Commit 18283cad authored by Alexander Duyck's avatar Alexander Duyck Committed by Jeff Kirsher

fm10k: Add interrupt support

This patch set adds interrupt support for the fm10k interfaces.  The
interfaces themselves only support MSI-X, so neither MSI or legacy
interrupts are used.
Signed-off-by: default avatarAlexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 504c5eac
...@@ -31,6 +31,45 @@ ...@@ -31,6 +31,45 @@
#define FM10K_MAX_JUMBO_FRAME_SIZE 15358 /* Maximum supported size 15K */ #define FM10K_MAX_JUMBO_FRAME_SIZE 15358 /* Maximum supported size 15K */
struct fm10k_ring_container {
unsigned int total_bytes; /* total bytes processed this int */
unsigned int total_packets; /* total packets processed this int */
u16 work_limit; /* total work allowed per interrupt */
u16 itr; /* interrupt throttle rate value */
u8 count; /* total number of rings in vector */
};
#define FM10K_ITR_MAX 0x0FFF /* maximum value for ITR */
#define FM10K_ITR_10K 100 /* 100us */
#define FM10K_ITR_20K 50 /* 50us */
#define FM10K_ITR_ADAPTIVE 0x8000 /* adaptive interrupt moderation flag */
#define FM10K_ITR_ENABLE (FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR)
#define MAX_Q_VECTORS 256
#define MIN_Q_VECTORS 1
enum fm10k_non_q_vectors {
FM10K_MBX_VECTOR,
NON_Q_VECTORS_PF
};
#define NON_Q_VECTORS(hw) (((hw)->mac.type == fm10k_mac_pf) ? \
NON_Q_VECTORS_PF : \
0)
#define MIN_MSIX_COUNT(hw) (MIN_Q_VECTORS + NON_Q_VECTORS(hw))
struct fm10k_q_vector {
struct fm10k_intfc *interface;
u32 __iomem *itr; /* pointer to ITR register for this vector */
u16 v_idx; /* index of q_vector within interface array */
struct fm10k_ring_container rx, tx;
struct napi_struct napi;
char name[IFNAMSIZ + 9];
struct rcu_head rcu; /* to avoid race with update stats on free */
};
enum fm10k_ring_f_enum { enum fm10k_ring_f_enum {
RING_F_RSS, RING_F_RSS,
RING_F_QOS, RING_F_QOS,
...@@ -66,15 +105,29 @@ struct fm10k_intfc { ...@@ -66,15 +105,29 @@ struct fm10k_intfc {
#define FM10K_FLAG_SWPRI_CONFIG (u32)(1 << 4) #define FM10K_FLAG_SWPRI_CONFIG (u32)(1 << 4)
int xcast_mode; int xcast_mode;
/* Tx fast path data */
int num_tx_queues;
u16 tx_itr;
/* Rx fast path data */
int num_rx_queues;
u16 rx_itr;
u64 rx_overrun_pf; u64 rx_overrun_pf;
u64 rx_overrun_vf; u64 rx_overrun_vf;
/* Queueing vectors */
struct fm10k_q_vector *q_vector[MAX_Q_VECTORS];
struct msix_entry *msix_entries;
int num_q_vectors; /* current number of q_vectors for device */
struct fm10k_ring_feature ring_feature[RING_F_ARRAY_SIZE]; struct fm10k_ring_feature ring_feature[RING_F_ARRAY_SIZE];
struct fm10k_hw_stats stats; struct fm10k_hw_stats stats;
struct fm10k_hw hw; struct fm10k_hw hw;
u32 __iomem *uc_addr; u32 __iomem *uc_addr;
u16 msg_enable; u16 msg_enable;
u16 tx_ring_count;
u16 rx_ring_count;
u32 reta[FM10K_RETA_SIZE]; u32 reta[FM10K_RETA_SIZE];
u32 rssrk[FM10K_RSSRK_SIZE]; u32 rssrk[FM10K_RSSRK_SIZE];
...@@ -126,8 +179,14 @@ static inline int fm10k_mbx_trylock(struct fm10k_intfc *interface) ...@@ -126,8 +179,14 @@ static inline int fm10k_mbx_trylock(struct fm10k_intfc *interface)
/* main */ /* main */
extern char fm10k_driver_name[]; extern char fm10k_driver_name[];
extern const char fm10k_driver_version[]; extern const char fm10k_driver_version[];
int fm10k_init_queueing_scheme(struct fm10k_intfc *interface);
void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface);
/* PCI */ /* PCI */
void fm10k_mbx_free_irq(struct fm10k_intfc *);
int fm10k_mbx_request_irq(struct fm10k_intfc *);
void fm10k_qv_free_irq(struct fm10k_intfc *interface);
int fm10k_qv_request_irq(struct fm10k_intfc *interface);
int fm10k_register_pci_driver(void); int fm10k_register_pci_driver(void);
void fm10k_unregister_pci_driver(void); void fm10k_unregister_pci_driver(void);
void fm10k_up(struct fm10k_intfc *interface); void fm10k_up(struct fm10k_intfc *interface);
......
...@@ -66,3 +66,404 @@ static void __exit fm10k_exit_module(void) ...@@ -66,3 +66,404 @@ static void __exit fm10k_exit_module(void)
fm10k_unregister_pci_driver(); fm10k_unregister_pci_driver();
} }
module_exit(fm10k_exit_module); module_exit(fm10k_exit_module);
/**
* fm10k_update_itr - update the dynamic ITR value based on packet size
*
* Stores a new ITR value based on strictly on packet size. The
* divisors and thresholds used by this function were determined based
* on theoretical maximum wire speed and testing data, in order to
* minimize response time while increasing bulk throughput.
*
* @ring_container: Container for rings to have ITR updated
**/
static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
{
unsigned int avg_wire_size, packets;
/* Only update ITR if we are using adaptive setting */
if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
goto clear_counts;
packets = ring_container->total_packets;
if (!packets)
goto clear_counts;
avg_wire_size = ring_container->total_bytes / packets;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Don't starve jumbo frames */
if (avg_wire_size > 3000)
avg_wire_size = 3000;
/* Give a little boost to mid-size frames */
if ((avg_wire_size > 300) && (avg_wire_size < 1200))
avg_wire_size /= 3;
else
avg_wire_size /= 2;
/* write back value and retain adaptive flag */
ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
clear_counts:
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
}
static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
{
/* Enable auto-mask and clear the current mask */
u32 itr = FM10K_ITR_ENABLE;
/* Update Tx ITR */
fm10k_update_itr(&q_vector->tx);
/* Update Rx ITR */
fm10k_update_itr(&q_vector->rx);
/* Store Tx itr in timer slot 0 */
itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
/* Shift Rx itr to timer slot 1 */
itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
/* Write the final value to the ITR register */
writel(itr, q_vector->itr);
}
static int fm10k_poll(struct napi_struct *napi, int budget)
{
struct fm10k_q_vector *q_vector =
container_of(napi, struct fm10k_q_vector, napi);
/* all work done, exit the polling mode */
napi_complete(napi);
/* re-enable the q_vector */
fm10k_qv_enable(q_vector);
return 0;
}
/**
* fm10k_set_num_queues: Allocate queues for device, feature dependent
* @interface: board private structure to initialize
*
* This is the top level queue allocation routine. The order here is very
* important, starting with the "most" number of features turned on at once,
* and ending with the smallest set of features. This way large combinations
* can be allocated if they're turned on, and smaller combinations are the
* fallthrough conditions.
*
**/
static void fm10k_set_num_queues(struct fm10k_intfc *interface)
{
/* Start with base case */
interface->num_rx_queues = 1;
interface->num_tx_queues = 1;
}
/**
* fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
* @interface: board private structure to initialize
* @v_count: q_vectors allocated on interface, used for ring interleaving
* @v_idx: index of vector in interface struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
struct fm10k_q_vector *q_vector;
int ring_count, size;
ring_count = txr_count + rxr_count;
size = sizeof(struct fm10k_q_vector);
/* allocate q_vector and rings */
q_vector = kzalloc(size, GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(interface->netdev, &q_vector->napi,
fm10k_poll, NAPI_POLL_WEIGHT);
/* tie q_vector and interface together */
interface->q_vector[v_idx] = q_vector;
q_vector->interface = interface;
q_vector->v_idx = v_idx;
/* save Tx ring container info */
q_vector->tx.itr = interface->tx_itr;
q_vector->tx.count = txr_count;
/* save Rx ring container info */
q_vector->rx.itr = interface->rx_itr;
q_vector->rx.count = rxr_count;
return 0;
}
/**
* fm10k_free_q_vector - Free memory allocated for specific interrupt vector
* @interface: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
{
struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
interface->q_vector[v_idx] = NULL;
netif_napi_del(&q_vector->napi);
kfree_rcu(q_vector, rcu);
}
/**
* fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
* @interface: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
{
unsigned int q_vectors = interface->num_q_vectors;
unsigned int rxr_remaining = interface->num_rx_queues;
unsigned int txr_remaining = interface->num_tx_queues;
unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int err;
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
tqpv, txr_idx,
rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
interface->num_tx_queues = 0;
interface->num_rx_queues = 0;
interface->num_q_vectors = 0;
while (v_idx--)
fm10k_free_q_vector(interface, v_idx);
return -ENOMEM;
}
/**
* fm10k_free_q_vectors - Free memory allocated for interrupt vectors
* @interface: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
{
int v_idx = interface->num_q_vectors;
interface->num_tx_queues = 0;
interface->num_rx_queues = 0;
interface->num_q_vectors = 0;
while (v_idx--)
fm10k_free_q_vector(interface, v_idx);
}
/**
* f10k_reset_msix_capability - reset MSI-X capability
* @interface: board private structure to initialize
*
* Reset the MSI-X capability back to its starting state
**/
static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
{
pci_disable_msix(interface->pdev);
kfree(interface->msix_entries);
interface->msix_entries = NULL;
}
/**
* f10k_init_msix_capability - configure MSI-X capability
* @interface: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int v_budget, vector;
/* It's easy to be greedy for MSI-X vectors, but it really
* doesn't do us much good if we have a lot more vectors
* than CPU's. So let's be conservative and only ask for
* (roughly) the same number of vectors as there are CPU's.
* the default is to use pairs of vectors
*/
v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
v_budget = min_t(u16, v_budget, num_online_cpus());
/* account for vectors not related to queues */
v_budget += NON_Q_VECTORS(hw);
/* At the same time, hardware can only support a maximum of
* hw.mac->max_msix_vectors vectors. With features
* such as RSS and VMDq, we can easily surpass the number of Rx and Tx
* descriptor queues supported by our device. Thus, we cap it off in
* those rare cases where the cpu count also exceeds our vector limit.
*/
v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
/* A failure in MSI-X entry allocation is fatal. */
interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
GFP_KERNEL);
if (!interface->msix_entries)
return -ENOMEM;
/* populate entry values */
for (vector = 0; vector < v_budget; vector++)
interface->msix_entries[vector].entry = vector;
/* Attempt to enable MSI-X with requested value */
v_budget = pci_enable_msix_range(interface->pdev,
interface->msix_entries,
MIN_MSIX_COUNT(hw),
v_budget);
if (v_budget < 0) {
kfree(interface->msix_entries);
interface->msix_entries = NULL;
return -ENOMEM;
}
/* record the number of queues available for q_vectors */
interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
return 0;
}
static void fm10k_init_reta(struct fm10k_intfc *interface)
{
u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
u32 reta, base;
/* If the netdev is initialized we have to maintain table if possible */
if (interface->netdev->reg_state) {
for (i = FM10K_RETA_SIZE; i--;) {
reta = interface->reta[i];
if ((((reta << 24) >> 24) < rss_i) &&
(((reta << 16) >> 24) < rss_i) &&
(((reta << 8) >> 24) < rss_i) &&
(((reta) >> 24) < rss_i))
continue;
goto repopulate_reta;
}
/* do nothing if all of the elements are in bounds */
return;
}
repopulate_reta:
/* Populate the redirection table 4 entries at a time. To do this
* we are generating the results for n and n+2 and then interleaving
* those with the results with n+1 and n+3.
*/
for (i = FM10K_RETA_SIZE; i--;) {
/* first pass generates n and n+2 */
base = ((i * 0x00040004) + 0x00020000) * rss_i;
reta = (base & 0x3F803F80) >> 7;
/* second pass generates n+1 and n+3 */
base += 0x00010001 * rss_i;
reta |= (base & 0x3F803F80) << 1;
interface->reta[i] = reta;
}
}
/**
* fm10k_init_queueing_scheme - Determine proper queueing scheme
* @interface: board private structure to initialize
*
* We determine which queueing scheme to use based on...
* - Hardware queue count (num_*_queues)
* - defined by miscellaneous hardware support/features (RSS, etc.)
**/
int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
{
int err;
/* Number of supported queues */
fm10k_set_num_queues(interface);
/* Configure MSI-X capability */
err = fm10k_init_msix_capability(interface);
if (err) {
dev_err(&interface->pdev->dev,
"Unable to initialize MSI-X capability\n");
return err;
}
/* Allocate memory for queues */
err = fm10k_alloc_q_vectors(interface);
if (err)
return err;
/* Initialize RSS redirection table */
fm10k_init_reta(interface);
return 0;
}
/**
* fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
* @interface: board private structure to clear queueing scheme on
*
* We go through and clear queueing specific resources and reset the structure
* to pre-load conditions
**/
void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
{
fm10k_free_q_vectors(interface);
fm10k_reset_msix_capability(interface);
}
...@@ -57,6 +57,12 @@ static void fm10k_request_glort_range(struct fm10k_intfc *interface) ...@@ -57,6 +57,12 @@ static void fm10k_request_glort_range(struct fm10k_intfc *interface)
int fm10k_open(struct net_device *netdev) int fm10k_open(struct net_device *netdev)
{ {
struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_intfc *interface = netdev_priv(netdev);
int err;
/* allocate interrupt resources */
err = fm10k_qv_request_irq(interface);
if (err)
goto err_req_irq;
/* setup GLORT assignment for this port */ /* setup GLORT assignment for this port */
fm10k_request_glort_range(interface); fm10k_request_glort_range(interface);
...@@ -64,6 +70,9 @@ int fm10k_open(struct net_device *netdev) ...@@ -64,6 +70,9 @@ int fm10k_open(struct net_device *netdev)
fm10k_up(interface); fm10k_up(interface);
return 0; return 0;
err_req_irq:
return err;
} }
/** /**
...@@ -83,6 +92,8 @@ int fm10k_close(struct net_device *netdev) ...@@ -83,6 +92,8 @@ int fm10k_close(struct net_device *netdev)
fm10k_down(interface); fm10k_down(interface);
fm10k_qv_free_irq(interface);
return 0; return 0;
} }
......
...@@ -87,6 +87,470 @@ static int fm10k_hw_ready(struct fm10k_intfc *interface) ...@@ -87,6 +87,470 @@ static int fm10k_hw_ready(struct fm10k_intfc *interface)
return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
} }
static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_enable(&q_vector->napi);
}
}
static irqreturn_t fm10k_msix_clean_rings(int irq, void *data)
{
struct fm10k_q_vector *q_vector = data;
if (q_vector->rx.count || q_vector->tx.count)
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
#define FM10K_ERR_MSG(type) case (type): error = #type; break
static void fm10k_print_fault(struct fm10k_intfc *interface, int type,
struct fm10k_fault *fault)
{
struct pci_dev *pdev = interface->pdev;
char *error;
switch (type) {
case FM10K_PCA_FAULT:
switch (fault->type) {
default:
error = "Unknown PCA error";
break;
FM10K_ERR_MSG(PCA_NO_FAULT);
FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
FM10K_ERR_MSG(PCA_POISONED_TLP);
FM10K_ERR_MSG(PCA_TLP_ABORT);
}
break;
case FM10K_THI_FAULT:
switch (fault->type) {
default:
error = "Unknown THI error";
break;
FM10K_ERR_MSG(THI_NO_FAULT);
FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
}
break;
case FM10K_FUM_FAULT:
switch (fault->type) {
default:
error = "Unknown FUM error";
break;
FM10K_ERR_MSG(FUM_NO_FAULT);
FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
FM10K_ERR_MSG(FUM_RO_ERROR);
FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
FM10K_ERR_MSG(FUM_INVALID_TYPE);
FM10K_ERR_MSG(FUM_INVALID_LENGTH);
FM10K_ERR_MSG(FUM_INVALID_BE);
FM10K_ERR_MSG(FUM_INVALID_ALIGN);
}
break;
default:
error = "Undocumented fault";
break;
}
dev_warn(&pdev->dev,
"%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
error, fault->address, fault->specinfo,
PCI_SLOT(fault->func), PCI_FUNC(fault->func));
}
static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_fault fault = { 0 };
int type, err;
for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
eicr;
eicr >>= 1, type += FM10K_FAULT_SIZE) {
/* only check if there is an error reported */
if (!(eicr & 0x1))
continue;
/* retrieve fault info */
err = hw->mac.ops.get_fault(hw, type, &fault);
if (err) {
dev_err(&interface->pdev->dev,
"error reading fault\n");
continue;
}
fm10k_print_fault(interface, type, &fault);
}
}
static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u32 maxholdq;
int q;
if (!(eicr & FM10K_EICR_MAXHOLDTIME))
return;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
for (q = 255;;) {
if (maxholdq & (1 << 31)) {
if (q < FM10K_MAX_QUEUES_PF) {
interface->rx_overrun_pf++;
fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
} else {
interface->rx_overrun_vf++;
}
}
maxholdq *= 2;
if (!maxholdq)
q &= ~(32 - 1);
if (!q)
break;
if (q-- % 32)
continue;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
}
}
static irqreturn_t fm10k_msix_mbx_pf(int irq, void *data)
{
struct fm10k_intfc *interface = data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 eicr;
/* unmask any set bits related to this interrupt */
eicr = fm10k_read_reg(hw, FM10K_EICR);
fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
FM10K_EICR_SWITCHREADY |
FM10K_EICR_SWITCHNOTREADY));
/* report any faults found to the message log */
fm10k_report_fault(interface, eicr);
/* reset any queues disabled due to receiver overrun */
fm10k_reset_drop_on_empty(interface, eicr);
/* service mailboxes */
if (fm10k_mbx_trylock(interface)) {
mbx->ops.process(hw, mbx);
fm10k_mbx_unlock(interface);
}
/* re-enable mailbox interrupt and indicate 20us delay */
fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
FM10K_ITR_ENABLE | FM10K_MBX_INT_DELAY);
return IRQ_HANDLED;
}
void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct fm10k_hw *hw = &interface->hw;
int itr_reg;
/* disconnect the mailbox */
hw->mbx.ops.disconnect(hw, &hw->mbx);
/* disable Mailbox cause */
if (hw->mac.type == fm10k_mac_pf) {
fm10k_write_reg(hw, FM10K_EIMR,
FM10K_EIMR_DISABLE(PCA_FAULT) |
FM10K_EIMR_DISABLE(FUM_FAULT) |
FM10K_EIMR_DISABLE(MAILBOX) |
FM10K_EIMR_DISABLE(SWITCHREADY) |
FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
FM10K_EIMR_DISABLE(SRAMERROR) |
FM10K_EIMR_DISABLE(VFLR) |
FM10K_EIMR_DISABLE(MAXHOLDTIME));
itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
}
fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
free_irq(entry->vector, interface);
}
/* generic error handler for mailbox issues */
static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_intfc *interface;
struct pci_dev *pdev;
interface = container_of(hw, struct fm10k_intfc, hw);
pdev = interface->pdev;
dev_err(&pdev->dev, "Unknown message ID %u\n",
**results & FM10K_TLV_ID_MASK);
return 0;
}
static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_intfc *interface;
u32 dglort_map = hw->mac.dglort_map;
s32 err;
err = fm10k_msg_lport_map_pf(hw, results, mbx);
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
/* we need to reset if port count was just updated */
if (dglort_map != hw->mac.dglort_map)
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
return 0;
}
static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_intfc *interface;
u16 glort, pvid;
u32 pvid_update;
s32 err;
err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
&pvid_update);
if (err)
return err;
/* extract values from the pvid update */
glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* verify VID is valid */
if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
interface = container_of(hw, struct fm10k_intfc, hw);
/* we need to reset if default VLAN was just updated */
if (pvid != hw->mac.default_vid)
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
hw->mac.default_vid = pvid;
return 0;
}
static const struct fm10k_msg_data pf_mbx_data[] = {
FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
};
static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* Use timer0 for interrupt moderation on the mailbox */
u32 mbx_itr = FM10K_INT_MAP_TIMER0 | entry->entry;
u32 other_itr = FM10K_INT_MAP_IMMEDIATE | entry->entry;
/* register mailbox handlers */
err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
if (err)
return err;
/* request the IRQ */
err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
dev->name, interface);
if (err) {
netif_err(interface, probe, dev,
"request_irq for msix_mbx failed: %d\n", err);
return err;
}
/* Enable interrupts w/ no moderation for "other" interrupts */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SRAM), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_MaxHoldTime), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_VFLR), other_itr);
/* Enable interrupts w/ moderation for mailbox */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_Mailbox), mbx_itr);
/* Enable individual interrupt causes */
fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
FM10K_EIMR_ENABLE(FUM_FAULT) |
FM10K_EIMR_ENABLE(MAILBOX) |
FM10K_EIMR_ENABLE(SWITCHREADY) |
FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
FM10K_EIMR_ENABLE(SRAMERROR) |
FM10K_EIMR_ENABLE(VFLR) |
FM10K_EIMR_ENABLE(MAXHOLDTIME));
/* enable interrupt */
fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
return 0;
}
int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int err;
/* enable Mailbox cause */
err = fm10k_mbx_request_irq_pf(interface);
/* connect mailbox */
if (!err)
err = hw->mbx.ops.connect(hw, &hw->mbx);
return err;
}
/**
* fm10k_qv_free_irq - release interrupts associated with queue vectors
* @interface: board private structure
*
* Release all interrupts associated with this interface
**/
void fm10k_qv_free_irq(struct fm10k_intfc *interface)
{
int vector = interface->num_q_vectors;
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector];
while (vector) {
struct fm10k_q_vector *q_vector;
vector--;
entry--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
}
/**
* fm10k_qv_request_irq - initialize interrupts for queue vectors
* @interface: board private structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
int fm10k_qv_request_irq(struct fm10k_intfc *interface)
{
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
int ri = 0, ti = 0;
int vector, err;
entry = &interface->msix_entries[NON_Q_VECTORS(hw)];
for (vector = 0; vector < interface->num_q_vectors; vector++) {
struct fm10k_q_vector *q_vector = interface->q_vector[vector];
/* name the vector */
if (q_vector->tx.count && q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-TxRx-%d", dev->name, ri++);
ti++;
} else if (q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-rx-%d", dev->name, ri++);
} else if (q_vector->tx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-tx-%d", dev->name, ti++);
} else {
/* skip this unused q_vector */
continue;
}
/* Assign ITR register to q_vector */
q_vector->itr = &interface->uc_addr[FM10K_ITR(entry->entry)];
/* request the IRQ */
err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
q_vector->name, q_vector);
if (err) {
netif_err(interface, probe, dev,
"request_irq failed for MSIX interrupt Error: %d\n",
err);
goto err_out;
}
/* Enable q_vector */
writel(FM10K_ITR_ENABLE, q_vector->itr);
entry++;
}
return 0;
err_out:
/* wind through the ring freeing all entries and vectors */
while (vector) {
struct fm10k_q_vector *q_vector;
entry--;
vector--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
return err;
}
void fm10k_up(struct fm10k_intfc *interface) void fm10k_up(struct fm10k_intfc *interface)
{ {
struct fm10k_hw *hw = &interface->hw; struct fm10k_hw *hw = &interface->hw;
...@@ -100,6 +564,9 @@ void fm10k_up(struct fm10k_intfc *interface) ...@@ -100,6 +564,9 @@ void fm10k_up(struct fm10k_intfc *interface)
/* clear down bit to indicate we are ready to go */ /* clear down bit to indicate we are ready to go */
clear_bit(__FM10K_DOWN, &interface->state); clear_bit(__FM10K_DOWN, &interface->state);
/* enable polling cleanups */
fm10k_napi_enable_all(interface);
/* re-establish Rx filters */ /* re-establish Rx filters */
fm10k_restore_rx_state(interface); fm10k_restore_rx_state(interface);
...@@ -107,6 +574,17 @@ void fm10k_up(struct fm10k_intfc *interface) ...@@ -107,6 +574,17 @@ void fm10k_up(struct fm10k_intfc *interface)
netif_tx_start_all_queues(interface->netdev); netif_tx_start_all_queues(interface->netdev);
} }
static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_disable(&q_vector->napi);
}
}
void fm10k_down(struct fm10k_intfc *interface) void fm10k_down(struct fm10k_intfc *interface)
{ {
struct net_device *netdev = interface->netdev; struct net_device *netdev = interface->netdev;
...@@ -128,6 +606,9 @@ void fm10k_down(struct fm10k_intfc *interface) ...@@ -128,6 +606,9 @@ void fm10k_down(struct fm10k_intfc *interface)
/* allow 10ms for device to quiesce */ /* allow 10ms for device to quiesce */
usleep_range(10000, 20000); usleep_range(10000, 20000);
/* disable polling routines */
fm10k_napi_disable_all(interface);
/* Disable DMA engine for Tx/Rx */ /* Disable DMA engine for Tx/Rx */
hw->mac.ops.stop_hw(hw); hw->mac.ops.stop_hw(hw);
} }
...@@ -226,6 +707,10 @@ static int fm10k_sw_init(struct fm10k_intfc *interface, ...@@ -226,6 +707,10 @@ static int fm10k_sw_init(struct fm10k_intfc *interface,
netdev->hw_features &= ~NETIF_F_GSO_UDP_TUNNEL; netdev->hw_features &= ~NETIF_F_GSO_UDP_TUNNEL;
} }
/* set default interrupt moderation */
interface->tx_itr = FM10K_ITR_10K;
interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_ITR_20K;
/* initialize vxlan_port list */ /* initialize vxlan_port list */
INIT_LIST_HEAD(&interface->vxlan_port); INIT_LIST_HEAD(&interface->vxlan_port);
...@@ -341,6 +826,14 @@ static int fm10k_probe(struct pci_dev *pdev, ...@@ -341,6 +826,14 @@ static int fm10k_probe(struct pci_dev *pdev,
if (err) if (err)
goto err_sw_init; goto err_sw_init;
err = fm10k_init_queueing_scheme(interface);
if (err)
goto err_sw_init;
err = fm10k_mbx_request_irq(interface);
if (err)
goto err_mbx_interrupt;
/* final check of hardware state before registering the interface */ /* final check of hardware state before registering the interface */
err = fm10k_hw_ready(interface); err = fm10k_hw_ready(interface);
if (err) if (err)
...@@ -377,6 +870,9 @@ static int fm10k_probe(struct pci_dev *pdev, ...@@ -377,6 +870,9 @@ static int fm10k_probe(struct pci_dev *pdev,
return 0; return 0;
err_register: err_register:
fm10k_mbx_free_irq(interface);
err_mbx_interrupt:
fm10k_clear_queueing_scheme(interface);
err_sw_init: err_sw_init:
iounmap(interface->uc_addr); iounmap(interface->uc_addr);
err_ioremap: err_ioremap:
...@@ -408,6 +904,12 @@ static void fm10k_remove(struct pci_dev *pdev) ...@@ -408,6 +904,12 @@ static void fm10k_remove(struct pci_dev *pdev)
if (netdev->reg_state == NETREG_REGISTERED) if (netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(netdev); unregister_netdev(netdev);
/* disable mailbox interrupt */
fm10k_mbx_free_irq(interface);
/* free interrupts */
fm10k_clear_queueing_scheme(interface);
iounmap(interface->uc_addr); iounmap(interface->uc_addr);
free_netdev(netdev); free_netdev(netdev);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment