Commit 1fe43114 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'pm-4.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "These include one big-ticket item which is the rework of the idle loop
  in order to prevent CPUs from spending too much time in shallow idle
  states. It reduces idle power on some systems by 10% or more and may
  improve performance of workloads in which the idle loop overhead
  matters. This has been in the works for several weeks and it has been
  tested and reviewed quite thoroughly.

  Also included are changes that finalize the cpufreq cleanup moving
  frequency table validation from drivers to the core, a few fixes and
  cleanups of cpufreq drivers, a cpuidle documentation update and a PM
  QoS core update to mark the expected switch fall-throughs in it.

  Specifics:

   - Rework the idle loop in order to prevent CPUs from spending too
     much time in shallow idle states by making it stop the scheduler
     tick before putting the CPU into an idle state only if the idle
     duration predicted by the idle governor is long enough.

     That required the code to be reordered to invoke the idle governor
     before stopping the tick, among other things (Rafael Wysocki,
     Frederic Weisbecker, Arnd Bergmann).

   - Add the missing description of the residency sysfs attribute to the
     cpuidle documentation (Prashanth Prakash).

   - Finalize the cpufreq cleanup moving frequency table validation from
     drivers to the core (Viresh Kumar).

   - Fix a clock leak regression in the armada-37xx cpufreq driver
     (Gregory Clement).

   - Fix the initialization of the CPU performance data structures for
     shared policies in the CPPC cpufreq driver (Shunyong Yang).

   - Clean up the ti-cpufreq, intel_pstate and CPPC cpufreq drivers a
     bit (Viresh Kumar, Rafael Wysocki).

   - Mark the expected switch fall-throughs in the PM QoS core (Gustavo
     Silva)"

* tag 'pm-4.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
  tick-sched: avoid a maybe-uninitialized warning
  cpufreq: Drop cpufreq_table_validate_and_show()
  cpufreq: SCMI: Don't validate the frequency table twice
  cpufreq: CPPC: Initialize shared perf capabilities of CPUs
  cpufreq: armada-37xx: Fix clock leak
  cpufreq: CPPC: Don't set transition_latency
  cpufreq: ti-cpufreq: Use builtin_platform_driver()
  cpufreq: intel_pstate: Do not include debugfs.h
  PM / QoS: mark expected switch fall-throughs
  cpuidle: Add definition of residency to sysfs documentation
  time: hrtimer: Use timerqueue_iterate_next() to get to the next timer
  nohz: Avoid duplication of code related to got_idle_tick
  nohz: Gather tick_sched booleans under a common flag field
  cpuidle: menu: Avoid selecting shallow states with stopped tick
  cpuidle: menu: Refine idle state selection for running tick
  sched: idle: Select idle state before stopping the tick
  time: hrtimer: Introduce hrtimer_next_event_without()
  time: tick-sched: Split tick_nohz_stop_sched_tick()
  cpuidle: Return nohz hint from cpuidle_select()
  jiffies: Introduce USER_TICK_USEC and redefine TICK_USEC
  ...
parents 96973767 51798dea
...@@ -97,12 +97,10 @@ flags - flags of the cpufreq driver ...@@ -97,12 +97,10 @@ flags - flags of the cpufreq driver
================================================================== ==================================================================
For details about OPP, see Documentation/power/opp.txt For details about OPP, see Documentation/power/opp.txt
dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with dev_pm_opp_init_cpufreq_table -
cpufreq_table_validate_and_show() which is provided with the list of This function provides a ready to use conversion routine to translate
frequencies that are available for operation. This function provides the OPP layer's internal information about the available frequencies
a ready to use conversion routine to translate the OPP layer's internal into a format readily providable to cpufreq.
information about the available frequencies into a format readily
providable to cpufreq.
WARNING: Do not use this function in interrupt context. WARNING: Do not use this function in interrupt context.
...@@ -112,7 +110,7 @@ dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with ...@@ -112,7 +110,7 @@ dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
/* Do things */ /* Do things */
r = dev_pm_opp_init_cpufreq_table(dev, &freq_table); r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
if (!r) if (!r)
cpufreq_table_validate_and_show(policy, freq_table); policy->freq_table = freq_table;
/* Do other things */ /* Do other things */
} }
......
...@@ -259,10 +259,8 @@ CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any ...@@ -259,10 +259,8 @@ CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any
particular order, but if they are cpufreq core will do DVFS a bit particular order, but if they are cpufreq core will do DVFS a bit
quickly for them as search for best match is faster. quickly for them as search for best match is faster.
By calling cpufreq_table_validate_and_show(), the cpuinfo.min_freq and The cpufreq table is verified automatically by the core if the policy contains a
cpuinfo.max_freq values are detected, and policy->min and policy->max valid pointer in its policy->freq_table field.
are set to the same values. This is helpful for the per-CPU
initialization stage.
cpufreq_frequency_table_verify() assures that at least one valid cpufreq_frequency_table_verify() assures that at least one valid
frequency is within policy->min and policy->max, and all other criteria frequency is within policy->min and policy->max, and all other criteria
......
...@@ -40,6 +40,7 @@ total 0 ...@@ -40,6 +40,7 @@ total 0
-r--r--r-- 1 root root 4096 Feb 8 10:42 latency -r--r--r-- 1 root root 4096 Feb 8 10:42 latency
-r--r--r-- 1 root root 4096 Feb 8 10:42 name -r--r--r-- 1 root root 4096 Feb 8 10:42 name
-r--r--r-- 1 root root 4096 Feb 8 10:42 power -r--r--r-- 1 root root 4096 Feb 8 10:42 power
-r--r--r-- 1 root root 4096 Feb 8 10:42 residency
-r--r--r-- 1 root root 4096 Feb 8 10:42 time -r--r--r-- 1 root root 4096 Feb 8 10:42 time
-r--r--r-- 1 root root 4096 Feb 8 10:42 usage -r--r--r-- 1 root root 4096 Feb 8 10:42 usage
...@@ -50,6 +51,7 @@ total 0 ...@@ -50,6 +51,7 @@ total 0
-r--r--r-- 1 root root 4096 Feb 8 10:42 latency -r--r--r-- 1 root root 4096 Feb 8 10:42 latency
-r--r--r-- 1 root root 4096 Feb 8 10:42 name -r--r--r-- 1 root root 4096 Feb 8 10:42 name
-r--r--r-- 1 root root 4096 Feb 8 10:42 power -r--r--r-- 1 root root 4096 Feb 8 10:42 power
-r--r--r-- 1 root root 4096 Feb 8 10:42 residency
-r--r--r-- 1 root root 4096 Feb 8 10:42 time -r--r--r-- 1 root root 4096 Feb 8 10:42 time
-r--r--r-- 1 root root 4096 Feb 8 10:42 usage -r--r--r-- 1 root root 4096 Feb 8 10:42 usage
...@@ -60,6 +62,7 @@ total 0 ...@@ -60,6 +62,7 @@ total 0
-r--r--r-- 1 root root 4096 Feb 8 10:42 latency -r--r--r-- 1 root root 4096 Feb 8 10:42 latency
-r--r--r-- 1 root root 4096 Feb 8 10:42 name -r--r--r-- 1 root root 4096 Feb 8 10:42 name
-r--r--r-- 1 root root 4096 Feb 8 10:42 power -r--r--r-- 1 root root 4096 Feb 8 10:42 power
-r--r--r-- 1 root root 4096 Feb 8 10:42 residency
-r--r--r-- 1 root root 4096 Feb 8 10:42 time -r--r--r-- 1 root root 4096 Feb 8 10:42 time
-r--r--r-- 1 root root 4096 Feb 8 10:42 usage -r--r--r-- 1 root root 4096 Feb 8 10:42 usage
...@@ -70,6 +73,7 @@ total 0 ...@@ -70,6 +73,7 @@ total 0
-r--r--r-- 1 root root 4096 Feb 8 10:42 latency -r--r--r-- 1 root root 4096 Feb 8 10:42 latency
-r--r--r-- 1 root root 4096 Feb 8 10:42 name -r--r--r-- 1 root root 4096 Feb 8 10:42 name
-r--r--r-- 1 root root 4096 Feb 8 10:42 power -r--r--r-- 1 root root 4096 Feb 8 10:42 power
-r--r--r-- 1 root root 4096 Feb 8 10:42 residency
-r--r--r-- 1 root root 4096 Feb 8 10:42 time -r--r--r-- 1 root root 4096 Feb 8 10:42 time
-r--r--r-- 1 root root 4096 Feb 8 10:42 usage -r--r--r-- 1 root root 4096 Feb 8 10:42 usage
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
...@@ -78,6 +82,8 @@ total 0 ...@@ -78,6 +82,8 @@ total 0
* desc : Small description about the idle state (string) * desc : Small description about the idle state (string)
* disable : Option to disable this idle state (bool) -> see note below * disable : Option to disable this idle state (bool) -> see note below
* latency : Latency to exit out of this idle state (in microseconds) * latency : Latency to exit out of this idle state (in microseconds)
* residency : Time after which a state becomes more effecient than any
shallower state (in microseconds)
* name : Name of the idle state (string) * name : Name of the idle state (string)
* power : Power consumed while in this idle state (in milliwatts) * power : Power consumed while in this idle state (in milliwatts)
* time : Total time spent in this idle state (in microseconds) * time : Total time spent in this idle state (in microseconds)
......
...@@ -425,6 +425,7 @@ static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */ ...@@ -425,6 +425,7 @@ static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */
* data back is to call: * data back is to call:
*/ */
tick_nohz_idle_enter(); tick_nohz_idle_enter();
tick_nohz_idle_stop_tick_protected();
cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE); cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE);
} }
......
...@@ -202,6 +202,7 @@ static int __init armada37xx_cpufreq_driver_init(void) ...@@ -202,6 +202,7 @@ static int __init armada37xx_cpufreq_driver_init(void)
cur_frequency = clk_get_rate(clk); cur_frequency = clk_get_rate(clk);
if (!cur_frequency) { if (!cur_frequency) {
dev_err(cpu_dev, "Failed to get clock rate for CPU\n"); dev_err(cpu_dev, "Failed to get clock rate for CPU\n");
clk_put(clk);
return -EINVAL; return -EINVAL;
} }
...@@ -210,6 +211,7 @@ static int __init armada37xx_cpufreq_driver_init(void) ...@@ -210,6 +211,7 @@ static int __init armada37xx_cpufreq_driver_init(void)
return -EINVAL; return -EINVAL;
armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider); armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider);
clk_put(clk);
for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR;
load_lvl++) { load_lvl++) {
......
...@@ -162,14 +162,23 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) ...@@ -162,14 +162,23 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
cpu->perf_caps.highest_perf; cpu->perf_caps.highest_perf;
policy->cpuinfo.max_freq = cppc_dmi_max_khz; policy->cpuinfo.max_freq = cppc_dmi_max_khz;
policy->cpuinfo.transition_latency = cppc_get_transition_latency(cpu_num);
policy->transition_delay_us = cppc_get_transition_latency(cpu_num) / policy->transition_delay_us = cppc_get_transition_latency(cpu_num) /
NSEC_PER_USEC; NSEC_PER_USEC;
policy->shared_type = cpu->shared_type; policy->shared_type = cpu->shared_type;
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
int i;
cpumask_copy(policy->cpus, cpu->shared_cpu_map); cpumask_copy(policy->cpus, cpu->shared_cpu_map);
else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
for_each_cpu(i, policy->cpus) {
if (unlikely(i == policy->cpu))
continue;
memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
sizeof(cpu->perf_caps));
}
} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
/* Support only SW_ANY for now. */ /* Support only SW_ANY for now. */
pr_debug("Unsupported CPU co-ord type\n"); pr_debug("Unsupported CPU co-ord type\n");
return -EFAULT; return -EFAULT;
......
...@@ -352,20 +352,6 @@ static int set_freq_table_sorted(struct cpufreq_policy *policy) ...@@ -352,20 +352,6 @@ static int set_freq_table_sorted(struct cpufreq_policy *policy)
return 0; return 0;
} }
int cpufreq_table_validate_and_show(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table)
{
int ret;
ret = cpufreq_frequency_table_cpuinfo(policy, table);
if (ret)
return ret;
policy->freq_table = table;
return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_table_validate_and_show);
int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy) int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy)
{ {
int ret; int ret;
......
...@@ -26,7 +26,6 @@ ...@@ -26,7 +26,6 @@
#include <linux/sysfs.h> #include <linux/sysfs.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/acpi.h> #include <linux/acpi.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <trace/events/power.h> #include <trace/events/power.h>
......
...@@ -159,13 +159,7 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy) ...@@ -159,13 +159,7 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
priv->domain_id = handle->perf_ops->device_domain_id(cpu_dev); priv->domain_id = handle->perf_ops->device_domain_id(cpu_dev);
policy->driver_data = priv; policy->driver_data = priv;
policy->freq_table = freq_table;
ret = cpufreq_table_validate_and_show(policy, freq_table);
if (ret) {
dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
ret);
goto out_free_cpufreq_table;
}
/* SCMI allows DVFS request for any domain from any CPU */ /* SCMI allows DVFS request for any domain from any CPU */
policy->dvfs_possible_from_any_cpu = true; policy->dvfs_possible_from_any_cpu = true;
...@@ -179,8 +173,6 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy) ...@@ -179,8 +173,6 @@ static int scmi_cpufreq_init(struct cpufreq_policy *policy)
policy->fast_switch_possible = true; policy->fast_switch_possible = true;
return 0; return 0;
out_free_cpufreq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
out_free_priv: out_free_priv:
kfree(priv); kfree(priv);
out_free_opp: out_free_opp:
......
...@@ -304,7 +304,7 @@ static struct platform_driver ti_cpufreq_driver = { ...@@ -304,7 +304,7 @@ static struct platform_driver ti_cpufreq_driver = {
.name = "ti-cpufreq", .name = "ti-cpufreq",
}, },
}; };
module_platform_driver(ti_cpufreq_driver); builtin_platform_driver(ti_cpufreq_driver);
MODULE_DESCRIPTION("TI CPUFreq/OPP hw-supported driver"); MODULE_DESCRIPTION("TI CPUFreq/OPP hw-supported driver");
MODULE_AUTHOR("Dave Gerlach <d-gerlach@ti.com>"); MODULE_AUTHOR("Dave Gerlach <d-gerlach@ti.com>");
......
...@@ -272,12 +272,18 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv, ...@@ -272,12 +272,18 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
* *
* @drv: the cpuidle driver * @drv: the cpuidle driver
* @dev: the cpuidle device * @dev: the cpuidle device
* @stop_tick: indication on whether or not to stop the tick
* *
* Returns the index of the idle state. The return value must not be negative. * Returns the index of the idle state. The return value must not be negative.
*
* The memory location pointed to by @stop_tick is expected to be written the
* 'false' boolean value if the scheduler tick should not be stopped before
* entering the returned state.
*/ */
int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick)
{ {
return cpuidle_curr_governor->select(drv, dev); return cpuidle_curr_governor->select(drv, dev, stop_tick);
} }
/** /**
......
...@@ -63,9 +63,10 @@ static inline void ladder_do_selection(struct ladder_device *ldev, ...@@ -63,9 +63,10 @@ static inline void ladder_do_selection(struct ladder_device *ldev,
* ladder_select_state - selects the next state to enter * ladder_select_state - selects the next state to enter
* @drv: cpuidle driver * @drv: cpuidle driver
* @dev: the CPU * @dev: the CPU
* @dummy: not used
*/ */
static int ladder_select_state(struct cpuidle_driver *drv, static int ladder_select_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev) struct cpuidle_device *dev, bool *dummy)
{ {
struct ladder_device *ldev = this_cpu_ptr(&ladder_devices); struct ladder_device *ldev = this_cpu_ptr(&ladder_devices);
struct device *device = get_cpu_device(dev->cpu); struct device *device = get_cpu_device(dev->cpu);
......
...@@ -123,6 +123,7 @@ ...@@ -123,6 +123,7 @@
struct menu_device { struct menu_device {
int last_state_idx; int last_state_idx;
int needs_update; int needs_update;
int tick_wakeup;
unsigned int next_timer_us; unsigned int next_timer_us;
unsigned int predicted_us; unsigned int predicted_us;
...@@ -279,8 +280,10 @@ static unsigned int get_typical_interval(struct menu_device *data) ...@@ -279,8 +280,10 @@ static unsigned int get_typical_interval(struct menu_device *data)
* menu_select - selects the next idle state to enter * menu_select - selects the next idle state to enter
* @drv: cpuidle driver containing state data * @drv: cpuidle driver containing state data
* @dev: the CPU * @dev: the CPU
* @stop_tick: indication on whether or not to stop the tick
*/ */
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick)
{ {
struct menu_device *data = this_cpu_ptr(&menu_devices); struct menu_device *data = this_cpu_ptr(&menu_devices);
struct device *device = get_cpu_device(dev->cpu); struct device *device = get_cpu_device(dev->cpu);
...@@ -292,6 +295,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) ...@@ -292,6 +295,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
unsigned int expected_interval; unsigned int expected_interval;
unsigned long nr_iowaiters, cpu_load; unsigned long nr_iowaiters, cpu_load;
int resume_latency = dev_pm_qos_raw_read_value(device); int resume_latency = dev_pm_qos_raw_read_value(device);
ktime_t delta_next;
if (data->needs_update) { if (data->needs_update) {
menu_update(drv, dev); menu_update(drv, dev);
...@@ -303,11 +307,13 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) ...@@ -303,11 +307,13 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
latency_req = resume_latency; latency_req = resume_latency;
/* Special case when user has set very strict latency requirement */ /* Special case when user has set very strict latency requirement */
if (unlikely(latency_req == 0)) if (unlikely(latency_req == 0)) {
*stop_tick = false;
return 0; return 0;
}
/* determine the expected residency time, round up */ /* determine the expected residency time, round up */
data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length()); data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
get_iowait_load(&nr_iowaiters, &cpu_load); get_iowait_load(&nr_iowaiters, &cpu_load);
data->bucket = which_bucket(data->next_timer_us, nr_iowaiters); data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
...@@ -346,14 +352,30 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) ...@@ -346,14 +352,30 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
*/ */
data->predicted_us = min(data->predicted_us, expected_interval); data->predicted_us = min(data->predicted_us, expected_interval);
/* if (tick_nohz_tick_stopped()) {
* Use the performance multiplier and the user-configurable /*
* latency_req to determine the maximum exit latency. * If the tick is already stopped, the cost of possible short
*/ * idle duration misprediction is much higher, because the CPU
interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load); * may be stuck in a shallow idle state for a long time as a
if (latency_req > interactivity_req) * result of it. In that case say we might mispredict and try
latency_req = interactivity_req; * to force the CPU into a state for which we would have stopped
* the tick, unless a timer is going to expire really soon
* anyway.
*/
if (data->predicted_us < TICK_USEC)
data->predicted_us = min_t(unsigned int, TICK_USEC,
ktime_to_us(delta_next));
} else {
/*
* Use the performance multiplier and the user-configurable
* latency_req to determine the maximum exit latency.
*/
interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
if (latency_req > interactivity_req)
latency_req = interactivity_req;
}
expected_interval = data->predicted_us;
/* /*
* Find the idle state with the lowest power while satisfying * Find the idle state with the lowest power while satisfying
* our constraints. * our constraints.
...@@ -369,15 +391,52 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev) ...@@ -369,15 +391,52 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
idx = i; /* first enabled state */ idx = i; /* first enabled state */
if (s->target_residency > data->predicted_us) if (s->target_residency > data->predicted_us)
break; break;
if (s->exit_latency > latency_req) if (s->exit_latency > latency_req) {
/*
* If we break out of the loop for latency reasons, use
* the target residency of the selected state as the
* expected idle duration so that the tick is retained
* as long as that target residency is low enough.
*/
expected_interval = drv->states[idx].target_residency;
break; break;
}
idx = i; idx = i;
} }
if (idx == -1) if (idx == -1)
idx = 0; /* No states enabled. Must use 0. */ idx = 0; /* No states enabled. Must use 0. */
/*
* Don't stop the tick if the selected state is a polling one or if the
* expected idle duration is shorter than the tick period length.
*/
if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
expected_interval < TICK_USEC) {
unsigned int delta_next_us = ktime_to_us(delta_next);
*stop_tick = false;
if (!tick_nohz_tick_stopped() && idx > 0 &&
drv->states[idx].target_residency > delta_next_us) {
/*
* The tick is not going to be stopped and the target
* residency of the state to be returned is not within
* the time until the next timer event including the
* tick, so try to correct that.
*/
for (i = idx - 1; i >= 0; i--) {
if (drv->states[i].disabled ||
dev->states_usage[i].disable)
continue;
idx = i;
if (drv->states[i].target_residency <= delta_next_us)
break;
}
}
}
data->last_state_idx = idx; data->last_state_idx = idx;
return data->last_state_idx; return data->last_state_idx;
...@@ -397,6 +456,7 @@ static void menu_reflect(struct cpuidle_device *dev, int index) ...@@ -397,6 +456,7 @@ static void menu_reflect(struct cpuidle_device *dev, int index)
data->last_state_idx = index; data->last_state_idx = index;
data->needs_update = 1; data->needs_update = 1;
data->tick_wakeup = tick_nohz_idle_got_tick();
} }
/** /**
...@@ -427,14 +487,27 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) ...@@ -427,14 +487,27 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
* assume the state was never reached and the exit latency is 0. * assume the state was never reached and the exit latency is 0.
*/ */
/* measured value */ if (data->tick_wakeup && data->next_timer_us > TICK_USEC) {
measured_us = cpuidle_get_last_residency(dev); /*
* The nohz code said that there wouldn't be any events within
/* Deduct exit latency */ * the tick boundary (if the tick was stopped), but the idle
if (measured_us > 2 * target->exit_latency) * duration predictor had a differing opinion. Since the CPU
measured_us -= target->exit_latency; * was woken up by a tick (that wasn't stopped after all), the
else * predictor was not quite right, so assume that the CPU could
measured_us /= 2; * have been idle long (but not forever) to help the idle
* duration predictor do a better job next time.
*/
measured_us = 9 * MAX_INTERESTING / 10;
} else {
/* measured value */
measured_us = cpuidle_get_last_residency(dev);
/* Deduct exit latency */
if (measured_us > 2 * target->exit_latency)
measured_us -= target->exit_latency;
else
measured_us /= 2;
}
/* Make sure our coefficients do not exceed unity */ /* Make sure our coefficients do not exceed unity */
if (measured_us > data->next_timer_us) if (measured_us > data->next_timer_us)
......
...@@ -375,7 +375,7 @@ static int efx_mcdi_poll(struct efx_nic *efx) ...@@ -375,7 +375,7 @@ static int efx_mcdi_poll(struct efx_nic *efx)
* because generally mcdi responses are fast. After that, back off * because generally mcdi responses are fast. After that, back off
* and poll once a jiffy (approximately) * and poll once a jiffy (approximately)
*/ */
spins = TICK_USEC; spins = USER_TICK_USEC;
finish = jiffies + MCDI_RPC_TIMEOUT; finish = jiffies + MCDI_RPC_TIMEOUT;
while (1) { while (1) {
......
...@@ -960,8 +960,6 @@ extern void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, ...@@ -960,8 +960,6 @@ extern void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs; extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs; extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
extern struct freq_attr *cpufreq_generic_attr[]; extern struct freq_attr *cpufreq_generic_attr[];
int cpufreq_table_validate_and_show(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);
int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy); int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy);
unsigned int cpufreq_generic_get(unsigned int cpu); unsigned int cpufreq_generic_get(unsigned int cpu);
......
...@@ -135,7 +135,8 @@ extern bool cpuidle_not_available(struct cpuidle_driver *drv, ...@@ -135,7 +135,8 @@ extern bool cpuidle_not_available(struct cpuidle_driver *drv,
struct cpuidle_device *dev); struct cpuidle_device *dev);
extern int cpuidle_select(struct cpuidle_driver *drv, extern int cpuidle_select(struct cpuidle_driver *drv,
struct cpuidle_device *dev); struct cpuidle_device *dev,
bool *stop_tick);
extern int cpuidle_enter(struct cpuidle_driver *drv, extern int cpuidle_enter(struct cpuidle_driver *drv,
struct cpuidle_device *dev, int index); struct cpuidle_device *dev, int index);
extern void cpuidle_reflect(struct cpuidle_device *dev, int index); extern void cpuidle_reflect(struct cpuidle_device *dev, int index);
...@@ -167,7 +168,7 @@ static inline bool cpuidle_not_available(struct cpuidle_driver *drv, ...@@ -167,7 +168,7 @@ static inline bool cpuidle_not_available(struct cpuidle_driver *drv,
struct cpuidle_device *dev) struct cpuidle_device *dev)
{return true; } {return true; }
static inline int cpuidle_select(struct cpuidle_driver *drv, static inline int cpuidle_select(struct cpuidle_driver *drv,
struct cpuidle_device *dev) struct cpuidle_device *dev, bool *stop_tick)
{return -ENODEV; } {return -ENODEV; }
static inline int cpuidle_enter(struct cpuidle_driver *drv, static inline int cpuidle_enter(struct cpuidle_driver *drv,
struct cpuidle_device *dev, int index) struct cpuidle_device *dev, int index)
...@@ -250,7 +251,8 @@ struct cpuidle_governor { ...@@ -250,7 +251,8 @@ struct cpuidle_governor {
struct cpuidle_device *dev); struct cpuidle_device *dev);
int (*select) (struct cpuidle_driver *drv, int (*select) (struct cpuidle_driver *drv,
struct cpuidle_device *dev); struct cpuidle_device *dev,
bool *stop_tick);
void (*reflect) (struct cpuidle_device *dev, int index); void (*reflect) (struct cpuidle_device *dev, int index);
}; };
......
...@@ -424,6 +424,7 @@ static inline ktime_t hrtimer_get_remaining(const struct hrtimer *timer) ...@@ -424,6 +424,7 @@ static inline ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
} }
extern u64 hrtimer_get_next_event(void); extern u64 hrtimer_get_next_event(void);
extern u64 hrtimer_next_event_without(const struct hrtimer *exclude);
extern bool hrtimer_active(const struct hrtimer *timer); extern bool hrtimer_active(const struct hrtimer *timer);
......
...@@ -62,8 +62,11 @@ extern int register_refined_jiffies(long clock_tick_rate); ...@@ -62,8 +62,11 @@ extern int register_refined_jiffies(long clock_tick_rate);
/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
/* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
#ifndef __jiffy_arch_data #ifndef __jiffy_arch_data
#define __jiffy_arch_data #define __jiffy_arch_data
......
...@@ -115,27 +115,46 @@ enum tick_dep_bits { ...@@ -115,27 +115,46 @@ enum tick_dep_bits {
extern bool tick_nohz_enabled; extern bool tick_nohz_enabled;
extern bool tick_nohz_tick_stopped(void); extern bool tick_nohz_tick_stopped(void);
extern bool tick_nohz_tick_stopped_cpu(int cpu); extern bool tick_nohz_tick_stopped_cpu(int cpu);
extern void tick_nohz_idle_stop_tick(void);
extern void tick_nohz_idle_retain_tick(void);
extern void tick_nohz_idle_restart_tick(void);
extern void tick_nohz_idle_enter(void); extern void tick_nohz_idle_enter(void);
extern void tick_nohz_idle_exit(void); extern void tick_nohz_idle_exit(void);
extern void tick_nohz_irq_exit(void); extern void tick_nohz_irq_exit(void);
extern ktime_t tick_nohz_get_sleep_length(void); extern bool tick_nohz_idle_got_tick(void);
extern ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next);
extern unsigned long tick_nohz_get_idle_calls(void); extern unsigned long tick_nohz_get_idle_calls(void);
extern unsigned long tick_nohz_get_idle_calls_cpu(int cpu); extern unsigned long tick_nohz_get_idle_calls_cpu(int cpu);
extern u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time); extern u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time);
extern u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time); extern u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time);
static inline void tick_nohz_idle_stop_tick_protected(void)
{
local_irq_disable();
tick_nohz_idle_stop_tick();
local_irq_enable();
}
#else /* !CONFIG_NO_HZ_COMMON */ #else /* !CONFIG_NO_HZ_COMMON */
#define tick_nohz_enabled (0) #define tick_nohz_enabled (0)
static inline int tick_nohz_tick_stopped(void) { return 0; } static inline int tick_nohz_tick_stopped(void) { return 0; }
static inline int tick_nohz_tick_stopped_cpu(int cpu) { return 0; } static inline int tick_nohz_tick_stopped_cpu(int cpu) { return 0; }
static inline void tick_nohz_idle_stop_tick(void) { }
static inline void tick_nohz_idle_retain_tick(void) { }
static inline void tick_nohz_idle_restart_tick(void) { }
static inline void tick_nohz_idle_enter(void) { } static inline void tick_nohz_idle_enter(void) { }
static inline void tick_nohz_idle_exit(void) { } static inline void tick_nohz_idle_exit(void) { }
static inline bool tick_nohz_idle_got_tick(void) { return false; }
static inline ktime_t tick_nohz_get_sleep_length(void) static inline ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{ {
return NSEC_PER_SEC / HZ; *delta_next = TICK_NSEC;
return *delta_next;
} }
static inline u64 get_cpu_idle_time_us(int cpu, u64 *unused) { return -1; } static inline u64 get_cpu_idle_time_us(int cpu, u64 *unused) { return -1; }
static inline u64 get_cpu_iowait_time_us(int cpu, u64 *unused) { return -1; } static inline u64 get_cpu_iowait_time_us(int cpu, u64 *unused) { return -1; }
static inline void tick_nohz_idle_stop_tick_protected(void) { }
#endif /* !CONFIG_NO_HZ_COMMON */ #endif /* !CONFIG_NO_HZ_COMMON */
#ifdef CONFIG_NO_HZ_FULL #ifdef CONFIG_NO_HZ_FULL
......
...@@ -295,6 +295,7 @@ int pm_qos_update_target(struct pm_qos_constraints *c, struct plist_node *node, ...@@ -295,6 +295,7 @@ int pm_qos_update_target(struct pm_qos_constraints *c, struct plist_node *node,
* changed * changed
*/ */
plist_del(node, &c->list); plist_del(node, &c->list);
/* fall through */
case PM_QOS_ADD_REQ: case PM_QOS_ADD_REQ:
plist_node_init(node, new_value); plist_node_init(node, new_value);
plist_add(node, &c->list); plist_add(node, &c->list);
...@@ -367,6 +368,7 @@ bool pm_qos_update_flags(struct pm_qos_flags *pqf, ...@@ -367,6 +368,7 @@ bool pm_qos_update_flags(struct pm_qos_flags *pqf,
break; break;
case PM_QOS_UPDATE_REQ: case PM_QOS_UPDATE_REQ:
pm_qos_flags_remove_req(pqf, req); pm_qos_flags_remove_req(pqf, req);
/* fall through */
case PM_QOS_ADD_REQ: case PM_QOS_ADD_REQ:
req->flags = val; req->flags = val;
INIT_LIST_HEAD(&req->node); INIT_LIST_HEAD(&req->node);
......
...@@ -141,13 +141,15 @@ static void cpuidle_idle_call(void) ...@@ -141,13 +141,15 @@ static void cpuidle_idle_call(void)
} }
/* /*
* Tell the RCU framework we are entering an idle section, * The RCU framework needs to be told that we are entering an idle
* so no more rcu read side critical sections and one more * section, so no more rcu read side critical sections and one more
* step to the grace period * step to the grace period
*/ */
rcu_idle_enter();
if (cpuidle_not_available(drv, dev)) { if (cpuidle_not_available(drv, dev)) {
tick_nohz_idle_stop_tick();
rcu_idle_enter();
default_idle_call(); default_idle_call();
goto exit_idle; goto exit_idle;
} }
...@@ -164,20 +166,37 @@ static void cpuidle_idle_call(void) ...@@ -164,20 +166,37 @@ static void cpuidle_idle_call(void)
if (idle_should_enter_s2idle() || dev->use_deepest_state) { if (idle_should_enter_s2idle() || dev->use_deepest_state) {
if (idle_should_enter_s2idle()) { if (idle_should_enter_s2idle()) {
rcu_idle_enter();
entered_state = cpuidle_enter_s2idle(drv, dev); entered_state = cpuidle_enter_s2idle(drv, dev);
if (entered_state > 0) { if (entered_state > 0) {
local_irq_enable(); local_irq_enable();
goto exit_idle; goto exit_idle;
} }
rcu_idle_exit();
} }
tick_nohz_idle_stop_tick();
rcu_idle_enter();
next_state = cpuidle_find_deepest_state(drv, dev); next_state = cpuidle_find_deepest_state(drv, dev);
call_cpuidle(drv, dev, next_state); call_cpuidle(drv, dev, next_state);
} else { } else {
bool stop_tick = true;
/* /*
* Ask the cpuidle framework to choose a convenient idle state. * Ask the cpuidle framework to choose a convenient idle state.
*/ */
next_state = cpuidle_select(drv, dev); next_state = cpuidle_select(drv, dev, &stop_tick);
if (stop_tick)
tick_nohz_idle_stop_tick();
else
tick_nohz_idle_retain_tick();
rcu_idle_enter();
entered_state = call_cpuidle(drv, dev, next_state); entered_state = call_cpuidle(drv, dev, next_state);
/* /*
* Give the governor an opportunity to reflect on the outcome * Give the governor an opportunity to reflect on the outcome
...@@ -222,6 +241,7 @@ static void do_idle(void) ...@@ -222,6 +241,7 @@ static void do_idle(void)
rmb(); rmb();
if (cpu_is_offline(cpu)) { if (cpu_is_offline(cpu)) {
tick_nohz_idle_stop_tick_protected();
cpuhp_report_idle_dead(); cpuhp_report_idle_dead();
arch_cpu_idle_dead(); arch_cpu_idle_dead();
} }
...@@ -235,10 +255,12 @@ static void do_idle(void) ...@@ -235,10 +255,12 @@ static void do_idle(void)
* broadcast device expired for us, we don't want to go deep * broadcast device expired for us, we don't want to go deep
* idle as we know that the IPI is going to arrive right away. * idle as we know that the IPI is going to arrive right away.
*/ */
if (cpu_idle_force_poll || tick_check_broadcast_expired()) if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
tick_nohz_idle_restart_tick();
cpu_idle_poll(); cpu_idle_poll();
else } else {
cpuidle_idle_call(); cpuidle_idle_call();
}
arch_cpu_idle_exit(); arch_cpu_idle_exit();
} }
......
...@@ -480,6 +480,7 @@ __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) ...@@ -480,6 +480,7 @@ __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
while ((base = __next_base((cpu_base), &(active)))) while ((base = __next_base((cpu_base), &(active))))
static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
const struct hrtimer *exclude,
unsigned int active, unsigned int active,
ktime_t expires_next) ktime_t expires_next)
{ {
...@@ -492,9 +493,22 @@ static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, ...@@ -492,9 +493,22 @@ static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
next = timerqueue_getnext(&base->active); next = timerqueue_getnext(&base->active);
timer = container_of(next, struct hrtimer, node); timer = container_of(next, struct hrtimer, node);
if (timer == exclude) {
/* Get to the next timer in the queue. */
next = timerqueue_iterate_next(next);
if (!next)
continue;
timer = container_of(next, struct hrtimer, node);
}
expires = ktime_sub(hrtimer_get_expires(timer), base->offset); expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
if (expires < expires_next) { if (expires < expires_next) {
expires_next = expires; expires_next = expires;
/* Skip cpu_base update if a timer is being excluded. */
if (exclude)
continue;
if (timer->is_soft) if (timer->is_soft)
cpu_base->softirq_next_timer = timer; cpu_base->softirq_next_timer = timer;
else else
...@@ -538,7 +552,8 @@ __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_ ...@@ -538,7 +552,8 @@ __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_
if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
cpu_base->softirq_next_timer = NULL; cpu_base->softirq_next_timer = NULL;
expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX); expires_next = __hrtimer_next_event_base(cpu_base, NULL,
active, KTIME_MAX);
next_timer = cpu_base->softirq_next_timer; next_timer = cpu_base->softirq_next_timer;
} }
...@@ -546,7 +561,8 @@ __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_ ...@@ -546,7 +561,8 @@ __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_
if (active_mask & HRTIMER_ACTIVE_HARD) { if (active_mask & HRTIMER_ACTIVE_HARD) {
active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
cpu_base->next_timer = next_timer; cpu_base->next_timer = next_timer;
expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next); expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
expires_next);
} }
return expires_next; return expires_next;
...@@ -1190,6 +1206,39 @@ u64 hrtimer_get_next_event(void) ...@@ -1190,6 +1206,39 @@ u64 hrtimer_get_next_event(void)
return expires; return expires;
} }
/**
* hrtimer_next_event_without - time until next expiry event w/o one timer
* @exclude: timer to exclude
*
* Returns the next expiry time over all timers except for the @exclude one or
* KTIME_MAX if none of them is pending.
*/
u64 hrtimer_next_event_without(const struct hrtimer *exclude)
{
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
u64 expires = KTIME_MAX;
unsigned long flags;
raw_spin_lock_irqsave(&cpu_base->lock, flags);
if (__hrtimer_hres_active(cpu_base)) {
unsigned int active;
if (!cpu_base->softirq_activated) {
active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
expires = __hrtimer_next_event_base(cpu_base, exclude,
active, KTIME_MAX);
}
active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
expires = __hrtimer_next_event_base(cpu_base, exclude, active,
expires);
}
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
return expires;
}
#endif #endif
static inline int hrtimer_clockid_to_base(clockid_t clock_id) static inline int hrtimer_clockid_to_base(clockid_t clock_id)
......
...@@ -31,7 +31,7 @@ ...@@ -31,7 +31,7 @@
/* USER_HZ period (usecs): */ /* USER_HZ period (usecs): */
unsigned long tick_usec = TICK_USEC; unsigned long tick_usec = USER_TICK_USEC;
/* SHIFTED_HZ period (nsecs): */ /* SHIFTED_HZ period (nsecs): */
unsigned long tick_nsec; unsigned long tick_nsec;
......
...@@ -122,8 +122,7 @@ static ktime_t tick_init_jiffy_update(void) ...@@ -122,8 +122,7 @@ static ktime_t tick_init_jiffy_update(void)
return period; return period;
} }
static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
static void tick_sched_do_timer(ktime_t now)
{ {
int cpu = smp_processor_id(); int cpu = smp_processor_id();
...@@ -143,6 +142,9 @@ static void tick_sched_do_timer(ktime_t now) ...@@ -143,6 +142,9 @@ static void tick_sched_do_timer(ktime_t now)
/* Check, if the jiffies need an update */ /* Check, if the jiffies need an update */
if (tick_do_timer_cpu == cpu) if (tick_do_timer_cpu == cpu)
tick_do_update_jiffies64(now); tick_do_update_jiffies64(now);
if (ts->inidle)
ts->got_idle_tick = 1;
} }
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
...@@ -474,7 +476,9 @@ __setup("nohz=", setup_tick_nohz); ...@@ -474,7 +476,9 @@ __setup("nohz=", setup_tick_nohz);
bool tick_nohz_tick_stopped(void) bool tick_nohz_tick_stopped(void)
{ {
return __this_cpu_read(tick_cpu_sched.tick_stopped); struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
return ts->tick_stopped;
} }
bool tick_nohz_tick_stopped_cpu(int cpu) bool tick_nohz_tick_stopped_cpu(int cpu)
...@@ -537,14 +541,11 @@ static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) ...@@ -537,14 +541,11 @@ static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
sched_clock_idle_wakeup_event(); sched_clock_idle_wakeup_event();
} }
static ktime_t tick_nohz_start_idle(struct tick_sched *ts) static void tick_nohz_start_idle(struct tick_sched *ts)
{ {
ktime_t now = ktime_get(); ts->idle_entrytime = ktime_get();
ts->idle_entrytime = now;
ts->idle_active = 1; ts->idle_active = 1;
sched_clock_idle_sleep_event(); sched_clock_idle_sleep_event();
return now;
} }
/** /**
...@@ -653,13 +654,10 @@ static inline bool local_timer_softirq_pending(void) ...@@ -653,13 +654,10 @@ static inline bool local_timer_softirq_pending(void)
return local_softirq_pending() & TIMER_SOFTIRQ; return local_softirq_pending() & TIMER_SOFTIRQ;
} }
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
ktime_t now, int cpu)
{ {
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
unsigned long seq, basejiff; unsigned long seq, basejiff;
ktime_t tick;
/* Read jiffies and the time when jiffies were updated last */ /* Read jiffies and the time when jiffies were updated last */
do { do {
...@@ -668,6 +666,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, ...@@ -668,6 +666,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
basejiff = jiffies; basejiff = jiffies;
} while (read_seqretry(&jiffies_lock, seq)); } while (read_seqretry(&jiffies_lock, seq));
ts->last_jiffies = basejiff; ts->last_jiffies = basejiff;
ts->timer_expires_base = basemono;
/* /*
* Keep the periodic tick, when RCU, architecture or irq_work * Keep the periodic tick, when RCU, architecture or irq_work
...@@ -712,47 +711,63 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, ...@@ -712,47 +711,63 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
* next period, so no point in stopping it either, bail. * next period, so no point in stopping it either, bail.
*/ */
if (!ts->tick_stopped) { if (!ts->tick_stopped) {
tick = 0; ts->timer_expires = 0;
goto out; goto out;
} }
} }
/*
* If this CPU is the one which had the do_timer() duty last, we limit
* the sleep time to the timekeeping max_deferment value.
* Otherwise we can sleep as long as we want.
*/
delta = timekeeping_max_deferment();
if (cpu != tick_do_timer_cpu &&
(tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
delta = KTIME_MAX;
/* Calculate the next expiry time */
if (delta < (KTIME_MAX - basemono))
expires = basemono + delta;
else
expires = KTIME_MAX;
ts->timer_expires = min_t(u64, expires, next_tick);
out:
return ts->timer_expires;
}
static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
{
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
u64 basemono = ts->timer_expires_base;
u64 expires = ts->timer_expires;
ktime_t tick = expires;
/* Make sure we won't be trying to stop it twice in a row. */
ts->timer_expires_base = 0;
/* /*
* If this CPU is the one which updates jiffies, then give up * If this CPU is the one which updates jiffies, then give up
* the assignment and let it be taken by the CPU which runs * the assignment and let it be taken by the CPU which runs
* the tick timer next, which might be this CPU as well. If we * the tick timer next, which might be this CPU as well. If we
* don't drop this here the jiffies might be stale and * don't drop this here the jiffies might be stale and
* do_timer() never invoked. Keep track of the fact that it * do_timer() never invoked. Keep track of the fact that it
* was the one which had the do_timer() duty last. If this CPU * was the one which had the do_timer() duty last.
* is the one which had the do_timer() duty last, we limit the
* sleep time to the timekeeping max_deferment value.
* Otherwise we can sleep as long as we want.
*/ */
delta = timekeeping_max_deferment();
if (cpu == tick_do_timer_cpu) { if (cpu == tick_do_timer_cpu) {
tick_do_timer_cpu = TICK_DO_TIMER_NONE; tick_do_timer_cpu = TICK_DO_TIMER_NONE;
ts->do_timer_last = 1; ts->do_timer_last = 1;
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
delta = KTIME_MAX;
ts->do_timer_last = 0; ts->do_timer_last = 0;
} else if (!ts->do_timer_last) {
delta = KTIME_MAX;
} }
/* Calculate the next expiry time */
if (delta < (KTIME_MAX - basemono))
expires = basemono + delta;
else
expires = KTIME_MAX;
expires = min_t(u64, expires, next_tick);
tick = expires;
/* Skip reprogram of event if its not changed */ /* Skip reprogram of event if its not changed */
if (ts->tick_stopped && (expires == ts->next_tick)) { if (ts->tick_stopped && (expires == ts->next_tick)) {
/* Sanity check: make sure clockevent is actually programmed */ /* Sanity check: make sure clockevent is actually programmed */
if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
goto out; return;
WARN_ON_ONCE(1); WARN_ON_ONCE(1);
printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
...@@ -786,7 +801,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, ...@@ -786,7 +801,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
if (unlikely(expires == KTIME_MAX)) { if (unlikely(expires == KTIME_MAX)) {
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
hrtimer_cancel(&ts->sched_timer); hrtimer_cancel(&ts->sched_timer);
goto out; return;
} }
hrtimer_set_expires(&ts->sched_timer, tick); hrtimer_set_expires(&ts->sched_timer, tick);
...@@ -795,15 +810,23 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, ...@@ -795,15 +810,23 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
else else
tick_program_event(tick, 1); tick_program_event(tick, 1);
out:
/*
* Update the estimated sleep length until the next timer
* (not only the tick).
*/
ts->sleep_length = ktime_sub(dev->next_event, now);
return tick;
} }
static void tick_nohz_retain_tick(struct tick_sched *ts)
{
ts->timer_expires_base = 0;
}
#ifdef CONFIG_NO_HZ_FULL
static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
{
if (tick_nohz_next_event(ts, cpu))
tick_nohz_stop_tick(ts, cpu);
else
tick_nohz_retain_tick(ts);
}
#endif /* CONFIG_NO_HZ_FULL */
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
{ {
/* Update jiffies first */ /* Update jiffies first */
...@@ -839,7 +862,7 @@ static void tick_nohz_full_update_tick(struct tick_sched *ts) ...@@ -839,7 +862,7 @@ static void tick_nohz_full_update_tick(struct tick_sched *ts)
return; return;
if (can_stop_full_tick(cpu, ts)) if (can_stop_full_tick(cpu, ts))
tick_nohz_stop_sched_tick(ts, ktime_get(), cpu); tick_nohz_stop_sched_tick(ts, cpu);
else if (ts->tick_stopped) else if (ts->tick_stopped)
tick_nohz_restart_sched_tick(ts, ktime_get()); tick_nohz_restart_sched_tick(ts, ktime_get());
#endif #endif
...@@ -865,10 +888,8 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) ...@@ -865,10 +888,8 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
return false; return false;
} }
if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
ts->sleep_length = NSEC_PER_SEC / HZ;
return false; return false;
}
if (need_resched()) if (need_resched())
return false; return false;
...@@ -903,42 +924,65 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) ...@@ -903,42 +924,65 @@ static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
return true; return true;
} }
static void __tick_nohz_idle_enter(struct tick_sched *ts) static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
{ {
ktime_t now, expires; ktime_t expires;
int cpu = smp_processor_id(); int cpu = smp_processor_id();
now = tick_nohz_start_idle(ts); /*
* If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
* tick timer expiration time is known already.
*/
if (ts->timer_expires_base)
expires = ts->timer_expires;
else if (can_stop_idle_tick(cpu, ts))
expires = tick_nohz_next_event(ts, cpu);
else
return;
ts->idle_calls++;
if (can_stop_idle_tick(cpu, ts)) { if (expires > 0LL) {
int was_stopped = ts->tick_stopped; int was_stopped = ts->tick_stopped;
ts->idle_calls++; tick_nohz_stop_tick(ts, cpu);
expires = tick_nohz_stop_sched_tick(ts, now, cpu); ts->idle_sleeps++;
if (expires > 0LL) { ts->idle_expires = expires;
ts->idle_sleeps++;
ts->idle_expires = expires;
}
if (!was_stopped && ts->tick_stopped) { if (!was_stopped && ts->tick_stopped) {
ts->idle_jiffies = ts->last_jiffies; ts->idle_jiffies = ts->last_jiffies;
nohz_balance_enter_idle(cpu); nohz_balance_enter_idle(cpu);
} }
} else {
tick_nohz_retain_tick(ts);
} }
} }
/** /**
* tick_nohz_idle_enter - stop the idle tick from the idle task * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
* *
* When the next event is more than a tick into the future, stop the idle tick * When the next event is more than a tick into the future, stop the idle tick
* Called when we start the idle loop. */
* void tick_nohz_idle_stop_tick(void)
* The arch is responsible of calling: {
__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
}
void tick_nohz_idle_retain_tick(void)
{
tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
/*
* Undo the effect of get_next_timer_interrupt() called from
* tick_nohz_next_event().
*/
timer_clear_idle();
}
/**
* tick_nohz_idle_enter - prepare for entering idle on the current CPU
* *
* - rcu_idle_enter() after its last use of RCU before the CPU is put * Called when we start the idle loop.
* to sleep.
* - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
*/ */
void tick_nohz_idle_enter(void) void tick_nohz_idle_enter(void)
{ {
...@@ -949,8 +993,11 @@ void tick_nohz_idle_enter(void) ...@@ -949,8 +993,11 @@ void tick_nohz_idle_enter(void)
local_irq_disable(); local_irq_disable();
ts = this_cpu_ptr(&tick_cpu_sched); ts = this_cpu_ptr(&tick_cpu_sched);
WARN_ON_ONCE(ts->timer_expires_base);
ts->inidle = 1; ts->inidle = 1;
__tick_nohz_idle_enter(ts); tick_nohz_start_idle(ts);
local_irq_enable(); local_irq_enable();
} }
...@@ -968,21 +1015,62 @@ void tick_nohz_irq_exit(void) ...@@ -968,21 +1015,62 @@ void tick_nohz_irq_exit(void)
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (ts->inidle) if (ts->inidle)
__tick_nohz_idle_enter(ts); tick_nohz_start_idle(ts);
else else
tick_nohz_full_update_tick(ts); tick_nohz_full_update_tick(ts);
} }
/** /**
* tick_nohz_get_sleep_length - return the length of the current sleep * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
*/
bool tick_nohz_idle_got_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (ts->got_idle_tick) {
ts->got_idle_tick = 0;
return true;
}
return false;
}
/**
* tick_nohz_get_sleep_length - return the expected length of the current sleep
* @delta_next: duration until the next event if the tick cannot be stopped
* *
* Called from power state control code with interrupts disabled * Called from power state control code with interrupts disabled
*/ */
ktime_t tick_nohz_get_sleep_length(void) ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{ {
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
int cpu = smp_processor_id();
/*
* The idle entry time is expected to be a sufficient approximation of
* the current time at this point.
*/
ktime_t now = ts->idle_entrytime;
ktime_t next_event;
WARN_ON_ONCE(!ts->inidle);
*delta_next = ktime_sub(dev->next_event, now);
if (!can_stop_idle_tick(cpu, ts))
return *delta_next;
next_event = tick_nohz_next_event(ts, cpu);
if (!next_event)
return *delta_next;
/*
* If the next highres timer to expire is earlier than next_event, the
* idle governor needs to know that.
*/
next_event = min_t(u64, next_event,
hrtimer_next_event_without(&ts->sched_timer));
return ts->sleep_length; return ktime_sub(next_event, now);
} }
/** /**
...@@ -1031,6 +1119,20 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts) ...@@ -1031,6 +1119,20 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
#endif #endif
} }
static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
{
tick_nohz_restart_sched_tick(ts, now);
tick_nohz_account_idle_ticks(ts);
}
void tick_nohz_idle_restart_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (ts->tick_stopped)
__tick_nohz_idle_restart_tick(ts, ktime_get());
}
/** /**
* tick_nohz_idle_exit - restart the idle tick from the idle task * tick_nohz_idle_exit - restart the idle tick from the idle task
* *
...@@ -1041,24 +1143,26 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts) ...@@ -1041,24 +1143,26 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
void tick_nohz_idle_exit(void) void tick_nohz_idle_exit(void)
{ {
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
bool idle_active, tick_stopped;
ktime_t now; ktime_t now;
local_irq_disable(); local_irq_disable();
WARN_ON_ONCE(!ts->inidle); WARN_ON_ONCE(!ts->inidle);
WARN_ON_ONCE(ts->timer_expires_base);
ts->inidle = 0; ts->inidle = 0;
idle_active = ts->idle_active;
tick_stopped = ts->tick_stopped;
if (ts->idle_active || ts->tick_stopped) if (idle_active || tick_stopped)
now = ktime_get(); now = ktime_get();
if (ts->idle_active) if (idle_active)
tick_nohz_stop_idle(ts, now); tick_nohz_stop_idle(ts, now);
if (ts->tick_stopped) { if (tick_stopped)
tick_nohz_restart_sched_tick(ts, now); __tick_nohz_idle_restart_tick(ts, now);
tick_nohz_account_idle_ticks(ts);
}
local_irq_enable(); local_irq_enable();
} }
...@@ -1074,7 +1178,7 @@ static void tick_nohz_handler(struct clock_event_device *dev) ...@@ -1074,7 +1178,7 @@ static void tick_nohz_handler(struct clock_event_device *dev)
dev->next_event = KTIME_MAX; dev->next_event = KTIME_MAX;
tick_sched_do_timer(now); tick_sched_do_timer(ts, now);
tick_sched_handle(ts, regs); tick_sched_handle(ts, regs);
/* No need to reprogram if we are running tickless */ /* No need to reprogram if we are running tickless */
...@@ -1169,7 +1273,7 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) ...@@ -1169,7 +1273,7 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
struct pt_regs *regs = get_irq_regs(); struct pt_regs *regs = get_irq_regs();
ktime_t now = ktime_get(); ktime_t now = ktime_get();
tick_sched_do_timer(now); tick_sched_do_timer(ts, now);
/* /*
* Do not call, when we are not in irq context and have * Do not call, when we are not in irq context and have
......
...@@ -38,31 +38,37 @@ enum tick_nohz_mode { ...@@ -38,31 +38,37 @@ enum tick_nohz_mode {
* @idle_exittime: Time when the idle state was left * @idle_exittime: Time when the idle state was left
* @idle_sleeptime: Sum of the time slept in idle with sched tick stopped * @idle_sleeptime: Sum of the time slept in idle with sched tick stopped
* @iowait_sleeptime: Sum of the time slept in idle with sched tick stopped, with IO outstanding * @iowait_sleeptime: Sum of the time slept in idle with sched tick stopped, with IO outstanding
* @sleep_length: Duration of the current idle sleep * @timer_expires: Anticipated timer expiration time (in case sched tick is stopped)
* @timer_expires_base: Base time clock monotonic for @timer_expires
* @do_timer_lst: CPU was the last one doing do_timer before going idle * @do_timer_lst: CPU was the last one doing do_timer before going idle
* @got_idle_tick: Tick timer function has run with @inidle set
*/ */
struct tick_sched { struct tick_sched {
struct hrtimer sched_timer; struct hrtimer sched_timer;
unsigned long check_clocks; unsigned long check_clocks;
enum tick_nohz_mode nohz_mode; enum tick_nohz_mode nohz_mode;
unsigned int inidle : 1;
unsigned int tick_stopped : 1;
unsigned int idle_active : 1;
unsigned int do_timer_last : 1;
unsigned int got_idle_tick : 1;
ktime_t last_tick; ktime_t last_tick;
ktime_t next_tick; ktime_t next_tick;
int inidle;
int tick_stopped;
unsigned long idle_jiffies; unsigned long idle_jiffies;
unsigned long idle_calls; unsigned long idle_calls;
unsigned long idle_sleeps; unsigned long idle_sleeps;
int idle_active;
ktime_t idle_entrytime; ktime_t idle_entrytime;
ktime_t idle_waketime; ktime_t idle_waketime;
ktime_t idle_exittime; ktime_t idle_exittime;
ktime_t idle_sleeptime; ktime_t idle_sleeptime;
ktime_t iowait_sleeptime; ktime_t iowait_sleeptime;
ktime_t sleep_length;
unsigned long last_jiffies; unsigned long last_jiffies;
u64 timer_expires;
u64 timer_expires_base;
u64 next_timer; u64 next_timer;
ktime_t idle_expires; ktime_t idle_expires;
int do_timer_last;
atomic_t tick_dep_mask; atomic_t tick_dep_mask;
}; };
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment