Commit 17eed249 authored by David S. Miller's avatar David S. Miller

Merge branch 'upstream-net26' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6

parents 4ad96d39 318a94d6
...@@ -54,25 +54,24 @@ ...@@ -54,25 +54,24 @@
v1.19a 28Oct2002 Davud Ruggiero <jdr@farfalle.com> v1.19a 28Oct2002 Davud Ruggiero <jdr@farfalle.com>
- Increase *read_eeprom udelay to workaround oops with 2 cards. - Increase *read_eeprom udelay to workaround oops with 2 cards.
v1.19b 08Nov2002 Marc Zyngier <maz@wild-wind.fr.eu.org> v1.19b 08Nov2002 Marc Zyngier <maz@wild-wind.fr.eu.org>
- Introduce driver model for EISA cards. - Introduce driver model for EISA cards.
v1.20 04Feb2008 Ondrej Zary <linux@rainbow-software.org>
- convert to isa_driver and pnp_driver and some cleanups
*/ */
#define DRV_NAME "3c509" #define DRV_NAME "3c509"
#define DRV_VERSION "1.19b" #define DRV_VERSION "1.20"
#define DRV_RELDATE "08Nov2002" #define DRV_RELDATE "04Feb2008"
/* A few values that may be tweaked. */ /* A few values that may be tweaked. */
/* Time in jiffies before concluding the transmitter is hung. */ /* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (400*HZ/1000) #define TX_TIMEOUT (400*HZ/1000)
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 10;
#include <linux/module.h> #include <linux/module.h>
#ifdef CONFIG_MCA
#include <linux/mca.h> #include <linux/mca.h>
#endif #include <linux/isa.h>
#include <linux/isapnp.h> #include <linux/pnp.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/errno.h> #include <linux/errno.h>
...@@ -97,10 +96,6 @@ static int max_interrupt_work = 10; ...@@ -97,10 +96,6 @@ static int max_interrupt_work = 10;
static char version[] __initdata = DRV_NAME ".c:" DRV_VERSION " " DRV_RELDATE " becker@scyld.com\n"; static char version[] __initdata = DRV_NAME ".c:" DRV_VERSION " " DRV_RELDATE " becker@scyld.com\n";
#if defined(CONFIG_PM) && (defined(CONFIG_MCA) || defined(CONFIG_EISA))
#define EL3_SUSPEND
#endif
#ifdef EL3_DEBUG #ifdef EL3_DEBUG
static int el3_debug = EL3_DEBUG; static int el3_debug = EL3_DEBUG;
#else #else
...@@ -111,6 +106,7 @@ static int el3_debug = 2; ...@@ -111,6 +106,7 @@ static int el3_debug = 2;
* a global variable so that the mca/eisa probe routines can increment * a global variable so that the mca/eisa probe routines can increment
* it */ * it */
static int el3_cards = 0; static int el3_cards = 0;
#define EL3_MAX_CARDS 8
/* To minimize the size of the driver source I only define operating /* To minimize the size of the driver source I only define operating
constants if they are used several times. You'll need the manual constants if they are used several times. You'll need the manual
...@@ -119,7 +115,7 @@ static int el3_cards = 0; ...@@ -119,7 +115,7 @@ static int el3_cards = 0;
#define EL3_DATA 0x00 #define EL3_DATA 0x00
#define EL3_CMD 0x0e #define EL3_CMD 0x0e
#define EL3_STATUS 0x0e #define EL3_STATUS 0x0e
#define EEPROM_READ 0x80 #define EEPROM_READ 0x80
#define EL3_IO_EXTENT 16 #define EL3_IO_EXTENT 16
...@@ -168,23 +164,31 @@ enum RxFilter { ...@@ -168,23 +164,31 @@ enum RxFilter {
*/ */
#define SKB_QUEUE_SIZE 64 #define SKB_QUEUE_SIZE 64
enum el3_cardtype { EL3_ISA, EL3_PNP, EL3_MCA, EL3_EISA };
struct el3_private { struct el3_private {
struct net_device_stats stats; struct net_device_stats stats;
struct net_device *next_dev;
spinlock_t lock; spinlock_t lock;
/* skb send-queue */ /* skb send-queue */
int head, size; int head, size;
struct sk_buff *queue[SKB_QUEUE_SIZE]; struct sk_buff *queue[SKB_QUEUE_SIZE];
enum { enum el3_cardtype type;
EL3_MCA,
EL3_PNP,
EL3_EISA,
} type; /* type of device */
struct device *dev;
}; };
static int id_port __initdata = 0x110; /* Start with 0x110 to avoid new sound cards.*/ static int id_port;
static struct net_device *el3_root_dev; static int current_tag;
static struct net_device *el3_devs[EL3_MAX_CARDS];
/* Parameters that may be passed into the module. */
static int debug = -1;
static int irq[] = {-1, -1, -1, -1, -1, -1, -1, -1};
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 10;
#ifdef CONFIG_PNP
static int nopnp;
#endif
static int __init el3_common_init(struct net_device *dev);
static void el3_common_remove(struct net_device *dev);
static ushort id_read_eeprom(int index); static ushort id_read_eeprom(int index);
static ushort read_eeprom(int ioaddr, int index); static ushort read_eeprom(int ioaddr, int index);
static int el3_open(struct net_device *dev); static int el3_open(struct net_device *dev);
...@@ -199,7 +203,7 @@ static void el3_tx_timeout (struct net_device *dev); ...@@ -199,7 +203,7 @@ static void el3_tx_timeout (struct net_device *dev);
static void el3_down(struct net_device *dev); static void el3_down(struct net_device *dev);
static void el3_up(struct net_device *dev); static void el3_up(struct net_device *dev);
static const struct ethtool_ops ethtool_ops; static const struct ethtool_ops ethtool_ops;
#ifdef EL3_SUSPEND #ifdef CONFIG_PM
static int el3_suspend(struct device *, pm_message_t); static int el3_suspend(struct device *, pm_message_t);
static int el3_resume(struct device *); static int el3_resume(struct device *);
#else #else
...@@ -209,13 +213,272 @@ static int el3_resume(struct device *); ...@@ -209,13 +213,272 @@ static int el3_resume(struct device *);
/* generic device remove for all device types */ /* generic device remove for all device types */
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
static int el3_device_remove (struct device *device); static int el3_device_remove (struct device *device);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER #ifdef CONFIG_NET_POLL_CONTROLLER
static void el3_poll_controller(struct net_device *dev); static void el3_poll_controller(struct net_device *dev);
#endif #endif
/* Return 0 on success, 1 on error, 2 when found already detected PnP card */
static int el3_isa_id_sequence(__be16 *phys_addr)
{
short lrs_state = 0xff;
int i;
/* ISA boards are detected by sending the ID sequence to the
ID_PORT. We find cards past the first by setting the 'current_tag'
on cards as they are found. Cards with their tag set will not
respond to subsequent ID sequences. */
outb(0x00, id_port);
outb(0x00, id_port);
for (i = 0; i < 255; i++) {
outb(lrs_state, id_port);
lrs_state <<= 1;
lrs_state = lrs_state & 0x100 ? lrs_state ^ 0xcf : lrs_state;
}
/* For the first probe, clear all board's tag registers. */
if (current_tag == 0)
outb(0xd0, id_port);
else /* Otherwise kill off already-found boards. */
outb(0xd8, id_port);
if (id_read_eeprom(7) != 0x6d50)
return 1;
/* Read in EEPROM data, which does contention-select.
Only the lowest address board will stay "on-line".
3Com got the byte order backwards. */
for (i = 0; i < 3; i++)
phys_addr[i] = htons(id_read_eeprom(i));
#ifdef CONFIG_PNP
if (!nopnp) {
/* The ISA PnP 3c509 cards respond to the ID sequence too.
This check is needed in order not to register them twice. */
for (i = 0; i < el3_cards; i++) {
struct el3_private *lp = netdev_priv(el3_devs[i]);
if (lp->type == EL3_PNP
&& !memcmp(phys_addr, el3_devs[i]->dev_addr,
ETH_ALEN)) {
if (el3_debug > 3)
printk(KERN_DEBUG "3c509 with address %02x %02x %02x %02x %02x %02x was found by ISAPnP\n",
phys_addr[0] & 0xff, phys_addr[0] >> 8,
phys_addr[1] & 0xff, phys_addr[1] >> 8,
phys_addr[2] & 0xff, phys_addr[2] >> 8);
/* Set the adaptor tag so that the next card can be found. */
outb(0xd0 + ++current_tag, id_port);
return 2;
}
}
}
#endif /* CONFIG_PNP */
return 0;
}
static void __devinit el3_dev_fill(struct net_device *dev, __be16 *phys_addr,
int ioaddr, int irq, int if_port,
enum el3_cardtype type)
{
struct el3_private *lp = netdev_priv(dev);
memcpy(dev->dev_addr, phys_addr, ETH_ALEN);
dev->base_addr = ioaddr;
dev->irq = irq;
dev->if_port = if_port;
lp->type = type;
}
static int __devinit el3_isa_match(struct device *pdev,
unsigned int ndev)
{
struct net_device *dev;
int ioaddr, isa_irq, if_port, err;
unsigned int iobase;
__be16 phys_addr[3];
while ((err = el3_isa_id_sequence(phys_addr)) == 2)
; /* Skip to next card when PnP card found */
if (err == 1)
return 0;
iobase = id_read_eeprom(8);
if_port = iobase >> 14;
ioaddr = 0x200 + ((iobase & 0x1f) << 4);
if (irq[el3_cards] > 1 && irq[el3_cards] < 16)
isa_irq = irq[el3_cards];
else
isa_irq = id_read_eeprom(9) >> 12;
dev = alloc_etherdev(sizeof(struct el3_private));
if (!dev)
return -ENOMEM;
netdev_boot_setup_check(dev);
if (!request_region(ioaddr, EL3_IO_EXTENT, "3c509-isa")) {
free_netdev(dev);
return 0;
}
/* Set the adaptor tag so that the next card can be found. */
outb(0xd0 + ++current_tag, id_port);
/* Activate the adaptor at the EEPROM location. */
outb((ioaddr >> 4) | 0xe0, id_port);
EL3WINDOW(0);
if (inw(ioaddr) != 0x6d50) {
free_netdev(dev);
return 0;
}
/* Free the interrupt so that some other card can use it. */
outw(0x0f00, ioaddr + WN0_IRQ);
el3_dev_fill(dev, phys_addr, ioaddr, isa_irq, if_port, EL3_ISA);
dev_set_drvdata(pdev, dev);
if (el3_common_init(dev)) {
free_netdev(dev);
return 0;
}
el3_devs[el3_cards++] = dev;
return 1;
}
static int __devexit el3_isa_remove(struct device *pdev,
unsigned int ndev)
{
el3_device_remove(pdev);
dev_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM
static int el3_isa_suspend(struct device *dev, unsigned int n,
pm_message_t state)
{
current_tag = 0;
return el3_suspend(dev, state);
}
static int el3_isa_resume(struct device *dev, unsigned int n)
{
struct net_device *ndev = dev_get_drvdata(dev);
int ioaddr = ndev->base_addr, err;
__be16 phys_addr[3];
while ((err = el3_isa_id_sequence(phys_addr)) == 2)
; /* Skip to next card when PnP card found */
if (err == 1)
return 0;
/* Set the adaptor tag so that the next card can be found. */
outb(0xd0 + ++current_tag, id_port);
/* Enable the card */
outb((ioaddr >> 4) | 0xe0, id_port);
EL3WINDOW(0);
if (inw(ioaddr) != 0x6d50)
return 1;
/* Free the interrupt so that some other card can use it. */
outw(0x0f00, ioaddr + WN0_IRQ);
return el3_resume(dev);
}
#endif
static struct isa_driver el3_isa_driver = {
.match = el3_isa_match,
.remove = __devexit_p(el3_isa_remove),
#ifdef CONFIG_PM
.suspend = el3_isa_suspend,
.resume = el3_isa_resume,
#endif
.driver = {
.name = "3c509"
},
};
static int isa_registered;
#ifdef CONFIG_PNP
static struct pnp_device_id el3_pnp_ids[] = {
{ .id = "TCM5090" }, /* 3Com Etherlink III (TP) */
{ .id = "TCM5091" }, /* 3Com Etherlink III */
{ .id = "TCM5094" }, /* 3Com Etherlink III (combo) */
{ .id = "TCM5095" }, /* 3Com Etherlink III (TPO) */
{ .id = "TCM5098" }, /* 3Com Etherlink III (TPC) */
{ .id = "PNP80f7" }, /* 3Com Etherlink III compatible */
{ .id = "PNP80f8" }, /* 3Com Etherlink III compatible */
{ .id = "" }
};
MODULE_DEVICE_TABLE(pnp, el3_pnp_ids);
static int __devinit el3_pnp_probe(struct pnp_dev *pdev,
const struct pnp_device_id *id)
{
short i;
int ioaddr, irq, if_port;
u16 phys_addr[3];
struct net_device *dev = NULL;
int err;
ioaddr = pnp_port_start(pdev, 0);
if (!request_region(ioaddr, EL3_IO_EXTENT, "3c509-pnp"))
return -EBUSY;
irq = pnp_irq(pdev, 0);
EL3WINDOW(0);
for (i = 0; i < 3; i++)
phys_addr[i] = htons(read_eeprom(ioaddr, i));
if_port = read_eeprom(ioaddr, 8) >> 14;
dev = alloc_etherdev(sizeof(struct el3_private));
if (!dev) {
release_region(ioaddr, EL3_IO_EXTENT);
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
netdev_boot_setup_check(dev);
el3_dev_fill(dev, phys_addr, ioaddr, irq, if_port, EL3_PNP);
pnp_set_drvdata(pdev, dev);
err = el3_common_init(dev);
if (err) {
pnp_set_drvdata(pdev, NULL);
free_netdev(dev);
return err;
}
el3_devs[el3_cards++] = dev;
return 0;
}
static void __devexit el3_pnp_remove(struct pnp_dev *pdev)
{
el3_common_remove(pnp_get_drvdata(pdev));
pnp_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int el3_pnp_suspend(struct pnp_dev *pdev, pm_message_t state)
{
return el3_suspend(&pdev->dev, state);
}
static int el3_pnp_resume(struct pnp_dev *pdev)
{
return el3_resume(&pdev->dev);
}
#endif
static struct pnp_driver el3_pnp_driver = {
.name = "3c509",
.id_table = el3_pnp_ids,
.probe = el3_pnp_probe,
.remove = __devexit_p(el3_pnp_remove),
#ifdef CONFIG_PM
.suspend = el3_pnp_suspend,
.resume = el3_pnp_resume,
#endif
};
static int pnp_registered;
#endif /* CONFIG_PNP */
#ifdef CONFIG_EISA #ifdef CONFIG_EISA
static struct eisa_device_id el3_eisa_ids[] = { static struct eisa_device_id el3_eisa_ids[] = {
{ "TCM5092" }, { "TCM5092" },
...@@ -230,13 +493,14 @@ static int el3_eisa_probe (struct device *device); ...@@ -230,13 +493,14 @@ static int el3_eisa_probe (struct device *device);
static struct eisa_driver el3_eisa_driver = { static struct eisa_driver el3_eisa_driver = {
.id_table = el3_eisa_ids, .id_table = el3_eisa_ids,
.driver = { .driver = {
.name = "3c509", .name = "3c579",
.probe = el3_eisa_probe, .probe = el3_eisa_probe,
.remove = __devexit_p (el3_device_remove), .remove = __devexit_p (el3_device_remove),
.suspend = el3_suspend, .suspend = el3_suspend,
.resume = el3_resume, .resume = el3_resume,
} }
}; };
static int eisa_registered;
#endif #endif
#ifdef CONFIG_MCA #ifdef CONFIG_MCA
...@@ -271,45 +535,9 @@ static struct mca_driver el3_mca_driver = { ...@@ -271,45 +535,9 @@ static struct mca_driver el3_mca_driver = {
.resume = el3_resume, .resume = el3_resume,
}, },
}; };
static int mca_registered;
#endif /* CONFIG_MCA */ #endif /* CONFIG_MCA */
#if defined(__ISAPNP__)
static struct isapnp_device_id el3_isapnp_adapters[] __initdata = {
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5090),
(long) "3Com Etherlink III (TP)" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5091),
(long) "3Com Etherlink III" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5094),
(long) "3Com Etherlink III (combo)" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5095),
(long) "3Com Etherlink III (TPO)" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5098),
(long) "3Com Etherlink III (TPC)" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_FUNCTION(0x80f7),
(long) "3Com Etherlink III compatible" },
{ ISAPNP_ANY_ID, ISAPNP_ANY_ID,
ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_FUNCTION(0x80f8),
(long) "3Com Etherlink III compatible" },
{ } /* terminate list */
};
static __be16 el3_isapnp_phys_addr[8][3];
static int nopnp;
#endif /* __ISAPNP__ */
/* With the driver model introduction for EISA devices, both init
* and cleanup have been split :
* - EISA devices probe/remove starts in el3_eisa_probe/el3_device_remove
* - MCA/ISA still use el3_probe
*
* Both call el3_common_init/el3_common_remove. */
static int __init el3_common_init(struct net_device *dev) static int __init el3_common_init(struct net_device *dev)
{ {
struct el3_private *lp = netdev_priv(dev); struct el3_private *lp = netdev_priv(dev);
...@@ -360,231 +588,11 @@ static int __init el3_common_init(struct net_device *dev) ...@@ -360,231 +588,11 @@ static int __init el3_common_init(struct net_device *dev)
static void el3_common_remove (struct net_device *dev) static void el3_common_remove (struct net_device *dev)
{ {
struct el3_private *lp = netdev_priv(dev);
(void) lp; /* Keep gcc quiet... */
#if defined(__ISAPNP__)
if (lp->type == EL3_PNP)
pnp_device_detach(to_pnp_dev(lp->dev));
#endif
unregister_netdev (dev); unregister_netdev (dev);
release_region(dev->base_addr, EL3_IO_EXTENT); release_region(dev->base_addr, EL3_IO_EXTENT);
free_netdev (dev); free_netdev (dev);
} }
static int __init el3_probe(int card_idx)
{
struct net_device *dev;
struct el3_private *lp;
short lrs_state = 0xff, i;
int ioaddr, irq, if_port;
__be16 phys_addr[3];
static int current_tag;
int err = -ENODEV;
#if defined(__ISAPNP__)
static int pnp_cards;
struct pnp_dev *idev = NULL;
int pnp_found = 0;
if (nopnp == 1)
goto no_pnp;
for (i=0; el3_isapnp_adapters[i].vendor != 0; i++) {
int j;
while ((idev = pnp_find_dev(NULL,
el3_isapnp_adapters[i].vendor,
el3_isapnp_adapters[i].function,
idev))) {
if (pnp_device_attach(idev) < 0)
continue;
if (pnp_activate_dev(idev) < 0) {
__again:
pnp_device_detach(idev);
continue;
}
if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0))
goto __again;
ioaddr = pnp_port_start(idev, 0);
if (!request_region(ioaddr, EL3_IO_EXTENT, "3c509 PnP")) {
pnp_device_detach(idev);
return -EBUSY;
}
irq = pnp_irq(idev, 0);
if (el3_debug > 3)
printk ("ISAPnP reports %s at i/o 0x%x, irq %d\n",
(char*) el3_isapnp_adapters[i].driver_data, ioaddr, irq);
EL3WINDOW(0);
for (j = 0; j < 3; j++)
el3_isapnp_phys_addr[pnp_cards][j] =
phys_addr[j] =
htons(read_eeprom(ioaddr, j));
if_port = read_eeprom(ioaddr, 8) >> 14;
dev = alloc_etherdev(sizeof (struct el3_private));
if (!dev) {
release_region(ioaddr, EL3_IO_EXTENT);
pnp_device_detach(idev);
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &idev->dev);
pnp_cards++;
netdev_boot_setup_check(dev);
pnp_found = 1;
goto found;
}
}
no_pnp:
#endif /* __ISAPNP__ */
/* Select an open I/O location at 0x1*0 to do contention select. */
for ( ; id_port < 0x200; id_port += 0x10) {
if (!request_region(id_port, 1, "3c509"))
continue;
outb(0x00, id_port);
outb(0xff, id_port);
if (inb(id_port) & 0x01){
release_region(id_port, 1);
break;
} else
release_region(id_port, 1);
}
if (id_port >= 0x200) {
/* Rare -- do we really need a warning? */
printk(" WARNING: No I/O port available for 3c509 activation.\n");
return -ENODEV;
}
/* Next check for all ISA bus boards by sending the ID sequence to the
ID_PORT. We find cards past the first by setting the 'current_tag'
on cards as they are found. Cards with their tag set will not
respond to subsequent ID sequences. */
outb(0x00, id_port);
outb(0x00, id_port);
for(i = 0; i < 255; i++) {
outb(lrs_state, id_port);
lrs_state <<= 1;
lrs_state = lrs_state & 0x100 ? lrs_state ^ 0xcf : lrs_state;
}
/* For the first probe, clear all board's tag registers. */
if (current_tag == 0)
outb(0xd0, id_port);
else /* Otherwise kill off already-found boards. */
outb(0xd8, id_port);
if (id_read_eeprom(7) != 0x6d50) {
return -ENODEV;
}
/* Read in EEPROM data, which does contention-select.
Only the lowest address board will stay "on-line".
3Com got the byte order backwards. */
for (i = 0; i < 3; i++) {
phys_addr[i] = htons(id_read_eeprom(i));
}
#if defined(__ISAPNP__)
if (nopnp == 0) {
/* The ISA PnP 3c509 cards respond to the ID sequence.
This check is needed in order not to register them twice. */
for (i = 0; i < pnp_cards; i++) {
if (phys_addr[0] == el3_isapnp_phys_addr[i][0] &&
phys_addr[1] == el3_isapnp_phys_addr[i][1] &&
phys_addr[2] == el3_isapnp_phys_addr[i][2])
{
if (el3_debug > 3)
printk("3c509 with address %02x %02x %02x %02x %02x %02x was found by ISAPnP\n",
phys_addr[0] & 0xff, phys_addr[0] >> 8,
phys_addr[1] & 0xff, phys_addr[1] >> 8,
phys_addr[2] & 0xff, phys_addr[2] >> 8);
/* Set the adaptor tag so that the next card can be found. */
outb(0xd0 + ++current_tag, id_port);
goto no_pnp;
}
}
}
#endif /* __ISAPNP__ */
{
unsigned int iobase = id_read_eeprom(8);
if_port = iobase >> 14;
ioaddr = 0x200 + ((iobase & 0x1f) << 4);
}
irq = id_read_eeprom(9) >> 12;
dev = alloc_etherdev(sizeof (struct el3_private));
if (!dev)
return -ENOMEM;
netdev_boot_setup_check(dev);
/* Set passed-in IRQ or I/O Addr. */
if (dev->irq > 1 && dev->irq < 16)
irq = dev->irq;
if (dev->base_addr) {
if (dev->mem_end == 0x3c509 /* Magic key */
&& dev->base_addr >= 0x200 && dev->base_addr <= 0x3e0)
ioaddr = dev->base_addr & 0x3f0;
else if (dev->base_addr != ioaddr)
goto out;
}
if (!request_region(ioaddr, EL3_IO_EXTENT, "3c509")) {
err = -EBUSY;
goto out;
}
/* Set the adaptor tag so that the next card can be found. */
outb(0xd0 + ++current_tag, id_port);
/* Activate the adaptor at the EEPROM location. */
outb((ioaddr >> 4) | 0xe0, id_port);
EL3WINDOW(0);
if (inw(ioaddr) != 0x6d50)
goto out1;
/* Free the interrupt so that some other card can use it. */
outw(0x0f00, ioaddr + WN0_IRQ);
#if defined(__ISAPNP__)
found: /* PNP jumps here... */
#endif /* __ISAPNP__ */
memcpy(dev->dev_addr, phys_addr, sizeof(phys_addr));
dev->base_addr = ioaddr;
dev->irq = irq;
dev->if_port = if_port;
lp = netdev_priv(dev);
#if defined(__ISAPNP__)
lp->dev = &idev->dev;
if (pnp_found)
lp->type = EL3_PNP;
#endif
err = el3_common_init(dev);
if (err)
goto out1;
el3_cards++;
lp->next_dev = el3_root_dev;
el3_root_dev = dev;
return 0;
out1:
#if defined(__ISAPNP__)
if (idev)
pnp_device_detach(idev);
#endif
out:
free_netdev(dev);
return err;
}
#ifdef CONFIG_MCA #ifdef CONFIG_MCA
static int __init el3_mca_probe(struct device *device) static int __init el3_mca_probe(struct device *device)
{ {
...@@ -596,7 +604,6 @@ static int __init el3_mca_probe(struct device *device) ...@@ -596,7 +604,6 @@ static int __init el3_mca_probe(struct device *device)
* redone for multi-card detection by ZP Gu (zpg@castle.net) * redone for multi-card detection by ZP Gu (zpg@castle.net)
* now works as a module */ * now works as a module */
struct el3_private *lp;
short i; short i;
int ioaddr, irq, if_port; int ioaddr, irq, if_port;
u16 phys_addr[3]; u16 phys_addr[3];
...@@ -613,7 +620,7 @@ static int __init el3_mca_probe(struct device *device) ...@@ -613,7 +620,7 @@ static int __init el3_mca_probe(struct device *device)
irq = pos5 & 0x0f; irq = pos5 & 0x0f;
printk("3c529: found %s at slot %d\n", printk(KERN_INFO "3c529: found %s at slot %d\n",
el3_mca_adapter_names[mdev->index], slot + 1); el3_mca_adapter_names[mdev->index], slot + 1);
/* claim the slot */ /* claim the slot */
...@@ -626,7 +633,7 @@ static int __init el3_mca_probe(struct device *device) ...@@ -626,7 +633,7 @@ static int __init el3_mca_probe(struct device *device)
irq = mca_device_transform_irq(mdev, irq); irq = mca_device_transform_irq(mdev, irq);
ioaddr = mca_device_transform_ioport(mdev, ioaddr); ioaddr = mca_device_transform_ioport(mdev, ioaddr);
if (el3_debug > 2) { if (el3_debug > 2) {
printk("3c529: irq %d ioaddr 0x%x ifport %d\n", irq, ioaddr, if_port); printk(KERN_DEBUG "3c529: irq %d ioaddr 0x%x ifport %d\n", irq, ioaddr, if_port);
} }
EL3WINDOW(0); EL3WINDOW(0);
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
...@@ -641,13 +648,7 @@ static int __init el3_mca_probe(struct device *device) ...@@ -641,13 +648,7 @@ static int __init el3_mca_probe(struct device *device)
netdev_boot_setup_check(dev); netdev_boot_setup_check(dev);
memcpy(dev->dev_addr, phys_addr, sizeof(phys_addr)); el3_dev_fill(dev, phys_addr, ioaddr, irq, if_port, EL3_MCA);
dev->base_addr = ioaddr;
dev->irq = irq;
dev->if_port = if_port;
lp = netdev_priv(dev);
lp->dev = device;
lp->type = EL3_MCA;
device->driver_data = dev; device->driver_data = dev;
err = el3_common_init(dev); err = el3_common_init(dev);
...@@ -657,7 +658,7 @@ static int __init el3_mca_probe(struct device *device) ...@@ -657,7 +658,7 @@ static int __init el3_mca_probe(struct device *device)
return -ENOMEM; return -ENOMEM;
} }
el3_cards++; el3_devs[el3_cards++] = dev;
return 0; return 0;
} }
...@@ -666,7 +667,6 @@ static int __init el3_mca_probe(struct device *device) ...@@ -666,7 +667,6 @@ static int __init el3_mca_probe(struct device *device)
#ifdef CONFIG_EISA #ifdef CONFIG_EISA
static int __init el3_eisa_probe (struct device *device) static int __init el3_eisa_probe (struct device *device)
{ {
struct el3_private *lp;
short i; short i;
int ioaddr, irq, if_port; int ioaddr, irq, if_port;
u16 phys_addr[3]; u16 phys_addr[3];
...@@ -678,7 +678,7 @@ static int __init el3_eisa_probe (struct device *device) ...@@ -678,7 +678,7 @@ static int __init el3_eisa_probe (struct device *device)
edev = to_eisa_device (device); edev = to_eisa_device (device);
ioaddr = edev->base_addr; ioaddr = edev->base_addr;
if (!request_region(ioaddr, EL3_IO_EXTENT, "3c509")) if (!request_region(ioaddr, EL3_IO_EXTENT, "3c579-eisa"))
return -EBUSY; return -EBUSY;
/* Change the register set to the configuration window 0. */ /* Change the register set to the configuration window 0. */
...@@ -700,13 +700,7 @@ static int __init el3_eisa_probe (struct device *device) ...@@ -700,13 +700,7 @@ static int __init el3_eisa_probe (struct device *device)
netdev_boot_setup_check(dev); netdev_boot_setup_check(dev);
memcpy(dev->dev_addr, phys_addr, sizeof(phys_addr)); el3_dev_fill(dev, phys_addr, ioaddr, irq, if_port, EL3_EISA);
dev->base_addr = ioaddr;
dev->irq = irq;
dev->if_port = if_port;
lp = netdev_priv(dev);
lp->dev = device;
lp->type = EL3_EISA;
eisa_set_drvdata (edev, dev); eisa_set_drvdata (edev, dev);
err = el3_common_init(dev); err = el3_common_init(dev);
...@@ -716,12 +710,11 @@ static int __init el3_eisa_probe (struct device *device) ...@@ -716,12 +710,11 @@ static int __init el3_eisa_probe (struct device *device)
return err; return err;
} }
el3_cards++; el3_devs[el3_cards++] = dev;
return 0; return 0;
} }
#endif #endif
#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
/* This remove works for all device types. /* This remove works for all device types.
* *
* The net dev must be stored in the driver_data field */ * The net dev must be stored in the driver_data field */
...@@ -734,7 +727,6 @@ static int __devexit el3_device_remove (struct device *device) ...@@ -734,7 +727,6 @@ static int __devexit el3_device_remove (struct device *device)
el3_common_remove (dev); el3_common_remove (dev);
return 0; return 0;
} }
#endif
/* Read a word from the EEPROM using the regular EEPROM access register. /* Read a word from the EEPROM using the regular EEPROM access register.
Assume that we are in register window zero. Assume that we are in register window zero.
...@@ -749,7 +741,7 @@ static ushort read_eeprom(int ioaddr, int index) ...@@ -749,7 +741,7 @@ static ushort read_eeprom(int ioaddr, int index)
} }
/* Read a word from the EEPROM when in the ISA ID probe state. */ /* Read a word from the EEPROM when in the ISA ID probe state. */
static ushort __init id_read_eeprom(int index) static ushort id_read_eeprom(int index)
{ {
int bit, word = 0; int bit, word = 0;
...@@ -765,7 +757,7 @@ static ushort __init id_read_eeprom(int index) ...@@ -765,7 +757,7 @@ static ushort __init id_read_eeprom(int index)
word = (word << 1) + (inb(id_port) & 0x01); word = (word << 1) + (inb(id_port) & 0x01);
if (el3_debug > 3) if (el3_debug > 3)
printk(" 3c509 EEPROM word %d %#4.4x.\n", index, word); printk(KERN_DEBUG " 3c509 EEPROM word %d %#4.4x.\n", index, word);
return word; return word;
} }
...@@ -787,13 +779,13 @@ el3_open(struct net_device *dev) ...@@ -787,13 +779,13 @@ el3_open(struct net_device *dev)
EL3WINDOW(0); EL3WINDOW(0);
if (el3_debug > 3) if (el3_debug > 3)
printk("%s: Opening, IRQ %d status@%x %4.4x.\n", dev->name, printk(KERN_DEBUG "%s: Opening, IRQ %d status@%x %4.4x.\n", dev->name,
dev->irq, ioaddr + EL3_STATUS, inw(ioaddr + EL3_STATUS)); dev->irq, ioaddr + EL3_STATUS, inw(ioaddr + EL3_STATUS));
el3_up(dev); el3_up(dev);
if (el3_debug > 3) if (el3_debug > 3)
printk("%s: Opened 3c509 IRQ %d status %4.4x.\n", printk(KERN_DEBUG "%s: Opened 3c509 IRQ %d status %4.4x.\n",
dev->name, dev->irq, inw(ioaddr + EL3_STATUS)); dev->name, dev->irq, inw(ioaddr + EL3_STATUS));
return 0; return 0;
...@@ -806,7 +798,7 @@ el3_tx_timeout (struct net_device *dev) ...@@ -806,7 +798,7 @@ el3_tx_timeout (struct net_device *dev)
int ioaddr = dev->base_addr; int ioaddr = dev->base_addr;
/* Transmitter timeout, serious problems. */ /* Transmitter timeout, serious problems. */
printk("%s: transmit timed out, Tx_status %2.2x status %4.4x " printk(KERN_WARNING "%s: transmit timed out, Tx_status %2.2x status %4.4x "
"Tx FIFO room %d.\n", "Tx FIFO room %d.\n",
dev->name, inb(ioaddr + TX_STATUS), inw(ioaddr + EL3_STATUS), dev->name, inb(ioaddr + TX_STATUS), inw(ioaddr + EL3_STATUS),
inw(ioaddr + TX_FREE)); inw(ioaddr + TX_FREE));
...@@ -831,7 +823,7 @@ el3_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -831,7 +823,7 @@ el3_start_xmit(struct sk_buff *skb, struct net_device *dev)
lp->stats.tx_bytes += skb->len; lp->stats.tx_bytes += skb->len;
if (el3_debug > 4) { if (el3_debug > 4) {
printk("%s: el3_start_xmit(length = %u) called, status %4.4x.\n", printk(KERN_DEBUG "%s: el3_start_xmit(length = %u) called, status %4.4x.\n",
dev->name, skb->len, inw(ioaddr + EL3_STATUS)); dev->name, skb->len, inw(ioaddr + EL3_STATUS));
} }
#if 0 #if 0
...@@ -840,7 +832,7 @@ el3_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -840,7 +832,7 @@ el3_start_xmit(struct sk_buff *skb, struct net_device *dev)
ushort status = inw(ioaddr + EL3_STATUS); ushort status = inw(ioaddr + EL3_STATUS);
if (status & 0x0001 /* IRQ line active, missed one. */ if (status & 0x0001 /* IRQ line active, missed one. */
&& inw(ioaddr + EL3_STATUS) & 1) { /* Make sure. */ && inw(ioaddr + EL3_STATUS) & 1) { /* Make sure. */
printk("%s: Missed interrupt, status then %04x now %04x" printk(KERN_DEBUG "%s: Missed interrupt, status then %04x now %04x"
" Tx %2.2x Rx %4.4x.\n", dev->name, status, " Tx %2.2x Rx %4.4x.\n", dev->name, status,
inw(ioaddr + EL3_STATUS), inb(ioaddr + TX_STATUS), inw(ioaddr + EL3_STATUS), inb(ioaddr + TX_STATUS),
inw(ioaddr + RX_STATUS)); inw(ioaddr + RX_STATUS));
...@@ -914,7 +906,7 @@ el3_interrupt(int irq, void *dev_id) ...@@ -914,7 +906,7 @@ el3_interrupt(int irq, void *dev_id)
if (el3_debug > 4) { if (el3_debug > 4) {
status = inw(ioaddr + EL3_STATUS); status = inw(ioaddr + EL3_STATUS);
printk("%s: interrupt, status %4.4x.\n", dev->name, status); printk(KERN_DEBUG "%s: interrupt, status %4.4x.\n", dev->name, status);
} }
while ((status = inw(ioaddr + EL3_STATUS)) & while ((status = inw(ioaddr + EL3_STATUS)) &
...@@ -925,7 +917,7 @@ el3_interrupt(int irq, void *dev_id) ...@@ -925,7 +917,7 @@ el3_interrupt(int irq, void *dev_id)
if (status & TxAvailable) { if (status & TxAvailable) {
if (el3_debug > 5) if (el3_debug > 5)
printk(" TX room bit was handled.\n"); printk(KERN_DEBUG " TX room bit was handled.\n");
/* There's room in the FIFO for a full-sized packet. */ /* There's room in the FIFO for a full-sized packet. */
outw(AckIntr | TxAvailable, ioaddr + EL3_CMD); outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
netif_wake_queue (dev); netif_wake_queue (dev);
...@@ -964,7 +956,7 @@ el3_interrupt(int irq, void *dev_id) ...@@ -964,7 +956,7 @@ el3_interrupt(int irq, void *dev_id)
} }
if (--i < 0) { if (--i < 0) {
printk("%s: Infinite loop in interrupt, status %4.4x.\n", printk(KERN_ERR "%s: Infinite loop in interrupt, status %4.4x.\n",
dev->name, status); dev->name, status);
/* Clear all interrupts. */ /* Clear all interrupts. */
outw(AckIntr | 0xFF, ioaddr + EL3_CMD); outw(AckIntr | 0xFF, ioaddr + EL3_CMD);
...@@ -975,7 +967,7 @@ el3_interrupt(int irq, void *dev_id) ...@@ -975,7 +967,7 @@ el3_interrupt(int irq, void *dev_id)
} }
if (el3_debug > 4) { if (el3_debug > 4) {
printk("%s: exiting interrupt, status %4.4x.\n", dev->name, printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n", dev->name,
inw(ioaddr + EL3_STATUS)); inw(ioaddr + EL3_STATUS));
} }
spin_unlock(&lp->lock); spin_unlock(&lp->lock);
...@@ -1450,7 +1442,7 @@ el3_up(struct net_device *dev) ...@@ -1450,7 +1442,7 @@ el3_up(struct net_device *dev)
} }
/* Power Management support functions */ /* Power Management support functions */
#ifdef EL3_SUSPEND #ifdef CONFIG_PM
static int static int
el3_suspend(struct device *pdev, pm_message_t state) el3_suspend(struct device *pdev, pm_message_t state)
...@@ -1500,79 +1492,102 @@ el3_resume(struct device *pdev) ...@@ -1500,79 +1492,102 @@ el3_resume(struct device *pdev)
return 0; return 0;
} }
#endif /* EL3_SUSPEND */ #endif /* CONFIG_PM */
/* Parameters that may be passed into the module. */
static int debug = -1;
static int irq[] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int xcvr[] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1};
module_param(debug,int, 0); module_param(debug,int, 0);
module_param_array(irq, int, NULL, 0); module_param_array(irq, int, NULL, 0);
module_param_array(xcvr, int, NULL, 0);
module_param(max_interrupt_work, int, 0); module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(debug, "debug level (0-6)"); MODULE_PARM_DESC(debug, "debug level (0-6)");
MODULE_PARM_DESC(irq, "IRQ number(s) (assigned)"); MODULE_PARM_DESC(irq, "IRQ number(s) (assigned)");
MODULE_PARM_DESC(xcvr,"transceiver(s) (0=internal, 1=external)");
MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt"); MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
#if defined(__ISAPNP__) #ifdef CONFIG_PNP
module_param(nopnp, int, 0); module_param(nopnp, int, 0);
MODULE_PARM_DESC(nopnp, "disable ISA PnP support (0-1)"); MODULE_PARM_DESC(nopnp, "disable ISA PnP support (0-1)");
MODULE_DEVICE_TABLE(isapnp, el3_isapnp_adapters); #endif /* CONFIG_PNP */
#endif /* __ISAPNP__ */ MODULE_DESCRIPTION("3Com Etherlink III (3c509, 3c509B, 3c529, 3c579) ethernet driver");
MODULE_DESCRIPTION("3Com Etherlink III (3c509, 3c509B) ISA/PnP ethernet driver");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
static int __init el3_init_module(void) static int __init el3_init_module(void)
{ {
int ret = 0; int ret = 0;
el3_cards = 0;
if (debug >= 0) if (debug >= 0)
el3_debug = debug; el3_debug = debug;
el3_root_dev = NULL; #ifdef CONFIG_PNP
while (el3_probe(el3_cards) == 0) { if (!nopnp) {
if (irq[el3_cards] > 1) ret = pnp_register_driver(&el3_pnp_driver);
el3_root_dev->irq = irq[el3_cards]; if (!ret)
if (xcvr[el3_cards] >= 0) pnp_registered = 1;
el3_root_dev->if_port = xcvr[el3_cards]; }
el3_cards++; #endif
/* Select an open I/O location at 0x1*0 to do ISA contention select. */
/* Start with 0x110 to avoid some sound cards.*/
for (id_port = 0x110 ; id_port < 0x200; id_port += 0x10) {
if (!request_region(id_port, 1, "3c509-control"))
continue;
outb(0x00, id_port);
outb(0xff, id_port);
if (inb(id_port) & 0x01)
break;
else
release_region(id_port, 1);
}
if (id_port >= 0x200) {
id_port = 0;
printk(KERN_ERR "No I/O port available for 3c509 activation.\n");
} else {
ret = isa_register_driver(&el3_isa_driver, EL3_MAX_CARDS);
if (!ret)
isa_registered = 1;
} }
#ifdef CONFIG_EISA #ifdef CONFIG_EISA
ret = eisa_driver_register(&el3_eisa_driver); ret = eisa_driver_register(&el3_eisa_driver);
if (!ret)
eisa_registered = 1;
#endif #endif
#ifdef CONFIG_MCA #ifdef CONFIG_MCA
{ ret = mca_register_driver(&el3_mca_driver);
int err = mca_register_driver(&el3_mca_driver); if (!ret)
if (ret == 0) mca_registered = 1;
ret = err; #endif
}
#ifdef CONFIG_PNP
if (pnp_registered)
ret = 0;
#endif
if (isa_registered)
ret = 0;
#ifdef CONFIG_EISA
if (eisa_registered)
ret = 0;
#endif
#ifdef CONFIG_MCA
if (mca_registered)
ret = 0;
#endif #endif
return ret; return ret;
} }
static void __exit el3_cleanup_module(void) static void __exit el3_cleanup_module(void)
{ {
struct net_device *next_dev; #ifdef CONFIG_PNP
if (pnp_registered)
while (el3_root_dev) { pnp_unregister_driver(&el3_pnp_driver);
struct el3_private *lp = netdev_priv(el3_root_dev); #endif
if (isa_registered)
next_dev = lp->next_dev; isa_unregister_driver(&el3_isa_driver);
el3_common_remove (el3_root_dev); if (id_port)
el3_root_dev = next_dev; release_region(id_port, 1);
}
#ifdef CONFIG_EISA #ifdef CONFIG_EISA
eisa_driver_unregister (&el3_eisa_driver); if (eisa_registered)
eisa_driver_unregister(&el3_eisa_driver);
#endif #endif
#ifdef CONFIG_MCA #ifdef CONFIG_MCA
mca_unregister_driver(&el3_mca_driver); if (mca_registered)
mca_unregister_driver(&el3_mca_driver);
#endif #endif
} }
module_init (el3_init_module); module_init (el3_init_module);
module_exit (el3_cleanup_module); module_exit (el3_cleanup_module);
...@@ -940,7 +940,7 @@ irqreturn_t arcnet_interrupt(int irq, void *dev_id) ...@@ -940,7 +940,7 @@ irqreturn_t arcnet_interrupt(int irq, void *dev_id)
/* is the RECON info empty or old? */ /* is the RECON info empty or old? */
if (!lp->first_recon || !lp->last_recon || if (!lp->first_recon || !lp->last_recon ||
jiffies - lp->last_recon > HZ * 10) { time_after(jiffies, lp->last_recon + HZ * 10)) {
if (lp->network_down) if (lp->network_down)
BUGMSG(D_NORMAL, "reconfiguration detected: cabling restored?\n"); BUGMSG(D_NORMAL, "reconfiguration detected: cabling restored?\n");
lp->first_recon = lp->last_recon = jiffies; lp->first_recon = lp->last_recon = jiffies;
...@@ -974,7 +974,8 @@ irqreturn_t arcnet_interrupt(int irq, void *dev_id) ...@@ -974,7 +974,8 @@ irqreturn_t arcnet_interrupt(int irq, void *dev_id)
lp->num_recons = 1; lp->num_recons = 1;
} }
} }
} else if (lp->network_down && jiffies - lp->last_recon > HZ * 10) { } else if (lp->network_down &&
time_after(jiffies, lp->last_recon + HZ * 10)) {
if (lp->network_down) if (lp->network_down)
BUGMSG(D_NORMAL, "cabling restored?\n"); BUGMSG(D_NORMAL, "cabling restored?\n");
lp->first_recon = lp->last_recon = 0; lp->first_recon = lp->last_recon = 0;
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -29,6 +29,9 @@ ...@@ -29,6 +29,9 @@
/* /*
* 82571EB Gigabit Ethernet Controller * 82571EB Gigabit Ethernet Controller
* 82571EB Gigabit Ethernet Controller (Fiber) * 82571EB Gigabit Ethernet Controller (Fiber)
* 82571EB Dual Port Gigabit Mezzanine Adapter
* 82571EB Quad Port Gigabit Mezzanine Adapter
* 82571PT Gigabit PT Quad Port Server ExpressModule
* 82572EI Gigabit Ethernet Controller (Copper) * 82572EI Gigabit Ethernet Controller (Copper)
* 82572EI Gigabit Ethernet Controller (Fiber) * 82572EI Gigabit Ethernet Controller (Fiber)
* 82572EI Gigabit Ethernet Controller * 82572EI Gigabit Ethernet Controller
...@@ -72,7 +75,7 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) ...@@ -72,7 +75,7 @@ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
struct e1000_phy_info *phy = &hw->phy; struct e1000_phy_info *phy = &hw->phy;
s32 ret_val; s32 ret_val;
if (hw->media_type != e1000_media_type_copper) { if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none; phy->type = e1000_phy_none;
return 0; return 0;
} }
...@@ -150,7 +153,8 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) ...@@ -150,7 +153,8 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
if (((eecd >> 15) & 0x3) == 0x3) { if (((eecd >> 15) & 0x3) == 0x3) {
nvm->type = e1000_nvm_flash_hw; nvm->type = e1000_nvm_flash_hw;
nvm->word_size = 2048; nvm->word_size = 2048;
/* Autonomous Flash update bit must be cleared due /*
* Autonomous Flash update bit must be cleared due
* to Flash update issue. * to Flash update issue.
*/ */
eecd &= ~E1000_EECD_AUPDEN; eecd &= ~E1000_EECD_AUPDEN;
...@@ -159,10 +163,11 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) ...@@ -159,10 +163,11 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
} }
/* Fall Through */ /* Fall Through */
default: default:
nvm->type = e1000_nvm_eeprom_spi; nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT); E1000_EECD_SIZE_EX_SHIFT);
/* Added to a constant, "size" becomes the left-shift value /*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size. * for setting word_size.
*/ */
size += NVM_WORD_SIZE_BASE_SHIFT; size += NVM_WORD_SIZE_BASE_SHIFT;
...@@ -190,16 +195,16 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) ...@@ -190,16 +195,16 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_FIBER:
hw->media_type = e1000_media_type_fiber; hw->phy.media_type = e1000_media_type_fiber;
break; break;
case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82572EI_SERDES: case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82571EB_SERDES_QUAD:
hw->media_type = e1000_media_type_internal_serdes; hw->phy.media_type = e1000_media_type_internal_serdes;
break; break;
default: default:
hw->media_type = e1000_media_type_copper; hw->phy.media_type = e1000_media_type_copper;
break; break;
} }
...@@ -208,25 +213,28 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) ...@@ -208,25 +213,28 @@ static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
/* Set rar entry count */ /* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES; mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Set if manageability features are enabled. */ /* Set if manageability features are enabled. */
mac->arc_subsystem_valid = mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
/* check for link */ /* check for link */
switch (hw->media_type) { switch (hw->phy.media_type) {
case e1000_media_type_copper: case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_82571; func->setup_physical_interface = e1000_setup_copper_link_82571;
func->check_for_link = e1000e_check_for_copper_link; func->check_for_link = e1000e_check_for_copper_link;
func->get_link_up_info = e1000e_get_speed_and_duplex_copper; func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
break; break;
case e1000_media_type_fiber: case e1000_media_type_fiber:
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000e_check_for_fiber_link; func->check_for_link = e1000e_check_for_fiber_link;
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break; break;
case e1000_media_type_internal_serdes: case e1000_media_type_internal_serdes:
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000e_check_for_serdes_link; func->check_for_link = e1000e_check_for_serdes_link;
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break; break;
default: default:
return -E1000_ERR_CONFIG; return -E1000_ERR_CONFIG;
...@@ -322,10 +330,12 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) ...@@ -322,10 +330,12 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
switch (hw->mac.type) { switch (hw->mac.type) {
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
/* The 82571 firmware may still be configuring the PHY. /*
* The 82571 firmware may still be configuring the PHY.
* In this case, we cannot access the PHY until the * In this case, we cannot access the PHY until the
* configuration is done. So we explicitly set the * configuration is done. So we explicitly set the
* PHY ID. */ * PHY ID.
*/
phy->id = IGP01E1000_I_PHY_ID; phy->id = IGP01E1000_I_PHY_ID;
break; break;
case e1000_82573: case e1000_82573:
...@@ -479,8 +489,10 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) ...@@ -479,8 +489,10 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* If our nvm is an EEPROM, then we're done /*
* otherwise, commit the checksum to the flash NVM. */ * If our nvm is an EEPROM, then we're done
* otherwise, commit the checksum to the flash NVM.
*/
if (hw->nvm.type != e1000_nvm_flash_hw) if (hw->nvm.type != e1000_nvm_flash_hw)
return ret_val; return ret_val;
...@@ -496,7 +508,8 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) ...@@ -496,7 +508,8 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
/* Reset the firmware if using STM opcode. */ /* Reset the firmware if using STM opcode. */
if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
/* The enabling of and the actual reset must be done /*
* The enabling of and the actual reset must be done
* in two write cycles. * in two write cycles.
*/ */
ew32(HICR, E1000_HICR_FW_RESET_ENABLE); ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
...@@ -557,8 +570,10 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, ...@@ -557,8 +570,10 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u32 eewr = 0; u32 eewr = 0;
s32 ret_val = 0; s32 ret_val = 0;
/* A check for invalid values: offset too large, too many words, /*
* and not enough words. */ * A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) { (words == 0)) {
hw_dbg(hw, "nvm parameter(s) out of bounds\n"); hw_dbg(hw, "nvm parameter(s) out of bounds\n");
...@@ -645,30 +660,32 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) ...@@ -645,30 +660,32 @@ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
} else { } else {
data &= ~IGP02E1000_PM_D0_LPLU; data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used /*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most * during Dx states where the power conservation is most
* important. During driver activity we should enable * important. During driver activity we should enable
* SmartSpeed, so performance is maintained. */ * SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) { if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED; data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) { } else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} }
...@@ -693,7 +710,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) ...@@ -693,7 +710,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 i = 0; u16 i = 0;
/* Prevent the PCI-E bus from sticking if there is no TLP connection /*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset. * on the last TLP read/write transaction when MAC is reset.
*/ */
ret_val = e1000e_disable_pcie_master(hw); ret_val = e1000e_disable_pcie_master(hw);
...@@ -709,8 +727,10 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) ...@@ -709,8 +727,10 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
msleep(10); msleep(10);
/* Must acquire the MDIO ownership before MAC reset. /*
* Ownership defaults to firmware after a reset. */ * Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset.
*/
if (hw->mac.type == e1000_82573) { if (hw->mac.type == e1000_82573) {
extcnf_ctrl = er32(EXTCNF_CTRL); extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
...@@ -747,7 +767,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) ...@@ -747,7 +767,8 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
/* We don't want to continue accessing MAC registers. */ /* We don't want to continue accessing MAC registers. */
return ret_val; return ret_val;
/* Phy configuration from NVM just starts after EECD_AUTO_RD is set. /*
* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
* Need to wait for Phy configuration completion before accessing * Need to wait for Phy configuration completion before accessing
* NVM and Phy. * NVM and Phy.
*/ */
...@@ -793,7 +814,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw) ...@@ -793,7 +814,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
e1000e_clear_vfta(hw); e1000e_clear_vfta(hw);
/* Setup the receive address. */ /* Setup the receive address. */
/* If, however, a locally administered address was assigned to the /*
* If, however, a locally administered address was assigned to the
* 82571, we must reserve a RAR for it to work around an issue where * 82571, we must reserve a RAR for it to work around an issue where
* resetting one port will reload the MAC on the other port. * resetting one port will reload the MAC on the other port.
*/ */
...@@ -830,7 +852,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw) ...@@ -830,7 +852,8 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
ew32(GCR, reg_data); ew32(GCR, reg_data);
} }
/* Clear all of the statistics registers (clear on read). It is /*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link * important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there * because the symbol error count will increment wildly if there
* is no link. * is no link.
...@@ -922,7 +945,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw) ...@@ -922,7 +945,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
if (hw->mac.type == e1000_82573) { if (hw->mac.type == e1000_82573) {
if (hw->mng_cookie.vlan_id != 0) { if (hw->mng_cookie.vlan_id != 0) {
/* The VFTA is a 4096b bit-field, each identifying /*
* The VFTA is a 4096b bit-field, each identifying
* a single VLAN ID. The following operations * a single VLAN ID. The following operations
* determine which 32b entry (i.e. offset) into the * determine which 32b entry (i.e. offset) into the
* array we want to set the VLAN ID (i.e. bit) of * array we want to set the VLAN ID (i.e. bit) of
...@@ -936,7 +960,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw) ...@@ -936,7 +960,8 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
} }
} }
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
/* If the offset we want to clear is the same offset of the /*
* If the offset we want to clear is the same offset of the
* manageability VLAN ID, then clear all bits except that of * manageability VLAN ID, then clear all bits except that of
* the manageability unit. * the manageability unit.
*/ */
...@@ -947,7 +972,7 @@ void e1000e_clear_vfta(struct e1000_hw *hw) ...@@ -947,7 +972,7 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
} }
/** /**
* e1000_mc_addr_list_update_82571 - Update Multicast addresses * e1000_update_mc_addr_list_82571 - Update Multicast addresses
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program * @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program * @mc_addr_count: number of multicast addresses to program
...@@ -959,7 +984,7 @@ void e1000e_clear_vfta(struct e1000_hw *hw) ...@@ -959,7 +984,7 @@ void e1000e_clear_vfta(struct e1000_hw *hw)
* The parameter rar_count will usually be hw->mac.rar_entry_count * The parameter rar_count will usually be hw->mac.rar_entry_count
* unless there are workarounds that change this. * unless there are workarounds that change this.
**/ **/
static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
u8 *mc_addr_list, u8 *mc_addr_list,
u32 mc_addr_count, u32 mc_addr_count,
u32 rar_used_count, u32 rar_used_count,
...@@ -968,8 +993,8 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, ...@@ -968,8 +993,8 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
if (e1000e_get_laa_state_82571(hw)) if (e1000e_get_laa_state_82571(hw))
rar_count--; rar_count--;
e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
rar_used_count, rar_count); rar_used_count, rar_count);
} }
/** /**
...@@ -984,12 +1009,13 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, ...@@ -984,12 +1009,13 @@ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
**/ **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw) static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{ {
/* 82573 does not have a word in the NVM to determine /*
* 82573 does not have a word in the NVM to determine
* the default flow control setting, so we explicitly * the default flow control setting, so we explicitly
* set it to full. * set it to full.
*/ */
if (hw->mac.type == e1000_82573) if (hw->mac.type == e1000_82573)
hw->mac.fc = e1000_fc_full; hw->fc.type = e1000_fc_full;
return e1000e_setup_link(hw); return e1000e_setup_link(hw);
} }
...@@ -1050,14 +1076,14 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) ...@@ -1050,14 +1076,14 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
switch (hw->mac.type) { switch (hw->mac.type) {
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
/* If SerDes loopback mode is entered, there is no form /*
* If SerDes loopback mode is entered, there is no form
* of reset to take the adapter out of that mode. So we * of reset to take the adapter out of that mode. So we
* have to explicitly take the adapter out of loopback * have to explicitly take the adapter out of loopback
* mode. This prevents drivers from twiddling their thumbs * mode. This prevents drivers from twiddling their thumbs
* if another tool failed to take it out of loopback mode. * if another tool failed to take it out of loopback mode.
*/ */
ew32(SCTL, ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
E1000_SCTL_DISABLE_SERDES_LOOPBACK);
break; break;
default: default:
break; break;
...@@ -1124,7 +1150,8 @@ void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) ...@@ -1124,7 +1150,8 @@ void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
/* If workaround is activated... */ /* If workaround is activated... */
if (state) if (state)
/* Hold a copy of the LAA in RAR[14] This is done so that /*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it * between the time RAR[0] gets clobbered and the time it
* gets fixed, the actual LAA is in one of the RARs and no * gets fixed, the actual LAA is in one of the RARs and no
* incoming packets directed to this port are dropped. * incoming packets directed to this port are dropped.
...@@ -1152,7 +1179,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) ...@@ -1152,7 +1179,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
if (nvm->type != e1000_nvm_flash_hw) if (nvm->type != e1000_nvm_flash_hw)
return 0; return 0;
/* Check bit 4 of word 10h. If it is 0, firmware is done updating /*
* Check bit 4 of word 10h. If it is 0, firmware is done updating
* 10h-12h. Checksum may need to be fixed. * 10h-12h. Checksum may need to be fixed.
*/ */
ret_val = e1000_read_nvm(hw, 0x10, 1, &data); ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
...@@ -1160,7 +1188,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) ...@@ -1160,7 +1188,8 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
return ret_val; return ret_val;
if (!(data & 0x10)) { if (!(data & 0x10)) {
/* Read 0x23 and check bit 15. This bit is a 1 /*
* Read 0x23 and check bit 15. This bit is a 1
* when the checksum has already been fixed. If * when the checksum has already been fixed. If
* the checksum is still wrong and this bit is a * the checksum is still wrong and this bit is a
* 1, we need to return bad checksum. Otherwise, * 1, we need to return bad checksum. Otherwise,
...@@ -1240,7 +1269,7 @@ static struct e1000_mac_operations e82571_mac_ops = { ...@@ -1240,7 +1269,7 @@ static struct e1000_mac_operations e82571_mac_ops = {
/* .get_link_up_info: media type dependent */ /* .get_link_up_info: media type dependent */
.led_on = e1000e_led_on_generic, .led_on = e1000e_led_on_generic,
.led_off = e1000e_led_off_generic, .led_off = e1000e_led_off_generic,
.mc_addr_list_update = e1000_mc_addr_list_update_82571, .update_mc_addr_list = e1000_update_mc_addr_list_82571,
.reset_hw = e1000_reset_hw_82571, .reset_hw = e1000_reset_hw_82571,
.init_hw = e1000_init_hw_82571, .init_hw = e1000_init_hw_82571,
.setup_link = e1000_setup_link_82571, .setup_link = e1000_setup_link_82571,
......
################################################################################ ################################################################################
# #
# Intel PRO/1000 Linux driver # Intel PRO/1000 Linux driver
# Copyright(c) 1999 - 2007 Intel Corporation. # Copyright(c) 1999 - 2008 Intel Corporation.
# #
# This program is free software; you can redistribute it and/or modify it # This program is free software; you can redistribute it and/or modify it
# under the terms and conditions of the GNU General Public License, # under the terms and conditions of the GNU General Public License,
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -120,10 +120,10 @@ ...@@ -120,10 +120,10 @@
#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address /* Enable MAC address filtering */
* filtering */ #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host /* Enable MNG packets to host memory */
* memory */ #define E1000_MANC_EN_MNG2HOST 0x00200000
/* Receive Control */ /* Receive Control */
#define E1000_RCTL_EN 0x00000002 /* enable */ #define E1000_RCTL_EN 0x00000002 /* enable */
...@@ -135,25 +135,26 @@ ...@@ -135,25 +135,26 @@
#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ #define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ #define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */
#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ #define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ #define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ #define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ #define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ #define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ #define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ #define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ #define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
/* Use byte values for the following shift parameters /*
* Use byte values for the following shift parameters
* Usage: * Usage:
* psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
* E1000_PSRCTL_BSIZE0_MASK) | * E1000_PSRCTL_BSIZE0_MASK) |
...@@ -206,7 +207,8 @@ ...@@ -206,7 +207,8 @@
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
/* Bit definitions for the Management Data IO (MDIO) and Management Data /*
* Bit definitions for the Management Data IO (MDIO) and Management Data
* Clock (MDC) pins in the Device Control Register. * Clock (MDC) pins in the Device Control Register.
*/ */
...@@ -279,7 +281,7 @@ ...@@ -279,7 +281,7 @@
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ #define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Transmit Control */ /* Transmit Control */
#define E1000_TCTL_EN 0x00000002 /* enable tx */ #define E1000_TCTL_EN 0x00000002 /* enable Tx */
#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ #define E1000_TCTL_PSP 0x00000008 /* pad short packets */
#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ #define E1000_TCTL_COLD 0x003ff000 /* collision distance */
...@@ -337,8 +339,8 @@ ...@@ -337,8 +339,8 @@
#define E1000_KABGTXD_BGSQLBIAS 0x00050000 #define E1000_KABGTXD_BGSQLBIAS 0x00050000
/* PBA constants */ /* PBA constants */
#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ #define E1000_PBA_8K 0x0008 /* 8KB */
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ #define E1000_PBA_16K 0x0010 /* 16KB */
#define E1000_PBS_16K E1000_PBA_16K #define E1000_PBS_16K E1000_PBA_16K
...@@ -356,12 +358,13 @@ ...@@ -356,12 +358,13 @@
/* Interrupt Cause Read */ /* Interrupt Cause Read */
#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ #define E1000_ICR_LSC 0x00000004 /* Link Status Change */
#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ #define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ #define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ #define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ #define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
/* This defines the bits that are set in the Interrupt Mask /*
* This defines the bits that are set in the Interrupt Mask
* Set/Read Register. Each bit is documented below: * Set/Read Register. Each bit is documented below:
* o RXT0 = Receiver Timer Interrupt (ring 0) * o RXT0 = Receiver Timer Interrupt (ring 0)
* o TXDW = Transmit Descriptor Written Back * o TXDW = Transmit Descriptor Written Back
...@@ -379,21 +382,22 @@ ...@@ -379,21 +382,22 @@
/* Interrupt Mask Set */ /* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
/* Interrupt Cause Set */ /* Interrupt Cause Set */
#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
/* Transmit Descriptor Control */ /* Transmit Descriptor Control */
#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ #define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ #define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ #define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. /* Enable the counting of desc. still to be processed. */
still to be processed. */ #define E1000_TXDCTL_COUNT_DESC 0x00400000
/* Flow Control Constants */ /* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
...@@ -404,7 +408,8 @@ ...@@ -404,7 +408,8 @@
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
/* Receive Address */ /* Receive Address */
/* Number of high/low register pairs in the RAR. The RAR (Receive Address /*
* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. * Registers) holds the directed and multicast addresses that we monitor.
* Technically, we have 16 spots. However, we reserve one of these spots * Technically, we have 16 spots. However, we reserve one of these spots
* (RAR[15]) for our directed address used by controllers with * (RAR[15]) for our directed address used by controllers with
...@@ -533,8 +538,8 @@ ...@@ -533,8 +538,8 @@
#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ #define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ #define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ #define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
#define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type /* NVM Addressing bits based on type (0-small, 1-large) */
* (0-small, 1-large) */ #define E1000_EECD_ADDR_BITS 0x00000400
#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ #define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ #define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
...@@ -626,7 +631,8 @@ ...@@ -626,7 +631,8 @@
#define MAX_PHY_MULTI_PAGE_REG 0xF #define MAX_PHY_MULTI_PAGE_REG 0xF
/* Bit definitions for valid PHY IDs. */ /* Bit definitions for valid PHY IDs. */
/* I = Integrated /*
* I = Integrated
* E = External * E = External
*/ */
#define M88E1000_E_PHY_ID 0x01410C50 #define M88E1000_E_PHY_ID 0x01410C50
...@@ -653,37 +659,37 @@ ...@@ -653,37 +659,37 @@
#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
/* Manual MDI configuration */ /* Manual MDI configuration */
#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, /* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
* 100BASE-TX/10BASE-T: #define M88E1000_PSCR_AUTO_X_1000T 0x0040
* MDI Mode /* Auto crossover enabled all speeds */
*/ #define M88E1000_PSCR_AUTO_X_MODE 0x0060
#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled /*
* all speeds. * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
*/ * 0=Normal 10BASE-T Rx Threshold
/* 1=Enable Extended 10BASE-T distance */
* (Lower 10BASE-T RX Threshold) #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
* 0=Normal 10BASE-T RX Threshold */
/* 1=5-Bit interface in 100BASE-TX
* 0=MII interface in 100BASE-TX */
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
/* M88E1000 PHY Specific Status Register */ /* M88E1000 PHY Specific Status Register */
#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; /* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
* 3=110-140M;4=>140M */ #define M88E1000_PSSR_CABLE_LENGTH 0x0380
#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
/* Number of times we will attempt to autonegotiate before downshifting if we /*
* are the master */ * Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
/* Number of times we will attempt to autonegotiate before downshifting if we /*
* are the slave */ * Number of times we will attempt to autonegotiate before downshifting if we
* are the slave
*/
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
...@@ -692,7 +698,8 @@ ...@@ -692,7 +698,8 @@
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
/* Bits... /*
* Bits...
* 15-5: page * 15-5: page
* 4-0: register offset * 4-0: register offset
*/ */
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -61,7 +61,7 @@ struct e1000_info; ...@@ -61,7 +61,7 @@ struct e1000_info;
ndev_printk(KERN_NOTICE , netdev, format, ## arg) ndev_printk(KERN_NOTICE , netdev, format, ## arg)
/* TX/RX descriptor defines */ /* Tx/Rx descriptor defines */
#define E1000_DEFAULT_TXD 256 #define E1000_DEFAULT_TXD 256
#define E1000_MAX_TXD 4096 #define E1000_MAX_TXD 4096
#define E1000_MIN_TXD 80 #define E1000_MIN_TXD 80
...@@ -114,13 +114,13 @@ struct e1000_buffer { ...@@ -114,13 +114,13 @@ struct e1000_buffer {
dma_addr_t dma; dma_addr_t dma;
struct sk_buff *skb; struct sk_buff *skb;
union { union {
/* TX */ /* Tx */
struct { struct {
unsigned long time_stamp; unsigned long time_stamp;
u16 length; u16 length;
u16 next_to_watch; u16 next_to_watch;
}; };
/* RX */ /* Rx */
/* arrays of page information for packet split */ /* arrays of page information for packet split */
struct e1000_ps_page *ps_pages; struct e1000_ps_page *ps_pages;
}; };
...@@ -177,7 +177,7 @@ struct e1000_adapter { ...@@ -177,7 +177,7 @@ struct e1000_adapter {
u16 rx_itr; u16 rx_itr;
/* /*
* TX * Tx
*/ */
struct e1000_ring *tx_ring /* One per active queue */ struct e1000_ring *tx_ring /* One per active queue */
____cacheline_aligned_in_smp; ____cacheline_aligned_in_smp;
...@@ -199,7 +199,7 @@ struct e1000_adapter { ...@@ -199,7 +199,7 @@ struct e1000_adapter {
unsigned int total_rx_bytes; unsigned int total_rx_bytes;
unsigned int total_rx_packets; unsigned int total_rx_packets;
/* TX stats */ /* Tx stats */
u64 tpt_old; u64 tpt_old;
u64 colc_old; u64 colc_old;
u64 gotcl_old; u64 gotcl_old;
...@@ -211,7 +211,7 @@ struct e1000_adapter { ...@@ -211,7 +211,7 @@ struct e1000_adapter {
u32 tx_dma_failed; u32 tx_dma_failed;
/* /*
* RX * Rx
*/ */
bool (*clean_rx) (struct e1000_adapter *adapter, bool (*clean_rx) (struct e1000_adapter *adapter,
int *work_done, int work_to_do) int *work_done, int work_to_do)
...@@ -223,7 +223,7 @@ struct e1000_adapter { ...@@ -223,7 +223,7 @@ struct e1000_adapter {
u32 rx_int_delay; u32 rx_int_delay;
u32 rx_abs_int_delay; u32 rx_abs_int_delay;
/* RX stats */ /* Rx stats */
u64 hw_csum_err; u64 hw_csum_err;
u64 hw_csum_good; u64 hw_csum_good;
u64 rx_hdr_split; u64 rx_hdr_split;
...@@ -234,6 +234,8 @@ struct e1000_adapter { ...@@ -234,6 +234,8 @@ struct e1000_adapter {
unsigned int rx_ps_pages; unsigned int rx_ps_pages;
u16 rx_ps_bsize0; u16 rx_ps_bsize0;
u32 max_frame_size;
u32 min_frame_size;
/* OS defined structs */ /* OS defined structs */
struct net_device *netdev; struct net_device *netdev;
...@@ -258,7 +260,7 @@ struct e1000_adapter { ...@@ -258,7 +260,7 @@ struct e1000_adapter {
u32 wol; u32 wol;
u32 pba; u32 pba;
u8 fc_autoneg; bool fc_autoneg;
unsigned long led_status; unsigned long led_status;
...@@ -305,6 +307,7 @@ struct e1000_info { ...@@ -305,6 +307,7 @@ struct e1000_info {
#define FLAG_MSI_ENABLED (1 << 27) #define FLAG_MSI_ENABLED (1 << 27)
#define FLAG_RX_CSUM_ENABLED (1 << 28) #define FLAG_RX_CSUM_ENABLED (1 << 28)
#define FLAG_TSO_FORCE (1 << 29) #define FLAG_TSO_FORCE (1 << 29)
#define FLAG_RX_RESTART_NOW (1 << 30)
#define E1000_RX_DESC_PS(R, i) \ #define E1000_RX_DESC_PS(R, i) \
(&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
...@@ -387,9 +390,11 @@ extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw); ...@@ -387,9 +390,11 @@ extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
extern s32 e1000e_setup_link(struct e1000_hw *hw); extern s32 e1000e_setup_link(struct e1000_hw *hw);
extern void e1000e_clear_vfta(struct e1000_hw *hw); extern void e1000e_clear_vfta(struct e1000_hw *hw);
extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
extern void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count, u8 *mc_addr_list,
u32 rar_used_count, u32 rar_count); u32 mc_addr_count,
u32 rar_used_count,
u32 rar_count);
extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw); extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop); extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -92,7 +92,8 @@ ...@@ -92,7 +92,8 @@
/* In-Band Control Register (Page 194, Register 18) */ /* In-Band Control Register (Page 194, Register 18) */
#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
/* A table for the GG82563 cable length where the range is defined /*
* A table for the GG82563 cable length where the range is defined
* with a lower bound at "index" and the upper bound at * with a lower bound at "index" and the upper bound at
* "index + 5". * "index + 5".
*/ */
...@@ -118,7 +119,7 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) ...@@ -118,7 +119,7 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
struct e1000_phy_info *phy = &hw->phy; struct e1000_phy_info *phy = &hw->phy;
s32 ret_val; s32 ret_val;
if (hw->media_type != e1000_media_type_copper) { if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none; phy->type = e1000_phy_none;
return 0; return 0;
} }
...@@ -167,12 +168,13 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) ...@@ -167,12 +168,13 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
break; break;
} }
nvm->type = e1000_nvm_eeprom_spi; nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT); E1000_EECD_SIZE_EX_SHIFT);
/* Added to a constant, "size" becomes the left-shift value /*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size. * for setting word_size.
*/ */
size += NVM_WORD_SIZE_BASE_SHIFT; size += NVM_WORD_SIZE_BASE_SHIFT;
...@@ -196,10 +198,10 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) ...@@ -196,10 +198,10 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
/* Set media type */ /* Set media type */
switch (adapter->pdev->device) { switch (adapter->pdev->device) {
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->media_type = e1000_media_type_internal_serdes; hw->phy.media_type = e1000_media_type_internal_serdes;
break; break;
default: default:
hw->media_type = e1000_media_type_copper; hw->phy.media_type = e1000_media_type_copper;
break; break;
} }
...@@ -208,11 +210,10 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) ...@@ -208,11 +210,10 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
/* Set rar entry count */ /* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES; mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Set if manageability features are enabled. */ /* Set if manageability features are enabled. */
mac->arc_subsystem_valid = mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
/* check for link */ /* check for link */
switch (hw->media_type) { switch (hw->phy.media_type) {
case e1000_media_type_copper: case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
func->check_for_link = e1000e_check_for_copper_link; func->check_for_link = e1000e_check_for_copper_link;
...@@ -344,8 +345,10 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) ...@@ -344,8 +345,10 @@ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
if (!(swfw_sync & (fwmask | swmask))) if (!(swfw_sync & (fwmask | swmask)))
break; break;
/* Firmware currently using resource (fwmask) /*
* or other software thread using resource (swmask) */ * Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
e1000e_put_hw_semaphore(hw); e1000e_put_hw_semaphore(hw);
mdelay(5); mdelay(5);
i++; i++;
...@@ -407,7 +410,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, ...@@ -407,7 +410,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
page_select = GG82563_PHY_PAGE_SELECT; page_select = GG82563_PHY_PAGE_SELECT;
else else
/* Use Alternative Page Select register to access /*
* Use Alternative Page Select register to access
* registers 30 and 31 * registers 30 and 31
*/ */
page_select = GG82563_PHY_PAGE_SELECT_ALT; page_select = GG82563_PHY_PAGE_SELECT_ALT;
...@@ -417,7 +421,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, ...@@ -417,7 +421,8 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* The "ready" bit in the MDIC register may be incorrectly set /*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI * before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command... * transaction. So we wait 200us after each MDI command...
*/ */
...@@ -462,7 +467,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, ...@@ -462,7 +467,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
page_select = GG82563_PHY_PAGE_SELECT; page_select = GG82563_PHY_PAGE_SELECT;
else else
/* Use Alternative Page Select register to access /*
* Use Alternative Page Select register to access
* registers 30 and 31 * registers 30 and 31
*/ */
page_select = GG82563_PHY_PAGE_SELECT_ALT; page_select = GG82563_PHY_PAGE_SELECT_ALT;
...@@ -473,7 +479,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, ...@@ -473,7 +479,8 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
return ret_val; return ret_val;
/* The "ready" bit in the MDIC register may be incorrectly set /*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI * before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command... * transaction. So we wait 200us after each MDI command...
*/ */
...@@ -554,7 +561,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) ...@@ -554,7 +561,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
u16 phy_data; u16 phy_data;
bool link; bool link;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI /*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced. * forced whenever speed and duplex are forced.
*/ */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
...@@ -583,7 +591,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) ...@@ -583,7 +591,7 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
udelay(1); udelay(1);
if (hw->phy.wait_for_link) { if (hw->phy.autoneg_wait_to_complete) {
hw_dbg(hw, "Waiting for forced speed/duplex link " hw_dbg(hw, "Waiting for forced speed/duplex link "
"on GG82563 phy.\n"); "on GG82563 phy.\n");
...@@ -593,7 +601,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) ...@@ -593,7 +601,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
return ret_val; return ret_val;
if (!link) { if (!link) {
/* We didn't get link. /*
* We didn't get link.
* Reset the DSP and cross our fingers. * Reset the DSP and cross our fingers.
*/ */
ret_val = e1000e_phy_reset_dsp(hw); ret_val = e1000e_phy_reset_dsp(hw);
...@@ -612,7 +621,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) ...@@ -612,7 +621,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Resetting the phy means we need to verify the TX_CLK corresponds /*
* Resetting the phy means we need to verify the TX_CLK corresponds
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz. * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
*/ */
phy_data &= ~GG82563_MSCR_TX_CLK_MASK; phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
...@@ -621,7 +631,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) ...@@ -621,7 +631,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
else else
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
/* In addition, we must re-enable CRS on Tx for both half and full /*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex. * duplex.
*/ */
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
...@@ -671,7 +682,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, ...@@ -671,7 +682,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
{ {
s32 ret_val; s32 ret_val;
if (hw->media_type == e1000_media_type_copper) { if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000e_get_speed_and_duplex_copper(hw, ret_val = e1000e_get_speed_and_duplex_copper(hw,
speed, speed,
duplex); duplex);
...@@ -704,7 +715,8 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) ...@@ -704,7 +715,8 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
u32 icr; u32 icr;
s32 ret_val; s32 ret_val;
/* Prevent the PCI-E bus from sticking if there is no TLP connection /*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset. * on the last TLP read/write transaction when MAC is reset.
*/ */
ret_val = e1000e_disable_pcie_master(hw); ret_val = e1000e_disable_pcie_master(hw);
...@@ -808,7 +820,8 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) ...@@ -808,7 +820,8 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
reg_data &= ~0x00100000; reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
/* Clear all of the statistics registers (clear on read). It is /*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link * important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there * because the symbol error count will increment wildly if there
* is no link. * is no link.
...@@ -841,7 +854,7 @@ static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) ...@@ -841,7 +854,7 @@ static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
/* Transmit Arbitration Control 0 */ /* Transmit Arbitration Control 0 */
reg = er32(TARC0); reg = er32(TARC0);
reg &= ~(0xF << 27); /* 30:27 */ reg &= ~(0xF << 27); /* 30:27 */
if (hw->media_type != e1000_media_type_copper) if (hw->phy.media_type != e1000_media_type_copper)
reg &= ~(1 << 20); reg &= ~(1 << 20);
ew32(TARC0, reg); ew32(TARC0, reg);
...@@ -881,7 +894,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) ...@@ -881,7 +894,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Options: /*
* Options:
* MDI/MDI-X = 0 (default) * MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds * 0 - Auto for all speeds
* 1 - MDI mode * 1 - MDI mode
...@@ -907,7 +921,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) ...@@ -907,7 +921,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
break; break;
} }
/* Options: /*
* Options:
* disable_polarity_correction = 0 (default) * disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity * Automatic Correction for Reversed Cable Polarity
* 0 - Disabled * 0 - Disabled
...@@ -928,10 +943,9 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) ...@@ -928,10 +943,9 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* Bypass RX and TX FIFO's */ /* Bypass Rx and Tx FIFO's */
ret_val = e1000e_write_kmrn_reg(hw, ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -953,7 +967,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) ...@@ -953,7 +967,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Do not init these registers when the HW is in IAMT mode, since the /*
* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize * firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode. * them if the HW is not in IAMT mode.
*/ */
...@@ -974,7 +989,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) ...@@ -974,7 +989,8 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* Workaround: Disable padding in Kumeran interface in the MAC /*
* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors. * and in the PHY to avoid CRC errors.
*/ */
ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
...@@ -1007,9 +1023,11 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) ...@@ -1007,9 +1023,11 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl); ew32(CTRL, ctrl);
/* Set the mac to wait the maximum time between each /*
* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when * iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */ * polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1026,9 +1044,8 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) ...@@ -1026,9 +1044,8 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000e_write_kmrn_reg(hw, ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data);
reg_data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1056,9 +1073,8 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) ...@@ -1056,9 +1073,8 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
u16 reg_data; u16 reg_data;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000e_write_kmrn_reg(hw, ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data);
reg_data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1096,9 +1112,8 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) ...@@ -1096,9 +1112,8 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
u32 tipg; u32 tipg;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000e_write_kmrn_reg(hw, ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data);
reg_data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1175,7 +1190,7 @@ static struct e1000_mac_operations es2_mac_ops = { ...@@ -1175,7 +1190,7 @@ static struct e1000_mac_operations es2_mac_ops = {
.get_link_up_info = e1000_get_link_up_info_80003es2lan, .get_link_up_info = e1000_get_link_up_info_80003es2lan,
.led_on = e1000e_led_on_generic, .led_on = e1000e_led_on_generic,
.led_off = e1000e_led_off_generic, .led_off = e1000e_led_off_generic,
.mc_addr_list_update = e1000e_mc_addr_list_update_generic, .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.reset_hw = e1000_reset_hw_80003es2lan, .reset_hw = e1000_reset_hw_80003es2lan,
.init_hw = e1000_init_hw_80003es2lan, .init_hw = e1000_init_hw_80003es2lan,
.setup_link = e1000e_setup_link, .setup_link = e1000e_setup_link,
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -102,7 +102,7 @@ static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { ...@@ -102,7 +102,7 @@ static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Interrupt test (offline)", "Loopback test (offline)", "Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)" "Link test (on/offline)"
}; };
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
static int e1000_get_settings(struct net_device *netdev, static int e1000_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd) struct ethtool_cmd *ecmd)
...@@ -111,7 +111,7 @@ static int e1000_get_settings(struct net_device *netdev, ...@@ -111,7 +111,7 @@ static int e1000_get_settings(struct net_device *netdev,
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 status; u32 status;
if (hw->media_type == e1000_media_type_copper) { if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half | ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full | SUPPORTED_10baseT_Full |
...@@ -165,7 +165,7 @@ static int e1000_get_settings(struct net_device *netdev, ...@@ -165,7 +165,7 @@ static int e1000_get_settings(struct net_device *netdev,
ecmd->duplex = -1; ecmd->duplex = -1;
} }
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0; return 0;
} }
...@@ -187,7 +187,7 @@ static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) ...@@ -187,7 +187,7 @@ static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
mac->autoneg = 0; mac->autoneg = 0;
/* Fiber NICs only allow 1000 gbps Full duplex */ /* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.media_type == e1000_media_type_fiber) && if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
spddplx != (SPEED_1000 + DUPLEX_FULL)) { spddplx != (SPEED_1000 + DUPLEX_FULL)) {
ndev_err(adapter->netdev, "Unsupported Speed/Duplex " ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
"configuration\n"); "configuration\n");
...@@ -226,8 +226,10 @@ static int e1000_set_settings(struct net_device *netdev, ...@@ -226,8 +226,10 @@ static int e1000_set_settings(struct net_device *netdev,
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
/* When SoL/IDER sessions are active, autoneg/speed/duplex /*
* cannot be changed */ * When SoL/IDER sessions are active, autoneg/speed/duplex
* cannot be changed
*/
if (e1000_check_reset_block(hw)) { if (e1000_check_reset_block(hw)) {
ndev_err(netdev, "Cannot change link " ndev_err(netdev, "Cannot change link "
"characteristics when SoL/IDER is active.\n"); "characteristics when SoL/IDER is active.\n");
...@@ -239,7 +241,7 @@ static int e1000_set_settings(struct net_device *netdev, ...@@ -239,7 +241,7 @@ static int e1000_set_settings(struct net_device *netdev,
if (ecmd->autoneg == AUTONEG_ENABLE) { if (ecmd->autoneg == AUTONEG_ENABLE) {
hw->mac.autoneg = 1; hw->mac.autoneg = 1;
if (hw->media_type == e1000_media_type_fiber) if (hw->phy.media_type == e1000_media_type_fiber)
hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE | ADVERTISED_FIBRE |
ADVERTISED_Autoneg; ADVERTISED_Autoneg;
...@@ -248,6 +250,8 @@ static int e1000_set_settings(struct net_device *netdev, ...@@ -248,6 +250,8 @@ static int e1000_set_settings(struct net_device *netdev,
ADVERTISED_TP | ADVERTISED_TP |
ADVERTISED_Autoneg; ADVERTISED_Autoneg;
ecmd->advertising = hw->phy.autoneg_advertised; ecmd->advertising = hw->phy.autoneg_advertised;
if (adapter->fc_autoneg)
hw->fc.original_type = e1000_fc_default;
} else { } else {
if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
clear_bit(__E1000_RESETTING, &adapter->state); clear_bit(__E1000_RESETTING, &adapter->state);
...@@ -277,11 +281,11 @@ static void e1000_get_pauseparam(struct net_device *netdev, ...@@ -277,11 +281,11 @@ static void e1000_get_pauseparam(struct net_device *netdev,
pause->autoneg = pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->mac.fc == e1000_fc_rx_pause) { if (hw->fc.type == e1000_fc_rx_pause) {
pause->rx_pause = 1; pause->rx_pause = 1;
} else if (hw->mac.fc == e1000_fc_tx_pause) { } else if (hw->fc.type == e1000_fc_tx_pause) {
pause->tx_pause = 1; pause->tx_pause = 1;
} else if (hw->mac.fc == e1000_fc_full) { } else if (hw->fc.type == e1000_fc_full) {
pause->rx_pause = 1; pause->rx_pause = 1;
pause->tx_pause = 1; pause->tx_pause = 1;
} }
...@@ -300,18 +304,18 @@ static int e1000_set_pauseparam(struct net_device *netdev, ...@@ -300,18 +304,18 @@ static int e1000_set_pauseparam(struct net_device *netdev,
msleep(1); msleep(1);
if (pause->rx_pause && pause->tx_pause) if (pause->rx_pause && pause->tx_pause)
hw->mac.fc = e1000_fc_full; hw->fc.type = e1000_fc_full;
else if (pause->rx_pause && !pause->tx_pause) else if (pause->rx_pause && !pause->tx_pause)
hw->mac.fc = e1000_fc_rx_pause; hw->fc.type = e1000_fc_rx_pause;
else if (!pause->rx_pause && pause->tx_pause) else if (!pause->rx_pause && pause->tx_pause)
hw->mac.fc = e1000_fc_tx_pause; hw->fc.type = e1000_fc_tx_pause;
else if (!pause->rx_pause && !pause->tx_pause) else if (!pause->rx_pause && !pause->tx_pause)
hw->mac.fc = e1000_fc_none; hw->fc.type = e1000_fc_none;
hw->mac.original_fc = hw->mac.fc; hw->fc.original_type = hw->fc.type;
if (adapter->fc_autoneg == AUTONEG_ENABLE) { if (adapter->fc_autoneg == AUTONEG_ENABLE) {
hw->mac.fc = e1000_fc_default; hw->fc.type = e1000_fc_default;
if (netif_running(adapter->netdev)) { if (netif_running(adapter->netdev)) {
e1000e_down(adapter); e1000e_down(adapter);
e1000e_up(adapter); e1000e_up(adapter);
...@@ -319,7 +323,7 @@ static int e1000_set_pauseparam(struct net_device *netdev, ...@@ -319,7 +323,7 @@ static int e1000_set_pauseparam(struct net_device *netdev,
e1000e_reset(adapter); e1000e_reset(adapter);
} }
} else { } else {
retval = ((hw->media_type == e1000_media_type_fiber) ? retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw)); hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
} }
...@@ -558,8 +562,10 @@ static int e1000_set_eeprom(struct net_device *netdev, ...@@ -558,8 +562,10 @@ static int e1000_set_eeprom(struct net_device *netdev,
ret_val = e1000_write_nvm(hw, first_word, ret_val = e1000_write_nvm(hw, first_word,
last_word - first_word + 1, eeprom_buff); last_word - first_word + 1, eeprom_buff);
/* Update the checksum over the first part of the EEPROM if needed /*
* and flush shadow RAM for 82573 controllers */ * Update the checksum over the first part of the EEPROM if needed
* and flush shadow RAM for 82573 controllers
*/
if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) || if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
(hw->mac.type == e1000_82573))) (hw->mac.type == e1000_82573)))
e1000e_update_nvm_checksum(hw); e1000e_update_nvm_checksum(hw);
...@@ -578,8 +584,10 @@ static void e1000_get_drvinfo(struct net_device *netdev, ...@@ -578,8 +584,10 @@ static void e1000_get_drvinfo(struct net_device *netdev,
strncpy(drvinfo->driver, e1000e_driver_name, 32); strncpy(drvinfo->driver, e1000e_driver_name, 32);
strncpy(drvinfo->version, e1000e_driver_version, 32); strncpy(drvinfo->version, e1000e_driver_version, 32);
/* EEPROM image version # is reported as firmware version # for /*
* PCI-E controllers */ * EEPROM image version # is reported as firmware version # for
* PCI-E controllers
*/
e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data); e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
sprintf(firmware_version, "%d.%d-%d", sprintf(firmware_version, "%d.%d-%d",
(eeprom_data & 0xF000) >> 12, (eeprom_data & 0xF000) >> 12,
...@@ -658,8 +666,10 @@ static int e1000_set_ringparam(struct net_device *netdev, ...@@ -658,8 +666,10 @@ static int e1000_set_ringparam(struct net_device *netdev,
if (err) if (err)
goto err_setup_tx; goto err_setup_tx;
/* save the new, restore the old in order to free it, /*
* then restore the new back again */ * restore the old in order to free it,
* then add in the new
*/
adapter->rx_ring = rx_old; adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old; adapter->tx_ring = tx_old;
e1000e_free_rx_resources(adapter); e1000e_free_rx_resources(adapter);
...@@ -758,7 +768,8 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -758,7 +768,8 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
u32 i; u32 i;
u32 toggle; u32 toggle;
/* The status register is Read Only, so a write should fail. /*
* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored. * Some bits that get toggled are ignored.
*/ */
switch (mac->type) { switch (mac->type) {
...@@ -908,7 +919,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -908,7 +919,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
mask = 1 << i; mask = 1 << i;
if (!shared_int) { if (!shared_int) {
/* Disable the interrupt to be reported in /*
* Disable the interrupt to be reported in
* the cause register and then force the same * the cause register and then force the same
* interrupt and see if one gets posted. If * interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the * an interrupt was posted to the bus, the
...@@ -925,7 +937,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -925,7 +937,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
} }
} }
/* Enable the interrupt to be reported in /*
* Enable the interrupt to be reported in
* the cause register and then force the same * the cause register and then force the same
* interrupt and see if one gets posted. If * interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the * an interrupt was not posted to the bus, the
...@@ -942,7 +955,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -942,7 +955,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
} }
if (!shared_int) { if (!shared_int) {
/* Disable the other interrupts to be reported in /*
* Disable the other interrupts to be reported in
* the cause register and then force the other * the cause register and then force the other
* interrupts and see if any get posted. If * interrupts and see if any get posted. If
* an interrupt was posted to the bus, the * an interrupt was posted to the bus, the
...@@ -1175,21 +1189,21 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1175,21 +1189,21 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
u32 ctrl_reg = 0; u32 ctrl_reg = 0;
u32 stat_reg = 0; u32 stat_reg = 0;
adapter->hw.mac.autoneg = 0; hw->mac.autoneg = 0;
if (adapter->hw.phy.type == e1000_phy_m88) { if (hw->phy.type == e1000_phy_m88) {
/* Auto-MDI/MDIX Off */ /* Auto-MDI/MDIX Off */
e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */ /* reset to update Auto-MDI/MDIX */
e1e_wphy(hw, PHY_CONTROL, 0x9140); e1e_wphy(hw, PHY_CONTROL, 0x9140);
/* autoneg off */ /* autoneg off */
e1e_wphy(hw, PHY_CONTROL, 0x8140); e1e_wphy(hw, PHY_CONTROL, 0x8140);
} else if (adapter->hw.phy.type == e1000_phy_gg82563) } else if (hw->phy.type == e1000_phy_gg82563)
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
ctrl_reg = er32(CTRL); ctrl_reg = er32(CTRL);
if (adapter->hw.phy.type == e1000_phy_ife) { if (hw->phy.type == e1000_phy_ife) {
/* force 100, set loopback */ /* force 100, set loopback */
e1e_wphy(hw, PHY_CONTROL, 0x6100); e1e_wphy(hw, PHY_CONTROL, 0x6100);
...@@ -1212,12 +1226,14 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1212,12 +1226,14 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
E1000_CTRL_FD); /* Force Duplex to FULL */ E1000_CTRL_FD); /* Force Duplex to FULL */
} }
if (adapter->hw.media_type == e1000_media_type_copper && if (hw->phy.media_type == e1000_media_type_copper &&
adapter->hw.phy.type == e1000_phy_m88) { hw->phy.type == e1000_phy_m88) {
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
} else { } else {
/* Set the ILOS bit on the fiber Nic if half duplex link is /*
* detected. */ * Set the ILOS bit on the fiber Nic if half duplex link is
* detected.
*/
stat_reg = er32(STATUS); stat_reg = er32(STATUS);
if ((stat_reg & E1000_STATUS_FD) == 0) if ((stat_reg & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
...@@ -1225,10 +1241,11 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1225,10 +1241,11 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
ew32(CTRL, ctrl_reg); ew32(CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the /*
* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/ */
if (adapter->hw.phy.type == e1000_phy_m88) if (hw->phy.type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter); e1000_phy_disable_receiver(adapter);
udelay(500); udelay(500);
...@@ -1244,8 +1261,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) ...@@ -1244,8 +1261,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
/* special requirements for 82571/82572 fiber adapters */ /* special requirements for 82571/82572 fiber adapters */
/* jump through hoops to make sure link is up because serdes /*
* link is hardwired up */ * jump through hoops to make sure link is up because serdes
* link is hardwired up
*/
ctrl |= E1000_CTRL_SLU; ctrl |= E1000_CTRL_SLU;
ew32(CTRL, ctrl); ew32(CTRL, ctrl);
...@@ -1263,8 +1282,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) ...@@ -1263,8 +1282,10 @@ static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
ew32(CTRL, ctrl); ew32(CTRL, ctrl);
} }
/* special write to serdes control register to enable SerDes analog /*
* loopback */ * special write to serdes control register to enable SerDes analog
* loopback
*/
#define E1000_SERDES_LB_ON 0x410 #define E1000_SERDES_LB_ON 0x410
ew32(SCTL, E1000_SERDES_LB_ON); ew32(SCTL, E1000_SERDES_LB_ON);
msleep(10); msleep(10);
...@@ -1279,8 +1300,10 @@ static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) ...@@ -1279,8 +1300,10 @@ static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
u32 ctrlext = er32(CTRL_EXT); u32 ctrlext = er32(CTRL_EXT);
u32 ctrl = er32(CTRL); u32 ctrl = er32(CTRL);
/* save CTRL_EXT to restore later, reuse an empty variable (unused /*
on mac_type 80003es2lan) */ * save CTRL_EXT to restore later, reuse an empty variable (unused
* on mac_type 80003es2lan)
*/
adapter->tx_fifo_head = ctrlext; adapter->tx_fifo_head = ctrlext;
/* clear the serdes mode bits, putting the device into mac loopback */ /* clear the serdes mode bits, putting the device into mac loopback */
...@@ -1312,8 +1335,8 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter) ...@@ -1312,8 +1335,8 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 rctl; u32 rctl;
if (hw->media_type == e1000_media_type_fiber || if (hw->phy.media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) { hw->phy.media_type == e1000_media_type_internal_serdes) {
switch (hw->mac.type) { switch (hw->mac.type) {
case e1000_80003es2lan: case e1000_80003es2lan:
return e1000_set_es2lan_mac_loopback(adapter); return e1000_set_es2lan_mac_loopback(adapter);
...@@ -1328,7 +1351,7 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter) ...@@ -1328,7 +1351,7 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
ew32(RCTL, rctl); ew32(RCTL, rctl);
return 0; return 0;
} }
} else if (hw->media_type == e1000_media_type_copper) { } else if (hw->phy.media_type == e1000_media_type_copper) {
return e1000_integrated_phy_loopback(adapter); return e1000_integrated_phy_loopback(adapter);
} }
...@@ -1347,18 +1370,17 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter) ...@@ -1347,18 +1370,17 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
switch (hw->mac.type) { switch (hw->mac.type) {
case e1000_80003es2lan: case e1000_80003es2lan:
if (hw->media_type == e1000_media_type_fiber || if (hw->phy.media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) { hw->phy.media_type == e1000_media_type_internal_serdes) {
/* restore CTRL_EXT, stealing space from tx_fifo_head */ /* restore CTRL_EXT, stealing space from tx_fifo_head */
ew32(CTRL_EXT, ew32(CTRL_EXT, adapter->tx_fifo_head);
adapter->tx_fifo_head);
adapter->tx_fifo_head = 0; adapter->tx_fifo_head = 0;
} }
/* fall through */ /* fall through */
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
if (hw->media_type == e1000_media_type_fiber || if (hw->phy.media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) { hw->phy.media_type == e1000_media_type_internal_serdes) {
#define E1000_SERDES_LB_OFF 0x400 #define E1000_SERDES_LB_OFF 0x400
ew32(SCTL, E1000_SERDES_LB_OFF); ew32(SCTL, E1000_SERDES_LB_OFF);
msleep(10); msleep(10);
...@@ -1414,7 +1436,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ...@@ -1414,7 +1436,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
ew32(RDT, rx_ring->count - 1); ew32(RDT, rx_ring->count - 1);
/* Calculate the loop count based on the largest descriptor ring /*
* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64 * The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop * send/receive pairs during each loop
*/ */
...@@ -1454,7 +1477,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ...@@ -1454,7 +1477,8 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
l++; l++;
if (l == rx_ring->count) if (l == rx_ring->count)
l = 0; l = 0;
/* time + 20 msecs (200 msecs on 2.4) is more than /*
* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's * enough time to complete the receives, if it's
* exceeded, break and error off * exceeded, break and error off
*/ */
...@@ -1473,8 +1497,10 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ...@@ -1473,8 +1497,10 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{ {
/* PHY loopback cannot be performed if SoL/IDER /*
* sessions are active */ * PHY loopback cannot be performed if SoL/IDER
* sessions are active
*/
if (e1000_check_reset_block(&adapter->hw)) { if (e1000_check_reset_block(&adapter->hw)) {
ndev_err(adapter->netdev, "Cannot do PHY loopback test " ndev_err(adapter->netdev, "Cannot do PHY loopback test "
"when SoL/IDER is active.\n"); "when SoL/IDER is active.\n");
...@@ -1504,12 +1530,14 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) ...@@ -1504,12 +1530,14 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
*data = 0; *data = 0;
if (hw->media_type == e1000_media_type_internal_serdes) { if (hw->phy.media_type == e1000_media_type_internal_serdes) {
int i = 0; int i = 0;
hw->mac.serdes_has_link = 0; hw->mac.serdes_has_link = 0;
/* On some blade server designs, link establishment /*
* could take as long as 2-3 minutes */ * On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do { do {
hw->mac.ops.check_for_link(hw); hw->mac.ops.check_for_link(hw);
if (hw->mac.serdes_has_link) if (hw->mac.serdes_has_link)
...@@ -1562,8 +1590,10 @@ static void e1000_diag_test(struct net_device *netdev, ...@@ -1562,8 +1590,10 @@ static void e1000_diag_test(struct net_device *netdev,
ndev_info(netdev, "offline testing starting\n"); ndev_info(netdev, "offline testing starting\n");
/* Link test performed before hardware reset so autoneg doesn't /*
* interfere with test result */ * Link test performed before hardware reset so autoneg doesn't
* interfere with test result
*/
if (e1000_link_test(adapter, &data[4])) if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED; eth_test->flags |= ETH_TEST_FL_FAILED;
...@@ -1596,9 +1626,9 @@ static void e1000_diag_test(struct net_device *netdev, ...@@ -1596,9 +1626,9 @@ static void e1000_diag_test(struct net_device *netdev,
adapter->hw.mac.autoneg = autoneg; adapter->hw.mac.autoneg = autoneg;
/* force this routine to wait until autoneg complete/timeout */ /* force this routine to wait until autoneg complete/timeout */
adapter->hw.phy.wait_for_link = 1; adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter); e1000e_reset(adapter);
adapter->hw.phy.wait_for_link = 0; adapter->hw.phy.autoneg_wait_to_complete = 0;
clear_bit(__E1000_TESTING, &adapter->state); clear_bit(__E1000_TESTING, &adapter->state);
if (if_running) if (if_running)
...@@ -1768,8 +1798,7 @@ static void e1000_get_strings(struct net_device *netdev, u32 stringset, ...@@ -1768,8 +1798,7 @@ static void e1000_get_strings(struct net_device *netdev, u32 stringset,
switch (stringset) { switch (stringset) {
case ETH_SS_TEST: case ETH_SS_TEST:
memcpy(data, *e1000_gstrings_test, memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
sizeof(e1000_gstrings_test));
break; break;
case ETH_SS_STATS: case ETH_SS_STATS:
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -66,14 +66,14 @@ enum e1e_registers { ...@@ -66,14 +66,14 @@ enum e1e_registers {
E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */ E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */ E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */ E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
E1000_RCTL = 0x00100, /* RX Control - RW */ E1000_RCTL = 0x00100, /* Rx Control - RW */
E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */ E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
E1000_TXCW = 0x00178, /* TX Configuration Word - RW */ E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */
E1000_RXCW = 0x00180, /* RX Configuration Word - RO */ E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */
E1000_TCTL = 0x00400, /* TX Control - RW */ E1000_TCTL = 0x00400, /* Tx Control - RW */
E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */ E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
E1000_TIPG = 0x00410, /* TX Inter-packet gap -RW */ E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */
E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */ E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
E1000_LEDCTL = 0x00E00, /* LED Control - RW */ E1000_LEDCTL = 0x00E00, /* LED Control - RW */
E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */ E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */ E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
...@@ -87,12 +87,12 @@ enum e1e_registers { ...@@ -87,12 +87,12 @@ enum e1e_registers {
E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */ E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */ E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */ E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
E1000_RDBAL = 0x02800, /* RX Descriptor Base Address Low - RW */ E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */
E1000_RDBAH = 0x02804, /* RX Descriptor Base Address High - RW */ E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */
E1000_RDLEN = 0x02808, /* RX Descriptor Length - RW */ E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */
E1000_RDH = 0x02810, /* RX Descriptor Head - RW */ E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */
E1000_RDT = 0x02818, /* RX Descriptor Tail - RW */ E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */
E1000_RDTR = 0x02820, /* RX Delay Timer - RW */ E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */
E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */ E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
/* Convenience macros /* Convenience macros
...@@ -105,17 +105,17 @@ enum e1e_registers { ...@@ -105,17 +105,17 @@ enum e1e_registers {
*/ */
#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8)) #define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */ E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
E1000_TDBAL = 0x03800, /* TX Descriptor Base Address Low - RW */ E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */
E1000_TDBAH = 0x03804, /* TX Descriptor Base Address High - RW */ E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */
E1000_TDLEN = 0x03808, /* TX Descriptor Length - RW */ E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */
E1000_TDH = 0x03810, /* TX Descriptor Head - RW */ E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */
E1000_TDT = 0x03818, /* TX Descriptor Tail - RW */ E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */
E1000_TIDV = 0x03820, /* TX Interrupt Delay Value - RW */ E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */
E1000_TXDCTL = 0x03828, /* TX Descriptor Control - RW */ E1000_TXDCTL = 0x03828, /* Tx Descriptor Control - RW */
E1000_TADV = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */ E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
E1000_TARC0 = 0x03840, /* TX Arbitration Count (0) */ E1000_TARC0 = 0x03840, /* Tx Arbitration Count (0) */
E1000_TXDCTL1 = 0x03928, /* TX Descriptor Control (1) - RW */ E1000_TXDCTL1 = 0x03928, /* Tx Descriptor Control (1) - RW */
E1000_TARC1 = 0x03940, /* TX Arbitration Count (1) */ E1000_TARC1 = 0x03940, /* Tx Arbitration Count (1) */
E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */ E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */ E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */ E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
...@@ -127,53 +127,53 @@ enum e1e_registers { ...@@ -127,53 +127,53 @@ enum e1e_registers {
E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */ E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
E1000_COLC = 0x04028, /* Collision Count - R/clr */ E1000_COLC = 0x04028, /* Collision Count - R/clr */
E1000_DC = 0x04030, /* Defer Count - R/clr */ E1000_DC = 0x04030, /* Defer Count - R/clr */
E1000_TNCRS = 0x04034, /* TX-No CRS - R/clr */ E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */
E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */ E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */ E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */ E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
E1000_XONRXC = 0x04048, /* XON RX Count - R/clr */ E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */
E1000_XONTXC = 0x0404C, /* XON TX Count - R/clr */ E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */
E1000_XOFFRXC = 0x04050, /* XOFF RX Count - R/clr */ E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */
E1000_XOFFTXC = 0x04054, /* XOFF TX Count - R/clr */ E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */
E1000_FCRUC = 0x04058, /* Flow Control RX Unsupported Count- R/clr */ E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
E1000_PRC64 = 0x0405C, /* Packets RX (64 bytes) - R/clr */ E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
E1000_PRC127 = 0x04060, /* Packets RX (65-127 bytes) - R/clr */ E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
E1000_PRC255 = 0x04064, /* Packets RX (128-255 bytes) - R/clr */ E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
E1000_PRC511 = 0x04068, /* Packets RX (255-511 bytes) - R/clr */ E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
E1000_PRC1023 = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */ E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
E1000_PRC1522 = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */ E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
E1000_GPRC = 0x04074, /* Good Packets RX Count - R/clr */ E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */
E1000_BPRC = 0x04078, /* Broadcast Packets RX Count - R/clr */ E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */
E1000_MPRC = 0x0407C, /* Multicast Packets RX Count - R/clr */ E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */
E1000_GPTC = 0x04080, /* Good Packets TX Count - R/clr */ E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */
E1000_GORCL = 0x04088, /* Good Octets RX Count Low - R/clr */ E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */
E1000_GORCH = 0x0408C, /* Good Octets RX Count High - R/clr */ E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */
E1000_GOTCL = 0x04090, /* Good Octets TX Count Low - R/clr */ E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */
E1000_GOTCH = 0x04094, /* Good Octets TX Count High - R/clr */ E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */
E1000_RNBC = 0x040A0, /* RX No Buffers Count - R/clr */ E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */
E1000_RUC = 0x040A4, /* RX Undersize Count - R/clr */ E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */
E1000_RFC = 0x040A8, /* RX Fragment Count - R/clr */ E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */
E1000_ROC = 0x040AC, /* RX Oversize Count - R/clr */ E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */
E1000_RJC = 0x040B0, /* RX Jabber Count - R/clr */ E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */
E1000_MGTPRC = 0x040B4, /* Management Packets RX Count - R/clr */ E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */
E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */ E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
E1000_MGTPTC = 0x040BC, /* Management Packets TX Count - R/clr */ E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */
E1000_TORL = 0x040C0, /* Total Octets RX Low - R/clr */ E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */
E1000_TORH = 0x040C4, /* Total Octets RX High - R/clr */ E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */
E1000_TOTL = 0x040C8, /* Total Octets TX Low - R/clr */ E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */
E1000_TOTH = 0x040CC, /* Total Octets TX High - R/clr */ E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */
E1000_TPR = 0x040D0, /* Total Packets RX - R/clr */ E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */
E1000_TPT = 0x040D4, /* Total Packets TX - R/clr */ E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */
E1000_PTC64 = 0x040D8, /* Packets TX (64 bytes) - R/clr */ E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
E1000_PTC127 = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */ E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
E1000_PTC255 = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */ E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
E1000_PTC511 = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */ E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
E1000_PTC1023 = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */ E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
E1000_PTC1522 = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */ E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
E1000_MPTC = 0x040F0, /* Multicast Packets TX Count - R/clr */ E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */
E1000_BPTC = 0x040F4, /* Broadcast Packets TX Count - R/clr */ E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
E1000_TSCTC = 0x040F8, /* TCP Segmentation Context TX - R/clr */ E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */ E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
E1000_IAC = 0x04100, /* Interrupt Assertion Count */ E1000_IAC = 0x04100, /* Interrupt Assertion Count */
E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */ E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */ E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
...@@ -183,7 +183,7 @@ enum e1e_registers { ...@@ -183,7 +183,7 @@ enum e1e_registers {
E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */ E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */ E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */ E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */ E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */
E1000_RFCTL = 0x05008, /* Receive Filter Control */ E1000_RFCTL = 0x05008, /* Receive Filter Control */
E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */ E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
E1000_RA = 0x05400, /* Receive Address - RW Array */ E1000_RA = 0x05400, /* Receive Address - RW Array */
...@@ -250,8 +250,8 @@ enum e1e_registers { ...@@ -250,8 +250,8 @@ enum e1e_registers {
#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
#define E1000_HICR_EN 0x01 /* Enable bit - RO */ #define E1000_HICR_EN 0x01 /* Enable bit - RO */
#define E1000_HICR_C 0x02 /* Driver sets this bit when done /* Driver sets this bit when done to put command in RAM */
* to put command in RAM */ #define E1000_HICR_C 0x02
#define E1000_HICR_FW_RESET_ENABLE 0x40 #define E1000_HICR_FW_RESET_ENABLE 0x40
#define E1000_HICR_FW_RESET 0x80 #define E1000_HICR_FW_RESET 0x80
...@@ -400,7 +400,7 @@ enum e1000_rev_polarity{ ...@@ -400,7 +400,7 @@ enum e1000_rev_polarity{
e1000_rev_polarity_undefined = 0xFF e1000_rev_polarity_undefined = 0xFF
}; };
enum e1000_fc_mode { enum e1000_fc_type {
e1000_fc_none = 0, e1000_fc_none = 0,
e1000_fc_rx_pause, e1000_fc_rx_pause,
e1000_fc_tx_pause, e1000_fc_tx_pause,
...@@ -685,8 +685,7 @@ struct e1000_mac_operations { ...@@ -685,8 +685,7 @@ struct e1000_mac_operations {
s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
s32 (*led_on)(struct e1000_hw *); s32 (*led_on)(struct e1000_hw *);
s32 (*led_off)(struct e1000_hw *); s32 (*led_off)(struct e1000_hw *);
void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32, void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32, u32);
u32);
s32 (*reset_hw)(struct e1000_hw *); s32 (*reset_hw)(struct e1000_hw *);
s32 (*init_hw)(struct e1000_hw *); s32 (*init_hw)(struct e1000_hw *);
s32 (*setup_link)(struct e1000_hw *); s32 (*setup_link)(struct e1000_hw *);
...@@ -728,16 +727,12 @@ struct e1000_mac_info { ...@@ -728,16 +727,12 @@ struct e1000_mac_info {
u8 perm_addr[6]; u8 perm_addr[6];
enum e1000_mac_type type; enum e1000_mac_type type;
enum e1000_fc_mode fc;
enum e1000_fc_mode original_fc;
u32 collision_delta; u32 collision_delta;
u32 ledctl_default; u32 ledctl_default;
u32 ledctl_mode1; u32 ledctl_mode1;
u32 ledctl_mode2; u32 ledctl_mode2;
u32 max_frame_size;
u32 mc_filter_type; u32 mc_filter_type;
u32 min_frame_size;
u32 tx_packet_delta; u32 tx_packet_delta;
u32 txcw; u32 txcw;
...@@ -748,9 +743,6 @@ struct e1000_mac_info { ...@@ -748,9 +743,6 @@ struct e1000_mac_info {
u16 ifs_step_size; u16 ifs_step_size;
u16 mta_reg_count; u16 mta_reg_count;
u16 rar_entry_count; u16 rar_entry_count;
u16 fc_high_water;
u16 fc_low_water;
u16 fc_pause_time;
u8 forced_speed_duplex; u8 forced_speed_duplex;
...@@ -780,6 +772,8 @@ struct e1000_phy_info { ...@@ -780,6 +772,8 @@ struct e1000_phy_info {
u32 reset_delay_us; /* in usec */ u32 reset_delay_us; /* in usec */
u32 revision; u32 revision;
enum e1000_media_type media_type;
u16 autoneg_advertised; u16 autoneg_advertised;
u16 autoneg_mask; u16 autoneg_mask;
u16 cable_length; u16 cable_length;
...@@ -792,7 +786,7 @@ struct e1000_phy_info { ...@@ -792,7 +786,7 @@ struct e1000_phy_info {
bool is_mdix; bool is_mdix;
bool polarity_correction; bool polarity_correction;
bool speed_downgraded; bool speed_downgraded;
bool wait_for_link; bool autoneg_wait_to_complete;
}; };
struct e1000_nvm_info { struct e1000_nvm_info {
...@@ -817,6 +811,16 @@ struct e1000_bus_info { ...@@ -817,6 +811,16 @@ struct e1000_bus_info {
u16 func; u16 func;
}; };
struct e1000_fc_info {
u32 high_water; /* Flow control high-water mark */
u32 low_water; /* Flow control low-water mark */
u16 pause_time; /* Flow control pause timer */
bool send_xon; /* Flow control send XON */
bool strict_ieee; /* Strict IEEE mode */
enum e1000_fc_type type; /* Type of flow control */
enum e1000_fc_type original_type;
};
struct e1000_dev_spec_82571 { struct e1000_dev_spec_82571 {
bool laa_is_present; bool laa_is_present;
bool alt_mac_addr_is_present; bool alt_mac_addr_is_present;
...@@ -841,6 +845,7 @@ struct e1000_hw { ...@@ -841,6 +845,7 @@ struct e1000_hw {
u8 __iomem *flash_address; u8 __iomem *flash_address;
struct e1000_mac_info mac; struct e1000_mac_info mac;
struct e1000_fc_info fc;
struct e1000_phy_info phy; struct e1000_phy_info phy;
struct e1000_nvm_info nvm; struct e1000_nvm_info nvm;
struct e1000_bus_info bus; struct e1000_bus_info bus;
...@@ -850,8 +855,6 @@ struct e1000_hw { ...@@ -850,8 +855,6 @@ struct e1000_hw {
struct e1000_dev_spec_82571 e82571; struct e1000_dev_spec_82571 e82571;
struct e1000_dev_spec_ich8lan ich8lan; struct e1000_dev_spec_ich8lan ich8lan;
} dev_spec; } dev_spec;
enum e1000_media_type media_type;
}; };
#ifdef DEBUG #ifdef DEBUG
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -243,8 +243,7 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) ...@@ -243,8 +243,7 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
u32 sector_end_addr; u32 sector_end_addr;
u16 i; u16 i;
/* Can't read flash registers if the register set isn't mapped. /* Can't read flash registers if the register set isn't mapped. */
*/
if (!hw->flash_address) { if (!hw->flash_address) {
hw_dbg(hw, "ERROR: Flash registers not mapped\n"); hw_dbg(hw, "ERROR: Flash registers not mapped\n");
return -E1000_ERR_CONFIG; return -E1000_ERR_CONFIG;
...@@ -254,17 +253,21 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) ...@@ -254,17 +253,21 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
gfpreg = er32flash(ICH_FLASH_GFPREG); gfpreg = er32flash(ICH_FLASH_GFPREG);
/* sector_X_addr is a "sector"-aligned address (4096 bytes) /*
* sector_X_addr is a "sector"-aligned address (4096 bytes)
* Add 1 to sector_end_addr since this sector is included in * Add 1 to sector_end_addr since this sector is included in
* the overall size. */ * the overall size.
*/
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
/* flash_base_addr is byte-aligned */ /* flash_base_addr is byte-aligned */
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
/* find total size of the NVM, then cut in half since the total /*
* size represents two separate NVM banks. */ * find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
nvm->flash_bank_size = (sector_end_addr - sector_base_addr) nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
<< FLASH_SECTOR_ADDR_SHIFT; << FLASH_SECTOR_ADDR_SHIFT;
nvm->flash_bank_size /= 2; nvm->flash_bank_size /= 2;
...@@ -295,7 +298,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) ...@@ -295,7 +298,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
struct e1000_mac_info *mac = &hw->mac; struct e1000_mac_info *mac = &hw->mac;
/* Set media type function pointer */ /* Set media type function pointer */
hw->media_type = e1000_media_type_copper; hw->phy.media_type = e1000_media_type_copper;
/* Set mta register count */ /* Set mta register count */
mac->mta_reg_count = 32; mac->mta_reg_count = 32;
...@@ -450,7 +453,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw) ...@@ -450,7 +453,7 @@ static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
udelay(1); udelay(1);
if (phy->wait_for_link) { if (phy->autoneg_wait_to_complete) {
hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n"); hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, ret_val = e1000e_phy_has_link_generic(hw,
...@@ -496,7 +499,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) ...@@ -496,7 +499,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Initialize the PHY from the NVM on ICH platforms. This /*
* Initialize the PHY from the NVM on ICH platforms. This
* is needed due to an issue where the NVM configuration is * is needed due to an issue where the NVM configuration is
* not properly autoloaded after power transitions. * not properly autoloaded after power transitions.
* Therefore, after each PHY reset, we will load the * Therefore, after each PHY reset, we will load the
...@@ -523,7 +527,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) ...@@ -523,7 +527,8 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
udelay(100); udelay(100);
} while ((!data) && --loop); } while ((!data) && --loop);
/* If basic configuration is incomplete before the above loop /*
* If basic configuration is incomplete before the above loop
* count reaches 0, loading the configuration from NVM will * count reaches 0, loading the configuration from NVM will
* leave the PHY in a bad state possibly resulting in no link. * leave the PHY in a bad state possibly resulting in no link.
*/ */
...@@ -536,8 +541,10 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) ...@@ -536,8 +541,10 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
data &= ~E1000_STATUS_LAN_INIT_DONE; data &= ~E1000_STATUS_LAN_INIT_DONE;
ew32(STATUS, data); ew32(STATUS, data);
/* Make sure HW does not configure LCD from PHY /*
* extended configuration before SW configuration */ * Make sure HW does not configure LCD from PHY
* extended configuration before SW configuration
*/
data = er32(EXTCNF_CTRL); data = er32(EXTCNF_CTRL);
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
return 0; return 0;
...@@ -551,8 +558,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) ...@@ -551,8 +558,7 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
/* Configure LCD from extended configuration /* Configure LCD from extended configuration region. */
* region. */
/* cnf_base_addr is in DWORD */ /* cnf_base_addr is in DWORD */
word_addr = (u16)(cnf_base_addr << 1); word_addr = (u16)(cnf_base_addr << 1);
...@@ -681,8 +687,8 @@ static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw) ...@@ -681,8 +687,8 @@ static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 phy_data, offset, mask; u16 phy_data, offset, mask;
/* Polarity is determined based on the reversal feature /*
* being enabled. * Polarity is determined based on the reversal feature being enabled.
*/ */
if (phy->polarity_correction) { if (phy->polarity_correction) {
offset = IFE_PHY_EXTENDED_STATUS_CONTROL; offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
...@@ -731,8 +737,10 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) ...@@ -731,8 +737,10 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
/* Call gig speed drop workaround on LPLU before accessing /*
* any PHY registers */ * Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if ((hw->mac.type == e1000_ich8lan) && if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3)) (hw->phy.type == e1000_phy_igp_3))
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
...@@ -747,30 +755,32 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) ...@@ -747,30 +755,32 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used /*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most * during Dx states where the power conservation is most
* important. During driver activity we should enable * important. During driver activity we should enable
* SmartSpeed, so performance is maintained. */ * SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) { if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED; data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) { } else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} }
...@@ -804,34 +814,32 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) ...@@ -804,34 +814,32 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
if (!active) { if (!active) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used /*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most * during Dx states where the power conservation is most
* important. During driver activity we should enable * important. During driver activity we should enable
* SmartSpeed, so performance is maintained. */ * SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) { if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
IGP01E1000_PHY_PORT_CONFIG, &data);
&data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED; data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
IGP01E1000_PHY_PORT_CONFIG, data);
data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) { } else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
IGP01E1000_PHY_PORT_CONFIG, &data);
&data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
IGP01E1000_PHY_PORT_CONFIG, data);
data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} }
...@@ -841,23 +849,21 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) ...@@ -841,23 +849,21 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
/* Call gig speed drop workaround on LPLU before accessing /*
* any PHY registers */ * Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if ((hw->mac.type == e1000_ich8lan) && if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3)) (hw->phy.type == e1000_phy_igp_3))
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */ /* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
IGP01E1000_PHY_PORT_CONFIG,
data);
} }
return 0; return 0;
...@@ -944,7 +950,8 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) ...@@ -944,7 +950,8 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
/* Either we should have a hardware SPI cycle in progress /*
* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or * bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it * FDONE bit should be changed in the hardware so that it
* is 1 after hardware reset, which can then be used as an * is 1 after hardware reset, which can then be used as an
...@@ -953,15 +960,19 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) ...@@ -953,15 +960,19 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
*/ */
if (hsfsts.hsf_status.flcinprog == 0) { if (hsfsts.hsf_status.flcinprog == 0) {
/* There is no cycle running at present, /*
* so we can start a cycle */ * There is no cycle running at present,
/* Begin by setting Flash Cycle Done. */ * so we can start a cycle
* Begin by setting Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1; hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
ret_val = 0; ret_val = 0;
} else { } else {
/* otherwise poll for sometime so the current /*
* cycle has a chance to end before giving up. */ * otherwise poll for sometime so the current
* cycle has a chance to end before giving up.
*/
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) { if (hsfsts.hsf_status.flcinprog == 0) {
...@@ -971,8 +982,10 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) ...@@ -971,8 +982,10 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
udelay(1); udelay(1);
} }
if (ret_val == 0) { if (ret_val == 0) {
/* Successful in waiting for previous cycle to timeout, /*
* now set the Flash Cycle Done. */ * Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1; hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
} else { } else {
...@@ -1077,10 +1090,12 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, ...@@ -1077,10 +1090,12 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
ret_val = e1000_flash_cycle_ich8lan(hw, ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_READ_COMMAND_TIMEOUT); ICH_FLASH_READ_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it /*
* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else * and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is * read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb */ * least significant byte first msb to lsb
*/
if (ret_val == 0) { if (ret_val == 0) {
flash_data = er32flash(ICH_FLASH_FDATA0); flash_data = er32flash(ICH_FLASH_FDATA0);
if (size == 1) { if (size == 1) {
...@@ -1090,7 +1105,8 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, ...@@ -1090,7 +1105,8 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
} }
break; break;
} else { } else {
/* If we've gotten here, then things are probably /*
* If we've gotten here, then things are probably
* completely hosed, but if the error condition is * completely hosed, but if the error condition is
* detected, it won't hurt to give it another try... * detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times. * ICH_FLASH_CYCLE_REPEAT_COUNT times.
...@@ -1168,18 +1184,20 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1168,18 +1184,20 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
ret_val = e1000e_update_nvm_checksum_generic(hw); ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val) if (ret_val)
return ret_val;; return ret_val;
if (nvm->type != e1000_nvm_flash_sw) if (nvm->type != e1000_nvm_flash_sw)
return ret_val;; return ret_val;
ret_val = e1000_acquire_swflag_ich8lan(hw); ret_val = e1000_acquire_swflag_ich8lan(hw);
if (ret_val) if (ret_val)
return ret_val;; return ret_val;
/* We're writing to the opposite bank so if we're on bank 1, /*
* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that * write to bank 0 etc. We also need to erase the segment that
* is going to be written */ * is going to be written
*/
if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
new_bank_offset = nvm->flash_bank_size; new_bank_offset = nvm->flash_bank_size;
old_bank_offset = 0; old_bank_offset = 0;
...@@ -1191,9 +1209,11 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1191,9 +1209,11 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
} }
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
/* Determine whether to write the value stored /*
* Determine whether to write the value stored
* in the other NVM bank or a modified value stored * in the other NVM bank or a modified value stored
* in the shadow RAM */ * in the shadow RAM
*/
if (dev_spec->shadow_ram[i].modified) { if (dev_spec->shadow_ram[i].modified) {
data = dev_spec->shadow_ram[i].value; data = dev_spec->shadow_ram[i].value;
} else { } else {
...@@ -1202,12 +1222,14 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1202,12 +1222,14 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
&data); &data);
} }
/* If the word is 0x13, then make sure the signature bits /*
* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed. * (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the * This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write * signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid * has completed so that we don't mark the segment valid
* while the write is still in progress */ * while the write is still in progress
*/
if (i == E1000_ICH_NVM_SIG_WORD) if (i == E1000_ICH_NVM_SIG_WORD)
data |= E1000_ICH_NVM_SIG_MASK; data |= E1000_ICH_NVM_SIG_MASK;
...@@ -1230,18 +1252,22 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1230,18 +1252,22 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
break; break;
} }
/* Don't bother writing the segment valid bits if sector /*
* programming failed. */ * Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) { if (ret_val) {
hw_dbg(hw, "Flash commit failed.\n"); hw_dbg(hw, "Flash commit failed.\n");
e1000_release_swflag_ich8lan(hw); e1000_release_swflag_ich8lan(hw);
return ret_val; return ret_val;
} }
/* Finally validate the new segment by setting bit 15:14 /*
* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an * to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with * erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b */ * and we need to change bit 14 to 0b
*/
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e1000_read_flash_word_ich8lan(hw, act_offset, &data); e1000_read_flash_word_ich8lan(hw, act_offset, &data);
data &= 0xBFFF; data &= 0xBFFF;
...@@ -1253,10 +1279,12 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1253,10 +1279,12 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* And invalidate the previously valid segment by setting /*
* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be * its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits * done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase */ * to 1's. We can write 1's to 0's without an erase
*/
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
if (ret_val) { if (ret_val) {
...@@ -1272,7 +1300,8 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1272,7 +1300,8 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
e1000_release_swflag_ich8lan(hw); e1000_release_swflag_ich8lan(hw);
/* Reload the EEPROM, or else modifications will not appear /*
* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset. * until after the next adapter reset.
*/ */
e1000e_reload_nvm(hw); e1000e_reload_nvm(hw);
...@@ -1294,7 +1323,8 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) ...@@ -1294,7 +1323,8 @@ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 data; u16 data;
/* Read 0x19 and check bit 6. If this bit is 0, the checksum /*
* Read 0x19 and check bit 6. If this bit is 0, the checksum
* needs to be fixed. This bit is an indication that the NVM * needs to be fixed. This bit is an indication that the NVM
* was prepared by OEM software and did not calculate the * was prepared by OEM software and did not calculate the
* checksum...a likely scenario. * checksum...a likely scenario.
...@@ -1364,14 +1394,17 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, ...@@ -1364,14 +1394,17 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
ew32flash(ICH_FLASH_FDATA0, flash_data); ew32flash(ICH_FLASH_FDATA0, flash_data);
/* check if FCERR is set to 1 , if set to 1, clear it /*
* and try the whole sequence a few more times else done */ * check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val = e1000_flash_cycle_ich8lan(hw, ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_WRITE_COMMAND_TIMEOUT); ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (!ret_val) if (!ret_val)
break; break;
/* If we're here, then things are most likely /*
* If we're here, then things are most likely
* completely hosed, but if the error condition * completely hosed, but if the error condition
* is detected, it won't hurt to give it another * is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times. * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
...@@ -1462,9 +1495,10 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) ...@@ -1462,9 +1495,10 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/* Determine HW Sector size: Read BERASE bits of hw flash status /*
* register */ * Determine HW Sector size: Read BERASE bits of hw flash status
/* 00: The Hw sector is 256 bytes, hence we need to erase 16 * register
* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector * consecutive sectors. The start index for the nth Hw sector
* can be calculated as = bank * 4096 + n * 256 * can be calculated as = bank * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
...@@ -1511,13 +1545,16 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) ...@@ -1511,13 +1545,16 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Write a value 11 (block Erase) in Flash /*
* Cycle field in hw flash control */ * Write a value 11 (block Erase) in Flash
* Cycle field in hw flash control
*/
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of an index within the /*
* Write the last 24 bits of an index within the
* block into Flash Linear address field in Flash * block into Flash Linear address field in Flash
* Address. * Address.
*/ */
...@@ -1529,13 +1566,14 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) ...@@ -1529,13 +1566,14 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
if (ret_val == 0) if (ret_val == 0)
break; break;
/* Check if FCERR is set to 1. If 1, /*
* Check if FCERR is set to 1. If 1,
* clear it and try the whole sequence * clear it and try the whole sequence
* a few more times else Done */ * a few more times else Done
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) if (hsfsts.hsf_status.flcerr == 1)
/* repeat for some time before /* repeat for some time before giving up */
* giving up */
continue; continue;
else if (hsfsts.hsf_status.flcdone == 0) else if (hsfsts.hsf_status.flcdone == 0)
return ret_val; return ret_val;
...@@ -1585,7 +1623,8 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) ...@@ -1585,7 +1623,8 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
ret_val = e1000e_get_bus_info_pcie(hw); ret_val = e1000e_get_bus_info_pcie(hw);
/* ICH devices are "PCI Express"-ish. They have /*
* ICH devices are "PCI Express"-ish. They have
* a configuration space, but do not contain * a configuration space, but do not contain
* PCI Express Capability registers, so bus width * PCI Express Capability registers, so bus width
* must be hardcoded. * must be hardcoded.
...@@ -1608,7 +1647,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) ...@@ -1608,7 +1647,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
u32 ctrl, icr, kab; u32 ctrl, icr, kab;
s32 ret_val; s32 ret_val;
/* Prevent the PCI-E bus from sticking if there is no TLP connection /*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset. * on the last TLP read/write transaction when MAC is reset.
*/ */
ret_val = e1000e_disable_pcie_master(hw); ret_val = e1000e_disable_pcie_master(hw);
...@@ -1619,7 +1659,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) ...@@ -1619,7 +1659,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
hw_dbg(hw, "Masking off all interrupts\n"); hw_dbg(hw, "Masking off all interrupts\n");
ew32(IMC, 0xffffffff); ew32(IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow /*
* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC * any pending transactions to complete before we hit the MAC
* with the global reset. * with the global reset.
*/ */
...@@ -1640,7 +1681,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) ...@@ -1640,7 +1681,8 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
ctrl = er32(CTRL); ctrl = er32(CTRL);
if (!e1000_check_reset_block(hw)) { if (!e1000_check_reset_block(hw)) {
/* PHY HW reset requires MAC CORE reset at the same /*
* PHY HW reset requires MAC CORE reset at the same
* time to make sure the interface between MAC and the * time to make sure the interface between MAC and the
* external PHY is reset. * external PHY is reset.
*/ */
...@@ -1724,8 +1766,10 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) ...@@ -1724,8 +1766,10 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
E1000_TXDCTL_MAX_TX_DESC_PREFETCH; E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
ew32(TXDCTL1, txdctl); ew32(TXDCTL1, txdctl);
/* ICH8 has opposite polarity of no_snoop bits. /*
* By default, we should use snoop behavior. */ * ICH8 has opposite polarity of no_snoop bits.
* By default, we should use snoop behavior.
*/
if (mac->type == e1000_ich8lan) if (mac->type == e1000_ich8lan)
snoop = PCIE_ICH8_SNOOP_ALL; snoop = PCIE_ICH8_SNOOP_ALL;
else else
...@@ -1736,7 +1780,8 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) ...@@ -1736,7 +1780,8 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
ew32(CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
/* Clear all of the statistics registers (clear on read). It is /*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link * important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there * because the symbol error count will increment wildly if there
* is no link. * is no link.
...@@ -1807,29 +1852,29 @@ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) ...@@ -1807,29 +1852,29 @@ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
**/ **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{ {
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val; s32 ret_val;
if (e1000_check_reset_block(hw)) if (e1000_check_reset_block(hw))
return 0; return 0;
/* ICH parts do not have a word in the NVM to determine /*
* ICH parts do not have a word in the NVM to determine
* the default flow control setting, so we explicitly * the default flow control setting, so we explicitly
* set it to full. * set it to full.
*/ */
if (mac->fc == e1000_fc_default) if (hw->fc.type == e1000_fc_default)
mac->fc = e1000_fc_full; hw->fc.type = e1000_fc_full;
mac->original_fc = mac->fc; hw->fc.original_type = hw->fc.type;
hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
/* Continue to configure the copper link. */ /* Continue to configure the copper link. */
ret_val = e1000_setup_copper_link_ich8lan(hw); ret_val = e1000_setup_copper_link_ich8lan(hw);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
ew32(FCTTV, mac->fc_pause_time); ew32(FCTTV, hw->fc.pause_time);
return e1000e_set_fc_watermarks(hw); return e1000e_set_fc_watermarks(hw);
} }
...@@ -1853,9 +1898,11 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) ...@@ -1853,9 +1898,11 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl); ew32(CTRL, ctrl);
/* Set the mac to wait the maximum time between each iteration /*
* Set the mac to wait the maximum time between each iteration
* and increase the max iterations when polling the phy; * and increase the max iterations when polling the phy;
* this fixes erroneous timeouts at 10Mbps. */ * this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1882,7 +1929,7 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) ...@@ -1882,7 +1929,7 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
* @speed: pointer to store current link speed * @speed: pointer to store current link speed
* @duplex: pointer to store the current link duplex * @duplex: pointer to store the current link duplex
* *
* Calls the generic get_speed_and_duplex to retreive the current link * Calls the generic get_speed_and_duplex to retrieve the current link
* information and then calls the Kumeran lock loss workaround for links at * information and then calls the Kumeran lock loss workaround for links at
* gigabit speeds. * gigabit speeds.
**/ **/
...@@ -1930,9 +1977,11 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) ...@@ -1930,9 +1977,11 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
if (!dev_spec->kmrn_lock_loss_workaround_enabled) if (!dev_spec->kmrn_lock_loss_workaround_enabled)
return 0; return 0;
/* Make sure link is up before proceeding. If not just return. /*
* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouled up link * Attempting this while link is negotiating fouled up link
* stability */ * stability
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (!link) if (!link)
return 0; return 0;
...@@ -1961,8 +2010,10 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) ...@@ -1961,8 +2010,10 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
/* Call gig speed drop workaround on Gig disable before accessing /*
* any PHY registers */ * Call gig speed drop workaround on Gig disable before accessing
* any PHY registers
*/
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
/* unable to acquire PCS lock */ /* unable to acquire PCS lock */
...@@ -1970,7 +2021,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) ...@@ -1970,7 +2021,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
} }
/** /**
* e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* @state: boolean value used to set the current Kumeran workaround state * @state: boolean value used to set the current Kumeran workaround state
* *
...@@ -2017,8 +2068,10 @@ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) ...@@ -2017,8 +2068,10 @@ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, reg); ew32(PHY_CTRL, reg);
/* Call gig speed drop workaround on Gig disable before /*
* accessing any PHY registers */ * Call gig speed drop workaround on Gig disable before
* accessing any PHY registers
*/
if (hw->mac.type == e1000_ich8lan) if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
...@@ -2158,7 +2211,7 @@ static struct e1000_mac_operations ich8_mac_ops = { ...@@ -2158,7 +2211,7 @@ static struct e1000_mac_operations ich8_mac_ops = {
.get_link_up_info = e1000_get_link_up_info_ich8lan, .get_link_up_info = e1000_get_link_up_info_ich8lan,
.led_on = e1000_led_on_ich8lan, .led_on = e1000_led_on_ich8lan,
.led_off = e1000_led_off_ich8lan, .led_off = e1000_led_off_ich8lan,
.mc_addr_list_update = e1000e_mc_addr_list_update_generic, .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.reset_hw = e1000_reset_hw_ich8lan, .reset_hw = e1000_reset_hw_ich8lan,
.init_hw = e1000_init_hw_ich8lan, .init_hw = e1000_init_hw_ich8lan,
.setup_link = e1000_setup_link_ich8lan, .setup_link = e1000_setup_link_ich8lan,
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -43,8 +43,8 @@ enum e1000_mng_mode { ...@@ -43,8 +43,8 @@ enum e1000_mng_mode {
#define E1000_FACTPS_MNGCG 0x20000000 #define E1000_FACTPS_MNGCG 0x20000000
#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management /* Intel(R) Active Management Technology signature */
* Technology signature */ #define E1000_IAMT_SIGNATURE 0x544D4149
/** /**
* e1000e_get_bus_info_pcie - Get PCIe bus information * e1000e_get_bus_info_pcie - Get PCIe bus information
...@@ -142,7 +142,8 @@ void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) ...@@ -142,7 +142,8 @@ void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{ {
u32 rar_low, rar_high; u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order /*
* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian * from network order (big endian) to little endian
*/ */
rar_low = ((u32) addr[0] | rar_low = ((u32) addr[0] |
...@@ -171,7 +172,8 @@ static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) ...@@ -171,7 +172,8 @@ static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
{ {
u32 hash_bit, hash_reg, mta; u32 hash_bit, hash_reg, mta;
/* The MTA is a register array of 32-bit registers. It is /*
* The MTA is a register array of 32-bit registers. It is
* treated like an array of (32*mta_reg_count) bits. We want to * treated like an array of (32*mta_reg_count) bits. We want to
* set bit BitArray[hash_value]. So we figure out what register * set bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write * the bit is in, read it, OR in the new bit, then write
...@@ -208,12 +210,15 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) ...@@ -208,12 +210,15 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
/* Register count multiplied by bits per register */ /* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1; hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts /*
* where 0xFF would still fall within the hash mask. */ * For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF) while (hash_mask >> bit_shift != 0xFF)
bit_shift++; bit_shift++;
/* The portion of the address that is used for the hash table /*
* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting. * is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting. * The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of * The bit_shift for a mc_filter_type of 0 represents the number of
...@@ -224,8 +229,8 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) ...@@ -224,8 +229,8 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
* cases are a variation of this algorithm...essentially raising the * cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the * number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total. * 8-bit shifting total.
*/ *
/* For example, given the following Destination MAC Address and an * For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash * we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type... * values resulting from each mc_filter_type...
...@@ -260,7 +265,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) ...@@ -260,7 +265,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
} }
/** /**
* e1000e_mc_addr_list_update_generic - Update Multicast addresses * e1000e_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program * @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program * @mc_addr_count: number of multicast addresses to program
...@@ -272,14 +277,15 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) ...@@ -272,14 +277,15 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
* The parameter rar_count will usually be hw->mac.rar_entry_count * The parameter rar_count will usually be hw->mac.rar_entry_count
* unless there are workarounds that change this. * unless there are workarounds that change this.
**/ **/
void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count, u8 *mc_addr_list, u32 mc_addr_count,
u32 rar_used_count, u32 rar_count) u32 rar_used_count, u32 rar_count)
{ {
u32 hash_value; u32 hash_value;
u32 i; u32 i;
/* Load the first set of multicast addresses into the exact /*
* Load the first set of multicast addresses into the exact
* filters (RAR). If there are not enough to fill the RAR * filters (RAR). If there are not enough to fill the RAR
* array, clear the filters. * array, clear the filters.
*/ */
...@@ -375,7 +381,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw) ...@@ -375,7 +381,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
bool link; bool link;
/* We only want to go out to the PHY registers to see if Auto-Neg /*
* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The * has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status * get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt. * Change or Rx Sequence Error interrupt.
...@@ -383,7 +390,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw) ...@@ -383,7 +390,8 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
if (!mac->get_link_status) if (!mac->get_link_status)
return 0; return 0;
/* First we want to see if the MII Status Register reports /*
* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex * link. If so, then we want to get the current speed/duplex
* of the PHY. * of the PHY.
*/ */
...@@ -396,11 +404,14 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw) ...@@ -396,11 +404,14 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
mac->get_link_status = 0; mac->get_link_status = 0;
/* Check if there was DownShift, must be checked /*
* immediately after link-up */ * Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw); e1000e_check_downshift(hw);
/* If we are forcing speed/duplex, then we simply return since /*
* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not. * we have already determined whether we have link or not.
*/ */
if (!mac->autoneg) { if (!mac->autoneg) {
...@@ -408,13 +419,15 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw) ...@@ -408,13 +419,15 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* Auto-Neg is enabled. Auto Speed Detection takes care /*
* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to * of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC. * configure Collision Distance in the MAC.
*/ */
e1000e_config_collision_dist(hw); e1000e_config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed. /*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control * First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a * settings because we may have had to re-autoneg with a
* different link partner. * different link partner.
...@@ -446,7 +459,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) ...@@ -446,7 +459,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
status = er32(STATUS); status = er32(STATUS);
rxcw = er32(RXCW); rxcw = er32(RXCW);
/* If we don't have link (auto-negotiation failed or link partner /*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal), * cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we * and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also * are receiving idles or data), we need to force link up. We also
...@@ -477,7 +491,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) ...@@ -477,7 +491,8 @@ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered /*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register * sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register * and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner. * in an attempt to auto-negotiate with our link partner.
...@@ -511,7 +526,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) ...@@ -511,7 +526,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
status = er32(STATUS); status = er32(STATUS);
rxcw = er32(RXCW); rxcw = er32(RXCW);
/* If we don't have link (auto-negotiation failed or link partner /*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to * cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data), * auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation * we need to force link up. We also need to give auto-negotiation
...@@ -540,7 +556,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) ...@@ -540,7 +556,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered /*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register * sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register * and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner. * in an attempt to auto-negotiate with our link partner.
...@@ -551,7 +568,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) ...@@ -551,7 +568,8 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
mac->serdes_has_link = 1; mac->serdes_has_link = 1;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) { } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
/* If we force link for non-auto-negotiation switch, check /*
* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal * link status based on MAC synchronization for internal
* serdes media type. * serdes media type.
*/ */
...@@ -585,11 +603,11 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) ...@@ -585,11 +603,11 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
**/ **/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{ {
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val; s32 ret_val;
u16 nvm_data; u16 nvm_data;
/* Read and store word 0x0F of the EEPROM. This word contains bits /*
* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode, * that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or * a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the * disabling auto-negotiation, and the direction of the
...@@ -605,12 +623,12 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) ...@@ -605,12 +623,12 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
} }
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
mac->fc = e1000_fc_none; hw->fc.type = e1000_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
NVM_WORD0F_ASM_DIR) NVM_WORD0F_ASM_DIR)
mac->fc = e1000_fc_tx_pause; hw->fc.type = e1000_fc_tx_pause;
else else
mac->fc = e1000_fc_full; hw->fc.type = e1000_fc_full;
return 0; return 0;
} }
...@@ -630,7 +648,8 @@ s32 e1000e_setup_link(struct e1000_hw *hw) ...@@ -630,7 +648,8 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac; struct e1000_mac_info *mac = &hw->mac;
s32 ret_val; s32 ret_val;
/* In the case of the phy reset being blocked, we already have a link. /*
* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again. * We do not need to set it up again.
*/ */
if (e1000_check_reset_block(hw)) if (e1000_check_reset_block(hw))
...@@ -640,26 +659,28 @@ s32 e1000e_setup_link(struct e1000_hw *hw) ...@@ -640,26 +659,28 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
* If flow control is set to default, set flow control based on * If flow control is set to default, set flow control based on
* the EEPROM flow control settings. * the EEPROM flow control settings.
*/ */
if (mac->fc == e1000_fc_default) { if (hw->fc.type == e1000_fc_default) {
ret_val = e1000_set_default_fc_generic(hw); ret_val = e1000_set_default_fc_generic(hw);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} }
/* We want to save off the original Flow Control configuration just /*
* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different * in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities. * hub or switch with different Flow Control capabilities.
*/ */
mac->original_fc = mac->fc; hw->fc.original_type = hw->fc.type;
hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
/* Call the necessary media_type subroutine to configure the link. */ /* Call the necessary media_type subroutine to configure the link. */
ret_val = mac->ops.setup_physical_interface(hw); ret_val = mac->ops.setup_physical_interface(hw);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Initialize the flow control address, type, and PAUSE timer /*
* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow * registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to * control is disabled, because it does not hurt anything to
* initialize these registers. * initialize these registers.
...@@ -669,7 +690,7 @@ s32 e1000e_setup_link(struct e1000_hw *hw) ...@@ -669,7 +690,7 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
ew32(FCTTV, mac->fc_pause_time); ew32(FCTTV, hw->fc.pause_time);
return e1000e_set_fc_watermarks(hw); return e1000e_set_fc_watermarks(hw);
} }
...@@ -686,7 +707,8 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) ...@@ -686,7 +707,8 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac; struct e1000_mac_info *mac = &hw->mac;
u32 txcw; u32 txcw;
/* Check for a software override of the flow control settings, and /*
* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then * setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in * software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto- * the Transmit Config Word Register (TXCW) and re-start auto-
...@@ -700,31 +722,34 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) ...@@ -700,31 +722,34 @@ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
* but not send pause frames). * but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we * 2: Tx flow control is enabled (we can send pause frames but we
* do not support receiving pause frames). * do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled. * 3: Both Rx and Tx flow control (symmetric) are enabled.
*/ */
switch (mac->fc) { switch (hw->fc.type) {
case e1000_fc_none: case e1000_fc_none:
/* Flow control completely disabled by a software over-ride. */ /* Flow control completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break; break;
case e1000_fc_rx_pause: case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled /*
* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to * by a software over-ride. Since there really isn't a way to
* advertise that we are capable of RX Pause ONLY, we will * advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric RX * advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send * PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames. * PAUSE frames.
*/ */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break; break;
case e1000_fc_tx_pause: case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, /*
* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride. * by a software over-ride.
*/ */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break; break;
case e1000_fc_full: case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software /*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride. * over-ride.
*/ */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
...@@ -754,7 +779,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) ...@@ -754,7 +779,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
u32 i, status; u32 i, status;
s32 ret_val; s32 ret_val;
/* If we have a signal (the cable is plugged in, or assumed true for /*
* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device * serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds * Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500 * seconds (Auto-negotiation should complete in less than 500
...@@ -769,7 +795,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) ...@@ -769,7 +795,8 @@ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
if (i == FIBER_LINK_UP_LIMIT) { if (i == FIBER_LINK_UP_LIMIT) {
hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = 1; mac->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call /*
* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the * mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to * link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners. * communicate with non-autonegotiating link partners.
...@@ -811,7 +838,8 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -811,7 +838,8 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Since auto-negotiation is enabled, take the link out of reset (the /*
* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This * link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful * will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable * then the link-up status bit will be set and the flow control enable
...@@ -823,11 +851,12 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -823,11 +851,12 @@ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
e1e_flush(); e1e_flush();
msleep(1); msleep(1);
/* For these adapters, the SW defineable pin 1 is set when the optics /*
* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up" * detect a signal. If we have a signal, then poll for a "Link-Up"
* indication. * indication.
*/ */
if (hw->media_type == e1000_media_type_internal_serdes || if (hw->phy.media_type == e1000_media_type_internal_serdes ||
(er32(CTRL) & E1000_CTRL_SWDPIN1)) { (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
ret_val = e1000_poll_fiber_serdes_link_generic(hw); ret_val = e1000_poll_fiber_serdes_link_generic(hw);
} else { } else {
...@@ -864,27 +893,28 @@ void e1000e_config_collision_dist(struct e1000_hw *hw) ...@@ -864,27 +893,28 @@ void e1000e_config_collision_dist(struct e1000_hw *hw)
* *
* Sets the flow control high/low threshold (watermark) registers. If * Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame * flow control XON frame transmission is enabled, then set XON frame
* tansmission as well. * transmission as well.
**/ **/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{ {
struct e1000_mac_info *mac = &hw->mac;
u32 fcrtl = 0, fcrth = 0; u32 fcrtl = 0, fcrth = 0;
/* Set the flow control receive threshold registers. Normally, /*
* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be * these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the * adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these * ability to transmit pause frames is not enabled, then these
* registers will be set to 0. * registers will be set to 0.
*/ */
if (mac->fc & e1000_fc_tx_pause) { if (hw->fc.type & e1000_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water /*
* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of * marks as well as (optionally) enabling the transmission of
* XON frames. * XON frames.
*/ */
fcrtl = mac->fc_low_water; fcrtl = hw->fc.low_water;
fcrtl |= E1000_FCRTL_XONE; fcrtl |= E1000_FCRTL_XONE;
fcrth = mac->fc_high_water; fcrth = hw->fc.high_water;
} }
ew32(FCRTL, fcrtl); ew32(FCRTL, fcrtl);
ew32(FCRTH, fcrth); ew32(FCRTH, fcrth);
...@@ -904,18 +934,18 @@ s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) ...@@ -904,18 +934,18 @@ s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
**/ **/
s32 e1000e_force_mac_fc(struct e1000_hw *hw) s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{ {
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl; u32 ctrl;
ctrl = er32(CTRL); ctrl = er32(CTRL);
/* Because we didn't get link via the internal auto-negotiation /*
* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY * mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an * auto-neg), we have to manually enable/disable transmit an
* receive flow control. * receive flow control.
* *
* The "Case" statement below enables/disable flow control * The "Case" statement below enables/disable flow control
* according to the "mac->fc" parameter. * according to the "hw->fc.type" parameter.
* *
* The possible values of the "fc" parameter are: * The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled * 0: Flow control is completely disabled
...@@ -923,12 +953,12 @@ s32 e1000e_force_mac_fc(struct e1000_hw *hw) ...@@ -923,12 +953,12 @@ s32 e1000e_force_mac_fc(struct e1000_hw *hw)
* frames but not send pause frames). * frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames * 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames). * frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled. * 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point. * other: No other values should be possible at this point.
*/ */
hw_dbg(hw, "mac->fc = %u\n", mac->fc); hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type);
switch (mac->fc) { switch (hw->fc.type) {
case e1000_fc_none: case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break; break;
...@@ -970,16 +1000,17 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -970,16 +1000,17 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex; u16 speed, duplex;
/* Check for the case where we have fiber media and auto-neg failed /*
* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the * so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter. * configuration of the MAC to match the "fc" parameter.
*/ */
if (mac->autoneg_failed) { if (mac->autoneg_failed) {
if (hw->media_type == e1000_media_type_fiber || if (hw->phy.media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) hw->phy.media_type == e1000_media_type_internal_serdes)
ret_val = e1000e_force_mac_fc(hw); ret_val = e1000e_force_mac_fc(hw);
} else { } else {
if (hw->media_type == e1000_media_type_copper) if (hw->phy.media_type == e1000_media_type_copper)
ret_val = e1000e_force_mac_fc(hw); ret_val = e1000e_force_mac_fc(hw);
} }
...@@ -988,13 +1019,15 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -988,13 +1019,15 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* Check for the case where we have copper media and auto-neg is /*
* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg * enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has * has completed, and if so, how the PHY and link partner has
* flow control configured. * flow control configured.
*/ */
if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) { if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg /*
* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has * has completed. We read this twice because this reg has
* some "sticky" (latched) bits. * some "sticky" (latched) bits.
*/ */
...@@ -1011,7 +1044,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1011,7 +1044,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* The AutoNeg process has completed, so we now need to /*
* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement * read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base * Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how * Page Ability Register (Address 5) to determine how
...@@ -1024,7 +1058,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1024,7 +1058,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register /*
* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base * (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control * Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following * for both the PHY and the link partner. The following
...@@ -1045,8 +1080,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1045,8 +1080,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
* 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
* *
*/ *
/* Are both PAUSE bits set to 1? If so, this implies * Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The * Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec. * ASM_DIR bits are irrelevant per the spec.
* *
...@@ -1060,22 +1095,24 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1060,22 +1095,24 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
*/ */
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY /*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise * of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX * FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to * ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames. * turn OFF the TRANSMISSION of PAUSE frames.
*/ */
if (mac->original_fc == e1000_fc_full) { if (hw->fc.original_type == e1000_fc_full) {
mac->fc = e1000_fc_full; hw->fc.type = e1000_fc_full;
hw_dbg(hw, "Flow Control = FULL.\r\n"); hw_dbg(hw, "Flow Control = FULL.\r\n");
} else { } else {
mac->fc = e1000_fc_rx_pause; hw->fc.type = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = " hw_dbg(hw, "Flow Control = "
"RX PAUSE frames only.\r\n"); "RX PAUSE frames only.\r\n");
} }
} }
/* For receiving PAUSE frames ONLY. /*
* For receiving PAUSE frames ONLY.
* *
* LOCAL DEVICE | LINK PARTNER * LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
...@@ -1087,10 +1124,11 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1087,10 +1124,11 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
mac->fc = e1000_fc_tx_pause; hw->fc.type = e1000_fc_tx_pause;
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n");
} }
/* For transmitting PAUSE frames ONLY. /*
* For transmitting PAUSE frames ONLY.
* *
* LOCAL DEVICE | LINK PARTNER * LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
...@@ -1102,18 +1140,19 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1102,18 +1140,19 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
mac->fc = e1000_fc_rx_pause; hw->fc.type = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n");
} else { } else {
/* /*
* Per the IEEE spec, at this point flow control * Per the IEEE spec, at this point flow control
* should be disabled. * should be disabled.
*/ */
mac->fc = e1000_fc_none; hw->fc.type = e1000_fc_none;
hw_dbg(hw, "Flow Control = NONE.\r\n"); hw_dbg(hw, "Flow Control = NONE.\r\n");
} }
/* Now we need to do one last check... If we auto- /*
* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be * negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec. * enabled per IEEE 802.3 spec.
*/ */
...@@ -1124,9 +1163,10 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) ...@@ -1124,9 +1163,10 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
} }
if (duplex == HALF_DUPLEX) if (duplex == HALF_DUPLEX)
mac->fc = e1000_fc_none; hw->fc.type = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC /*
* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings. * controller to use the correct flow control settings.
*/ */
ret_val = e1000e_force_mac_fc(hw); ret_val = e1000e_force_mac_fc(hw);
...@@ -1393,13 +1433,15 @@ s32 e1000e_blink_led(struct e1000_hw *hw) ...@@ -1393,13 +1433,15 @@ s32 e1000e_blink_led(struct e1000_hw *hw)
u32 ledctl_blink = 0; u32 ledctl_blink = 0;
u32 i; u32 i;
if (hw->media_type == e1000_media_type_fiber) { if (hw->phy.media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */ /* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK | ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else { } else {
/* set the blink bit for each LED that's "on" (0x0E) /*
* in ledctl_mode2 */ * set the blink bit for each LED that's "on" (0x0E)
* in ledctl_mode2
*/
ledctl_blink = hw->mac.ledctl_mode2; ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
...@@ -1423,7 +1465,7 @@ s32 e1000e_led_on_generic(struct e1000_hw *hw) ...@@ -1423,7 +1465,7 @@ s32 e1000e_led_on_generic(struct e1000_hw *hw)
{ {
u32 ctrl; u32 ctrl;
switch (hw->media_type) { switch (hw->phy.media_type) {
case e1000_media_type_fiber: case e1000_media_type_fiber:
ctrl = er32(CTRL); ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_SWDPIN0; ctrl &= ~E1000_CTRL_SWDPIN0;
...@@ -1450,7 +1492,7 @@ s32 e1000e_led_off_generic(struct e1000_hw *hw) ...@@ -1450,7 +1492,7 @@ s32 e1000e_led_off_generic(struct e1000_hw *hw)
{ {
u32 ctrl; u32 ctrl;
switch (hw->media_type) { switch (hw->phy.media_type) {
case e1000_media_type_fiber: case e1000_media_type_fiber:
ctrl = er32(CTRL); ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIN0;
...@@ -1562,8 +1604,7 @@ void e1000e_update_adaptive(struct e1000_hw *hw) ...@@ -1562,8 +1604,7 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
else else
mac->current_ifs_val += mac->current_ifs_val +=
mac->ifs_step_size; mac->ifs_step_size;
ew32(AIT, ew32(AIT, mac->current_ifs_val);
mac->current_ifs_val);
} }
} }
} else { } else {
...@@ -1826,10 +1867,12 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) ...@@ -1826,10 +1867,12 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
udelay(1); udelay(1);
timeout = NVM_MAX_RETRY_SPI; timeout = NVM_MAX_RETRY_SPI;
/* Read "Status Register" repeatedly until the LSB is cleared. /*
* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed * The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's * by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out. */ * not cleared within 'timeout', then error out.
*/
while (timeout) { while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits); hw->nvm.opcode_bits);
...@@ -1866,8 +1909,10 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) ...@@ -1866,8 +1909,10 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
u32 i, eerd = 0; u32 i, eerd = 0;
s32 ret_val = 0; s32 ret_val = 0;
/* A check for invalid values: offset too large, too many words, /*
* and not enough words. */ * A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) { (words == 0)) {
hw_dbg(hw, "nvm parameter(s) out of bounds\n"); hw_dbg(hw, "nvm parameter(s) out of bounds\n");
...@@ -1883,8 +1928,7 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) ...@@ -1883,8 +1928,7 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
if (ret_val) if (ret_val)
break; break;
data[i] = (er32(EERD) >> data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
E1000_NVM_RW_REG_DATA);
} }
return ret_val; return ret_val;
...@@ -1908,8 +1952,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) ...@@ -1908,8 +1952,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
s32 ret_val; s32 ret_val;
u16 widx = 0; u16 widx = 0;
/* A check for invalid values: offset too large, too many words, /*
* and not enough words. */ * A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) { (words == 0)) {
hw_dbg(hw, "nvm parameter(s) out of bounds\n"); hw_dbg(hw, "nvm parameter(s) out of bounds\n");
...@@ -1939,8 +1985,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) ...@@ -1939,8 +1985,10 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
e1000_standby_nvm(hw); e1000_standby_nvm(hw);
/* Some SPI eeproms use the 8th address bit embedded in the /*
* opcode */ * Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128)) if ((nvm->address_bits == 8) && (offset >= 128))
write_opcode |= NVM_A8_OPCODE_SPI; write_opcode |= NVM_A8_OPCODE_SPI;
...@@ -1985,9 +2033,9 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw) ...@@ -1985,9 +2033,9 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
/* Check for an alternate MAC address. An alternate MAC /* Check for an alternate MAC address. An alternate MAC
* address can be setup by pre-boot software and must be * address can be setup by pre-boot software and must be
* treated like a permanent address and must override the * treated like a permanent address and must override the
* actual permanent MAC address. */ * actual permanent MAC address.*/
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&mac_addr_offset); &mac_addr_offset);
if (ret_val) { if (ret_val) {
hw_dbg(hw, "NVM Read Error\n"); hw_dbg(hw, "NVM Read Error\n");
return ret_val; return ret_val;
...@@ -2000,7 +2048,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw) ...@@ -2000,7 +2048,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
mac_addr_offset += ETH_ALEN/sizeof(u16); mac_addr_offset += ETH_ALEN/sizeof(u16);
/* make sure we have a valid mac address here /* make sure we have a valid mac address here
* before using it */ * before using it */
ret_val = e1000_read_nvm(hw, mac_addr_offset, 1, ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
&nvm_data); &nvm_data);
if (ret_val) { if (ret_val) {
...@@ -2012,7 +2060,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw) ...@@ -2012,7 +2060,7 @@ s32 e1000e_read_mac_addr(struct e1000_hw *hw)
} }
if (mac_addr_offset) if (mac_addr_offset)
hw->dev_spec.e82571.alt_mac_addr_is_present = 1; hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
} }
for (i = 0; i < ETH_ALEN; i += 2) { for (i = 0; i < ETH_ALEN; i += 2) {
...@@ -2188,7 +2236,7 @@ bool e1000e_check_mng_mode(struct e1000_hw *hw) ...@@ -2188,7 +2236,7 @@ bool e1000e_check_mng_mode(struct e1000_hw *hw)
} }
/** /**
* e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* *
* Enables packet filtering on transmit packets if manageability is enabled * Enables packet filtering on transmit packets if manageability is enabled
...@@ -2208,7 +2256,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) ...@@ -2208,7 +2256,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
return 0; return 0;
} }
/* If we can't read from the host interface for whatever /*
* If we can't read from the host interface for whatever
* reason, disable filtering. * reason, disable filtering.
*/ */
ret_val = e1000_mng_enable_host_if(hw); ret_val = e1000_mng_enable_host_if(hw);
...@@ -2226,7 +2275,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) ...@@ -2226,7 +2275,8 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
hdr->checksum = 0; hdr->checksum = 0;
csum = e1000_calculate_checksum((u8 *)hdr, csum = e1000_calculate_checksum((u8 *)hdr,
E1000_MNG_DHCP_COOKIE_LENGTH); E1000_MNG_DHCP_COOKIE_LENGTH);
/* If either the checksums or signature don't match, then /*
* If either the checksums or signature don't match, then
* the cookie area isn't considered valid, in which case we * the cookie area isn't considered valid, in which case we
* take the safe route of assuming Tx filtering is enabled. * take the safe route of assuming Tx filtering is enabled.
*/ */
...@@ -2318,8 +2368,10 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, ...@@ -2318,8 +2368,10 @@ static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
/* Calculate length in DWORDs */ /* Calculate length in DWORDs */
length >>= 2; length >>= 2;
/* The device driver writes the relevant command block into the /*
* ram area. */ * The device driver writes the relevant command block into the
* ram area.
*/
for (i = 0; i < length; i++) { for (i = 0; i < length; i++) {
for (j = 0; j < sizeof(u32); j++) { for (j = 0; j < sizeof(u32); j++) {
*(tmp + j) = *bufptr++; *(tmp + j) = *bufptr++;
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -82,7 +82,7 @@ static int e1000_desc_unused(struct e1000_ring *ring) ...@@ -82,7 +82,7 @@ static int e1000_desc_unused(struct e1000_ring *ring)
} }
/** /**
* e1000_receive_skb - helper function to handle rx indications * e1000_receive_skb - helper function to handle Rx indications
* @adapter: board private structure * @adapter: board private structure
* @status: descriptor status field as written by hardware * @status: descriptor status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion) * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
...@@ -138,8 +138,9 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, ...@@ -138,8 +138,9 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
/* TCP checksum is good */ /* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY; skb->ip_summed = CHECKSUM_UNNECESSARY;
} else { } else {
/* IP fragment with UDP payload */ /*
/* Hardware complements the payload checksum, so we undo it * IP fragment with UDP payload
* Hardware complements the payload checksum, so we undo it
* and then put the value in host order for further stack use. * and then put the value in host order for further stack use.
*/ */
__sum16 sum = (__force __sum16)htons(csum); __sum16 sum = (__force __sum16)htons(csum);
...@@ -182,7 +183,8 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, ...@@ -182,7 +183,8 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
break; break;
} }
/* Make buffer alignment 2 beyond a 16 byte boundary /*
* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after * this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed * the 14 byte MAC header is removed
*/ */
...@@ -213,10 +215,12 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, ...@@ -213,10 +215,12 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
if (i-- == 0) if (i-- == 0)
i = (rx_ring->count - 1); i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w /*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only * know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs, * applicable for weak-ordered memory model archs,
* such as IA-64). */ * such as IA-64).
*/
wmb(); wmb();
writel(i, adapter->hw.hw_addr + rx_ring->tail); writel(i, adapter->hw.hw_addr + rx_ring->tail);
} }
...@@ -285,7 +289,8 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, ...@@ -285,7 +289,8 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
break; break;
} }
/* Make buffer alignment 2 beyond a 16 byte boundary /*
* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after * this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed * the 14 byte MAC header is removed
*/ */
...@@ -319,12 +324,15 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, ...@@ -319,12 +324,15 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
if (!(i--)) if (!(i--))
i = (rx_ring->count - 1); i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w /*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only * know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs, * applicable for weak-ordered memory model archs,
* such as IA-64). */ * such as IA-64).
*/
wmb(); wmb();
/* Hardware increments by 16 bytes, but packet split /*
* Hardware increments by 16 bytes, but packet split
* descriptors are 32 bytes...so we increment tail * descriptors are 32 bytes...so we increment tail
* twice as much. * twice as much.
*/ */
...@@ -409,9 +417,11 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, ...@@ -409,9 +417,11 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
total_rx_bytes += length; total_rx_bytes += length;
total_rx_packets++; total_rx_packets++;
/* code added for copybreak, this should improve /*
* code added for copybreak, this should improve
* performance for small packets with large amounts * performance for small packets with large amounts
* of reassembly being done in the stack */ * of reassembly being done in the stack
*/
if (length < copybreak) { if (length < copybreak) {
struct sk_buff *new_skb = struct sk_buff *new_skb =
netdev_alloc_skb(netdev, length + NET_IP_ALIGN); netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
...@@ -581,14 +591,15 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) ...@@ -581,14 +591,15 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
} }
if (adapter->detect_tx_hung) { if (adapter->detect_tx_hung) {
/* Detect a transmit hang in hardware, this serializes the /*
* check with the clearing of time_stamp and movement of i */ * Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
adapter->detect_tx_hung = 0; adapter->detect_tx_hung = 0;
if (tx_ring->buffer_info[eop].dma && if (tx_ring->buffer_info[eop].dma &&
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
+ (adapter->tx_timeout_factor * HZ)) + (adapter->tx_timeout_factor * HZ))
&& !(er32(STATUS) & && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
E1000_STATUS_TXOFF)) {
e1000_print_tx_hang(adapter); e1000_print_tx_hang(adapter);
netif_stop_queue(netdev); netif_stop_queue(netdev);
} }
...@@ -677,21 +688,28 @@ static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, ...@@ -677,21 +688,28 @@ static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
skb_put(skb, length); skb_put(skb, length);
{ {
/* this looks ugly, but it seems compiler issues make it /*
more efficient than reusing j */ * this looks ugly, but it seems compiler issues make it
* more efficient than reusing j
*/
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/* page alloc/put takes too long and effects small packet /*
* throughput, so unsplit small packets and save the alloc/put*/ * page alloc/put takes too long and effects small packet
* throughput, so unsplit small packets and save the alloc/put
* only valid in softirq (napi) context to call kmap_*
*/
if (l1 && (l1 <= copybreak) && if (l1 && (l1 <= copybreak) &&
((length + l1) <= adapter->rx_ps_bsize0)) { ((length + l1) <= adapter->rx_ps_bsize0)) {
u8 *vaddr; u8 *vaddr;
ps_page = &buffer_info->ps_pages[0]; ps_page = &buffer_info->ps_pages[0];
/* there is no documentation about how to call /*
* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping * kmap_atomic, so we can't hold the mapping
* very long */ * very long
*/
pci_dma_sync_single_for_cpu(pdev, ps_page->dma, pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
PAGE_SIZE, PCI_DMA_FROMDEVICE); PAGE_SIZE, PCI_DMA_FROMDEVICE);
vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
...@@ -836,24 +854,31 @@ static irqreturn_t e1000_intr_msi(int irq, void *data) ...@@ -836,24 +854,31 @@ static irqreturn_t e1000_intr_msi(int irq, void *data)
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR); u32 icr = er32(ICR);
/* read ICR disables interrupts using IAM */ /*
* read ICR disables interrupts using IAM
*/
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1; hw->mac.get_link_status = 1;
/* ICH8 workaround-- Call gig speed drop workaround on cable /*
* disconnect (LSC) before accessing any PHY registers */ * ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU))) (!(er32(STATUS) & E1000_STATUS_LU)))
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
/* 80003ES2LAN workaround-- For packet buffer work-around on /*
* 80003ES2LAN workaround-- For packet buffer work-around on
* link down event; disable receives here in the ISR and reset * link down event; disable receives here in the ISR and reset
* adapter in watchdog */ * adapter in watchdog
*/
if (netif_carrier_ok(netdev) && if (netif_carrier_ok(netdev) &&
adapter->flags & FLAG_RX_NEEDS_RESTART) { adapter->flags & FLAG_RX_NEEDS_RESTART) {
/* disable receives */ /* disable receives */
u32 rctl = er32(RCTL); u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
} }
/* guard against interrupt when we're going down */ /* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state)) if (!test_bit(__E1000_DOWN, &adapter->state))
...@@ -886,23 +911,31 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -886,23 +911,31 @@ static irqreturn_t e1000_intr(int irq, void *data)
if (!icr) if (!icr)
return IRQ_NONE; /* Not our interrupt */ return IRQ_NONE; /* Not our interrupt */
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is /*
* not set, then the adapter didn't send an interrupt */ * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & E1000_ICR_INT_ASSERTED)) if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE; return IRQ_NONE;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No /*
* need for the IMC write */ * Interrupt Auto-Mask...upon reading ICR,
* interrupts are masked. No need for the
* IMC write
*/
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1; hw->mac.get_link_status = 1;
/* ICH8 workaround-- Call gig speed drop workaround on cable /*
* disconnect (LSC) before accessing any PHY registers */ * ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU))) (!(er32(STATUS) & E1000_STATUS_LU)))
e1000e_gig_downshift_workaround_ich8lan(hw); e1000e_gig_downshift_workaround_ich8lan(hw);
/* 80003ES2LAN workaround-- /*
* 80003ES2LAN workaround--
* For packet buffer work-around on link down event; * For packet buffer work-around on link down event;
* disable receives here in the ISR and * disable receives here in the ISR and
* reset adapter in watchdog * reset adapter in watchdog
...@@ -912,6 +945,7 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -912,6 +945,7 @@ static irqreturn_t e1000_intr(int irq, void *data)
/* disable receives */ /* disable receives */
rctl = er32(RCTL); rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
} }
/* guard against interrupt when we're going down */ /* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state)) if (!test_bit(__E1000_DOWN, &adapter->state))
...@@ -1011,8 +1045,7 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter) ...@@ -1011,8 +1045,7 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter)
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
} }
} }
...@@ -1038,8 +1071,7 @@ static void e1000_release_hw_control(struct e1000_adapter *adapter) ...@@ -1038,8 +1071,7 @@ static void e1000_release_hw_control(struct e1000_adapter *adapter)
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
} }
} }
...@@ -1341,9 +1373,11 @@ static void e1000_set_itr(struct e1000_adapter *adapter) ...@@ -1341,9 +1373,11 @@ static void e1000_set_itr(struct e1000_adapter *adapter)
set_itr_now: set_itr_now:
if (new_itr != adapter->itr) { if (new_itr != adapter->itr) {
/* this attempts to bias the interrupt rate towards Bulk /*
* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is * by adding intermediate steps when interrupt rate is
* increasing */ * increasing
*/
new_itr = new_itr > adapter->itr ? new_itr = new_itr > adapter->itr ?
min(adapter->itr + (new_itr >> 2), new_itr) : min(adapter->itr + (new_itr >> 2), new_itr) :
new_itr; new_itr;
...@@ -1354,7 +1388,7 @@ static void e1000_set_itr(struct e1000_adapter *adapter) ...@@ -1354,7 +1388,7 @@ static void e1000_set_itr(struct e1000_adapter *adapter)
/** /**
* e1000_clean - NAPI Rx polling callback * e1000_clean - NAPI Rx polling callback
* @adapter: board private structure * @napi: struct associated with this polling callback
* @budget: amount of packets driver is allowed to process this poll * @budget: amount of packets driver is allowed to process this poll
**/ **/
static int e1000_clean(struct napi_struct *napi, int budget) static int e1000_clean(struct napi_struct *napi, int budget)
...@@ -1366,10 +1400,12 @@ static int e1000_clean(struct napi_struct *napi, int budget) ...@@ -1366,10 +1400,12 @@ static int e1000_clean(struct napi_struct *napi, int budget)
/* Must NOT use netdev_priv macro here. */ /* Must NOT use netdev_priv macro here. */
adapter = poll_dev->priv; adapter = poll_dev->priv;
/* e1000_clean is called per-cpu. This lock protects /*
* e1000_clean is called per-cpu. This lock protects
* tx_ring from being cleaned by multiple cpus * tx_ring from being cleaned by multiple cpus
* simultaneously. A failure obtaining the lock means * simultaneously. A failure obtaining the lock means
* tx_ring is currently being cleaned anyway. */ * tx_ring is currently being cleaned anyway.
*/
if (spin_trylock(&adapter->tx_queue_lock)) { if (spin_trylock(&adapter->tx_queue_lock)) {
tx_cleaned = e1000_clean_tx_irq(adapter); tx_cleaned = e1000_clean_tx_irq(adapter);
spin_unlock(&adapter->tx_queue_lock); spin_unlock(&adapter->tx_queue_lock);
...@@ -1539,9 +1575,11 @@ static void e1000_init_manageability(struct e1000_adapter *adapter) ...@@ -1539,9 +1575,11 @@ static void e1000_init_manageability(struct e1000_adapter *adapter)
manc = er32(MANC); manc = er32(MANC);
/* enable receiving management packets to the host. this will probably /*
* enable receiving management packets to the host. this will probably
* generate destination unreachable messages from the host OS, but * generate destination unreachable messages from the host OS, but
* the packets will be handled on SMBUS */ * the packets will be handled on SMBUS
*/
manc |= E1000_MANC_EN_MNG2HOST; manc |= E1000_MANC_EN_MNG2HOST;
manc2h = er32(MANC2H); manc2h = er32(MANC2H);
#define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_623 (1 << 5)
...@@ -1591,7 +1629,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1591,7 +1629,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
/* Set the Tx Interrupt Delay register */ /* Set the Tx Interrupt Delay register */
ew32(TIDV, adapter->tx_int_delay); ew32(TIDV, adapter->tx_int_delay);
/* tx irq moderation */ /* Tx irq moderation */
ew32(TADV, adapter->tx_abs_int_delay); ew32(TADV, adapter->tx_abs_int_delay);
/* Program the Transmit Control Register */ /* Program the Transmit Control Register */
...@@ -1602,8 +1640,10 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1602,8 +1640,10 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
tarc = er32(TARC0); tarc = er32(TARC0);
/* set the speed mode bit, we'll clear it if we're not at /*
* gigabit link later */ * set the speed mode bit, we'll clear it if we're not at
* gigabit link later
*/
#define SPEED_MODE_BIT (1 << 21) #define SPEED_MODE_BIT (1 << 21)
tarc |= SPEED_MODE_BIT; tarc |= SPEED_MODE_BIT;
ew32(TARC0, tarc); ew32(TARC0, tarc);
...@@ -1724,8 +1764,10 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1724,8 +1764,10 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
/* Configure extra packet-split registers */ /* Configure extra packet-split registers */
rfctl = er32(RFCTL); rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN; rfctl |= E1000_RFCTL_EXTEN;
/* disable packet split support for IPv6 extension headers, /*
* because some malformed IPv6 headers can hang the RX */ * disable packet split support for IPv6 extension headers,
* because some malformed IPv6 headers can hang the Rx
*/
rfctl |= (E1000_RFCTL_IPV6_EX_DIS | rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_RFCTL_NEW_IPV6_EXT_DIS);
...@@ -1754,6 +1796,8 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1754,6 +1796,8 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
} }
ew32(RCTL, rctl); ew32(RCTL, rctl);
/* just started the receive unit, no need to restart */
adapter->flags &= ~FLAG_RX_RESTART_NOW;
} }
/** /**
...@@ -1794,8 +1838,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1794,8 +1838,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
/* irq moderation */ /* irq moderation */
ew32(RADV, adapter->rx_abs_int_delay); ew32(RADV, adapter->rx_abs_int_delay);
if (adapter->itr_setting != 0) if (adapter->itr_setting != 0)
ew32(ITR, ew32(ITR, 1000000000 / (adapter->itr * 256));
1000000000 / (adapter->itr * 256));
ctrl_ext = er32(CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
/* Reset delay timers after every interrupt */ /* Reset delay timers after every interrupt */
...@@ -1806,8 +1849,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1806,8 +1849,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
ew32(CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
e1e_flush(); e1e_flush();
/* Setup the HW Rx Head and Tail Descriptor Pointers and /*
* the Base and Length of the Rx Descriptor Ring */ * Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
rdba = rx_ring->dma; rdba = rx_ring->dma;
ew32(RDBAL, (rdba & DMA_32BIT_MASK)); ew32(RDBAL, (rdba & DMA_32BIT_MASK));
ew32(RDBAH, (rdba >> 32)); ew32(RDBAH, (rdba >> 32));
...@@ -1822,8 +1867,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1822,8 +1867,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
if (adapter->flags & FLAG_RX_CSUM_ENABLED) { if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
rxcsum |= E1000_RXCSUM_TUOFL; rxcsum |= E1000_RXCSUM_TUOFL;
/* IPv4 payload checksum for UDP fragments must be /*
* used in conjunction with packet-split. */ * IPv4 payload checksum for UDP fragments must be
* used in conjunction with packet-split.
*/
if (adapter->rx_ps_pages) if (adapter->rx_ps_pages)
rxcsum |= E1000_RXCSUM_IPPCSE; rxcsum |= E1000_RXCSUM_IPPCSE;
} else { } else {
...@@ -1832,9 +1879,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1832,9 +1879,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
} }
ew32(RXCSUM, rxcsum); ew32(RXCSUM, rxcsum);
/* Enable early receives on supported devices, only takes effect when /*
* Enable early receives on supported devices, only takes effect when
* packet size is equal or larger than the specified value (in 8 byte * packet size is equal or larger than the specified value (in 8 byte
* units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ * units), e.g. using jumbo frames when setting to E1000_ERT_2048
*/
if ((adapter->flags & FLAG_HAS_ERT) && if ((adapter->flags & FLAG_HAS_ERT) &&
(adapter->netdev->mtu > ETH_DATA_LEN)) (adapter->netdev->mtu > ETH_DATA_LEN))
ew32(ERT, E1000_ERT_2048); ew32(ERT, E1000_ERT_2048);
...@@ -1844,7 +1893,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1844,7 +1893,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
} }
/** /**
* e1000_mc_addr_list_update - Update Multicast addresses * e1000_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program * @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program * @mc_addr_count: number of multicast addresses to program
...@@ -1858,11 +1907,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -1858,11 +1907,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
* exists and all implementations are handled in the generic version of this * exists and all implementations are handled in the generic version of this
* function. * function.
**/ **/
static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count, u32 rar_used_count, u32 mc_addr_count, u32 rar_used_count,
u32 rar_count) u32 rar_count)
{ {
hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
rar_used_count, rar_count); rar_used_count, rar_count);
} }
...@@ -1916,7 +1965,7 @@ static void e1000_set_multi(struct net_device *netdev) ...@@ -1916,7 +1965,7 @@ static void e1000_set_multi(struct net_device *netdev)
mc_ptr = mc_ptr->next; mc_ptr = mc_ptr->next;
} }
e1000_mc_addr_list_update(hw, mta_list, i, 1, e1000_update_mc_addr_list(hw, mta_list, i, 1,
mac->rar_entry_count); mac->rar_entry_count);
kfree(mta_list); kfree(mta_list);
} else { } else {
...@@ -1924,13 +1973,12 @@ static void e1000_set_multi(struct net_device *netdev) ...@@ -1924,13 +1973,12 @@ static void e1000_set_multi(struct net_device *netdev)
* if we're called from probe, we might not have * if we're called from probe, we might not have
* anything to do here, so clear out the list * anything to do here, so clear out the list
*/ */
e1000_mc_addr_list_update(hw, NULL, 0, 1, e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
mac->rar_entry_count);
} }
} }
/** /**
* e1000_configure - configure the hardware for RX and TX * e1000_configure - configure the hardware for Rx and Tx
* @adapter: private board structure * @adapter: private board structure
**/ **/
static void e1000_configure(struct e1000_adapter *adapter) static void e1000_configure(struct e1000_adapter *adapter)
...@@ -1943,8 +1991,7 @@ static void e1000_configure(struct e1000_adapter *adapter) ...@@ -1943,8 +1991,7 @@ static void e1000_configure(struct e1000_adapter *adapter)
e1000_configure_tx(adapter); e1000_configure_tx(adapter);
e1000_setup_rctl(adapter); e1000_setup_rctl(adapter);
e1000_configure_rx(adapter); e1000_configure_rx(adapter);
adapter->alloc_rx_buf(adapter, adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
e1000_desc_unused(adapter->rx_ring));
} }
/** /**
...@@ -1960,9 +2007,11 @@ void e1000e_power_up_phy(struct e1000_adapter *adapter) ...@@ -1960,9 +2007,11 @@ void e1000e_power_up_phy(struct e1000_adapter *adapter)
u16 mii_reg = 0; u16 mii_reg = 0;
/* Just clear the power down bit to wake the phy back up */ /* Just clear the power down bit to wake the phy back up */
if (adapter->hw.media_type == e1000_media_type_copper) { if (adapter->hw.phy.media_type == e1000_media_type_copper) {
/* according to the manual, the phy will retain its /*
* settings across a power-down/up cycle */ * According to the manual, the phy will retain its
* settings across a power-down/up cycle
*/
e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN; mii_reg &= ~MII_CR_POWER_DOWN;
e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
...@@ -1987,12 +2036,11 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter) ...@@ -1987,12 +2036,11 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
return; return;
/* non-copper PHY? */ /* non-copper PHY? */
if (adapter->hw.media_type != e1000_media_type_copper) if (adapter->hw.phy.media_type != e1000_media_type_copper)
return; return;
/* reset is blocked because of a SoL/IDER session */ /* reset is blocked because of a SoL/IDER session */
if (e1000e_check_mng_mode(hw) || if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
e1000_check_reset_block(hw))
return; return;
/* manageability (AMT) is enabled */ /* manageability (AMT) is enabled */
...@@ -2012,51 +2060,61 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter) ...@@ -2012,51 +2060,61 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
* This function boots the hardware and enables some settings that * This function boots the hardware and enables some settings that
* require a configuration cycle of the hardware - those cannot be * require a configuration cycle of the hardware - those cannot be
* set/changed during runtime. After reset the device needs to be * set/changed during runtime. After reset the device needs to be
* properly configured for rx, tx etc. * properly configured for Rx, Tx etc.
*/ */
void e1000e_reset(struct e1000_adapter *adapter) void e1000e_reset(struct e1000_adapter *adapter)
{ {
struct e1000_mac_info *mac = &adapter->hw.mac; struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_fc_info *fc = &adapter->hw.fc;
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 tx_space, min_tx_space, min_rx_space; u32 tx_space, min_tx_space, min_rx_space;
u32 pba; u32 pba = adapter->pba;
u16 hwm; u16 hwm;
ew32(PBA, adapter->pba); /* reset Packet Buffer Allocation to default */
ew32(PBA, pba);
if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
/* To maintain wire speed transmits, the Tx FIFO should be /*
* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets, * large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise, * rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least * the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and * one full receive packet and is similarly rounded up and
* expressed in KB. */ * expressed in KB.
*/
pba = er32(PBA); pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */ /* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16; tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */ /* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff; pba &= 0xffff;
/* the tx fifo also stores 16 bytes of information about the tx /*
* but don't include ethernet FCS because hardware appends it */ * the Tx fifo also stores 16 bytes of information about the tx
min_tx_space = (mac->max_frame_size + * but don't include ethernet FCS because hardware appends it
*/
min_tx_space = (adapter->max_frame_size +
sizeof(struct e1000_tx_desc) - sizeof(struct e1000_tx_desc) -
ETH_FCS_LEN) * 2; ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024); min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10; min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */ /* software strips receive CRC, so leave room for it */
min_rx_space = mac->max_frame_size; min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024); min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10; min_rx_space >>= 10;
/* If current Tx allocation is less than the min Tx FIFO size, /*
* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO * and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation */ * allocation, take space away from current Rx allocation
*/
if ((tx_space < min_tx_space) && if ((tx_space < min_tx_space) &&
((min_tx_space - tx_space) < pba)) { ((min_tx_space - tx_space) < pba)) {
pba -= min_tx_space - tx_space; pba -= min_tx_space - tx_space;
/* if short on rx space, rx wins and must trump tx /*
* adjustment or use Early Receive if available */ * if short on Rx space, Rx wins and must trump tx
* adjustment or use Early Receive if available
*/
if ((pba < min_rx_space) && if ((pba < min_rx_space) &&
(!(adapter->flags & FLAG_HAS_ERT))) (!(adapter->flags & FLAG_HAS_ERT)))
/* ERT enabled in e1000_configure_rx */ /* ERT enabled in e1000_configure_rx */
...@@ -2067,29 +2125,33 @@ void e1000e_reset(struct e1000_adapter *adapter) ...@@ -2067,29 +2125,33 @@ void e1000e_reset(struct e1000_adapter *adapter)
} }
/* flow control settings */ /*
/* The high water mark must be low enough to fit one full frame * flow control settings
*
* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO. * (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of: * Set it to the lower of:
* - 90% of the Rx FIFO size, and * - 90% of the Rx FIFO size, and
* - the full Rx FIFO size minus the early receive size (for parts * - the full Rx FIFO size minus the early receive size (for parts
* with ERT support assuming ERT set to E1000_ERT_2048), or * with ERT support assuming ERT set to E1000_ERT_2048), or
* - the full Rx FIFO size minus one full frame */ * - the full Rx FIFO size minus one full frame
*/
if (adapter->flags & FLAG_HAS_ERT) if (adapter->flags & FLAG_HAS_ERT)
hwm = min(((adapter->pba << 10) * 9 / 10), hwm = min(((pba << 10) * 9 / 10),
((adapter->pba << 10) - (E1000_ERT_2048 << 3))); ((pba << 10) - (E1000_ERT_2048 << 3)));
else else
hwm = min(((adapter->pba << 10) * 9 / 10), hwm = min(((pba << 10) * 9 / 10),
((adapter->pba << 10) - mac->max_frame_size)); ((pba << 10) - adapter->max_frame_size));
mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
mac->fc_low_water = mac->fc_high_water - 8; fc->low_water = fc->high_water - 8;
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
mac->fc_pause_time = 0xFFFF; fc->pause_time = 0xFFFF;
else else
mac->fc_pause_time = E1000_FC_PAUSE_TIME; fc->pause_time = E1000_FC_PAUSE_TIME;
mac->fc = mac->original_fc; fc->send_xon = 1;
fc->type = fc->original_type;
/* Allow time for pending master requests to run */ /* Allow time for pending master requests to run */
mac->ops.reset_hw(hw); mac->ops.reset_hw(hw);
...@@ -2108,9 +2170,11 @@ void e1000e_reset(struct e1000_adapter *adapter) ...@@ -2108,9 +2170,11 @@ void e1000e_reset(struct e1000_adapter *adapter)
if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
u16 phy_data = 0; u16 phy_data = 0;
/* speed up time to link by disabling smart power down, ignore /*
* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing * the return value of this function because there is nothing
* different we would do if it failed */ * different we would do if it failed
*/
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
phy_data &= ~IGP02E1000_PM_SPD; phy_data &= ~IGP02E1000_PM_SPD;
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
...@@ -2140,8 +2204,10 @@ void e1000e_down(struct e1000_adapter *adapter) ...@@ -2140,8 +2204,10 @@ void e1000e_down(struct e1000_adapter *adapter)
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl; u32 tctl, rctl;
/* signal that we're down so the interrupt handler does not /*
* reschedule our watchdog timer */ * signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__E1000_DOWN, &adapter->state); set_bit(__E1000_DOWN, &adapter->state);
/* disable receives in the hardware */ /* disable receives in the hardware */
...@@ -2200,13 +2266,12 @@ void e1000e_reinit_locked(struct e1000_adapter *adapter) ...@@ -2200,13 +2266,12 @@ void e1000e_reinit_locked(struct e1000_adapter *adapter)
**/ **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter) static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
adapter->rx_ps_bsize0 = 128; adapter->rx_ps_bsize0 = 128;
hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
if (!adapter->tx_ring) if (!adapter->tx_ring)
...@@ -2272,16 +2337,20 @@ static int e1000_open(struct net_device *netdev) ...@@ -2272,16 +2337,20 @@ static int e1000_open(struct net_device *netdev)
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
/* If AMT is enabled, let the firmware know that the network /*
* interface is now open */ * If AMT is enabled, let the firmware know that the network
* interface is now open
*/
if ((adapter->flags & FLAG_HAS_AMT) && if ((adapter->flags & FLAG_HAS_AMT) &&
e1000e_check_mng_mode(&adapter->hw)) e1000e_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
/* before we allocate an interrupt, we must be ready to handle it. /*
* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our * as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so. */ * clean_rx handler before we do so.
*/
e1000_configure(adapter); e1000_configure(adapter);
err = e1000_request_irq(adapter); err = e1000_request_irq(adapter);
...@@ -2335,16 +2404,20 @@ static int e1000_close(struct net_device *netdev) ...@@ -2335,16 +2404,20 @@ static int e1000_close(struct net_device *netdev)
e1000e_free_tx_resources(adapter); e1000e_free_tx_resources(adapter);
e1000e_free_rx_resources(adapter); e1000e_free_rx_resources(adapter);
/* kill manageability vlan ID if supported, but not if a vlan with /*
* the same ID is registered on the host OS (let 8021q kill it) */ * kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it)
*/
if ((adapter->hw.mng_cookie.status & if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
!(adapter->vlgrp && !(adapter->vlgrp &&
vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
/* If AMT is enabled, let the firmware know that the network /*
* interface is now closed */ * If AMT is enabled, let the firmware know that the network
* interface is now closed
*/
if ((adapter->flags & FLAG_HAS_AMT) && if ((adapter->flags & FLAG_HAS_AMT) &&
e1000e_check_mng_mode(&adapter->hw)) e1000e_check_mng_mode(&adapter->hw))
e1000_release_hw_control(adapter); e1000_release_hw_control(adapter);
...@@ -2375,12 +2448,14 @@ static int e1000_set_mac(struct net_device *netdev, void *p) ...@@ -2375,12 +2448,14 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
/* activate the work around */ /* activate the work around */
e1000e_set_laa_state_82571(&adapter->hw, 1); e1000e_set_laa_state_82571(&adapter->hw, 1);
/* Hold a copy of the LAA in RAR[14] This is done so that /*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it * between the time RAR[0] gets clobbered and the time it
* gets fixed (in e1000_watchdog), the actual LAA is in one * gets fixed (in e1000_watchdog), the actual LAA is in one
* of the RARs and no incoming packets directed to this port * of the RARs and no incoming packets directed to this port
* are dropped. Eventually the LAA will be in RAR[0] and * are dropped. Eventually the LAA will be in RAR[0] and
* RAR[14] */ * RAR[14]
*/
e1000e_rar_set(&adapter->hw, e1000e_rar_set(&adapter->hw,
adapter->hw.mac.addr, adapter->hw.mac.addr,
adapter->hw.mac.rar_entry_count - 1); adapter->hw.mac.rar_entry_count - 1);
...@@ -2389,8 +2464,10 @@ static int e1000_set_mac(struct net_device *netdev, void *p) ...@@ -2389,8 +2464,10 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
return 0; return 0;
} }
/* Need to wait a few seconds after link up to get diagnostic information from /*
* the phy */ * Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void e1000_update_phy_info(unsigned long data) static void e1000_update_phy_info(unsigned long data)
{ {
struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct e1000_adapter *adapter = (struct e1000_adapter *) data;
...@@ -2421,7 +2498,8 @@ void e1000e_update_stats(struct e1000_adapter *adapter) ...@@ -2421,7 +2498,8 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
spin_lock_irqsave(&adapter->stats_lock, irq_flags); spin_lock_irqsave(&adapter->stats_lock, irq_flags);
/* these counters are modified from e1000_adjust_tbi_stats, /*
* these counters are modified from e1000_adjust_tbi_stats,
* called from the interrupt context, so they must only * called from the interrupt context, so they must only
* be written while holding adapter->stats_lock * be written while holding adapter->stats_lock
*/ */
...@@ -2515,8 +2593,10 @@ void e1000e_update_stats(struct e1000_adapter *adapter) ...@@ -2515,8 +2593,10 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
/* Rx Errors */ /* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build /*
* our own version based on RUC and ROC */ * RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
adapter->net_stats.rx_errors = adapter->stats.rxerrc + adapter->net_stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc + adapter->stats.ruc + adapter->stats.roc +
...@@ -2537,7 +2617,7 @@ void e1000e_update_stats(struct e1000_adapter *adapter) ...@@ -2537,7 +2617,7 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
/* Tx Dropped needs to be maintained elsewhere */ /* Tx Dropped needs to be maintained elsewhere */
/* Phy Stats */ /* Phy Stats */
if (hw->media_type == e1000_media_type_copper) { if (hw->phy.media_type == e1000_media_type_copper) {
if ((adapter->link_speed == SPEED_1000) && if ((adapter->link_speed == SPEED_1000) &&
(!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
...@@ -2555,8 +2635,8 @@ void e1000e_update_stats(struct e1000_adapter *adapter) ...@@ -2555,8 +2635,8 @@ void e1000e_update_stats(struct e1000_adapter *adapter)
static void e1000_print_link_info(struct e1000_adapter *adapter) static void e1000_print_link_info(struct e1000_adapter *adapter)
{ {
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ctrl = er32(CTRL); u32 ctrl = er32(CTRL);
ndev_info(netdev, ndev_info(netdev,
...@@ -2570,6 +2650,62 @@ static void e1000_print_link_info(struct e1000_adapter *adapter) ...@@ -2570,6 +2650,62 @@ static void e1000_print_link_info(struct e1000_adapter *adapter)
((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
} }
static bool e1000_has_link(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = 0;
s32 ret_val = 0;
/*
* get_link_status is set on LSC (link status) interrupt or
* Rx sequence error interrupt. get_link_status will stay
* false until the check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
} else {
link_active = 1;
}
break;
case e1000_media_type_fiber:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = adapter->hw.mac.serdes_has_link;
break;
default:
case e1000_media_type_unknown:
break;
}
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
ndev_info(adapter->netdev,
"Gigabit has been disabled, downgrading speed\n");
}
return link_active;
}
static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
/* make sure the receive unit is started */
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RX_RESTART_NOW)) {
struct e1000_hw *hw = &adapter->hw;
u32 rctl = er32(RCTL);
ew32(RCTL, rctl | E1000_RCTL_EN);
adapter->flags &= ~FLAG_RX_RESTART_NOW;
}
}
/** /**
* e1000_watchdog - Timer Call-back * e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long * @data: pointer to adapter cast into an unsigned long
...@@ -2588,48 +2724,35 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2588,48 +2724,35 @@ static void e1000_watchdog_task(struct work_struct *work)
{ {
struct e1000_adapter *adapter = container_of(work, struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, watchdog_task); struct e1000_adapter, watchdog_task);
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct e1000_mac_info *mac = &adapter->hw.mac; struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_ring *tx_ring = adapter->tx_ring; struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 link, tctl; u32 link, tctl;
s32 ret_val;
int tx_pending = 0; int tx_pending = 0;
if ((netif_carrier_ok(netdev)) && link = e1000_has_link(adapter);
(er32(STATUS) & E1000_STATUS_LU)) if ((netif_carrier_ok(netdev)) && link) {
e1000e_enable_receives(adapter);
goto link_up; goto link_up;
ret_val = mac->ops.check_for_link(hw);
if ((ret_val == E1000_ERR_PHY) &&
(adapter->hw.phy.type == e1000_phy_igp_3) &&
(er32(CTRL) &
E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
ndev_info(netdev,
"Gigabit has been disabled, downgrading speed\n");
} }
if ((e1000e_enable_tx_pkt_filtering(hw)) && if ((e1000e_enable_tx_pkt_filtering(hw)) &&
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
!(er32(TXCW) & E1000_TXCW_ANE))
link = adapter->hw.mac.serdes_has_link;
else
link = er32(STATUS) & E1000_STATUS_LU;
if (link) { if (link) {
if (!netif_carrier_ok(netdev)) { if (!netif_carrier_ok(netdev)) {
bool txb2b = 1; bool txb2b = 1;
/* update snapshot of PHY registers on LSC */
mac->ops.get_link_up_info(&adapter->hw, mac->ops.get_link_up_info(&adapter->hw,
&adapter->link_speed, &adapter->link_speed,
&adapter->link_duplex); &adapter->link_duplex);
e1000_print_link_info(adapter); e1000_print_link_info(adapter);
/* tweak tx_queue_len according to speed/duplex /*
* and adjust the timeout factor */ * tweak tx_queue_len according to speed/duplex
* and adjust the timeout factor
*/
netdev->tx_queue_len = adapter->tx_queue_len; netdev->tx_queue_len = adapter->tx_queue_len;
adapter->tx_timeout_factor = 1; adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) { switch (adapter->link_speed) {
...@@ -2645,8 +2768,10 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2645,8 +2768,10 @@ static void e1000_watchdog_task(struct work_struct *work)
break; break;
} }
/* workaround: re-program speed mode bit after /*
* link-up event */ * workaround: re-program speed mode bit after
* link-up event
*/
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
!txb2b) { !txb2b) {
u32 tarc0; u32 tarc0;
...@@ -2655,8 +2780,10 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2655,8 +2780,10 @@ static void e1000_watchdog_task(struct work_struct *work)
ew32(TARC0, tarc0); ew32(TARC0, tarc0);
} }
/* disable TSO for pcie and 10/100 speeds, to avoid /*
* some hardware issues */ * disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues
*/
if (!(adapter->flags & FLAG_TSO_FORCE)) { if (!(adapter->flags & FLAG_TSO_FORCE)) {
switch (adapter->link_speed) { switch (adapter->link_speed) {
case SPEED_10: case SPEED_10:
...@@ -2676,8 +2803,10 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2676,8 +2803,10 @@ static void e1000_watchdog_task(struct work_struct *work)
} }
} }
/* enable transmits in the hardware, need to do this /*
* after setting TARC0 */ * enable transmits in the hardware, need to do this
* after setting TARC(0)
*/
tctl = er32(TCTL); tctl = er32(TCTL);
tctl |= E1000_TCTL_EN; tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl); ew32(TCTL, tctl);
...@@ -2688,13 +2817,6 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2688,13 +2817,6 @@ static void e1000_watchdog_task(struct work_struct *work)
if (!test_bit(__E1000_DOWN, &adapter->state)) if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer, mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ)); round_jiffies(jiffies + 2 * HZ));
} else {
/* make sure the receive unit is started */
if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
u32 rctl = er32(RCTL);
ew32(RCTL, rctl |
E1000_RCTL_EN);
}
} }
} else { } else {
if (netif_carrier_ok(netdev)) { if (netif_carrier_ok(netdev)) {
...@@ -2731,23 +2853,27 @@ static void e1000_watchdog_task(struct work_struct *work) ...@@ -2731,23 +2853,27 @@ static void e1000_watchdog_task(struct work_struct *work)
tx_pending = (e1000_desc_unused(tx_ring) + 1 < tx_pending = (e1000_desc_unused(tx_ring) + 1 <
tx_ring->count); tx_ring->count);
if (tx_pending) { if (tx_pending) {
/* We've lost link, so the controller stops DMA, /*
* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going * but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx. * to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context). */ * (Do the reset outside of interrupt context).
*/
adapter->tx_timeout_count++; adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task); schedule_work(&adapter->reset_task);
} }
} }
/* Cause software interrupt to ensure rx ring is cleaned */ /* Cause software interrupt to ensure Rx ring is cleaned */
ew32(ICS, E1000_ICS_RXDMT0); ew32(ICS, E1000_ICS_RXDMT0);
/* Force detection of hung controller every watchdog period */ /* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = 1; adapter->detect_tx_hung = 1;
/* With 82571 controllers, LAA may be overwritten due to controller /*
* reset from the other port. Set the appropriate LAA in RAR[0] */ * With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0]
*/
if (e1000e_get_laa_state_82571(hw)) if (e1000e_get_laa_state_82571(hw))
e1000e_rar_set(hw, adapter->hw.mac.addr, 0); e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
...@@ -3023,16 +3149,20 @@ static void e1000_tx_queue(struct e1000_adapter *adapter, ...@@ -3023,16 +3149,20 @@ static void e1000_tx_queue(struct e1000_adapter *adapter,
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/* Force memory writes to complete before letting h/w /*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only * know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs, * applicable for weak-ordered memory model archs,
* such as IA-64). */ * such as IA-64).
*/
wmb(); wmb();
tx_ring->next_to_use = i; tx_ring->next_to_use = i;
writel(i, adapter->hw.hw_addr + tx_ring->tail); writel(i, adapter->hw.hw_addr + tx_ring->tail);
/* we need this if more than one processor can write to our tail /*
* at a time, it synchronizes IO on IA64/Altix systems */ * we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb(); mmiowb();
} }
...@@ -3080,13 +3210,17 @@ static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) ...@@ -3080,13 +3210,17 @@ static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
netif_stop_queue(netdev); netif_stop_queue(netdev);
/* Herbert's original patch had: /*
* Herbert's original patch had:
* smp_mb__after_netif_stop_queue(); * smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it. */ * but since that doesn't exist yet, just open code it.
*/
smp_mb(); smp_mb();
/* We need to check again in a case another CPU has just /*
* made room available. */ * We need to check again in a case another CPU has just
* made room available.
*/
if (e1000_desc_unused(adapter->tx_ring) < size) if (e1000_desc_unused(adapter->tx_ring) < size)
return -EBUSY; return -EBUSY;
...@@ -3133,21 +3267,29 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3133,21 +3267,29 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
} }
mss = skb_shinfo(skb)->gso_size; mss = skb_shinfo(skb)->gso_size;
/* The controller does a simple calculation to /*
* The controller does a simple calculation to
* make sure there is enough room in the FIFO before * make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is: * initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't * 4 = ceil(buffer len/mss). To make sure we don't
* overrun the FIFO, adjust the max buffer len if mss * overrun the FIFO, adjust the max buffer len if mss
* drops. */ * drops.
*/
if (mss) { if (mss) {
u8 hdr_len; u8 hdr_len;
max_per_txd = min(mss << 2, max_per_txd); max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1; max_txd_pwr = fls(max_per_txd) - 1;
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data /*
* points to just header, pull a few bytes of payload from * TSO Workaround for 82571/2/3 Controllers -- if skb->data
* frags into skb->data */ * points to just header, pull a few bytes of payload from
* frags into skb->data
*/
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/*
* we do this workaround for ES2LAN, but it is un-necessary,
* avoiding it could save a lot of cycles
*/
if (skb->data_len && (hdr_len == len)) { if (skb->data_len && (hdr_len == len)) {
unsigned int pull_size; unsigned int pull_size;
...@@ -3181,8 +3323,10 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3181,8 +3323,10 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
/* Collision - tell upper layer to requeue */ /* Collision - tell upper layer to requeue */
return NETDEV_TX_LOCKED; return NETDEV_TX_LOCKED;
/* need: count + 2 desc gap to keep tail from touching /*
* head, otherwise try next time */ * need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time
*/
if (e1000_maybe_stop_tx(netdev, count + 2)) { if (e1000_maybe_stop_tx(netdev, count + 2)) {
spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
return NETDEV_TX_BUSY; return NETDEV_TX_BUSY;
...@@ -3207,9 +3351,11 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3207,9 +3351,11 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
else if (e1000_tx_csum(adapter, skb)) else if (e1000_tx_csum(adapter, skb))
tx_flags |= E1000_TX_FLAGS_CSUM; tx_flags |= E1000_TX_FLAGS_CSUM;
/* Old method was to assume IPv4 packet by default if TSO was enabled. /*
* Old method was to assume IPv4 packet by default if TSO was enabled.
* 82571 hardware supports TSO capabilities for IPv6 as well... * 82571 hardware supports TSO capabilities for IPv6 as well...
* no longer assume, we must. */ * no longer assume, we must.
*/
if (skb->protocol == htons(ETH_P_IP)) if (skb->protocol == htons(ETH_P_IP))
tx_flags |= E1000_TX_FLAGS_IPV4; tx_flags |= E1000_TX_FLAGS_IPV4;
...@@ -3307,14 +3453,16 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) ...@@ -3307,14 +3453,16 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
msleep(1); msleep(1);
/* e1000e_down has a dependency on max_frame_size */ /* e1000e_down has a dependency on max_frame_size */
adapter->hw.mac.max_frame_size = max_frame; adapter->max_frame_size = max_frame;
if (netif_running(netdev)) if (netif_running(netdev))
e1000e_down(adapter); e1000e_down(adapter);
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN /*
* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next * means we reserve 2 more, this pushes us to allocate from the next
* larger slab size. * larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab */ * i.e. RXBUFFER_2048 --> size-4096 slab
*/
if (max_frame <= 256) if (max_frame <= 256)
adapter->rx_buffer_len = 256; adapter->rx_buffer_len = 256;
...@@ -3331,7 +3479,7 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) ...@@ -3331,7 +3479,7 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+ ETH_FCS_LEN ; + ETH_FCS_LEN;
ndev_info(netdev, "changing MTU from %d to %d\n", ndev_info(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu); netdev->mtu, new_mtu);
...@@ -3354,7 +3502,7 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, ...@@ -3354,7 +3502,7 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
struct mii_ioctl_data *data = if_mii(ifr); struct mii_ioctl_data *data = if_mii(ifr);
unsigned long irq_flags; unsigned long irq_flags;
if (adapter->hw.media_type != e1000_media_type_copper) if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP; return -EOPNOTSUPP;
switch (cmd) { switch (cmd) {
...@@ -3436,8 +3584,9 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -3436,8 +3584,9 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
E1000_CTRL_EN_PHY_PWR_MGMT; E1000_CTRL_EN_PHY_PWR_MGMT;
ew32(CTRL, ctrl); ew32(CTRL, ctrl);
if (adapter->hw.media_type == e1000_media_type_fiber || if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
adapter->hw.media_type == e1000_media_type_internal_serdes) { adapter->hw.phy.media_type ==
e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */ /* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
...@@ -3467,8 +3616,10 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -3467,8 +3616,10 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
if (adapter->hw.phy.type == e1000_phy_igp_3) if (adapter->hw.phy.type == e1000_phy_igp_3)
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
/* Release control of h/w to f/w. If f/w is AMT enabled, this /*
* would have already happened in close and is redundant. */ * Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000_release_hw_control(adapter); e1000_release_hw_control(adapter);
pci_disable_device(pdev); pci_disable_device(pdev);
...@@ -3543,9 +3694,11 @@ static int e1000_resume(struct pci_dev *pdev) ...@@ -3543,9 +3694,11 @@ static int e1000_resume(struct pci_dev *pdev)
netif_device_attach(netdev); netif_device_attach(netdev);
/* If the controller has AMT, do not set DRV_LOAD until the interface /*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now * is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver. */ * under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
...@@ -3656,9 +3809,11 @@ static void e1000_io_resume(struct pci_dev *pdev) ...@@ -3656,9 +3809,11 @@ static void e1000_io_resume(struct pci_dev *pdev)
netif_device_attach(netdev); netif_device_attach(netdev);
/* If the controller has AMT, do not set DRV_LOAD until the interface /*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now * is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver. */ * under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT) || if (!(adapter->flags & FLAG_HAS_AMT) ||
!e1000e_check_mng_mode(&adapter->hw)) !e1000e_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
...@@ -3825,10 +3980,10 @@ static int __devinit e1000_probe(struct pci_dev *pdev, ...@@ -3825,10 +3980,10 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
hw->mac.ops.get_bus_info(&adapter->hw); hw->mac.ops.get_bus_info(&adapter->hw);
adapter->hw.phy.wait_for_link = 0; adapter->hw.phy.autoneg_wait_to_complete = 0;
/* Copper options */ /* Copper options */
if (adapter->hw.media_type == e1000_media_type_copper) { if (adapter->hw.phy.media_type == e1000_media_type_copper) {
adapter->hw.phy.mdix = AUTO_ALL_MODES; adapter->hw.phy.mdix = AUTO_ALL_MODES;
adapter->hw.phy.disable_polarity_correction = 0; adapter->hw.phy.disable_polarity_correction = 0;
adapter->hw.phy.ms_type = e1000_ms_hw_default; adapter->hw.phy.ms_type = e1000_ms_hw_default;
...@@ -3852,15 +4007,19 @@ static int __devinit e1000_probe(struct pci_dev *pdev, ...@@ -3852,15 +4007,19 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
if (pci_using_dac) if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA; netdev->features |= NETIF_F_HIGHDMA;
/* We should not be using LLTX anymore, but we are still TX faster with /*
* it. */ * We should not be using LLTX anymore, but we are still Tx faster with
* it.
*/
netdev->features |= NETIF_F_LLTX; netdev->features |= NETIF_F_LLTX;
if (e1000e_enable_mng_pass_thru(&adapter->hw)) if (e1000e_enable_mng_pass_thru(&adapter->hw))
adapter->flags |= FLAG_MNG_PT_ENABLED; adapter->flags |= FLAG_MNG_PT_ENABLED;
/* before reading the NVM, reset the controller to /*
* put the device in a known good starting state */ * before reading the NVM, reset the controller to
* put the device in a known good starting state
*/
adapter->hw.mac.ops.reset_hw(&adapter->hw); adapter->hw.mac.ops.reset_hw(&adapter->hw);
/* /*
...@@ -3910,8 +4069,8 @@ static int __devinit e1000_probe(struct pci_dev *pdev, ...@@ -3910,8 +4069,8 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
/* Initialize link parameters. User can change them with ethtool */ /* Initialize link parameters. User can change them with ethtool */
adapter->hw.mac.autoneg = 1; adapter->hw.mac.autoneg = 1;
adapter->fc_autoneg = 1; adapter->fc_autoneg = 1;
adapter->hw.mac.original_fc = e1000_fc_default; adapter->hw.fc.original_type = e1000_fc_default;
adapter->hw.mac.fc = e1000_fc_default; adapter->hw.fc.type = e1000_fc_default;
adapter->hw.phy.autoneg_advertised = 0x2f; adapter->hw.phy.autoneg_advertised = 0x2f;
/* ring size defaults */ /* ring size defaults */
...@@ -3954,9 +4113,11 @@ static int __devinit e1000_probe(struct pci_dev *pdev, ...@@ -3954,9 +4113,11 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
/* reset the hardware with the new settings */ /* reset the hardware with the new settings */
e1000e_reset(adapter); e1000e_reset(adapter);
/* If the controller has AMT, do not set DRV_LOAD until the interface /*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now * is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver. */ * under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT) || if (!(adapter->flags & FLAG_HAS_AMT) ||
!e1000e_check_mng_mode(&adapter->hw)) !e1000e_check_mng_mode(&adapter->hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
...@@ -4013,16 +4174,20 @@ static void __devexit e1000_remove(struct pci_dev *pdev) ...@@ -4013,16 +4174,20 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
/* flush_scheduled work may reschedule our watchdog task, so /*
* explicitly disable watchdog tasks from being rescheduled */ * flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled
*/
set_bit(__E1000_DOWN, &adapter->state); set_bit(__E1000_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer); del_timer_sync(&adapter->phy_info_timer);
flush_scheduled_work(); flush_scheduled_work();
/* Release control of h/w to f/w. If f/w is AMT enabled, this /*
* would have already happened in close and is redundant. */ * Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000_release_hw_control(adapter); e1000_release_hw_control(adapter);
unregister_netdev(netdev); unregister_netdev(netdev);
...@@ -4060,13 +4225,16 @@ static struct pci_device_id e1000_pci_tbl[] = { ...@@ -4060,13 +4225,16 @@ static struct pci_device_id e1000_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
board_80003es2lan }, board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
...@@ -4075,6 +4243,7 @@ static struct pci_device_id e1000_pci_tbl[] = { ...@@ -4075,6 +4243,7 @@ static struct pci_device_id e1000_pci_tbl[] = {
board_80003es2lan }, board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
board_80003es2lan }, board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
...@@ -4082,6 +4251,7 @@ static struct pci_device_id e1000_pci_tbl[] = { ...@@ -4082,6 +4251,7 @@ static struct pci_device_id e1000_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
...@@ -4099,7 +4269,7 @@ static struct pci_driver e1000_driver = { ...@@ -4099,7 +4269,7 @@ static struct pci_driver e1000_driver = {
.probe = e1000_probe, .probe = e1000_probe,
.remove = __devexit_p(e1000_remove), .remove = __devexit_p(e1000_remove),
#ifdef CONFIG_PM #ifdef CONFIG_PM
/* Power Managment Hooks */ /* Power Management Hooks */
.suspend = e1000_suspend, .suspend = e1000_suspend,
.resume = e1000_resume, .resume = e1000_resume,
#endif #endif
...@@ -4118,7 +4288,7 @@ static int __init e1000_init_module(void) ...@@ -4118,7 +4288,7 @@ static int __init e1000_init_module(void)
int ret; int ret;
printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
e1000e_driver_name, e1000e_driver_version); e1000e_driver_name, e1000e_driver_version);
printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
e1000e_driver_name); e1000e_driver_name);
ret = pci_register_driver(&e1000_driver); ret = pci_register_driver(&e1000_driver);
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -30,7 +30,8 @@ ...@@ -30,7 +30,8 @@
#include "e1000.h" #include "e1000.h"
/* This is the only thing that needs to be changed to adjust the /*
* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage. * maximum number of ports that the driver can manage.
*/ */
...@@ -46,7 +47,8 @@ module_param(copybreak, uint, 0644); ...@@ -46,7 +47,8 @@ module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak, MODULE_PARM_DESC(copybreak,
"Maximum size of packet that is copied to a new buffer on receive"); "Maximum size of packet that is copied to a new buffer on receive");
/* All parameters are treated the same, as an integer array of values. /*
* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code * This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs). * over and over (plus this helps to avoid typo bugs).
*/ */
...@@ -60,8 +62,9 @@ MODULE_PARM_DESC(copybreak, ...@@ -60,8 +62,9 @@ MODULE_PARM_DESC(copybreak,
MODULE_PARM_DESC(X, desc); MODULE_PARM_DESC(X, desc);
/* Transmit Interrupt Delay in units of 1.024 microseconds /*
* Tx interrupt delay needs to typically be set to something non zero * Transmit Interrupt Delay in units of 1.024 microseconds
* Tx interrupt delay needs to typically be set to something non zero
* *
* Valid Range: 0-65535 * Valid Range: 0-65535
*/ */
...@@ -70,7 +73,8 @@ E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); ...@@ -70,7 +73,8 @@ E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
#define MAX_TXDELAY 0xFFFF #define MAX_TXDELAY 0xFFFF
#define MIN_TXDELAY 0 #define MIN_TXDELAY 0
/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds /*
* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
* *
* Valid Range: 0-65535 * Valid Range: 0-65535
*/ */
...@@ -79,8 +83,9 @@ E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); ...@@ -79,8 +83,9 @@ E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
#define MAX_TXABSDELAY 0xFFFF #define MAX_TXABSDELAY 0xFFFF
#define MIN_TXABSDELAY 0 #define MIN_TXABSDELAY 0
/* Receive Interrupt Delay in units of 1.024 microseconds /*
* hardware will likely hang if you set this to anything but zero. * Receive Interrupt Delay in units of 1.024 microseconds
* hardware will likely hang if you set this to anything but zero.
* *
* Valid Range: 0-65535 * Valid Range: 0-65535
*/ */
...@@ -89,7 +94,8 @@ E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); ...@@ -89,7 +94,8 @@ E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
#define MAX_RXDELAY 0xFFFF #define MAX_RXDELAY 0xFFFF
#define MIN_RXDELAY 0 #define MIN_RXDELAY 0
/* Receive Absolute Interrupt Delay in units of 1.024 microseconds /*
* Receive Absolute Interrupt Delay in units of 1.024 microseconds
* *
* Valid Range: 0-65535 * Valid Range: 0-65535
*/ */
...@@ -98,7 +104,8 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); ...@@ -98,7 +104,8 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
#define MAX_RXABSDELAY 0xFFFF #define MAX_RXABSDELAY 0xFFFF
#define MIN_RXABSDELAY 0 #define MIN_RXABSDELAY 0
/* Interrupt Throttle Rate (interrupts/sec) /*
* Interrupt Throttle Rate (interrupts/sec)
* *
* Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative) * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
*/ */
...@@ -107,7 +114,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); ...@@ -107,7 +114,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
#define MAX_ITR 100000 #define MAX_ITR 100000
#define MIN_ITR 100 #define MIN_ITR 100
/* Enable Smart Power Down of the PHY /*
* Enable Smart Power Down of the PHY
* *
* Valid Range: 0, 1 * Valid Range: 0, 1
* *
...@@ -115,7 +123,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); ...@@ -115,7 +123,8 @@ E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
*/ */
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
/* Enable Kumeran Lock Loss workaround /*
* Enable Kumeran Lock Loss workaround
* *
* Valid Range: 0, 1 * Valid Range: 0, 1
* *
......
/******************************************************************************* /*******************************************************************************
Intel PRO/1000 Linux driver Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2007 Intel Corporation. Copyright(c) 1999 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License, under the terms and conditions of the GNU General Public License,
...@@ -134,7 +134,8 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) ...@@ -134,7 +134,8 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
return -E1000_ERR_PARAM; return -E1000_ERR_PARAM;
} }
/* Set up Op-code, Phy Address, and register offset in the MDI /*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the * Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data. * PHY to retrieve the desired data.
*/ */
...@@ -144,7 +145,11 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) ...@@ -144,7 +145,11 @@ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
ew32(MDIC, mdic); ew32(MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */ /*
* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
udelay(50); udelay(50);
mdic = er32(MDIC); mdic = er32(MDIC);
...@@ -182,7 +187,8 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) ...@@ -182,7 +187,8 @@ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
return -E1000_ERR_PARAM; return -E1000_ERR_PARAM;
} }
/* Set up Op-code, Phy Address, and register offset in the MDI /*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the * Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data. * PHY to retrieve the desired data.
*/ */
...@@ -409,14 +415,15 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) ...@@ -409,14 +415,15 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 phy_data; u16 phy_data;
/* Enable CRS on TX. This must be set for half-duplex operation. */ /* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options: /*
* Options:
* MDI/MDI-X = 0 (default) * MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds * 0 - Auto for all speeds
* 1 - MDI mode * 1 - MDI mode
...@@ -441,7 +448,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) ...@@ -441,7 +448,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
break; break;
} }
/* Options: /*
* Options:
* disable_polarity_correction = 0 (default) * disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity * Automatic Correction for Reversed Cable Polarity
* 0 - Disabled * 0 - Disabled
...@@ -456,7 +464,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) ...@@ -456,7 +464,8 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
return ret_val; return ret_val;
if (phy->revision < 4) { if (phy->revision < 4) {
/* Force TX_CLK in the Extended PHY Specific Control Register /*
* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock. * to 25MHz clock.
*/ */
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
...@@ -543,19 +552,21 @@ s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) ...@@ -543,19 +552,21 @@ s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
/* set auto-master slave resolution settings */ /* set auto-master slave resolution settings */
if (hw->mac.autoneg) { if (hw->mac.autoneg) {
/* when autonegotiation advertisement is only 1000Mbps then we /*
* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave * should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */ * resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */ /* Disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -630,14 +641,16 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) ...@@ -630,14 +641,16 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
return ret_val; return ret_val;
} }
/* Need to parse both autoneg_advertised and fc and set up /*
* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for * the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise * autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit * a plethora of combinations, we need to check each bit
* individually. * individually.
*/ */
/* First we clear all the 10/100 mb speed bits in the Auto-Neg /*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in * Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9). * the 1000Base-T Control Register (Address 9).
*/ */
...@@ -683,7 +696,8 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) ...@@ -683,7 +696,8 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
} }
/* Check for a software override of the flow control settings, and /*
* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If * setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the * auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation * "PAUSE" bits to the correct value in the Auto-Negotiation
...@@ -696,38 +710,42 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) ...@@ -696,38 +710,42 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
* but not send pause frames). * but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames * 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames). * but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled. * 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration * other: No software override. The flow control configuration
* in the EEPROM is used. * in the EEPROM is used.
*/ */
switch (hw->mac.fc) { switch (hw->fc.type) {
case e1000_fc_none: case e1000_fc_none:
/* Flow control (RX & TX) is completely disabled by a /*
* Flow control (Rx & Tx) is completely disabled by a
* software over-ride. * software over-ride.
*/ */
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break; break;
case e1000_fc_rx_pause: case e1000_fc_rx_pause:
/* RX Flow control is enabled, and TX Flow control is /*
* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride. * disabled, by a software over-ride.
*/ *
/* Since there really isn't a way to advertise that we are * Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we * capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later * support both symmetric and asymmetric Rx PAUSE. Later
* (in e1000e_config_fc_after_link_up) we will disable the * (in e1000e_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames. * hw's ability to send PAUSE frames.
*/ */
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break; break;
case e1000_fc_tx_pause: case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is /*
* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride. * disabled, by a software over-ride.
*/ */
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break; break;
case e1000_fc_full: case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software /*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride. * over-ride.
*/ */
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
...@@ -758,7 +776,7 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) ...@@ -758,7 +776,7 @@ static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
* Performs initial bounds checking on autoneg advertisement parameter, then * Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg * configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If * and restart the negotiation process between the link partner. If
* wait_for_link, then wait for autoneg to complete before exiting. * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/ **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{ {
...@@ -766,12 +784,14 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) ...@@ -766,12 +784,14 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 phy_ctrl; u16 phy_ctrl;
/* Perform some bounds checking on the autoneg advertisement /*
* Perform some bounds checking on the autoneg advertisement
* parameter. * parameter.
*/ */
phy->autoneg_advertised &= phy->autoneg_mask; phy->autoneg_advertised &= phy->autoneg_mask;
/* If autoneg_advertised is zero, we assume it was not defaulted /*
* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability. * by the calling code so we set to advertise full capability.
*/ */
if (phy->autoneg_advertised == 0) if (phy->autoneg_advertised == 0)
...@@ -785,7 +805,8 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) ...@@ -785,7 +805,8 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
} }
hw_dbg(hw, "Restarting Auto-Neg\n"); hw_dbg(hw, "Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and /*
* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register. * the Auto Neg Restart bit in the PHY control register.
*/ */
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
...@@ -797,10 +818,11 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) ...@@ -797,10 +818,11 @@ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or /*
* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine). * check at a later time (for example, callback routine).
*/ */
if (phy->wait_for_link) { if (phy->autoneg_wait_to_complete) {
ret_val = e1000_wait_autoneg(hw); ret_val = e1000_wait_autoneg(hw);
if (ret_val) { if (ret_val) {
hw_dbg(hw, "Error while waiting for " hw_dbg(hw, "Error while waiting for "
...@@ -829,14 +851,18 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw) ...@@ -829,14 +851,18 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw)
bool link; bool link;
if (hw->mac.autoneg) { if (hw->mac.autoneg) {
/* Setup autoneg and flow control advertisement and perform /*
* autonegotiation. */ * Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw); ret_val = e1000_copper_link_autoneg(hw);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} else { } else {
/* PHY will be set to 10H, 10F, 100H or 100F /*
* depending on user settings. */ * PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
hw_dbg(hw, "Forcing Speed and Duplex\n"); hw_dbg(hw, "Forcing Speed and Duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw); ret_val = e1000_phy_force_speed_duplex(hw);
if (ret_val) { if (ret_val) {
...@@ -845,7 +871,8 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw) ...@@ -845,7 +871,8 @@ s32 e1000e_setup_copper_link(struct e1000_hw *hw)
} }
} }
/* Check link status. Wait up to 100 microseconds for link to become /*
* Check link status. Wait up to 100 microseconds for link to become
* valid. * valid.
*/ */
ret_val = e1000e_phy_has_link_generic(hw, ret_val = e1000e_phy_has_link_generic(hw,
...@@ -891,7 +918,8 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) ...@@ -891,7 +918,8 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI /*
* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced. * forced whenever speed and duplex are forced.
*/ */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
...@@ -909,7 +937,7 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) ...@@ -909,7 +937,7 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
udelay(1); udelay(1);
if (phy->wait_for_link) { if (phy->autoneg_wait_to_complete) {
hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n"); hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, ret_val = e1000e_phy_has_link_generic(hw,
...@@ -941,7 +969,7 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) ...@@ -941,7 +969,7 @@ s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
* Calls the PHY setup function to force speed and duplex. Clears the * Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Resets the PHY to commit the * auto-crossover to force MDI manually. Resets the PHY to commit the
* changes. If time expires while waiting for link up, we reset the DSP. * changes. If time expires while waiting for link up, we reset the DSP.
* After reset, TX_CLK and CRS on TX must be set. Return successful upon * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
* successful completion, else return corresponding error code. * successful completion, else return corresponding error code.
**/ **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
...@@ -951,7 +979,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) ...@@ -951,7 +979,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
u16 phy_data; u16 phy_data;
bool link; bool link;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI /*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced. * forced whenever speed and duplex are forced.
*/ */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
...@@ -980,7 +1009,7 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) ...@@ -980,7 +1009,7 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
udelay(1); udelay(1);
if (phy->wait_for_link) { if (phy->autoneg_wait_to_complete) {
hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n"); hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
...@@ -989,10 +1018,12 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) ...@@ -989,10 +1018,12 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
return ret_val; return ret_val;
if (!link) { if (!link) {
/* We didn't get link. /*
* We didn't get link.
* Reset the DSP and cross our fingers. * Reset the DSP and cross our fingers.
*/ */
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
ret_val = e1000e_phy_reset_dsp(hw); ret_val = e1000e_phy_reset_dsp(hw);
...@@ -1011,7 +1042,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) ...@@ -1011,7 +1042,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Resetting the phy means we need to re-force TX_CLK in the /*
* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from * Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz. * the reset value of 2.5MHz.
*/ */
...@@ -1020,7 +1052,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) ...@@ -1020,7 +1052,8 @@ s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* In addition, we must re-enable CRS on Tx for both half and full /*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex. * duplex.
*/ */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
...@@ -1051,7 +1084,7 @@ void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) ...@@ -1051,7 +1084,7 @@ void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
u32 ctrl; u32 ctrl;
/* Turn off flow control when forcing speed/duplex */ /* Turn off flow control when forcing speed/duplex */
mac->fc = e1000_fc_none; hw->fc.type = e1000_fc_none;
/* Force speed/duplex on the mac */ /* Force speed/duplex on the mac */
ctrl = er32(CTRL); ctrl = er32(CTRL);
...@@ -1124,30 +1157,32 @@ s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) ...@@ -1124,30 +1157,32 @@ s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used /*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most * during Dx states where the power conservation is most
* important. During driver activity we should enable * important. During driver activity we should enable
* SmartSpeed, so performance is maintained. */ * SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) { if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED; data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) { } else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data); &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED; data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data); data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
} }
...@@ -1249,8 +1284,10 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw) ...@@ -1249,8 +1284,10 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
s32 ret_val; s32 ret_val;
u16 data, offset, mask; u16 data, offset, mask;
/* Polarity is determined based on the speed of /*
* our connection. */ * Polarity is determined based on the speed of
* our connection.
*/
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1260,7 +1297,8 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw) ...@@ -1260,7 +1297,8 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
offset = IGP01E1000_PHY_PCS_INIT_REG; offset = IGP01E1000_PHY_PCS_INIT_REG;
mask = IGP01E1000_PHY_POLARITY_MASK; mask = IGP01E1000_PHY_POLARITY_MASK;
} else { } else {
/* This really only applies to 10Mbps since /*
* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0). * there is no polarity for 100Mbps (always 0).
*/ */
offset = IGP01E1000_PHY_PORT_STATUS; offset = IGP01E1000_PHY_PORT_STATUS;
...@@ -1278,7 +1316,7 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw) ...@@ -1278,7 +1316,7 @@ static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
} }
/** /**
* e1000_wait_autoneg - Wait for auto-neg compeletion * e1000_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure * @hw: pointer to the HW structure
* *
* Waits for auto-negotiation to complete or for the auto-negotiation time * Waits for auto-negotiation to complete or for the auto-negotiation time
...@@ -1302,7 +1340,8 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw) ...@@ -1302,7 +1340,8 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw)
msleep(100); msleep(100);
} }
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation /*
* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed. * has completed.
*/ */
return ret_val; return ret_val;
...@@ -1324,7 +1363,8 @@ s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, ...@@ -1324,7 +1363,8 @@ s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u16 i, phy_status; u16 i, phy_status;
for (i = 0; i < iterations; i++) { for (i = 0; i < iterations; i++) {
/* Some PHYs require the PHY_STATUS register to be read /*
* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing * twice due to the link bit being sticky. No harm doing
* it across the board. * it across the board.
*/ */
...@@ -1412,10 +1452,12 @@ s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) ...@@ -1412,10 +1452,12 @@ s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
/* Getting bits 15:9, which represent the combination of /*
* Getting bits 15:9, which represent the combination of
* course and fine gain values. The result is a number * course and fine gain values. The result is a number
* that can be put into the lookup table to obtain the * that can be put into the lookup table to obtain the
* approximate cable length. */ * approximate cable length.
*/
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK; IGP02E1000_AGC_LENGTH_MASK;
...@@ -1466,7 +1508,7 @@ s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) ...@@ -1466,7 +1508,7 @@ s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
u16 phy_data; u16 phy_data;
bool link; bool link;
if (hw->media_type != e1000_media_type_copper) { if (hw->phy.media_type != e1000_media_type_copper) {
hw_dbg(hw, "Phy info is only valid for copper media\n"); hw_dbg(hw, "Phy info is only valid for copper media\n");
return -E1000_ERR_CONFIG; return -E1000_ERR_CONFIG;
} }
......
...@@ -421,7 +421,7 @@ struct ehea_fw_handle_entry { ...@@ -421,7 +421,7 @@ struct ehea_fw_handle_entry {
struct ehea_fw_handle_array { struct ehea_fw_handle_array {
struct ehea_fw_handle_entry *arr; struct ehea_fw_handle_entry *arr;
int num_entries; int num_entries;
struct semaphore lock; struct mutex lock;
}; };
struct ehea_bcmc_reg_entry { struct ehea_bcmc_reg_entry {
...@@ -434,7 +434,7 @@ struct ehea_bcmc_reg_entry { ...@@ -434,7 +434,7 @@ struct ehea_bcmc_reg_entry {
struct ehea_bcmc_reg_array { struct ehea_bcmc_reg_array {
struct ehea_bcmc_reg_entry *arr; struct ehea_bcmc_reg_entry *arr;
int num_entries; int num_entries;
struct semaphore lock; struct mutex lock;
}; };
#define EHEA_PORT_UP 1 #define EHEA_PORT_UP 1
...@@ -452,7 +452,7 @@ struct ehea_port { ...@@ -452,7 +452,7 @@ struct ehea_port {
struct vlan_group *vgrp; struct vlan_group *vgrp;
struct ehea_eq *qp_eq; struct ehea_eq *qp_eq;
struct work_struct reset_task; struct work_struct reset_task;
struct semaphore port_lock; struct mutex port_lock;
char int_aff_name[EHEA_IRQ_NAME_SIZE]; char int_aff_name[EHEA_IRQ_NAME_SIZE];
int allmulti; /* Indicates IFF_ALLMULTI state */ int allmulti; /* Indicates IFF_ALLMULTI state */
int promisc; /* Indicates IFF_PROMISC state */ int promisc; /* Indicates IFF_PROMISC state */
......
...@@ -36,6 +36,7 @@ ...@@ -36,6 +36,7 @@
#include <linux/notifier.h> #include <linux/notifier.h>
#include <linux/reboot.h> #include <linux/reboot.h>
#include <asm/kexec.h> #include <asm/kexec.h>
#include <linux/mutex.h>
#include <net/ip.h> #include <net/ip.h>
...@@ -99,7 +100,7 @@ static int port_name_cnt; ...@@ -99,7 +100,7 @@ static int port_name_cnt;
static LIST_HEAD(adapter_list); static LIST_HEAD(adapter_list);
u64 ehea_driver_flags; u64 ehea_driver_flags;
struct work_struct ehea_rereg_mr_task; struct work_struct ehea_rereg_mr_task;
struct semaphore dlpar_mem_lock; static DEFINE_MUTEX(dlpar_mem_lock);
struct ehea_fw_handle_array ehea_fw_handles; struct ehea_fw_handle_array ehea_fw_handles;
struct ehea_bcmc_reg_array ehea_bcmc_regs; struct ehea_bcmc_reg_array ehea_bcmc_regs;
...@@ -1758,7 +1759,7 @@ static int ehea_set_mac_addr(struct net_device *dev, void *sa) ...@@ -1758,7 +1759,7 @@ static int ehea_set_mac_addr(struct net_device *dev, void *sa)
memcpy(dev->dev_addr, mac_addr->sa_data, dev->addr_len); memcpy(dev->dev_addr, mac_addr->sa_data, dev->addr_len);
down(&ehea_bcmc_regs.lock); mutex_lock(&ehea_bcmc_regs.lock);
/* Deregister old MAC in pHYP */ /* Deregister old MAC in pHYP */
ret = ehea_broadcast_reg_helper(port, H_DEREG_BCMC); ret = ehea_broadcast_reg_helper(port, H_DEREG_BCMC);
...@@ -1776,7 +1777,7 @@ static int ehea_set_mac_addr(struct net_device *dev, void *sa) ...@@ -1776,7 +1777,7 @@ static int ehea_set_mac_addr(struct net_device *dev, void *sa)
out_upregs: out_upregs:
ehea_update_bcmc_registrations(); ehea_update_bcmc_registrations();
up(&ehea_bcmc_regs.lock); mutex_unlock(&ehea_bcmc_regs.lock);
out_free: out_free:
kfree(cb0); kfree(cb0);
out: out:
...@@ -1938,7 +1939,7 @@ static void ehea_set_multicast_list(struct net_device *dev) ...@@ -1938,7 +1939,7 @@ static void ehea_set_multicast_list(struct net_device *dev)
} }
ehea_promiscuous(dev, 0); ehea_promiscuous(dev, 0);
down(&ehea_bcmc_regs.lock); mutex_lock(&ehea_bcmc_regs.lock);
if (dev->flags & IFF_ALLMULTI) { if (dev->flags & IFF_ALLMULTI) {
ehea_allmulti(dev, 1); ehea_allmulti(dev, 1);
...@@ -1969,7 +1970,7 @@ static void ehea_set_multicast_list(struct net_device *dev) ...@@ -1969,7 +1970,7 @@ static void ehea_set_multicast_list(struct net_device *dev)
} }
out: out:
ehea_update_bcmc_registrations(); ehea_update_bcmc_registrations();
up(&ehea_bcmc_regs.lock); mutex_unlock(&ehea_bcmc_regs.lock);
return; return;
} }
...@@ -2452,7 +2453,7 @@ static int ehea_up(struct net_device *dev) ...@@ -2452,7 +2453,7 @@ static int ehea_up(struct net_device *dev)
if (port->state == EHEA_PORT_UP) if (port->state == EHEA_PORT_UP)
return 0; return 0;
down(&ehea_fw_handles.lock); mutex_lock(&ehea_fw_handles.lock);
ret = ehea_port_res_setup(port, port->num_def_qps, ret = ehea_port_res_setup(port, port->num_def_qps,
port->num_add_tx_qps); port->num_add_tx_qps);
...@@ -2490,7 +2491,7 @@ static int ehea_up(struct net_device *dev) ...@@ -2490,7 +2491,7 @@ static int ehea_up(struct net_device *dev)
} }
} }
down(&ehea_bcmc_regs.lock); mutex_lock(&ehea_bcmc_regs.lock);
ret = ehea_broadcast_reg_helper(port, H_REG_BCMC); ret = ehea_broadcast_reg_helper(port, H_REG_BCMC);
if (ret) { if (ret) {
...@@ -2513,10 +2514,10 @@ static int ehea_up(struct net_device *dev) ...@@ -2513,10 +2514,10 @@ static int ehea_up(struct net_device *dev)
ehea_info("Failed starting %s. ret=%i", dev->name, ret); ehea_info("Failed starting %s. ret=%i", dev->name, ret);
ehea_update_bcmc_registrations(); ehea_update_bcmc_registrations();
up(&ehea_bcmc_regs.lock); mutex_unlock(&ehea_bcmc_regs.lock);
ehea_update_firmware_handles(); ehea_update_firmware_handles();
up(&ehea_fw_handles.lock); mutex_unlock(&ehea_fw_handles.lock);
return ret; return ret;
} }
...@@ -2542,7 +2543,7 @@ static int ehea_open(struct net_device *dev) ...@@ -2542,7 +2543,7 @@ static int ehea_open(struct net_device *dev)
int ret; int ret;
struct ehea_port *port = netdev_priv(dev); struct ehea_port *port = netdev_priv(dev);
down(&port->port_lock); mutex_lock(&port->port_lock);
if (netif_msg_ifup(port)) if (netif_msg_ifup(port))
ehea_info("enabling port %s", dev->name); ehea_info("enabling port %s", dev->name);
...@@ -2553,7 +2554,7 @@ static int ehea_open(struct net_device *dev) ...@@ -2553,7 +2554,7 @@ static int ehea_open(struct net_device *dev)
netif_start_queue(dev); netif_start_queue(dev);
} }
up(&port->port_lock); mutex_unlock(&port->port_lock);
return ret; return ret;
} }
...@@ -2566,18 +2567,18 @@ static int ehea_down(struct net_device *dev) ...@@ -2566,18 +2567,18 @@ static int ehea_down(struct net_device *dev)
if (port->state == EHEA_PORT_DOWN) if (port->state == EHEA_PORT_DOWN)
return 0; return 0;
down(&ehea_bcmc_regs.lock); mutex_lock(&ehea_fw_handles.lock);
mutex_lock(&ehea_bcmc_regs.lock);
ehea_drop_multicast_list(dev); ehea_drop_multicast_list(dev);
ehea_broadcast_reg_helper(port, H_DEREG_BCMC); ehea_broadcast_reg_helper(port, H_DEREG_BCMC);
ehea_free_interrupts(dev); ehea_free_interrupts(dev);
down(&ehea_fw_handles.lock);
port->state = EHEA_PORT_DOWN; port->state = EHEA_PORT_DOWN;
ehea_update_bcmc_registrations(); ehea_update_bcmc_registrations();
up(&ehea_bcmc_regs.lock); mutex_unlock(&ehea_bcmc_regs.lock);
ret = ehea_clean_all_portres(port); ret = ehea_clean_all_portres(port);
if (ret) if (ret)
...@@ -2585,7 +2586,7 @@ static int ehea_down(struct net_device *dev) ...@@ -2585,7 +2586,7 @@ static int ehea_down(struct net_device *dev)
dev->name, ret); dev->name, ret);
ehea_update_firmware_handles(); ehea_update_firmware_handles();
up(&ehea_fw_handles.lock); mutex_unlock(&ehea_fw_handles.lock);
return ret; return ret;
} }
...@@ -2599,11 +2600,11 @@ static int ehea_stop(struct net_device *dev) ...@@ -2599,11 +2600,11 @@ static int ehea_stop(struct net_device *dev)
ehea_info("disabling port %s", dev->name); ehea_info("disabling port %s", dev->name);
flush_scheduled_work(); flush_scheduled_work();
down(&port->port_lock); mutex_lock(&port->port_lock);
netif_stop_queue(dev); netif_stop_queue(dev);
port_napi_disable(port); port_napi_disable(port);
ret = ehea_down(dev); ret = ehea_down(dev);
up(&port->port_lock); mutex_unlock(&port->port_lock);
return ret; return ret;
} }
...@@ -2801,7 +2802,7 @@ static void ehea_reset_port(struct work_struct *work) ...@@ -2801,7 +2802,7 @@ static void ehea_reset_port(struct work_struct *work)
struct net_device *dev = port->netdev; struct net_device *dev = port->netdev;
port->resets++; port->resets++;
down(&port->port_lock); mutex_lock(&port->port_lock);
netif_stop_queue(dev); netif_stop_queue(dev);
port_napi_disable(port); port_napi_disable(port);
...@@ -2821,7 +2822,7 @@ static void ehea_reset_port(struct work_struct *work) ...@@ -2821,7 +2822,7 @@ static void ehea_reset_port(struct work_struct *work)
netif_wake_queue(dev); netif_wake_queue(dev);
out: out:
up(&port->port_lock); mutex_unlock(&port->port_lock);
return; return;
} }
...@@ -2830,7 +2831,7 @@ static void ehea_rereg_mrs(struct work_struct *work) ...@@ -2830,7 +2831,7 @@ static void ehea_rereg_mrs(struct work_struct *work)
int ret, i; int ret, i;
struct ehea_adapter *adapter; struct ehea_adapter *adapter;
down(&dlpar_mem_lock); mutex_lock(&dlpar_mem_lock);
ehea_info("LPAR memory enlarged - re-initializing driver"); ehea_info("LPAR memory enlarged - re-initializing driver");
list_for_each_entry(adapter, &adapter_list, list) list_for_each_entry(adapter, &adapter_list, list)
...@@ -2838,21 +2839,23 @@ static void ehea_rereg_mrs(struct work_struct *work) ...@@ -2838,21 +2839,23 @@ static void ehea_rereg_mrs(struct work_struct *work)
/* Shutdown all ports */ /* Shutdown all ports */
for (i = 0; i < EHEA_MAX_PORTS; i++) { for (i = 0; i < EHEA_MAX_PORTS; i++) {
struct ehea_port *port = adapter->port[i]; struct ehea_port *port = adapter->port[i];
struct net_device *dev;
if (port) { if (!port)
struct net_device *dev = port->netdev; continue;
if (dev->flags & IFF_UP) { dev = port->netdev;
down(&port->port_lock);
netif_stop_queue(dev); if (dev->flags & IFF_UP) {
ret = ehea_stop_qps(dev); mutex_lock(&port->port_lock);
if (ret) { netif_stop_queue(dev);
up(&port->port_lock); ret = ehea_stop_qps(dev);
goto out; if (ret) {
} mutex_unlock(&port->port_lock);
port_napi_disable(port); goto out;
up(&port->port_lock);
} }
port_napi_disable(port);
mutex_unlock(&port->port_lock);
} }
} }
...@@ -2892,17 +2895,17 @@ static void ehea_rereg_mrs(struct work_struct *work) ...@@ -2892,17 +2895,17 @@ static void ehea_rereg_mrs(struct work_struct *work)
struct net_device *dev = port->netdev; struct net_device *dev = port->netdev;
if (dev->flags & IFF_UP) { if (dev->flags & IFF_UP) {
down(&port->port_lock); mutex_lock(&port->port_lock);
port_napi_enable(port); port_napi_enable(port);
ret = ehea_restart_qps(dev); ret = ehea_restart_qps(dev);
if (!ret) if (!ret)
netif_wake_queue(dev); netif_wake_queue(dev);
up(&port->port_lock); mutex_unlock(&port->port_lock);
} }
} }
} }
} }
up(&dlpar_mem_lock); mutex_unlock(&dlpar_mem_lock);
ehea_info("re-initializing driver complete"); ehea_info("re-initializing driver complete");
out: out:
return; return;
...@@ -3063,7 +3066,7 @@ struct ehea_port *ehea_setup_single_port(struct ehea_adapter *adapter, ...@@ -3063,7 +3066,7 @@ struct ehea_port *ehea_setup_single_port(struct ehea_adapter *adapter,
port = netdev_priv(dev); port = netdev_priv(dev);
sema_init(&port->port_lock, 1); mutex_init(&port->port_lock);
port->state = EHEA_PORT_DOWN; port->state = EHEA_PORT_DOWN;
port->sig_comp_iv = sq_entries / 10; port->sig_comp_iv = sq_entries / 10;
...@@ -3342,7 +3345,7 @@ static int __devinit ehea_probe_adapter(struct of_device *dev, ...@@ -3342,7 +3345,7 @@ static int __devinit ehea_probe_adapter(struct of_device *dev,
ehea_error("Invalid ibmebus device probed"); ehea_error("Invalid ibmebus device probed");
return -EINVAL; return -EINVAL;
} }
down(&ehea_fw_handles.lock); mutex_lock(&ehea_fw_handles.lock);
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
if (!adapter) { if (!adapter) {
...@@ -3426,7 +3429,7 @@ static int __devinit ehea_probe_adapter(struct of_device *dev, ...@@ -3426,7 +3429,7 @@ static int __devinit ehea_probe_adapter(struct of_device *dev,
out: out:
ehea_update_firmware_handles(); ehea_update_firmware_handles();
up(&ehea_fw_handles.lock); mutex_unlock(&ehea_fw_handles.lock);
return ret; return ret;
} }
...@@ -3445,7 +3448,7 @@ static int __devexit ehea_remove(struct of_device *dev) ...@@ -3445,7 +3448,7 @@ static int __devexit ehea_remove(struct of_device *dev)
flush_scheduled_work(); flush_scheduled_work();
down(&ehea_fw_handles.lock); mutex_lock(&ehea_fw_handles.lock);
ibmebus_free_irq(adapter->neq->attr.ist1, adapter); ibmebus_free_irq(adapter->neq->attr.ist1, adapter);
tasklet_kill(&adapter->neq_tasklet); tasklet_kill(&adapter->neq_tasklet);
...@@ -3456,7 +3459,7 @@ static int __devexit ehea_remove(struct of_device *dev) ...@@ -3456,7 +3459,7 @@ static int __devexit ehea_remove(struct of_device *dev)
kfree(adapter); kfree(adapter);
ehea_update_firmware_handles(); ehea_update_firmware_handles();
up(&ehea_fw_handles.lock); mutex_unlock(&ehea_fw_handles.lock);
return 0; return 0;
} }
...@@ -3543,9 +3546,8 @@ int __init ehea_module_init(void) ...@@ -3543,9 +3546,8 @@ int __init ehea_module_init(void)
memset(&ehea_fw_handles, 0, sizeof(ehea_fw_handles)); memset(&ehea_fw_handles, 0, sizeof(ehea_fw_handles));
memset(&ehea_bcmc_regs, 0, sizeof(ehea_bcmc_regs)); memset(&ehea_bcmc_regs, 0, sizeof(ehea_bcmc_regs));
sema_init(&dlpar_mem_lock, 1); mutex_init(&ehea_fw_handles.lock);
sema_init(&ehea_fw_handles.lock, 1); mutex_init(&ehea_bcmc_regs.lock);
sema_init(&ehea_bcmc_regs.lock, 1);
ret = check_module_parm(); ret = check_module_parm();
if (ret) if (ret)
......
...@@ -367,7 +367,7 @@ static int __ixgbe_notify_dca(struct device *dev, void *data) ...@@ -367,7 +367,7 @@ static int __ixgbe_notify_dca(struct device *dev, void *data)
/* Always use CB2 mode, difference is masked /* Always use CB2 mode, difference is masked
* in the CB driver. */ * in the CB driver. */
IXGBE_WRITE_REG(&adapter->hw, IXGBE_DCA_CTRL, 2); IXGBE_WRITE_REG(&adapter->hw, IXGBE_DCA_CTRL, 2);
if (dca_add_requester(dev) == IXGBE_SUCCESS) { if (dca_add_requester(dev) == 0) {
ixgbe_setup_dca(adapter); ixgbe_setup_dca(adapter);
break; break;
} }
...@@ -381,7 +381,7 @@ static int __ixgbe_notify_dca(struct device *dev, void *data) ...@@ -381,7 +381,7 @@ static int __ixgbe_notify_dca(struct device *dev, void *data)
break; break;
} }
return IXGBE_SUCCESS; return 0;
} }
#endif /* CONFIG_DCA */ #endif /* CONFIG_DCA */
...@@ -3605,7 +3605,7 @@ static int __devinit ixgbe_probe(struct pci_dev *pdev, ...@@ -3605,7 +3605,7 @@ static int __devinit ixgbe_probe(struct pci_dev *pdev,
goto err_register; goto err_register;
#ifdef CONFIG_DCA #ifdef CONFIG_DCA
if (dca_add_requester(&pdev->dev) == IXGBE_SUCCESS) { if (dca_add_requester(&pdev->dev) == 0) {
adapter->flags |= IXGBE_FLAG_DCA_ENABLED; adapter->flags |= IXGBE_FLAG_DCA_ENABLED;
/* always use CB2 mode, difference is masked /* always use CB2 mode, difference is masked
* in the CB driver */ * in the CB driver */
......
...@@ -42,6 +42,7 @@ ...@@ -42,6 +42,7 @@
#define XL_DEBUG 0 #define XL_DEBUG 0
#include <linux/jiffies.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/errno.h> #include <linux/errno.h>
...@@ -408,7 +409,7 @@ static int xl_hw_reset(struct net_device *dev) ...@@ -408,7 +409,7 @@ static int xl_hw_reset(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 40*HZ) { if (time_after(jiffies, t + 40 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL card not responding to global reset.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL card not responding to global reset.\n", dev->name);
return -ENODEV; return -ENODEV;
} }
...@@ -519,7 +520,7 @@ static int xl_hw_reset(struct net_device *dev) ...@@ -519,7 +520,7 @@ static int xl_hw_reset(struct net_device *dev)
t=jiffies; t=jiffies;
while ( !(readw(xl_mmio + MMIO_INTSTATUS_AUTO) & INTSTAT_SRB) ) { while ( !(readw(xl_mmio + MMIO_INTSTATUS_AUTO) & INTSTAT_SRB) ) {
schedule(); schedule();
if(jiffies-t > 15*HZ) { if (time_after(jiffies, t + 15 * HZ)) {
printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n");
return -ENODEV; return -ENODEV;
} }
...@@ -790,7 +791,7 @@ static int xl_open_hw(struct net_device *dev) ...@@ -790,7 +791,7 @@ static int xl_open_hw(struct net_device *dev)
t=jiffies; t=jiffies;
while (! (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) { while (! (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) {
schedule(); schedule();
if(jiffies-t > 40*HZ) { if (time_after(jiffies, t + 40 * HZ)) {
printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n");
break ; break ;
} }
...@@ -1003,7 +1004,7 @@ static void xl_reset(struct net_device *dev) ...@@ -1003,7 +1004,7 @@ static void xl_reset(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
if(jiffies-t > 40*HZ) { if (time_after(jiffies, t + 40 * HZ)) {
printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n");
break ; break ;
} }
...@@ -1270,7 +1271,7 @@ static int xl_close(struct net_device *dev) ...@@ -1270,7 +1271,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNSTALL not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNSTALL not responding.\n", dev->name);
break ; break ;
} }
...@@ -1279,7 +1280,7 @@ static int xl_close(struct net_device *dev) ...@@ -1279,7 +1280,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNDISABLE not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNDISABLE not responding.\n", dev->name);
break ; break ;
} }
...@@ -1288,7 +1289,7 @@ static int xl_close(struct net_device *dev) ...@@ -1288,7 +1289,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPSTALL not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPSTALL not responding.\n", dev->name);
break ; break ;
} }
...@@ -1305,7 +1306,7 @@ static int xl_close(struct net_device *dev) ...@@ -1305,7 +1306,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (!(readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) { while (!(readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-CLOSENIC not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-CLOSENIC not responding.\n", dev->name);
break ; break ;
} }
...@@ -1334,7 +1335,7 @@ static int xl_close(struct net_device *dev) ...@@ -1334,7 +1335,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPRESET not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPRESET not responding.\n", dev->name);
break ; break ;
} }
...@@ -1343,7 +1344,7 @@ static int xl_close(struct net_device *dev) ...@@ -1343,7 +1344,7 @@ static int xl_close(struct net_device *dev)
t=jiffies; t=jiffies;
while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) {
schedule(); schedule();
if(jiffies-t > 10*HZ) { if (time_after(jiffies, t + 10 * HZ)) {
printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNRESET not responding.\n", dev->name); printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNRESET not responding.\n", dev->name);
break ; break ;
} }
......
...@@ -770,14 +770,14 @@ static void yellowfin_init_ring(struct net_device *dev) ...@@ -770,14 +770,14 @@ static void yellowfin_init_ring(struct net_device *dev)
/* Branch on Tx error. */ /* Branch on Tx error. */
yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma + yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
(j+1)*sizeof(struct yellowfin_desc); (j+1)*sizeof(struct yellowfin_desc));
j++; j++;
if (yp->flags & FullTxStatus) { if (yp->flags & FullTxStatus) {
yp->tx_ring[j].dbdma_cmd = yp->tx_ring[j].dbdma_cmd =
cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status)); cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status); yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma + yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
i*sizeof(struct tx_status_words); i*sizeof(struct tx_status_words));
} else { } else {
/* Symbios chips write only tx_errs word. */ /* Symbios chips write only tx_errs word. */
yp->tx_ring[j].dbdma_cmd = yp->tx_ring[j].dbdma_cmd =
......
...@@ -283,8 +283,8 @@ struct arcnet_local { ...@@ -283,8 +283,8 @@ struct arcnet_local {
int next_buf, first_free_buf; int next_buf, first_free_buf;
/* network "reconfiguration" handling */ /* network "reconfiguration" handling */
time_t first_recon, /* time of "first" RECON message to count */ unsigned long first_recon; /* time of "first" RECON message to count */
last_recon; /* time of most recent RECON */ unsigned long last_recon; /* time of most recent RECON */
int num_recons; /* number of RECONs between first and last. */ int num_recons; /* number of RECONs between first and last. */
bool network_down; /* do we think the network is down? */ bool network_down; /* do we think the network is down? */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment