Commit 209a0cbd authored by Luca Abeni's avatar Luca Abeni Committed by Ingo Molnar

sched/deadline: Improve the tracking of active utilization

This patch implements a more theoretically sound algorithm for
tracking active utilization: instead of decreasing it when a
task blocks, use a timer (the "inactive timer", named after the
"Inactive" task state of the GRUB algorithm) to decrease the
active utilization at the so called "0-lag time".
Tested-by: default avatarClaudio Scordino <claudio@evidence.eu.com>
Tested-by: default avatarDaniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: default avatarLuca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: default avatarPeter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-3-git-send-email-luca.abeni@santannapisa.itSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent e36d8677
...@@ -445,16 +445,33 @@ struct sched_dl_entity { ...@@ -445,16 +445,33 @@ struct sched_dl_entity {
* *
* @dl_yielded tells if task gave up the CPU before consuming * @dl_yielded tells if task gave up the CPU before consuming
* all its available runtime during the last job. * all its available runtime during the last job.
*
* @dl_non_contending tells if the task is inactive while still
* contributing to the active utilization. In other words, it
* indicates if the inactive timer has been armed and its handler
* has not been executed yet. This flag is useful to avoid race
* conditions between the inactive timer handler and the wakeup
* code.
*/ */
int dl_throttled; int dl_throttled;
int dl_boosted; int dl_boosted;
int dl_yielded; int dl_yielded;
int dl_non_contending;
/* /*
* Bandwidth enforcement timer. Each -deadline task has its * Bandwidth enforcement timer. Each -deadline task has its
* own bandwidth to be enforced, thus we need one timer per task. * own bandwidth to be enforced, thus we need one timer per task.
*/ */
struct hrtimer dl_timer; struct hrtimer dl_timer;
/*
* Inactive timer, responsible for decreasing the active utilization
* at the "0-lag time". When a -deadline task blocks, it contributes
* to GRUB's active utilization until the "0-lag time", hence a
* timer is needed to decrease the active utilization at the correct
* time.
*/
struct hrtimer inactive_timer;
}; };
union rcu_special { union rcu_special {
......
...@@ -2153,6 +2153,7 @@ void __dl_clear_params(struct task_struct *p) ...@@ -2153,6 +2153,7 @@ void __dl_clear_params(struct task_struct *p)
dl_se->dl_throttled = 0; dl_se->dl_throttled = 0;
dl_se->dl_yielded = 0; dl_se->dl_yielded = 0;
dl_se->dl_non_contending = 0;
} }
/* /*
...@@ -2184,6 +2185,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) ...@@ -2184,6 +2185,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
RB_CLEAR_NODE(&p->dl.rb_node); RB_CLEAR_NODE(&p->dl.rb_node);
init_dl_task_timer(&p->dl); init_dl_task_timer(&p->dl);
init_dl_inactive_task_timer(&p->dl);
__dl_clear_params(p); __dl_clear_params(p);
INIT_LIST_HEAD(&p->rt.run_list); INIT_LIST_HEAD(&p->rt.run_list);
...@@ -2506,6 +2508,7 @@ static int dl_overflow(struct task_struct *p, int policy, ...@@ -2506,6 +2508,7 @@ static int dl_overflow(struct task_struct *p, int policy,
!__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
__dl_clear(dl_b, p->dl.dl_bw); __dl_clear(dl_b, p->dl.dl_bw);
__dl_add(dl_b, new_bw); __dl_add(dl_b, new_bw);
dl_change_utilization(p, new_bw);
err = 0; err = 0;
} else if (!dl_policy(policy) && task_has_dl_policy(p)) { } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
__dl_clear(dl_b, p->dl.dl_bw); __dl_clear(dl_b, p->dl.dl_bw);
......
...@@ -65,6 +65,161 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) ...@@ -65,6 +65,161 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
dl_rq->running_bw = 0; dl_rq->running_bw = 0;
} }
void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
if (task_on_rq_queued(p))
return;
if (!p->dl.dl_non_contending)
return;
sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
}
/*
* The utilization of a task cannot be immediately removed from
* the rq active utilization (running_bw) when the task blocks.
* Instead, we have to wait for the so called "0-lag time".
*
* If a task blocks before the "0-lag time", a timer (the inactive
* timer) is armed, and running_bw is decreased when the timer
* fires.
*
* If the task wakes up again before the inactive timer fires,
* the timer is cancelled, whereas if the task wakes up after the
* inactive timer fired (and running_bw has been decreased) the
* task's utilization has to be added to running_bw again.
* A flag in the deadline scheduling entity (dl_non_contending)
* is used to avoid race conditions between the inactive timer handler
* and task wakeups.
*
* The following diagram shows how running_bw is updated. A task is
* "ACTIVE" when its utilization contributes to running_bw; an
* "ACTIVE contending" task is in the TASK_RUNNING state, while an
* "ACTIVE non contending" task is a blocked task for which the "0-lag time"
* has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
* time already passed, which does not contribute to running_bw anymore.
* +------------------+
* wakeup | ACTIVE |
* +------------------>+ contending |
* | add_running_bw | |
* | +----+------+------+
* | | ^
* | dequeue | |
* +--------+-------+ | |
* | | t >= 0-lag | | wakeup
* | INACTIVE |<---------------+ |
* | | sub_running_bw | |
* +--------+-------+ | |
* ^ | |
* | t < 0-lag | |
* | | |
* | V |
* | +----+------+------+
* | sub_running_bw | ACTIVE |
* +-------------------+ |
* inactive timer | non contending |
* fired +------------------+
*
* The task_non_contending() function is invoked when a task
* blocks, and checks if the 0-lag time already passed or
* not (in the first case, it directly updates running_bw;
* in the second case, it arms the inactive timer).
*
* The task_contending() function is invoked when a task wakes
* up, and checks if the task is still in the "ACTIVE non contending"
* state or not (in the second case, it updates running_bw).
*/
static void task_non_contending(struct task_struct *p)
{
struct sched_dl_entity *dl_se = &p->dl;
struct hrtimer *timer = &dl_se->inactive_timer;
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
struct rq *rq = rq_of_dl_rq(dl_rq);
s64 zerolag_time;
/*
* If this is a non-deadline task that has been boosted,
* do nothing
*/
if (dl_se->dl_runtime == 0)
return;
WARN_ON(hrtimer_active(&dl_se->inactive_timer));
WARN_ON(dl_se->dl_non_contending);
zerolag_time = dl_se->deadline -
div64_long((dl_se->runtime * dl_se->dl_period),
dl_se->dl_runtime);
/*
* Using relative times instead of the absolute "0-lag time"
* allows to simplify the code
*/
zerolag_time -= rq_clock(rq);
/*
* If the "0-lag time" already passed, decrease the active
* utilization now, instead of starting a timer
*/
if (zerolag_time < 0) {
if (dl_task(p))
sub_running_bw(dl_se->dl_bw, dl_rq);
if (!dl_task(p) || p->state == TASK_DEAD)
__dl_clear_params(p);
return;
}
dl_se->dl_non_contending = 1;
get_task_struct(p);
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
}
static void task_contending(struct sched_dl_entity *dl_se)
{
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
/*
* If this is a non-deadline task that has been boosted,
* do nothing
*/
if (dl_se->dl_runtime == 0)
return;
if (dl_se->dl_non_contending) {
dl_se->dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
put_task_struct(dl_task_of(dl_se));
} else {
/*
* Since "dl_non_contending" is not set, the
* task's utilization has already been removed from
* active utilization (either when the task blocked,
* when the "inactive timer" fired).
* So, add it back.
*/
add_running_bw(dl_se->dl_bw, dl_rq);
}
}
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{ {
struct sched_dl_entity *dl_se = &p->dl; struct sched_dl_entity *dl_se = &p->dl;
...@@ -617,10 +772,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) ...@@ -617,10 +772,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
* The task might have changed its scheduling policy to something * The task might have changed its scheduling policy to something
* different than SCHED_DEADLINE (through switched_from_dl()). * different than SCHED_DEADLINE (through switched_from_dl()).
*/ */
if (!dl_task(p)) { if (!dl_task(p))
__dl_clear_params(p);
goto unlock; goto unlock;
}
/* /*
* The task might have been boosted by someone else and might be in the * The task might have been boosted by someone else and might be in the
...@@ -839,6 +992,49 @@ static void update_curr_dl(struct rq *rq) ...@@ -839,6 +992,49 @@ static void update_curr_dl(struct rq *rq)
} }
} }
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
{
struct sched_dl_entity *dl_se = container_of(timer,
struct sched_dl_entity,
inactive_timer);
struct task_struct *p = dl_task_of(dl_se);
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(p, &rf);
if (!dl_task(p) || p->state == TASK_DEAD) {
if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
dl_se->dl_non_contending = 0;
}
__dl_clear_params(p);
goto unlock;
}
if (dl_se->dl_non_contending == 0)
goto unlock;
sched_clock_tick();
update_rq_clock(rq);
sub_running_bw(dl_se->dl_bw, &rq->dl);
dl_se->dl_non_contending = 0;
unlock:
task_rq_unlock(rq, p, &rf);
put_task_struct(p);
return HRTIMER_NORESTART;
}
void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
struct hrtimer *timer = &dl_se->inactive_timer;
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
timer->function = inactive_task_timer;
}
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
...@@ -971,9 +1167,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, ...@@ -971,9 +1167,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
* we want a replenishment of its runtime. * we want a replenishment of its runtime.
*/ */
if (flags & ENQUEUE_WAKEUP) { if (flags & ENQUEUE_WAKEUP) {
struct dl_rq *dl_rq = dl_rq_of_se(dl_se); task_contending(dl_se);
add_running_bw(dl_se->dl_bw, dl_rq);
update_dl_entity(dl_se, pi_se); update_dl_entity(dl_se, pi_se);
} else if (flags & ENQUEUE_REPLENISH) { } else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se, pi_se); replenish_dl_entity(dl_se, pi_se);
...@@ -1042,7 +1236,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) ...@@ -1042,7 +1236,9 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* add_running_bw(). * add_running_bw().
*/ */
if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
add_running_bw(p->dl.dl_bw, &rq->dl); if (flags & ENQUEUE_WAKEUP)
task_contending(&p->dl);
return; return;
} }
...@@ -1067,7 +1263,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) ...@@ -1067,7 +1263,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
sub_running_bw(p->dl.dl_bw, &rq->dl); sub_running_bw(p->dl.dl_bw, &rq->dl);
/* /*
* This check allows to decrease the active utilization in two cases: * This check allows to start the inactive timer (or to immediately
* decrease the active utilization, if needed) in two cases:
* when the task blocks and when it is terminating * when the task blocks and when it is terminating
* (p->state == TASK_DEAD). We can handle the two cases in the same * (p->state == TASK_DEAD). We can handle the two cases in the same
* way, because from GRUB's point of view the same thing is happening * way, because from GRUB's point of view the same thing is happening
...@@ -1075,7 +1272,7 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) ...@@ -1075,7 +1272,7 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* or "inactive") * or "inactive")
*/ */
if (flags & DEQUEUE_SLEEP) if (flags & DEQUEUE_SLEEP)
sub_running_bw(p->dl.dl_bw, &rq->dl); task_non_contending(p);
} }
/* /*
...@@ -1153,6 +1350,35 @@ select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) ...@@ -1153,6 +1350,35 @@ select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
return cpu; return cpu;
} }
static void migrate_task_rq_dl(struct task_struct *p)
{
struct rq *rq;
if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
return;
rq = task_rq(p);
/*
* Since p->state == TASK_WAKING, set_task_cpu() has been called
* from try_to_wake_up(). Hence, p->pi_lock is locked, but
* rq->lock is not... So, lock it
*/
raw_spin_lock(&rq->lock);
sub_running_bw(p->dl.dl_bw, &rq->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
raw_spin_unlock(&rq->lock);
}
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{ {
/* /*
...@@ -1794,13 +2020,23 @@ void __init init_sched_dl_class(void) ...@@ -1794,13 +2020,23 @@ void __init init_sched_dl_class(void)
static void switched_from_dl(struct rq *rq, struct task_struct *p) static void switched_from_dl(struct rq *rq, struct task_struct *p)
{ {
/* /*
* Start the deadline timer; if we switch back to dl before this we'll * task_non_contending() can start the "inactive timer" (if the 0-lag
* continue consuming our current CBS slice. If we stay outside of * time is in the future). If the task switches back to dl before
* SCHED_DEADLINE until the deadline passes, the timer will reset the * the "inactive timer" fires, it can continue to consume its current
* task. * runtime using its current deadline. If it stays outside of
* SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
* will reset the task parameters.
*/ */
if (!start_dl_timer(p)) if (task_on_rq_queued(p) && p->dl.dl_runtime)
__dl_clear_params(p); task_non_contending(p);
/*
* We cannot use inactive_task_timer() to invoke sub_running_bw()
* at the 0-lag time, because the task could have been migrated
* while SCHED_OTHER in the meanwhile.
*/
if (p->dl.dl_non_contending)
p->dl.dl_non_contending = 0;
/* /*
* Since this might be the only -deadline task on the rq, * Since this might be the only -deadline task on the rq,
...@@ -1819,6 +2055,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p) ...@@ -1819,6 +2055,8 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
*/ */
static void switched_to_dl(struct rq *rq, struct task_struct *p) static void switched_to_dl(struct rq *rq, struct task_struct *p)
{ {
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
/* If p is not queued we will update its parameters at next wakeup. */ /* If p is not queued we will update its parameters at next wakeup. */
if (!task_on_rq_queued(p)) if (!task_on_rq_queued(p))
...@@ -1893,6 +2131,7 @@ const struct sched_class dl_sched_class = { ...@@ -1893,6 +2131,7 @@ const struct sched_class dl_sched_class = {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
.select_task_rq = select_task_rq_dl, .select_task_rq = select_task_rq_dl,
.migrate_task_rq = migrate_task_rq_dl,
.set_cpus_allowed = set_cpus_allowed_dl, .set_cpus_allowed = set_cpus_allowed_dl,
.rq_online = rq_online_dl, .rq_online = rq_online_dl,
.rq_offline = rq_offline_dl, .rq_offline = rq_offline_dl,
......
...@@ -244,6 +244,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) ...@@ -244,6 +244,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
} }
void dl_change_utilization(struct task_struct *p, u64 new_bw);
extern void init_dl_bw(struct dl_bw *dl_b); extern void init_dl_bw(struct dl_bw *dl_b);
#ifdef CONFIG_CGROUP_SCHED #ifdef CONFIG_CGROUP_SCHED
...@@ -1493,6 +1494,7 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime ...@@ -1493,6 +1494,7 @@ extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime
extern struct dl_bandwidth def_dl_bandwidth; extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
extern void init_dl_task_timer(struct sched_dl_entity *dl_se); extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
unsigned long to_ratio(u64 period, u64 runtime); unsigned long to_ratio(u64 period, u64 runtime);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment