
error = CC_REE_FIPS_ERROR_AESCCM_PUT;
break;
}
}
return error;
}
static inline int
ssi_gcm_fips_run_test(struct ssi_drvdata *drvdata,
enum drv_crypto_direction direction,
dma_addr_t key_dma_addr,
size_t key_size,
dma_addr_t hkey_dma_addr,
dma_addr_t block_len_dma_addr,
dma_addr_t iv_inc1_dma_addr,
dma_addr_t iv_inc2_dma_addr,
dma_addr_t adata_dma_addr,
size_t adata_size,
dma_addr_t din_dma_addr,
size_t din_size,
dma_addr_t dout_dma_addr,
dma_addr_t mac_res_dma_addr)
{
/* max number of descriptors used for the flow */
#define FIPS_GCM_MAX_SEQ_LEN 15
int rc;
struct ssi_crypto_req ssi_req = {0};
HwDesc_s desc[FIPS_GCM_MAX_SEQ_LEN];
unsigned int idx = 0;
unsigned int cipher_flow_mode;
if (direction == DRV_CRYPTO_DIRECTION_DECRYPT) {
cipher_flow_mode = AES_and_HASH;
} else { /* Encrypt */
cipher_flow_mode = AES_to_HASH_and_DOUT;
}
///////////////////////////////// 1 ////////////////////////////////////
// ssi_aead_gcm_setup_ghash_desc(req, desc, seq_size);
///////////////////////////////// 1 ////////////////////////////////////
/* load key to AES*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_ECB);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_DIN_TYPE(&desc[idx],
DMA_DLLI, key_dma_addr, key_size,
NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* process one zero block to generate hkey */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x0, AES_BLOCK_SIZE);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
hkey_dma_addr, AES_BLOCK_SIZE,
NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
/* Memory Barrier */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* Load GHASH subkey */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
hkey_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_HASH_HW_GHASH);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Configure Hash Engine to work with GHASH.
Since it was not possible to extend HASH submodes to add GHASH,
The following command is necessary in order to select GHASH (according to HW designers)*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_HASH_HW_GHASH);
HW_DESC_SET_CIPHER_DO(&desc[idx], 1); //1=AES_SK RKEK
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Load GHASH initial STATE (which is 0). (for any hash there is an initial state) */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_CONST(&desc[idx], 0x0, AES_BLOCK_SIZE);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_HASH);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_HASH_HW_GHASH);
HW_DESC_SET_CIPHER_CONFIG1(&desc[idx], HASH_PADDING_ENABLED);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE0);
idx++;
///////////////////////////////// 2 ////////////////////////////////////
/* prcess(ghash) assoc data */
// if (req->assoclen > 0)
// ssi_aead_create_assoc_desc(req, DIN_HASH, desc, seq_size);
///////////////////////////////// 2 ////////////////////////////////////
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
adata_dma_addr, adata_size,
NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
///////////////////////////////// 3 ////////////////////////////////////
// ssi_aead_gcm_setup_gctr_desc(req, desc, seq_size);
///////////////////////////////// 3 ////////////////////////////////////
/* load key to AES*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_GCTR);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
key_dma_addr, key_size,
NS_BIT);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_KEY0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* load AES/CTR initial CTR value inc by 2*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_GCTR);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
iv_inc2_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
///////////////////////////////// 4 ////////////////////////////////////
/* process(gctr+ghash) */
// if (req_ctx->cryptlen != 0)
// ssi_aead_process_cipher_data_desc(req, cipher_flow_mode, desc, seq_size);
///////////////////////////////// 4 ////////////////////////////////////
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
din_dma_addr, din_size,
NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
dout_dma_addr, din_size,
NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], cipher_flow_mode);
idx++;
///////////////////////////////// 5 ////////////////////////////////////
// ssi_aead_process_gcm_result_desc(req, desc, seq_size);
///////////////////////////////// 5 ////////////////////////////////////
/* prcess(ghash) gcm_block_len */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
block_len_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_HASH);
idx++;
/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_HASH_HW_GHASH);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
mac_res_dma_addr, AES_BLOCK_SIZE,
NS_BIT, 0);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_WRITE_STATE0);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_HASH_to_DOUT);
HW_DESC_SET_AES_NOT_HASH_MODE(&desc[idx]);
idx++;
/* load AES/CTR initial CTR value inc by 1*/
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_GCTR);
HW_DESC_SET_KEY_SIZE_AES(&desc[idx], key_size);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
iv_inc1_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_CIPHER_CONFIG0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
HW_DESC_SET_SETUP_MODE(&desc[idx], SETUP_LOAD_STATE1);
HW_DESC_SET_FLOW_MODE(&desc[idx], S_DIN_to_AES);
idx++;
/* Memory Barrier */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_DIN_NO_DMA(&desc[idx], 0, 0xfffff0);
HW_DESC_SET_DOUT_NO_DMA(&desc[idx], 0, 0, 1);
idx++;
/* process GCTR on stored GHASH and store MAC inplace */
HW_DESC_INIT(&desc[idx]);
HW_DESC_SET_CIPHER_MODE(&desc[idx], DRV_CIPHER_GCTR);
HW_DESC_SET_DIN_TYPE(&desc[idx], DMA_DLLI,
mac_res_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
HW_DESC_SET_DOUT_DLLI(&desc[idx],
mac_res_dma_addr, AES_BLOCK_SIZE,
NS_BIT, 0);
HW_DESC_SET_FLOW_MODE(&desc[idx], DIN_AES_DOUT);
idx++;
/* perform the operation - Lock HW and push sequence */
BUG_ON(idx > FIPS_GCM_MAX_SEQ_LEN);
rc = send_request(drvdata, &ssi_req, desc, idx, false);
return rc;
}
ssi_fips_error_t
ssi_gcm_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer)
{
ssi_fips_error_t error = CC_REE_FIPS_ERROR_OK;
size_t i;
struct fips_gcm_ctx *virt_ctx = (struct fips_gcm_ctx *)cpu_addr_buffer;
/* set the phisical pointers */
dma_addr_t adata_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, adata);
dma_addr_t key_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, key);
dma_addr_t hkey_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, hkey);
dma_addr_t din_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, din);
dma_addr_t dout_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, dout);
dma_addr_t mac_res_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, mac_res);
dma_addr_t len_block_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, len_block);
dma_addr_t iv_inc1_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, iv_inc1);
dma_addr_t iv_inc2_dma_addr = dma_coherent_buffer + offsetof(struct fips_gcm_ctx, iv_inc2);
for (i = 0; i < FIPS_GCM_NUM_OF_TESTS; ++i)
{
FipsGcmData *gcmData = (FipsGcmData*)&FipsGcmDataTable[i];
int rc = 0;
memset(cpu_addr_buffer, 0, sizeof(struct fips_gcm_ctx));
/* copy the key, adata, din data - into the allocated buffer */
memcpy(virt_ctx->key, gcmData->key, gcmData->keySize);
memcpy(virt_ctx->adata, gcmData->adata, gcmData->adataSize);
memcpy(virt_ctx->din, gcmData->dataIn, gcmData->dataInSize);
/* len_block */
{
__be64 len_bits;
len_bits = cpu_to_be64(gcmData->adataSize * 8);
memcpy(virt_ctx->len_block, &len_bits, sizeof(len_bits));
len_bits = cpu_to_be64(gcmData->dataInSize * 8);
memcpy(virt_ctx->len_block + 8, &len_bits, sizeof(len_bits));
}
/* iv_inc1, iv_inc2 */
{
__be32 counter = cpu_to_be32(1);
memcpy(virt_ctx->iv_inc1, gcmData->iv, NIST_AESGCM_IV_SIZE);
memcpy(virt_ctx->iv_inc1 + NIST_AESGCM_IV_SIZE, &counter, sizeof(counter));
counter = cpu_to_be32(2);
memcpy(virt_ctx->iv_inc2, gcmData->iv, NIST_AESGCM_IV_SIZE);
memcpy(virt_ctx->iv_inc2 + NIST_AESGCM_IV_SIZE, &counter, sizeof(counter));
}
FIPS_DBG("ssi_gcm_fips_run_test - (i = %d) \n", i);
rc = ssi_gcm_fips_run_test(drvdata,
gcmData->direction,
key_dma_addr,
gcmData->keySize,
hkey_dma_addr,
len_block_dma_addr,
iv_inc1_dma_addr,
iv_inc2_dma_addr,
adata_dma_addr,
gcmData->adataSize,
din_dma_addr,
gcmData->dataInSize,
dout_dma_addr,
mac_res_dma_addr);
if (rc != 0)
{
FIPS_LOG("ssi_gcm_fips_run_test %d returned error - rc = %d \n", i, rc);
error = CC_REE_FIPS_ERROR_AESGCM_PUT;
break;
}
if (gcmData->direction == DRV_CRYPTO_DIRECTION_ENCRYPT) {
/* compare actual dout to expected */
if (memcmp(virt_ctx->dout, gcmData->dataOut, gcmData->dataInSize) != 0)
{
FIPS_LOG("dout comparison error %d - size=%d \n", i, gcmData->dataInSize);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)gcmData->dataOut, (size_t)virt_ctx->dout);
for (i = 0; i < gcmData->dataInSize; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, gcmData->dataOut[i], virt_ctx->dout[i]);
}
error = CC_REE_FIPS_ERROR_AESGCM_PUT;
break;
}
}
/* compare actual mac result to expected */
if (memcmp(virt_ctx->mac_res, gcmData->macResOut, gcmData->tagSize) != 0)
{
FIPS_LOG("mac_res comparison error %d - mac_size=%d \n", i, gcmData->tagSize);
FIPS_LOG(" i expected received \n");
FIPS_LOG(" i 0x%08x 0x%08x \n", (size_t)gcmData->macResOut, (size_t)virt_ctx->mac_res);
for (i = 0; i < gcmData->tagSize; ++i)
{
FIPS_LOG(" %d 0x%02x 0x%02x \n", i, gcmData->macResOut[i], virt_ctx->mac_res[i]);
}
error = CC_REE_FIPS_ERROR_AESGCM_PUT;
break;
}
}
return error;
}
size_t ssi_fips_max_mem_alloc_size(void)
{
FIPS_DBG("sizeof(struct fips_cipher_ctx) %d \n", sizeof(struct fips_cipher_ctx));
FIPS_DBG("sizeof(struct fips_cmac_ctx) %d \n", sizeof(struct fips_cmac_ctx));
FIPS_DBG("sizeof(struct fips_hash_ctx) %d \n", sizeof(struct fips_hash_ctx));
FIPS_DBG("sizeof(struct fips_hmac_ctx) %d \n", sizeof(struct fips_hmac_ctx));
FIPS_DBG("sizeof(struct fips_ccm_ctx) %d \n", sizeof(struct fips_ccm_ctx));
FIPS_DBG("sizeof(struct fips_gcm_ctx) %d \n", sizeof(struct fips_gcm_ctx));
return sizeof(fips_ctx);
}
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/**************************************************************
This file defines the driver FIPS internal function, used by the driver itself.
***************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <crypto/des.h>
#include "ssi_config.h"
#include "ssi_driver.h"
#include "cc_hal.h"
#define FIPS_POWER_UP_TEST_CIPHER 1
#define FIPS_POWER_UP_TEST_CMAC 1
#define FIPS_POWER_UP_TEST_HASH 1
#define FIPS_POWER_UP_TEST_HMAC 1
#define FIPS_POWER_UP_TEST_CCM 1
#define FIPS_POWER_UP_TEST_GCM 1
static bool ssi_fips_support = 1;
module_param(ssi_fips_support, bool, 0644);
MODULE_PARM_DESC(ssi_fips_support, "FIPS supported flag: 0 - off , 1 - on (default)");
static void fips_dsr(unsigned long devarg);
struct ssi_fips_handle {
#ifdef COMP_IN_WQ
struct workqueue_struct *workq;
struct delayed_work fipswork;
#else
struct tasklet_struct fipstask;
#endif
};
extern int ssi_fips_get_state(ssi_fips_state_t *p_state);
extern int ssi_fips_get_error(ssi_fips_error_t *p_err);
extern int ssi_fips_ext_set_state(ssi_fips_state_t state);
extern int ssi_fips_ext_set_error(ssi_fips_error_t err);
/* FIPS power-up tests */
extern ssi_fips_error_t ssi_cipher_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern ssi_fips_error_t ssi_cmac_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern ssi_fips_error_t ssi_hash_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern ssi_fips_error_t ssi_hmac_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern ssi_fips_error_t ssi_ccm_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern ssi_fips_error_t ssi_gcm_fips_power_up_tests(struct ssi_drvdata *drvdata, void *cpu_addr_buffer, dma_addr_t dma_coherent_buffer);
extern size_t ssi_fips_max_mem_alloc_size(void);
/* The function called once at driver entry point to check whether TEE FIPS error occured.*/
static enum ssi_fips_error ssi_fips_get_tee_error(struct ssi_drvdata *drvdata)
{
uint32_t regVal;
void __iomem *cc_base = drvdata->cc_base;
regVal = CC_HAL_READ_REGISTER(CC_REG_OFFSET(HOST_RGF, GPR_HOST));
if (regVal == (CC_FIPS_SYNC_TEE_STATUS | CC_FIPS_SYNC_MODULE_OK)) {
return CC_REE_FIPS_ERROR_OK;
}
return CC_REE_FIPS_ERROR_FROM_TEE;
}
/*
This function should push the FIPS REE library status towards the TEE library.
By writing the error state to HOST_GPR0 register. The function is called from .
driver entry point so no need to protect by mutex.
*/
static void ssi_fips_update_tee_upon_ree_status(struct ssi_drvdata *drvdata, ssi_fips_error_t err)
{
void __iomem *cc_base = drvdata->cc_base;
if (err == CC_REE_FIPS_ERROR_OK) {
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_GPR0), (CC_FIPS_SYNC_REE_STATUS|CC_FIPS_SYNC_MODULE_OK));
} else {
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_GPR0), (CC_FIPS_SYNC_REE_STATUS|CC_FIPS_SYNC_MODULE_ERROR));
}
}
void ssi_fips_fini(struct ssi_drvdata *drvdata)
{
struct ssi_fips_handle *fips_h = drvdata->fips_handle;
if (fips_h == NULL)
return; /* Not allocated */
#ifdef COMP_IN_WQ
if (fips_h->workq != NULL) {
flush_workqueue(fips_h->workq);
destroy_workqueue(fips_h->workq);
}
#else
/* Kill tasklet */
tasklet_kill(&fips_h->fipstask);
#endif
memset(fips_h, 0, sizeof(struct ssi_fips_handle));
kfree(fips_h);
drvdata->fips_handle = NULL;
}
void fips_handler(struct ssi_drvdata *drvdata)
{
struct ssi_fips_handle *fips_handle_ptr =
drvdata->fips_handle;
#ifdef COMP_IN_WQ
queue_delayed_work(fips_handle_ptr->workq, &fips_handle_ptr->fipswork, 0);
#else
tasklet_schedule(&fips_handle_ptr->fipstask);
#endif
}
#ifdef COMP_IN_WQ
static void fips_wq_handler(struct work_struct *work)
{
struct ssi_drvdata *drvdata =
container_of(work, struct ssi_drvdata, fipswork.work);
fips_dsr((unsigned long)drvdata);
}
#endif
/* Deferred service handler, run as interrupt-fired tasklet */
static void fips_dsr(unsigned long devarg)
{
struct ssi_drvdata *drvdata = (struct ssi_drvdata *)devarg;
void __iomem *cc_base = drvdata->cc_base;
uint32_t irq;
uint32_t teeFipsError = 0;
irq = (drvdata->irq & (SSI_GPR0_IRQ_MASK));
if (irq & SSI_GPR0_IRQ_MASK) {
teeFipsError = CC_HAL_READ_REGISTER(CC_REG_OFFSET(HOST_RGF, GPR_HOST));
if (teeFipsError != (CC_FIPS_SYNC_TEE_STATUS | CC_FIPS_SYNC_MODULE_OK)) {
ssi_fips_set_error(drvdata, CC_REE_FIPS_ERROR_FROM_TEE);
}
}
/* after verifing that there is nothing to do, Unmask AXI completion interrupt */
CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR),
CC_HAL_READ_REGISTER(
CC_REG_OFFSET(HOST_RGF, HOST_IMR)) & ~irq);
}
ssi_fips_error_t cc_fips_run_power_up_tests(struct ssi_drvdata *drvdata)
{
ssi_fips_error_t fips_error = CC_REE_FIPS_ERROR_OK;
void * cpu_addr_buffer = NULL;
dma_addr_t dma_handle;
size_t alloc_buff_size = ssi_fips_max_mem_alloc_size();
struct device *dev = &drvdata->plat_dev->dev;
// allocate memory using dma_alloc_coherent - for phisical, consecutive and cache coherent buffer (memory map is not needed)
// the return value is the virtual address - use it to copy data into the buffer
// the dma_handle is the returned phy address - use it in the HW descriptor
FIPS_DBG("dma_alloc_coherent \n");
cpu_addr_buffer = dma_alloc_coherent(dev, alloc_buff_size, &dma_handle, GFP_KERNEL);
if (cpu_addr_buffer == NULL) {
return CC_REE_FIPS_ERROR_GENERAL;
}
FIPS_DBG("allocated coherent buffer - addr 0x%08X , size = %d \n", (size_t)cpu_addr_buffer, alloc_buff_size);
#if FIPS_POWER_UP_TEST_CIPHER
FIPS_DBG("ssi_cipher_fips_power_up_tests ...\n");
fips_error = ssi_cipher_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_cipher_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
#endif
#if FIPS_POWER_UP_TEST_CMAC
if (likely(fips_error == CC_REE_FIPS_ERROR_OK)) {
FIPS_DBG("ssi_cmac_fips_power_up_tests ...\n");
fips_error = ssi_cmac_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_cmac_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
}
#endif
#if FIPS_POWER_UP_TEST_HASH
if (likely(fips_error == CC_REE_FIPS_ERROR_OK)) {
FIPS_DBG("ssi_hash_fips_power_up_tests ...\n");
fips_error = ssi_hash_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_hash_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
}
#endif
#if FIPS_POWER_UP_TEST_HMAC
if (likely(fips_error == CC_REE_FIPS_ERROR_OK)) {
FIPS_DBG("ssi_hmac_fips_power_up_tests ...\n");
fips_error = ssi_hmac_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_hmac_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
}
#endif
#if FIPS_POWER_UP_TEST_CCM
if (likely(fips_error == CC_REE_FIPS_ERROR_OK)) {
FIPS_DBG("ssi_ccm_fips_power_up_tests ...\n");
fips_error = ssi_ccm_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_ccm_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
}
#endif
#if FIPS_POWER_UP_TEST_GCM
if (likely(fips_error == CC_REE_FIPS_ERROR_OK)) {
FIPS_DBG("ssi_gcm_fips_power_up_tests ...\n");
fips_error = ssi_gcm_fips_power_up_tests(drvdata, cpu_addr_buffer, dma_handle);
FIPS_DBG("ssi_gcm_fips_power_up_tests - done. (fips_error = %d) \n", fips_error);
}
#endif
/* deallocate the buffer when all tests are done... */
FIPS_DBG("dma_free_coherent \n");
dma_free_coherent(dev, alloc_buff_size, cpu_addr_buffer, dma_handle);
return fips_error;
}
/* The function checks if FIPS supported and FIPS error exists.*
* It should be used in every driver API.*/
int ssi_fips_check_fips_error(void)
{
ssi_fips_state_t fips_state;
if (ssi_fips_get_state(&fips_state) != 0) {
FIPS_LOG("ssi_fips_get_state FAILED, returning.. \n");
return -ENOEXEC;
}
if (fips_state == CC_FIPS_STATE_ERROR) {
FIPS_LOG("ssi_fips_get_state: fips_state is %d, returning.. \n", fips_state);
return -ENOEXEC;
}
return 0;
}
/* The function sets the REE FIPS state.*
* It should be used while driver is being loaded .*/
int ssi_fips_set_state(ssi_fips_state_t state)
{
return ssi_fips_ext_set_state(state);
}
/* The function sets the REE FIPS error, and pushes the error to TEE library. *
* It should be used when any of the KAT tests fails .*/
int ssi_fips_set_error(struct ssi_drvdata *p_drvdata, ssi_fips_error_t err)
{
int rc = 0;
ssi_fips_error_t current_err;
FIPS_LOG("ssi_fips_set_error - fips_error = %d \n", err);
// setting no error is not allowed
if (err == CC_REE_FIPS_ERROR_OK) {
return -ENOEXEC;
}
// If error exists, do not set new error
if (ssi_fips_get_error(&current_err) != 0) {
return -ENOEXEC;
}
if (current_err != CC_REE_FIPS_ERROR_OK) {
return -ENOEXEC;
}
// set REE internal error and state
rc = ssi_fips_ext_set_error(err);
if (rc != 0) {
return -ENOEXEC;
}
rc = ssi_fips_ext_set_state(CC_FIPS_STATE_ERROR);
if (rc != 0) {
return -ENOEXEC;
}
// push error towards TEE libraray, if it's not TEE error
if (err != CC_REE_FIPS_ERROR_FROM_TEE) {
ssi_fips_update_tee_upon_ree_status(p_drvdata, err);
}
return rc;
}
/* The function called once at driver entry point .*/
int ssi_fips_init(struct ssi_drvdata *p_drvdata)
{
ssi_fips_error_t rc = CC_REE_FIPS_ERROR_OK;
struct ssi_fips_handle *fips_h;
FIPS_DBG("CC FIPS code .. (fips=%d) \n", ssi_fips_support);
fips_h = kzalloc(sizeof(struct ssi_fips_handle),GFP_KERNEL);
if (fips_h == NULL) {
ssi_fips_set_error(p_drvdata, CC_REE_FIPS_ERROR_GENERAL);
return -ENOMEM;
}
p_drvdata->fips_handle = fips_h;
#ifdef COMP_IN_WQ
SSI_LOG_DEBUG("Initializing fips workqueue\n");
fips_h->workq = create_singlethread_workqueue("arm_cc7x_fips_wq");
if (unlikely(fips_h->workq == NULL)) {
SSI_LOG_ERR("Failed creating fips work queue\n");
ssi_fips_set_error(p_drvdata, CC_REE_FIPS_ERROR_GENERAL);
rc = -ENOMEM;
goto ssi_fips_init_err;
}
INIT_DELAYED_WORK(&fips_h->fipswork, fips_wq_handler);
#else
SSI_LOG_DEBUG("Initializing fips tasklet\n");
tasklet_init(&fips_h->fipstask, fips_dsr, (unsigned long)p_drvdata);
#endif
/* init fips driver data */
rc = ssi_fips_set_state((ssi_fips_support == 0)? CC_FIPS_STATE_NOT_SUPPORTED : CC_FIPS_STATE_SUPPORTED);
if (unlikely(rc != 0)) {
ssi_fips_set_error(p_drvdata, CC_REE_FIPS_ERROR_GENERAL);
rc = -EAGAIN;
goto ssi_fips_init_err;
}
/* Run power up tests (before registration and operating the HW engines) */
FIPS_DBG("ssi_fips_get_tee_error \n");
rc = ssi_fips_get_tee_error(p_drvdata);
if (unlikely(rc != CC_REE_FIPS_ERROR_OK)) {
ssi_fips_set_error(p_drvdata, CC_REE_FIPS_ERROR_FROM_TEE);
rc = -EAGAIN;
goto ssi_fips_init_err;
}
FIPS_DBG("cc_fips_run_power_up_tests \n");
rc = cc_fips_run_power_up_tests(p_drvdata);
if (unlikely(rc != CC_REE_FIPS_ERROR_OK)) {
ssi_fips_set_error(p_drvdata, rc);
rc = -EAGAIN;
goto ssi_fips_init_err;
}
FIPS_LOG("cc_fips_run_power_up_tests - done ... fips_error = %d \n", rc);
/* when all tests passed, update TEE with fips OK status after power up tests */
ssi_fips_update_tee_upon_ree_status(p_drvdata, CC_REE_FIPS_ERROR_OK);
if (unlikely(rc != 0)) {
rc = -EAGAIN;
ssi_fips_set_error(p_drvdata, CC_REE_FIPS_ERROR_GENERAL);
goto ssi_fips_init_err;
}
return 0;
ssi_fips_init_err:
ssi_fips_fini(p_drvdata);
return rc;
}
/*
* Copyright (C) 2012-2017 ARM Limited or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __SSI_FIPS_LOCAL_H__
#define __SSI_FIPS_LOCAL_H__
#ifdef CONFIG_CCX7REE_FIPS_SUPPORT
#include "ssi_fips.h"
struct ssi_drvdata;
// IG - how to make 1 file for TEE and REE
typedef enum CC_FipsSyncStatus{
CC_FIPS_SYNC_MODULE_OK = 0x0,
CC_FIPS_SYNC_MODULE_ERROR = 0x1,
CC_FIPS_SYNC_REE_STATUS = 0x4,
CC_FIPS_SYNC_TEE_STATUS = 0x8,
CC_FIPS_SYNC_STATUS_RESERVE32B = INT32_MAX
}CCFipsSyncStatus_t;
#define CHECK_AND_RETURN_UPON_FIPS_ERROR() {\
if (ssi_fips_check_fips_error() != 0) {\
return -ENOEXEC;\
}\
}
#define CHECK_AND_RETURN_VOID_UPON_FIPS_ERROR() {\
if (ssi_fips_check_fips_error() != 0) {\
return;\
}\
}
#define SSI_FIPS_INIT(p_drvData) (ssi_fips_init(p_drvData))
#define SSI_FIPS_FINI(p_drvData) (ssi_fips_fini(p_drvData))
#define FIPS_LOG(...) SSI_LOG(KERN_INFO, __VA_ARGS__)
#define FIPS_DBG(...) //SSI_LOG(KERN_INFO, __VA_ARGS__)
/* FIPS functions */
int ssi_fips_init(struct ssi_drvdata *p_drvdata);
void ssi_fips_fini(struct ssi_drvdata *drvdata);
int ssi_fips_check_fips_error(void);
int ssi_fips_set_error(struct ssi_drvdata *p_drvdata, ssi_fips_error_t err);
void fips_handler(struct ssi_drvdata *drvdata);
#else /* CONFIG_CC7XXREE_FIPS_SUPPORT */
#define CHECK_AND_RETURN_UPON_FIPS_ERROR()
#define CHECK_AND_RETURN_VOID_UPON_FIPS_ERROR()
static inline int ssi_fips_init(struct ssi_drvdata *p_drvdata)
{
return 0;
}
static inline void ssi_fips_fini(struct ssi_drvdata *drvdata) {}
void fips_handler(struct ssi_drvdata *drvdata);
#endif /* CONFIG_CC7XXREE_FIPS_SUPPORT */
#endif /*__SSI_FIPS_LOCAL_H__*/
......@@ -30,6 +30,7 @@
#include "ssi_sysfs.h"
#include "ssi_hash.h"
#include "ssi_sram_mgr.h"
#include "ssi_fips_local.h"
#define SSI_MAX_AHASH_SEQ_LEN 12
#define SSI_MAX_HASH_OPAD_TMP_KEYS_SIZE MAX(SSI_MAX_HASH_BLCK_SIZE, 3 * AES_BLOCK_SIZE)
......@@ -467,6 +468,8 @@ static int ssi_hash_digest(struct ahash_req_ctx *state,
SSI_LOG_DEBUG("===== %s-digest (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (unlikely(ssi_hash_map_request(dev, state, ctx) != 0)) {
SSI_LOG_ERR("map_ahash_source() failed\n");
return -ENOMEM;
......@@ -623,6 +626,7 @@ static int ssi_hash_update(struct ahash_req_ctx *state,
SSI_LOG_DEBUG("===== %s-update (%d) ====\n", ctx->is_hmac ?
"hmac":"hash", nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (nbytes == 0) {
/* no real updates required */
return 0;
......@@ -719,6 +723,8 @@ static int ssi_hash_finup(struct ahash_req_ctx *state,
SSI_LOG_DEBUG("===== %s-finup (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, src , nbytes, 1) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
......@@ -848,6 +854,8 @@ static int ssi_hash_final(struct ahash_req_ctx *state,
SSI_LOG_DEBUG("===== %s-final (%d) ====\n", is_hmac?"hmac":"hash", nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (unlikely(ssi_buffer_mgr_map_hash_request_final(ctx->drvdata, state, src, nbytes, 0) != 0)) {
SSI_LOG_ERR("map_ahash_request_final() failed\n");
return -ENOMEM;
......@@ -975,6 +983,7 @@ static int ssi_hash_init(struct ahash_req_ctx *state, struct ssi_hash_ctx *ctx)
struct device *dev = &ctx->drvdata->plat_dev->dev;
state->xcbc_count = 0;
CHECK_AND_RETURN_UPON_FIPS_ERROR();
ssi_hash_map_request(dev, state, ctx);
return 0;
......@@ -983,12 +992,14 @@ static int ssi_hash_init(struct ahash_req_ctx *state, struct ssi_hash_ctx *ctx)
#ifdef EXPORT_FIXED
static int ssi_hash_export(struct ssi_hash_ctx *ctx, void *out)
{
CHECK_AND_RETURN_UPON_FIPS_ERROR();
memcpy(out, ctx, sizeof(struct ssi_hash_ctx));
return 0;
}
static int ssi_hash_import(struct ssi_hash_ctx *ctx, const void *in)
{
CHECK_AND_RETURN_UPON_FIPS_ERROR();
memcpy(ctx, in, sizeof(struct ssi_hash_ctx));
return 0;
}
......@@ -1010,6 +1021,7 @@ static int ssi_hash_setkey(void *hash,
SSI_LOG_DEBUG("ssi_hash_setkey: start keylen: %d", keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (synchronize) {
ctx = crypto_shash_ctx(((struct crypto_shash *)hash));
blocksize = crypto_tfm_alg_blocksize(&((struct crypto_shash *)hash)->base);
......@@ -1218,6 +1230,7 @@ static int ssi_xcbc_setkey(struct crypto_ahash *ahash,
HwDesc_s desc[SSI_MAX_AHASH_SEQ_LEN];
SSI_LOG_DEBUG("===== setkey (%d) ====\n", keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
switch (keylen) {
case AES_KEYSIZE_128:
......@@ -1303,6 +1316,7 @@ static int ssi_cmac_setkey(struct crypto_ahash *ahash,
struct ssi_hash_ctx *ctx = crypto_ahash_ctx(ahash);
DECL_CYCLE_COUNT_RESOURCES;
SSI_LOG_DEBUG("===== setkey (%d) ====\n", keylen);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
ctx->is_hmac = true;
......@@ -1418,6 +1432,7 @@ static int ssi_shash_cra_init(struct crypto_tfm *tfm)
struct ssi_hash_alg *ssi_alg =
container_of(shash_alg, struct ssi_hash_alg, shash_alg);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
ctx->hash_mode = ssi_alg->hash_mode;
ctx->hw_mode = ssi_alg->hw_mode;
ctx->inter_digestsize = ssi_alg->inter_digestsize;
......@@ -1437,6 +1452,7 @@ static int ssi_ahash_cra_init(struct crypto_tfm *tfm)
container_of(ahash_alg, struct ssi_hash_alg, ahash_alg);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_req_ctx));
......@@ -1468,6 +1484,7 @@ static int ssi_mac_update(struct ahash_request *req)
int rc;
uint32_t idx = 0;
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (req->nbytes == 0) {
/* no real updates required */
return 0;
......@@ -1535,6 +1552,7 @@ static int ssi_mac_final(struct ahash_request *req)
state->buff0_cnt;
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
keySize = CC_AES_128_BIT_KEY_SIZE;
keyLen = CC_AES_128_BIT_KEY_SIZE;
......@@ -1645,7 +1663,7 @@ static int ssi_mac_finup(struct ahash_request *req)
uint32_t digestsize = crypto_ahash_digestsize(tfm);
SSI_LOG_DEBUG("===== finup xcbc(%d) ====\n", req->nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (state->xcbc_count > 0 && req->nbytes == 0) {
SSI_LOG_DEBUG("No data to update. Call to fdx_mac_final \n");
return ssi_mac_final(req);
......@@ -1718,6 +1736,7 @@ static int ssi_mac_digest(struct ahash_request *req)
int rc;
SSI_LOG_DEBUG("===== -digest mac (%d) ====\n", req->nbytes);
CHECK_AND_RETURN_UPON_FIPS_ERROR();
if (unlikely(ssi_hash_map_request(dev, state, ctx) != 0)) {
SSI_LOG_ERR("map_ahash_source() failed\n");
......
......@@ -30,6 +30,8 @@
#include "ssi_sysfs.h"
#include "ssi_ivgen.h"
#include "ssi_pm.h"
#include "ssi_fips.h"
#include "ssi_fips_local.h"
#define SSI_MAX_POLL_ITER 10
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment