Commit 28e0f377 authored by Hugues Fruchet's avatar Hugues Fruchet Committed by Hans Verkuil

media: stm32-dcmipp: STM32 DCMIPP camera interface driver

This V4L2 subdev driver enables Digital Camera Memory Interface
Pixel Processor(DCMIPP) of STMicroelectronics STM32 SoC series.
Signed-off-by: default avatarHugues Fruchet <hugues.fruchet@foss.st.com>
Signed-off-by: default avatarAlain Volmat <alain.volmat@foss.st.com>
Signed-off-by: default avatarSakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: default avatarHans Verkuil <hverkuil-cisco@xs4all.nl>
[hverkuil: remove empty line at end of source]
parent fa0f3418
......@@ -16,6 +16,22 @@ config VIDEO_STM32_DCMI
To compile this driver as a module, choose M here: the module
will be called stm32-dcmi.
config VIDEO_STM32_DCMIPP
tristate "STM32 Digital Camera Memory Interface Pixel Processor (DCMIPP) support"
depends on V4L_PLATFORM_DRIVERS
depends on VIDEO_DEV
depends on ARCH_STM32 || COMPILE_TEST
select MEDIA_CONTROLLER
select VIDEOBUF2_DMA_CONTIG
select VIDEO_V4L2_SUBDEV_API
select V4L2_FWNODE
help
This module makes the STM32 Digital Camera Memory Interface
Pixel Processor (DCMIPP) available as a v4l2 device.
To compile this driver as a module, choose M here: the module
will be called stm32-dcmipp.
# Mem2mem drivers
config VIDEO_STM32_DMA2D
tristate "STM32 Chrom-Art Accelerator (DMA2D)"
......
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_VIDEO_STM32_DCMI) += stm32-dcmi.o
obj-$(CONFIG_VIDEO_STM32_DCMIPP) += stm32-dcmipp/
stm32-dma2d-objs := dma2d/dma2d.o dma2d/dma2d-hw.o
obj-$(CONFIG_VIDEO_STM32_DMA2D) += stm32-dma2d.o
# SPDX-License-Identifier: GPL-2.0
stm32-dcmipp-y := dcmipp-core.o dcmipp-common.o dcmipp-parallel.o dcmipp-byteproc.o dcmipp-bytecap.o
obj-$(CONFIG_VIDEO_STM32_DCMIPP) += stm32-dcmipp.o
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/iopoll.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include "dcmipp-common.h"
#define DCMIPP_PRSR 0x1f8
#define DCMIPP_CMIER 0x3f0
#define DCMIPP_CMIER_P0FRAMEIE BIT(9)
#define DCMIPP_CMIER_P0VSYNCIE BIT(10)
#define DCMIPP_CMIER_P0OVRIE BIT(15)
#define DCMIPP_CMIER_P0ALL (DCMIPP_CMIER_P0VSYNCIE |\
DCMIPP_CMIER_P0FRAMEIE |\
DCMIPP_CMIER_P0OVRIE)
#define DCMIPP_CMSR1 0x3f4
#define DCMIPP_CMSR2 0x3f8
#define DCMIPP_CMSR2_P0FRAMEF BIT(9)
#define DCMIPP_CMSR2_P0VSYNCF BIT(10)
#define DCMIPP_CMSR2_P0OVRF BIT(15)
#define DCMIPP_CMFCR 0x3fc
#define DCMIPP_P0FSCR 0x404
#define DCMIPP_P0FSCR_PIPEN BIT(31)
#define DCMIPP_P0FCTCR 0x500
#define DCMIPP_P0FCTCR_CPTREQ BIT(3)
#define DCMIPP_P0DCCNTR 0x5b0
#define DCMIPP_P0DCLMTR 0x5b4
#define DCMIPP_P0DCLMTR_ENABLE BIT(31)
#define DCMIPP_P0DCLMTR_LIMIT_MASK GENMASK(23, 0)
#define DCMIPP_P0PPM0AR1 0x5c4
#define DCMIPP_P0SR 0x5f8
#define DCMIPP_P0SR_CPTACT BIT(23)
struct dcmipp_bytecap_pix_map {
unsigned int code;
u32 pixelformat;
};
#define PIXMAP_MBUS_PFMT(mbus, fmt) \
{ \
.code = MEDIA_BUS_FMT_##mbus, \
.pixelformat = V4L2_PIX_FMT_##fmt \
}
static const struct dcmipp_bytecap_pix_map dcmipp_bytecap_pix_map_list[] = {
PIXMAP_MBUS_PFMT(RGB565_2X8_LE, RGB565),
PIXMAP_MBUS_PFMT(YUYV8_2X8, YUYV),
PIXMAP_MBUS_PFMT(YVYU8_2X8, YVYU),
PIXMAP_MBUS_PFMT(UYVY8_2X8, UYVY),
PIXMAP_MBUS_PFMT(VYUY8_2X8, VYUY),
PIXMAP_MBUS_PFMT(Y8_1X8, GREY),
PIXMAP_MBUS_PFMT(SBGGR8_1X8, SBGGR8),
PIXMAP_MBUS_PFMT(SGBRG8_1X8, SGBRG8),
PIXMAP_MBUS_PFMT(SGRBG8_1X8, SGRBG8),
PIXMAP_MBUS_PFMT(SRGGB8_1X8, SRGGB8),
PIXMAP_MBUS_PFMT(JPEG_1X8, JPEG),
};
static const struct dcmipp_bytecap_pix_map *
dcmipp_bytecap_pix_map_by_pixelformat(u32 pixelformat)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dcmipp_bytecap_pix_map_list); i++) {
if (dcmipp_bytecap_pix_map_list[i].pixelformat == pixelformat)
return &dcmipp_bytecap_pix_map_list[i];
}
return NULL;
}
struct dcmipp_buf {
struct vb2_v4l2_buffer vb;
bool prepared;
dma_addr_t addr;
size_t size;
struct list_head list;
};
enum dcmipp_state {
DCMIPP_STOPPED = 0,
DCMIPP_WAIT_FOR_BUFFER,
DCMIPP_RUNNING,
};
struct dcmipp_bytecap_device {
struct dcmipp_ent_device ved;
struct video_device vdev;
struct device *dev;
struct v4l2_pix_format format;
struct vb2_queue queue;
struct list_head buffers;
/*
* Protects concurrent calls of buf queue / irq handler
* and buffer handling related variables / lists
*/
spinlock_t irqlock;
/* mutex used as vdev and queue lock */
struct mutex lock;
u32 sequence;
struct media_pipeline pipe;
struct v4l2_subdev *s_subdev;
enum dcmipp_state state;
/*
* DCMIPP driver is handling 2 buffers
* active: buffer into which DCMIPP is currently writing into
* next: buffer given to the DCMIPP and which will become
* automatically active on next VSYNC
*/
struct dcmipp_buf *active, *next;
void __iomem *regs;
u32 cmier;
u32 cmsr2;
struct {
u32 errors;
u32 limit;
u32 overrun;
u32 buffers;
u32 vsync;
u32 frame;
u32 it;
u32 underrun;
u32 nactive;
} count;
};
static const struct v4l2_pix_format fmt_default = {
.width = DCMIPP_FMT_WIDTH_DEFAULT,
.height = DCMIPP_FMT_HEIGHT_DEFAULT,
.pixelformat = V4L2_PIX_FMT_RGB565,
.field = V4L2_FIELD_NONE,
.bytesperline = DCMIPP_FMT_WIDTH_DEFAULT * 2,
.sizeimage = DCMIPP_FMT_WIDTH_DEFAULT * DCMIPP_FMT_HEIGHT_DEFAULT * 2,
.colorspace = DCMIPP_COLORSPACE_DEFAULT,
.ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT,
.quantization = DCMIPP_QUANTIZATION_DEFAULT,
.xfer_func = DCMIPP_XFER_FUNC_DEFAULT,
};
static int dcmipp_bytecap_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, DCMIPP_PDEV_NAME, sizeof(cap->driver));
strscpy(cap->card, KBUILD_MODNAME, sizeof(cap->card));
return 0;
}
static int dcmipp_bytecap_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct dcmipp_bytecap_device *vcap = video_drvdata(file);
f->fmt.pix = vcap->format;
return 0;
}
static int dcmipp_bytecap_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct dcmipp_bytecap_device *vcap = video_drvdata(file);
struct v4l2_pix_format *format = &f->fmt.pix;
const struct dcmipp_bytecap_pix_map *vpix;
u32 in_w, in_h;
/* Don't accept a pixelformat that is not on the table */
vpix = dcmipp_bytecap_pix_map_by_pixelformat(format->pixelformat);
if (!vpix)
format->pixelformat = fmt_default.pixelformat;
/* Adjust width & height */
in_w = format->width;
in_h = format->height;
v4l_bound_align_image(&format->width, DCMIPP_FRAME_MIN_WIDTH,
DCMIPP_FRAME_MAX_WIDTH, 0, &format->height,
DCMIPP_FRAME_MIN_HEIGHT, DCMIPP_FRAME_MAX_HEIGHT,
0, 0);
if (format->width != in_w || format->height != in_h)
dev_dbg(vcap->dev, "resolution updated: %dx%d -> %dx%d\n",
in_w, in_h, format->width, format->height);
if (format->pixelformat == V4L2_PIX_FMT_JPEG) {
format->bytesperline = format->width;
format->sizeimage = format->bytesperline * format->height;
} else {
v4l2_fill_pixfmt(format, format->pixelformat,
format->width, format->height);
}
if (format->field == V4L2_FIELD_ANY)
format->field = fmt_default.field;
dcmipp_colorimetry_clamp(format);
return 0;
}
static int dcmipp_bytecap_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct dcmipp_bytecap_device *vcap = video_drvdata(file);
int ret;
/* Do not change the format while stream is on */
if (vb2_is_busy(&vcap->queue))
return -EBUSY;
ret = dcmipp_bytecap_try_fmt_vid_cap(file, priv, f);
if (ret)
return ret;
dev_dbg(vcap->dev, "%s: format update: old:%ux%u (0x%p4cc, %u, %u, %u, %u) new:%ux%d (0x%p4cc, %u, %u, %u, %u)\n",
vcap->vdev.name,
/* old */
vcap->format.width, vcap->format.height,
&vcap->format.pixelformat, vcap->format.colorspace,
vcap->format.quantization, vcap->format.xfer_func,
vcap->format.ycbcr_enc,
/* new */
f->fmt.pix.width, f->fmt.pix.height,
&f->fmt.pix.pixelformat, f->fmt.pix.colorspace,
f->fmt.pix.quantization, f->fmt.pix.xfer_func,
f->fmt.pix.ycbcr_enc);
vcap->format = f->fmt.pix;
return 0;
}
static int dcmipp_bytecap_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
const struct dcmipp_bytecap_pix_map *vpix;
unsigned int index = f->index;
unsigned int i;
if (f->mbus_code) {
/*
* If a media bus code is specified, only enumerate formats
* compatible with it.
*/
for (i = 0; i < ARRAY_SIZE(dcmipp_bytecap_pix_map_list); i++) {
vpix = &dcmipp_bytecap_pix_map_list[i];
if (vpix->code != f->mbus_code)
continue;
if (index == 0)
break;
index--;
}
if (i == ARRAY_SIZE(dcmipp_bytecap_pix_map_list))
return -EINVAL;
} else {
/* Otherwise, enumerate all formats. */
if (f->index >= ARRAY_SIZE(dcmipp_bytecap_pix_map_list))
return -EINVAL;
vpix = &dcmipp_bytecap_pix_map_list[f->index];
}
f->pixelformat = vpix->pixelformat;
return 0;
}
static int dcmipp_bytecap_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
const struct dcmipp_bytecap_pix_map *vpix;
if (fsize->index)
return -EINVAL;
/* Only accept code in the pix map table */
vpix = dcmipp_bytecap_pix_map_by_pixelformat(fsize->pixel_format);
if (!vpix)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
fsize->stepwise.min_width = DCMIPP_FRAME_MIN_WIDTH;
fsize->stepwise.max_width = DCMIPP_FRAME_MAX_WIDTH;
fsize->stepwise.min_height = DCMIPP_FRAME_MIN_HEIGHT;
fsize->stepwise.max_height = DCMIPP_FRAME_MAX_HEIGHT;
fsize->stepwise.step_width = 1;
fsize->stepwise.step_height = 1;
return 0;
}
static const struct v4l2_file_operations dcmipp_bytecap_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
};
static const struct v4l2_ioctl_ops dcmipp_bytecap_ioctl_ops = {
.vidioc_querycap = dcmipp_bytecap_querycap,
.vidioc_g_fmt_vid_cap = dcmipp_bytecap_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = dcmipp_bytecap_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = dcmipp_bytecap_try_fmt_vid_cap,
.vidioc_enum_fmt_vid_cap = dcmipp_bytecap_enum_fmt_vid_cap,
.vidioc_enum_framesizes = dcmipp_bytecap_enum_framesizes,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
};
static int dcmipp_pipeline_s_stream(struct dcmipp_bytecap_device *vcap,
int state)
{
struct media_pad *pad;
int ret;
/*
* Get source subdev - since link is IMMUTABLE, pointer is cached
* within the dcmipp_bytecap_device structure
*/
if (!vcap->s_subdev) {
pad = media_pad_remote_pad_first(&vcap->vdev.entity.pads[0]);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
return -EINVAL;
vcap->s_subdev = media_entity_to_v4l2_subdev(pad->entity);
}
ret = v4l2_subdev_call(vcap->s_subdev, video, s_stream, state);
if (ret < 0) {
dev_err(vcap->dev, "failed to %s streaming (%d)\n",
state ? "start" : "stop", ret);
return ret;
}
return 0;
}
static void dcmipp_start_capture(struct dcmipp_bytecap_device *vcap,
struct dcmipp_buf *buf)
{
/* Set buffer address */
reg_write(vcap, DCMIPP_P0PPM0AR1, buf->addr);
/* Set buffer size */
reg_write(vcap, DCMIPP_P0DCLMTR, DCMIPP_P0DCLMTR_ENABLE |
((buf->size / 4) & DCMIPP_P0DCLMTR_LIMIT_MASK));
/* Capture request */
reg_set(vcap, DCMIPP_P0FCTCR, DCMIPP_P0FCTCR_CPTREQ);
}
static void dcmipp_bytecap_all_buffers_done(struct dcmipp_bytecap_device *vcap,
enum vb2_buffer_state state)
{
struct dcmipp_buf *buf, *node;
list_for_each_entry_safe(buf, node, &vcap->buffers, list) {
list_del_init(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
}
static int dcmipp_bytecap_start_streaming(struct vb2_queue *vq,
unsigned int count)
{
struct dcmipp_bytecap_device *vcap = vb2_get_drv_priv(vq);
struct media_entity *entity = &vcap->vdev.entity;
struct dcmipp_buf *buf;
int ret;
vcap->sequence = 0;
memset(&vcap->count, 0, sizeof(vcap->count));
ret = pm_runtime_resume_and_get(vcap->dev);
if (ret < 0) {
dev_err(vcap->dev, "%s: Failed to start streaming, cannot get sync (%d)\n",
__func__, ret);
goto err_buffer_done;
}
ret = media_pipeline_start(entity->pads, &vcap->pipe);
if (ret) {
dev_dbg(vcap->dev, "%s: Failed to start streaming, media pipeline start error (%d)\n",
__func__, ret);
goto err_pm_put;
}
ret = dcmipp_pipeline_s_stream(vcap, 1);
if (ret)
goto err_media_pipeline_stop;
spin_lock_irq(&vcap->irqlock);
/* Enable pipe at the end of programming */
reg_set(vcap, DCMIPP_P0FSCR, DCMIPP_P0FSCR_PIPEN);
/*
* vb2 framework guarantee that we have at least 'min_buffers_needed'
* buffers in the list at this moment
*/
vcap->next = list_first_entry(&vcap->buffers, typeof(*buf), list);
dev_dbg(vcap->dev, "Start with next [%d] %p phy=%pad\n",
vcap->next->vb.vb2_buf.index, vcap->next, &vcap->next->addr);
dcmipp_start_capture(vcap, vcap->next);
/* Enable interruptions */
vcap->cmier |= DCMIPP_CMIER_P0ALL;
reg_set(vcap, DCMIPP_CMIER, vcap->cmier);
vcap->state = DCMIPP_RUNNING;
spin_unlock_irq(&vcap->irqlock);
return 0;
err_media_pipeline_stop:
media_pipeline_stop(entity->pads);
err_pm_put:
pm_runtime_put(vcap->dev);
err_buffer_done:
spin_lock_irq(&vcap->irqlock);
/*
* Return all buffers to vb2 in QUEUED state.
* This will give ownership back to userspace
*/
dcmipp_bytecap_all_buffers_done(vcap, VB2_BUF_STATE_QUEUED);
vcap->active = NULL;
spin_unlock_irq(&vcap->irqlock);
return ret;
}
static void dcmipp_dump_status(struct dcmipp_bytecap_device *vcap)
{
struct device *dev = vcap->dev;
dev_dbg(dev, "[DCMIPP_PRSR] =%#10.8x\n", reg_read(vcap, DCMIPP_PRSR));
dev_dbg(dev, "[DCMIPP_P0SR] =%#10.8x\n", reg_read(vcap, DCMIPP_P0SR));
dev_dbg(dev, "[DCMIPP_P0DCCNTR]=%#10.8x\n",
reg_read(vcap, DCMIPP_P0DCCNTR));
dev_dbg(dev, "[DCMIPP_CMSR1] =%#10.8x\n", reg_read(vcap, DCMIPP_CMSR1));
dev_dbg(dev, "[DCMIPP_CMSR2] =%#10.8x\n", reg_read(vcap, DCMIPP_CMSR2));
}
/*
* Stop the stream engine. Any remaining buffers in the stream queue are
* dequeued and passed on to the vb2 framework marked as STATE_ERROR.
*/
static void dcmipp_bytecap_stop_streaming(struct vb2_queue *vq)
{
struct dcmipp_bytecap_device *vcap = vb2_get_drv_priv(vq);
int ret;
u32 status;
dcmipp_pipeline_s_stream(vcap, 0);
/* Stop the media pipeline */
media_pipeline_stop(vcap->vdev.entity.pads);
/* Disable interruptions */
reg_clear(vcap, DCMIPP_CMIER, vcap->cmier);
/* Stop capture */
reg_clear(vcap, DCMIPP_P0FCTCR, DCMIPP_P0FCTCR_CPTREQ);
/* Wait until CPTACT become 0 */
ret = readl_relaxed_poll_timeout(vcap->regs + DCMIPP_P0SR, status,
!(status & DCMIPP_P0SR_CPTACT),
20 * USEC_PER_MSEC,
1000 * USEC_PER_MSEC);
if (ret)
dev_warn(vcap->dev, "Timeout when stopping\n");
/* Disable pipe */
reg_clear(vcap, DCMIPP_P0FSCR, DCMIPP_P0FSCR_PIPEN);
spin_lock_irq(&vcap->irqlock);
/* Return all queued buffers to vb2 in ERROR state */
dcmipp_bytecap_all_buffers_done(vcap, VB2_BUF_STATE_ERROR);
INIT_LIST_HEAD(&vcap->buffers);
vcap->active = NULL;
vcap->state = DCMIPP_STOPPED;
spin_unlock_irq(&vcap->irqlock);
dcmipp_dump_status(vcap);
pm_runtime_put(vcap->dev);
if (vcap->count.errors)
dev_warn(vcap->dev, "Some errors found while streaming: errors=%d (overrun=%d, limit=%d, nactive=%d), underrun=%d, buffers=%d\n",
vcap->count.errors, vcap->count.overrun,
vcap->count.limit, vcap->count.nactive,
vcap->count.underrun, vcap->count.buffers);
}
static int dcmipp_bytecap_buf_prepare(struct vb2_buffer *vb)
{
struct dcmipp_bytecap_device *vcap = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmipp_buf *buf = container_of(vbuf, struct dcmipp_buf, vb);
unsigned long size;
size = vcap->format.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
dev_err(vcap->dev, "%s data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, size);
if (!buf->prepared) {
/* Get memory addresses */
buf->addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
buf->size = vb2_plane_size(&buf->vb.vb2_buf, 0);
buf->prepared = true;
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size);
dev_dbg(vcap->dev, "Setup [%d] phy=%pad size=%zu\n",
vb->index, &buf->addr, buf->size);
}
return 0;
}
static void dcmipp_bytecap_buf_queue(struct vb2_buffer *vb2_buf)
{
struct dcmipp_bytecap_device *vcap =
vb2_get_drv_priv(vb2_buf->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb2_buf);
struct dcmipp_buf *buf = container_of(vbuf, struct dcmipp_buf, vb);
dev_dbg(vcap->dev, "Queue [%d] %p phy=%pad\n", buf->vb.vb2_buf.index,
buf, &buf->addr);
spin_lock_irq(&vcap->irqlock);
list_add_tail(&buf->list, &vcap->buffers);
if (vcap->state == DCMIPP_WAIT_FOR_BUFFER) {
vcap->next = buf;
dev_dbg(vcap->dev, "Restart with next [%d] %p phy=%pad\n",
buf->vb.vb2_buf.index, buf, &buf->addr);
dcmipp_start_capture(vcap, buf);
vcap->state = DCMIPP_RUNNING;
}
spin_unlock_irq(&vcap->irqlock);
}
static int dcmipp_bytecap_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct dcmipp_bytecap_device *vcap = vb2_get_drv_priv(vq);
unsigned int size;
size = vcap->format.sizeimage;
/* Make sure the image size is large enough */
if (*nplanes)
return sizes[0] < vcap->format.sizeimage ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = vcap->format.sizeimage;
dev_dbg(vcap->dev, "Setup queue, count=%d, size=%d\n",
*nbuffers, size);
return 0;
}
static int dcmipp_bytecap_buf_init(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmipp_buf *buf = container_of(vbuf, struct dcmipp_buf, vb);
INIT_LIST_HEAD(&buf->list);
return 0;
}
static const struct vb2_ops dcmipp_bytecap_qops = {
.start_streaming = dcmipp_bytecap_start_streaming,
.stop_streaming = dcmipp_bytecap_stop_streaming,
.buf_init = dcmipp_bytecap_buf_init,
.buf_prepare = dcmipp_bytecap_buf_prepare,
.buf_queue = dcmipp_bytecap_buf_queue,
.queue_setup = dcmipp_bytecap_queue_setup,
/*
* Since q->lock is set we can use the standard
* vb2_ops_wait_prepare/finish helper functions.
*/
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static void dcmipp_bytecap_release(struct video_device *vdev)
{
struct dcmipp_bytecap_device *vcap =
container_of(vdev, struct dcmipp_bytecap_device, vdev);
dcmipp_pads_cleanup(vcap->ved.pads);
mutex_destroy(&vcap->lock);
kfree(vcap);
}
void dcmipp_bytecap_ent_release(struct dcmipp_ent_device *ved)
{
struct dcmipp_bytecap_device *vcap =
container_of(ved, struct dcmipp_bytecap_device, ved);
media_entity_cleanup(ved->ent);
vb2_video_unregister_device(&vcap->vdev);
}
static void dcmipp_buffer_done(struct dcmipp_bytecap_device *vcap,
struct dcmipp_buf *buf,
size_t bytesused,
int err)
{
struct vb2_v4l2_buffer *vbuf;
list_del_init(&buf->list);
vbuf = &buf->vb;
vbuf->sequence = vcap->sequence++;
vbuf->field = V4L2_FIELD_NONE;
vbuf->vb2_buf.timestamp = ktime_get_ns();
vb2_set_plane_payload(&vbuf->vb2_buf, 0, bytesused);
vb2_buffer_done(&vbuf->vb2_buf,
err ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
dev_dbg(vcap->dev, "Done [%d] %p phy=%pad\n", buf->vb.vb2_buf.index,
buf, &buf->addr);
vcap->count.buffers++;
}
/* irqlock must be held */
static void
dcmipp_bytecap_set_next_frame_or_stop(struct dcmipp_bytecap_device *vcap)
{
if (!vcap->next && list_is_singular(&vcap->buffers)) {
/*
* If there is no available buffer (none or a single one in the
* list while two are expected), stop the capture (effective
* for next frame). On-going frame capture will continue until
* FRAME END but no further capture will be done.
*/
reg_clear(vcap, DCMIPP_P0FCTCR, DCMIPP_P0FCTCR_CPTREQ);
dev_dbg(vcap->dev, "Capture restart is deferred to next buffer queueing\n");
vcap->next = NULL;
vcap->state = DCMIPP_WAIT_FOR_BUFFER;
return;
}
/* If we don't have buffer yet, pick the one after active */
if (!vcap->next)
vcap->next = list_next_entry(vcap->active, list);
/*
* Set buffer address
* This register is shadowed and will be taken into
* account on next VSYNC (start of next frame)
*/
reg_write(vcap, DCMIPP_P0PPM0AR1, vcap->next->addr);
dev_dbg(vcap->dev, "Write [%d] %p phy=%pad\n",
vcap->next->vb.vb2_buf.index, vcap->next, &vcap->next->addr);
}
/* irqlock must be held */
static void dcmipp_bytecap_process_frame(struct dcmipp_bytecap_device *vcap,
size_t bytesused)
{
int err = 0;
struct dcmipp_buf *buf = vcap->active;
if (!buf) {
vcap->count.nactive++;
vcap->count.errors++;
return;
}
if (bytesused > buf->size) {
dev_dbg(vcap->dev, "frame larger than expected (%zu > %zu)\n",
bytesused, buf->size);
/* Clip to buffer size and return buffer to V4L2 in error */
bytesused = buf->size;
vcap->count.limit++;
vcap->count.errors++;
err = -EOVERFLOW;
}
dcmipp_buffer_done(vcap, buf, bytesused, err);
vcap->active = NULL;
}
static irqreturn_t dcmipp_bytecap_irq_thread(int irq, void *arg)
{
struct dcmipp_bytecap_device *vcap =
container_of(arg, struct dcmipp_bytecap_device, ved);
size_t bytesused = 0;
u32 cmsr2;
spin_lock_irq(&vcap->irqlock);
cmsr2 = vcap->cmsr2 & vcap->cmier;
/*
* If we have an overrun, a frame-end will probably not be generated,
* in that case the active buffer will be recycled as next buffer by
* the VSYNC handler
*/
if (cmsr2 & DCMIPP_CMSR2_P0OVRF) {
vcap->count.errors++;
vcap->count.overrun++;
}
if (cmsr2 & DCMIPP_CMSR2_P0FRAMEF) {
vcap->count.frame++;
/* Read captured buffer size */
bytesused = reg_read(vcap, DCMIPP_P0DCCNTR);
dcmipp_bytecap_process_frame(vcap, bytesused);
}
if (cmsr2 & DCMIPP_CMSR2_P0VSYNCF) {
vcap->count.vsync++;
if (vcap->state == DCMIPP_WAIT_FOR_BUFFER) {
vcap->count.underrun++;
goto out;
}
/*
* On VSYNC, the previously set next buffer is going to become
* active thanks to the shadowing mechanism of the DCMIPP. In
* most of the cases, since a FRAMEEND has already come,
* pointer next is NULL since active is reset during the
* FRAMEEND handling. However, in case of framerate adjustment,
* there are more VSYNC than FRAMEEND. Thus we recycle the
* active (but not used) buffer and put it back into next.
*/
swap(vcap->active, vcap->next);
dcmipp_bytecap_set_next_frame_or_stop(vcap);
}
out:
spin_unlock_irq(&vcap->irqlock);
return IRQ_HANDLED;
}
static irqreturn_t dcmipp_bytecap_irq_callback(int irq, void *arg)
{
struct dcmipp_bytecap_device *vcap =
container_of(arg, struct dcmipp_bytecap_device, ved);
/* Store interrupt status register */
vcap->cmsr2 = reg_read(vcap, DCMIPP_CMSR2) & vcap->cmier;
vcap->count.it++;
/* Clear interrupt */
reg_write(vcap, DCMIPP_CMFCR, vcap->cmsr2);
return IRQ_WAKE_THREAD;
}
static int dcmipp_bytecap_link_validate(struct media_link *link)
{
struct media_entity *entity = link->sink->entity;
struct video_device *vd = media_entity_to_video_device(entity);
struct dcmipp_bytecap_device *vcap = container_of(vd,
struct dcmipp_bytecap_device, vdev);
struct v4l2_subdev *source_sd =
media_entity_to_v4l2_subdev(link->source->entity);
struct v4l2_subdev_format source_fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = link->source->index,
};
const struct dcmipp_bytecap_pix_map *vpix;
int ret;
ret = v4l2_subdev_call(source_sd, pad, get_fmt, NULL, &source_fmt);
if (ret < 0)
return 0;
if (source_fmt.format.width != vcap->format.width ||
source_fmt.format.height != vcap->format.height) {
dev_err(vcap->dev, "Wrong width or height %ux%u (%ux%u expected)\n",
vcap->format.width, vcap->format.height,
source_fmt.format.width, source_fmt.format.height);
return -EINVAL;
}
vpix = dcmipp_bytecap_pix_map_by_pixelformat(vcap->format.pixelformat);
if (source_fmt.format.code != vpix->code) {
dev_err(vcap->dev, "Wrong mbus_code 0x%x, (0x%x expected)\n",
vpix->code, source_fmt.format.code);
return -EINVAL;
}
return 0;
}
static const struct media_entity_operations dcmipp_bytecap_entity_ops = {
.link_validate = dcmipp_bytecap_link_validate,
};
struct dcmipp_ent_device *dcmipp_bytecap_ent_init(struct device *dev,
const char *entity_name,
struct v4l2_device *v4l2_dev,
void __iomem *regs)
{
struct dcmipp_bytecap_device *vcap;
struct video_device *vdev;
struct vb2_queue *q;
const unsigned long pad_flag = MEDIA_PAD_FL_SINK;
int ret = 0;
/* Allocate the dcmipp_bytecap_device struct */
vcap = kzalloc(sizeof(*vcap), GFP_KERNEL);
if (!vcap)
return ERR_PTR(-ENOMEM);
/* Allocate the pads */
vcap->ved.pads = dcmipp_pads_init(1, &pad_flag);
if (IS_ERR(vcap->ved.pads)) {
ret = PTR_ERR(vcap->ved.pads);
goto err_free_vcap;
}
/* Initialize the media entity */
vcap->vdev.entity.name = entity_name;
vcap->vdev.entity.function = MEDIA_ENT_F_IO_V4L;
vcap->vdev.entity.ops = &dcmipp_bytecap_entity_ops;
ret = media_entity_pads_init(&vcap->vdev.entity, 1, vcap->ved.pads);
if (ret)
goto err_clean_pads;
/* Initialize the lock */
mutex_init(&vcap->lock);
/* Initialize the vb2 queue */
q = &vcap->queue;
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->lock = &vcap->lock;
q->drv_priv = vcap;
q->buf_struct_size = sizeof(struct dcmipp_buf);
q->ops = &dcmipp_bytecap_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->min_buffers_needed = 1;
q->dev = dev;
/* DCMIPP requires 16 bytes aligned buffers */
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32) & ~0x0f);
if (ret) {
dev_err(dev, "Failed to set DMA mask\n");
goto err_mutex_destroy;
}
ret = vb2_queue_init(q);
if (ret) {
dev_err(dev, "%s: vb2 queue init failed (err=%d)\n",
entity_name, ret);
goto err_clean_m_ent;
}
/* Initialize buffer list and its lock */
INIT_LIST_HEAD(&vcap->buffers);
spin_lock_init(&vcap->irqlock);
/* Set default frame format */
vcap->format = fmt_default;
/* Fill the dcmipp_ent_device struct */
vcap->ved.ent = &vcap->vdev.entity;
vcap->ved.handler = dcmipp_bytecap_irq_callback;
vcap->ved.thread_fn = dcmipp_bytecap_irq_thread;
vcap->dev = dev;
vcap->regs = regs;
/* Initialize the video_device struct */
vdev = &vcap->vdev;
vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
V4L2_CAP_IO_MC;
vdev->release = dcmipp_bytecap_release;
vdev->fops = &dcmipp_bytecap_fops;
vdev->ioctl_ops = &dcmipp_bytecap_ioctl_ops;
vdev->lock = &vcap->lock;
vdev->queue = q;
vdev->v4l2_dev = v4l2_dev;
strscpy(vdev->name, entity_name, sizeof(vdev->name));
video_set_drvdata(vdev, &vcap->ved);
/* Register the video_device with the v4l2 and the media framework */
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(dev, "%s: video register failed (err=%d)\n",
vcap->vdev.name, ret);
goto err_clean_m_ent;
}
return &vcap->ved;
err_clean_m_ent:
media_entity_cleanup(&vcap->vdev.entity);
err_mutex_destroy:
mutex_destroy(&vcap->lock);
err_clean_pads:
dcmipp_pads_cleanup(vcap->ved.pads);
err_free_vcap:
kfree(vcap);
return ERR_PTR(ret);
}
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/vmalloc.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-rect.h>
#include <media/v4l2-subdev.h>
#include "dcmipp-common.h"
#define DCMIPP_P0FCTCR 0x500
#define DCMIPP_P0FCTCR_FRATE_MASK GENMASK(1, 0)
#define DCMIPP_P0SCSTR 0x504
#define DCMIPP_P0SCSTR_HSTART_SHIFT 0
#define DCMIPP_P0SCSTR_VSTART_SHIFT 16
#define DCMIPP_P0SCSZR 0x508
#define DCMIPP_P0SCSZR_ENABLE BIT(31)
#define DCMIPP_P0SCSZR_HSIZE_SHIFT 0
#define DCMIPP_P0SCSZR_VSIZE_SHIFT 16
#define DCMIPP_P0PPCR 0x5c0
#define DCMIPP_P0PPCR_BSM_1_2 0x1
#define DCMIPP_P0PPCR_BSM_1_4 0x2
#define DCMIPP_P0PPCR_BSM_2_4 0x3
#define DCMIPP_P0PPCR_BSM_MASK GENMASK(8, 7)
#define DCMIPP_P0PPCR_BSM_SHIFT 0x7
#define DCMIPP_P0PPCR_LSM BIT(10)
#define DCMIPP_P0PPCR_OELS BIT(11)
#define IS_SINK(pad) (!(pad))
#define IS_SRC(pad) ((pad))
struct dcmipp_byteproc_pix_map {
unsigned int code;
unsigned int bpp;
};
#define PIXMAP_MBUS_BPP(mbus, byteperpixel) \
{ \
.code = MEDIA_BUS_FMT_##mbus, \
.bpp = byteperpixel, \
}
static const struct dcmipp_byteproc_pix_map dcmipp_byteproc_pix_map_list[] = {
PIXMAP_MBUS_BPP(RGB565_2X8_LE, 2),
PIXMAP_MBUS_BPP(YUYV8_2X8, 2),
PIXMAP_MBUS_BPP(YVYU8_2X8, 2),
PIXMAP_MBUS_BPP(UYVY8_2X8, 2),
PIXMAP_MBUS_BPP(VYUY8_2X8, 2),
PIXMAP_MBUS_BPP(Y8_1X8, 1),
PIXMAP_MBUS_BPP(SBGGR8_1X8, 1),
PIXMAP_MBUS_BPP(SGBRG8_1X8, 1),
PIXMAP_MBUS_BPP(SGRBG8_1X8, 1),
PIXMAP_MBUS_BPP(SRGGB8_1X8, 1),
PIXMAP_MBUS_BPP(JPEG_1X8, 1),
};
static const struct dcmipp_byteproc_pix_map *
dcmipp_byteproc_pix_map_by_code(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dcmipp_byteproc_pix_map_list); i++) {
if (dcmipp_byteproc_pix_map_list[i].code == code)
return &dcmipp_byteproc_pix_map_list[i];
}
return NULL;
}
struct dcmipp_byteproc_device {
struct dcmipp_ent_device ved;
struct v4l2_subdev sd;
struct device *dev;
void __iomem *regs;
bool streaming;
};
static const struct v4l2_mbus_framefmt fmt_default = {
.width = DCMIPP_FMT_WIDTH_DEFAULT,
.height = DCMIPP_FMT_HEIGHT_DEFAULT,
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.field = V4L2_FIELD_NONE,
.colorspace = DCMIPP_COLORSPACE_DEFAULT,
.ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT,
.quantization = DCMIPP_QUANTIZATION_DEFAULT,
.xfer_func = DCMIPP_XFER_FUNC_DEFAULT,
};
static const struct v4l2_rect crop_min = {
.width = DCMIPP_FRAME_MIN_WIDTH,
.height = DCMIPP_FRAME_MIN_HEIGHT,
.top = 0,
.left = 0,
};
static void dcmipp_byteproc_adjust_crop(struct v4l2_rect *r,
struct v4l2_rect *compose)
{
/* Disallow rectangles smaller than the minimal one. */
v4l2_rect_set_min_size(r, &crop_min);
v4l2_rect_map_inside(r, compose);
}
static void dcmipp_byteproc_adjust_compose(struct v4l2_rect *r,
const struct v4l2_mbus_framefmt *fmt)
{
r->top = 0;
r->left = 0;
/* Compose is not possible for JPEG or Bayer formats */
if (fmt->code == MEDIA_BUS_FMT_JPEG_1X8 ||
fmt->code == MEDIA_BUS_FMT_SBGGR8_1X8 ||
fmt->code == MEDIA_BUS_FMT_SGBRG8_1X8 ||
fmt->code == MEDIA_BUS_FMT_SGRBG8_1X8 ||
fmt->code == MEDIA_BUS_FMT_SRGGB8_1X8) {
r->width = fmt->width;
r->height = fmt->height;
return;
}
/* Adjust height - we can only perform 1/2 decimation */
if (r->height <= (fmt->height / 2))
r->height = fmt->height / 2;
else
r->height = fmt->height;
/* Adjust width /2 or /4 for 8bits formats and /2 for 16bits formats */
if (fmt->code == MEDIA_BUS_FMT_Y8_1X8 && r->width <= (fmt->width / 4))
r->width = fmt->width / 4;
else if (r->width <= (fmt->width / 2))
r->width = fmt->width / 2;
else
r->width = fmt->width;
}
static void dcmipp_byteproc_adjust_fmt(struct v4l2_mbus_framefmt *fmt)
{
const struct dcmipp_byteproc_pix_map *vpix;
/* Only accept code in the pix map table */
vpix = dcmipp_byteproc_pix_map_by_code(fmt->code);
if (!vpix)
fmt->code = fmt_default.code;
fmt->width = clamp_t(u32, fmt->width, DCMIPP_FRAME_MIN_WIDTH,
DCMIPP_FRAME_MAX_WIDTH) & ~1;
fmt->height = clamp_t(u32, fmt->height, DCMIPP_FRAME_MIN_HEIGHT,
DCMIPP_FRAME_MAX_HEIGHT) & ~1;
if (fmt->field == V4L2_FIELD_ANY || fmt->field == V4L2_FIELD_ALTERNATE)
fmt->field = fmt_default.field;
dcmipp_colorimetry_clamp(fmt);
}
static int dcmipp_byteproc_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
unsigned int i;
for (i = 0; i < sd->entity.num_pads; i++) {
struct v4l2_mbus_framefmt *mf;
struct v4l2_rect *r;
mf = v4l2_subdev_state_get_format(sd_state, i);
*mf = fmt_default;
if (IS_SINK(i))
r = v4l2_subdev_state_get_compose(sd_state, i);
else
r = v4l2_subdev_state_get_crop(sd_state, i);
r->top = 0;
r->left = 0;
r->width = DCMIPP_FMT_WIDTH_DEFAULT;
r->height = DCMIPP_FMT_HEIGHT_DEFAULT;
}
return 0;
}
static int
dcmipp_byteproc_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
const struct dcmipp_byteproc_pix_map *vpix;
struct v4l2_mbus_framefmt *sink_fmt;
if (IS_SINK(code->pad)) {
if (code->index >= ARRAY_SIZE(dcmipp_byteproc_pix_map_list))
return -EINVAL;
vpix = &dcmipp_byteproc_pix_map_list[code->index];
code->code = vpix->code;
} else {
/* byteproc doesn't support transformation on format */
if (code->index > 0)
return -EINVAL;
sink_fmt = v4l2_subdev_state_get_format(sd_state, 0);
code->code = sink_fmt->code;
}
return 0;
}
static int
dcmipp_byteproc_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
struct v4l2_rect *compose;
if (fse->index)
return -EINVAL;
fse->min_width = DCMIPP_FRAME_MIN_WIDTH;
fse->min_height = DCMIPP_FRAME_MIN_HEIGHT;
if (IS_SINK(fse->pad)) {
fse->max_width = DCMIPP_FRAME_MAX_WIDTH;
fse->max_height = DCMIPP_FRAME_MAX_HEIGHT;
} else {
compose = v4l2_subdev_state_get_compose(sd_state, 0);
fse->max_width = compose->width;
fse->max_height = compose->height;
}
return 0;
}
static int dcmipp_byteproc_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct dcmipp_byteproc_device *byteproc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *mf;
struct v4l2_rect *crop, *compose;
if (byteproc->streaming)
return -EBUSY;
mf = v4l2_subdev_state_get_format(sd_state, fmt->pad);
crop = v4l2_subdev_state_get_crop(sd_state, 1);
compose = v4l2_subdev_state_get_compose(sd_state, 0);
if (IS_SRC(fmt->pad)) {
fmt->format = *v4l2_subdev_state_get_format(sd_state, 0);
fmt->format.width = crop->width;
fmt->format.height = crop->height;
} else {
dcmipp_byteproc_adjust_fmt(&fmt->format);
crop->top = 0;
crop->left = 0;
crop->width = fmt->format.width;
crop->height = fmt->format.height;
*compose = *crop;
/* Set the same format on SOURCE pad as well */
*v4l2_subdev_state_get_format(sd_state, 1) = fmt->format;
}
*mf = fmt->format;
return 0;
}
static int dcmipp_byteproc_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *s)
{
struct v4l2_mbus_framefmt *sink_fmt;
struct v4l2_rect *crop, *compose;
/*
* In the HW, the decimation block is located prior to the crop hence:
* Compose is done on the sink pad
* Crop is done on the src pad
*/
if (IS_SINK(s->pad) &&
(s->target == V4L2_SEL_TGT_CROP ||
s->target == V4L2_SEL_TGT_CROP_BOUNDS ||
s->target == V4L2_SEL_TGT_CROP_DEFAULT))
return -EINVAL;
if (IS_SRC(s->pad) &&
(s->target == V4L2_SEL_TGT_COMPOSE ||
s->target == V4L2_SEL_TGT_COMPOSE_BOUNDS ||
s->target == V4L2_SEL_TGT_COMPOSE_DEFAULT))
return -EINVAL;
sink_fmt = v4l2_subdev_state_get_format(sd_state, 0);
crop = v4l2_subdev_state_get_crop(sd_state, 1);
compose = v4l2_subdev_state_get_compose(sd_state, 0);
switch (s->target) {
case V4L2_SEL_TGT_CROP:
s->r = *crop;
break;
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_CROP_DEFAULT:
s->r = *compose;
break;
case V4L2_SEL_TGT_COMPOSE:
s->r = *compose;
break;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
s->r.top = 0;
s->r.left = 0;
s->r.width = sink_fmt->width;
s->r.height = sink_fmt->height;
break;
default:
return -EINVAL;
}
return 0;
}
static int dcmipp_byteproc_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *s)
{
struct dcmipp_byteproc_device *byteproc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *mf;
struct v4l2_rect *crop, *compose;
/*
* In the HW, the decimation block is located prior to the crop hence:
* Compose is done on the sink pad
* Crop is done on the src pad
*/
if ((s->target == V4L2_SEL_TGT_CROP ||
s->target == V4L2_SEL_TGT_CROP_BOUNDS ||
s->target == V4L2_SEL_TGT_CROP_DEFAULT) && IS_SINK(s->pad))
return -EINVAL;
if ((s->target == V4L2_SEL_TGT_COMPOSE ||
s->target == V4L2_SEL_TGT_COMPOSE_BOUNDS ||
s->target == V4L2_SEL_TGT_COMPOSE_DEFAULT) && IS_SRC(s->pad))
return -EINVAL;
crop = v4l2_subdev_state_get_crop(sd_state, 1);
compose = v4l2_subdev_state_get_compose(sd_state, 0);
switch (s->target) {
case V4L2_SEL_TGT_CROP:
dcmipp_byteproc_adjust_crop(&s->r, compose);
*crop = s->r;
mf = v4l2_subdev_state_get_format(sd_state, 1);
mf->width = s->r.width;
mf->height = s->r.height;
dev_dbg(byteproc->dev, "s_selection: crop %ux%u@(%u,%u)\n",
crop->width, crop->height, crop->left, crop->top);
break;
case V4L2_SEL_TGT_COMPOSE:
mf = v4l2_subdev_state_get_format(sd_state, 0);
dcmipp_byteproc_adjust_compose(&s->r, mf);
*compose = s->r;
*crop = s->r;
mf = v4l2_subdev_state_get_format(sd_state, 1);
mf->width = s->r.width;
mf->height = s->r.height;
dev_dbg(byteproc->dev, "s_selection: compose %ux%u@(%u,%u)\n",
compose->width, compose->height,
compose->left, compose->top);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct v4l2_subdev_pad_ops dcmipp_byteproc_pad_ops = {
.enum_mbus_code = dcmipp_byteproc_enum_mbus_code,
.enum_frame_size = dcmipp_byteproc_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = dcmipp_byteproc_set_fmt,
.get_selection = dcmipp_byteproc_get_selection,
.set_selection = dcmipp_byteproc_set_selection,
};
static int dcmipp_byteproc_configure_scale_crop
(struct dcmipp_byteproc_device *byteproc)
{
const struct dcmipp_byteproc_pix_map *vpix;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *sink_fmt;
u32 hprediv, vprediv;
struct v4l2_rect *compose, *crop;
u32 val = 0;
state = v4l2_subdev_lock_and_get_active_state(&byteproc->sd);
sink_fmt = v4l2_subdev_state_get_format(state, 0);
compose = v4l2_subdev_state_get_compose(state, 0);
crop = v4l2_subdev_state_get_crop(state, 1);
v4l2_subdev_unlock_state(state);
/* find output format bpp */
vpix = dcmipp_byteproc_pix_map_by_code(sink_fmt->code);
if (!vpix)
return -EINVAL;
/* clear decimation/crop */
reg_clear(byteproc, DCMIPP_P0PPCR, DCMIPP_P0PPCR_BSM_MASK);
reg_clear(byteproc, DCMIPP_P0PPCR, DCMIPP_P0PPCR_LSM);
reg_write(byteproc, DCMIPP_P0SCSTR, 0);
reg_write(byteproc, DCMIPP_P0SCSZR, 0);
/* Ignore decimation/crop with JPEG */
if (vpix->code == MEDIA_BUS_FMT_JPEG_1X8)
return 0;
/* decimation */
hprediv = sink_fmt->width / compose->width;
if (hprediv == 4)
val |= DCMIPP_P0PPCR_BSM_1_4 << DCMIPP_P0PPCR_BSM_SHIFT;
else if ((vpix->code == MEDIA_BUS_FMT_Y8_1X8) && (hprediv == 2))
val |= DCMIPP_P0PPCR_BSM_1_2 << DCMIPP_P0PPCR_BSM_SHIFT;
else if (hprediv == 2)
val |= DCMIPP_P0PPCR_BSM_2_4 << DCMIPP_P0PPCR_BSM_SHIFT;
vprediv = sink_fmt->height / compose->height;
if (vprediv == 2)
val |= DCMIPP_P0PPCR_LSM | DCMIPP_P0PPCR_OELS;
/* decimate using bytes and lines skipping */
if (val) {
reg_set(byteproc, DCMIPP_P0PPCR, val);
dev_dbg(byteproc->dev, "decimate to %dx%d [prediv=%dx%d]\n",
compose->width, compose->height,
hprediv, vprediv);
}
dev_dbg(byteproc->dev, "crop to %dx%d\n", crop->width, crop->height);
/* expressed in 32-bits words on X axis, lines on Y axis */
reg_write(byteproc, DCMIPP_P0SCSTR,
(((crop->left * vpix->bpp) / 4) <<
DCMIPP_P0SCSTR_HSTART_SHIFT) |
(crop->top << DCMIPP_P0SCSTR_VSTART_SHIFT));
reg_write(byteproc, DCMIPP_P0SCSZR,
DCMIPP_P0SCSZR_ENABLE |
(((crop->width * vpix->bpp) / 4) <<
DCMIPP_P0SCSZR_HSIZE_SHIFT) |
(crop->height << DCMIPP_P0SCSZR_VSIZE_SHIFT));
return 0;
}
static int dcmipp_byteproc_s_stream(struct v4l2_subdev *sd, int enable)
{
struct dcmipp_byteproc_device *byteproc = v4l2_get_subdevdata(sd);
struct v4l2_subdev *s_subdev;
struct media_pad *pad;
int ret = 0;
/* Get source subdev */
pad = media_pad_remote_pad_first(&sd->entity.pads[0]);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
return -EINVAL;
s_subdev = media_entity_to_v4l2_subdev(pad->entity);
if (enable) {
ret = dcmipp_byteproc_configure_scale_crop(byteproc);
if (ret)
return ret;
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(byteproc->dev,
"failed to start source subdev streaming (%d)\n",
ret);
return ret;
}
} else {
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(byteproc->dev,
"failed to stop source subdev streaming (%d)\n",
ret);
return ret;
}
}
byteproc->streaming = enable;
return 0;
}
static const struct v4l2_subdev_video_ops dcmipp_byteproc_video_ops = {
.s_stream = dcmipp_byteproc_s_stream,
};
static const struct v4l2_subdev_ops dcmipp_byteproc_ops = {
.pad = &dcmipp_byteproc_pad_ops,
.video = &dcmipp_byteproc_video_ops,
};
static void dcmipp_byteproc_release(struct v4l2_subdev *sd)
{
struct dcmipp_byteproc_device *byteproc = v4l2_get_subdevdata(sd);
kfree(byteproc);
}
static const struct v4l2_subdev_internal_ops dcmipp_byteproc_int_ops = {
.init_state = dcmipp_byteproc_init_state,
.release = dcmipp_byteproc_release,
};
void dcmipp_byteproc_ent_release(struct dcmipp_ent_device *ved)
{
struct dcmipp_byteproc_device *byteproc =
container_of(ved, struct dcmipp_byteproc_device, ved);
dcmipp_ent_sd_unregister(ved, &byteproc->sd);
}
struct dcmipp_ent_device *
dcmipp_byteproc_ent_init(struct device *dev, const char *entity_name,
struct v4l2_device *v4l2_dev, void __iomem *regs)
{
struct dcmipp_byteproc_device *byteproc;
const unsigned long pads_flag[] = {
MEDIA_PAD_FL_SINK, MEDIA_PAD_FL_SOURCE,
};
int ret;
/* Allocate the byteproc struct */
byteproc = kzalloc(sizeof(*byteproc), GFP_KERNEL);
if (!byteproc)
return ERR_PTR(-ENOMEM);
byteproc->regs = regs;
/* Initialize ved and sd */
ret = dcmipp_ent_sd_register(&byteproc->ved, &byteproc->sd,
v4l2_dev, entity_name,
MEDIA_ENT_F_PROC_VIDEO_SCALER,
ARRAY_SIZE(pads_flag), pads_flag,
&dcmipp_byteproc_int_ops,
&dcmipp_byteproc_ops,
NULL, NULL);
if (ret) {
kfree(byteproc);
return ERR_PTR(ret);
}
byteproc->dev = dev;
return &byteproc->ved;
}
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/init.h>
#include <linux/module.h>
#include "dcmipp-common.h"
/* Helper function to allocate and initialize pads */
struct media_pad *dcmipp_pads_init(u16 num_pads, const unsigned long *pads_flags)
{
struct media_pad *pads;
unsigned int i;
/* Allocate memory for the pads */
pads = kcalloc(num_pads, sizeof(*pads), GFP_KERNEL);
if (!pads)
return ERR_PTR(-ENOMEM);
/* Initialize the pads */
for (i = 0; i < num_pads; i++) {
pads[i].index = i;
pads[i].flags = pads_flags[i];
}
return pads;
}
static const struct media_entity_operations dcmipp_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
int dcmipp_ent_sd_register(struct dcmipp_ent_device *ved,
struct v4l2_subdev *sd,
struct v4l2_device *v4l2_dev,
const char *const name,
u32 function,
u16 num_pads,
const unsigned long *pads_flag,
const struct v4l2_subdev_internal_ops *sd_int_ops,
const struct v4l2_subdev_ops *sd_ops,
irq_handler_t handler,
irq_handler_t thread_fn)
{
int ret;
/* Allocate the pads. Should be released from the sd_int_op release */
ved->pads = dcmipp_pads_init(num_pads, pads_flag);
if (IS_ERR(ved->pads))
return PTR_ERR(ved->pads);
/* Fill the dcmipp_ent_device struct */
ved->ent = &sd->entity;
/* Initialize the subdev */
v4l2_subdev_init(sd, sd_ops);
sd->internal_ops = sd_int_ops;
sd->entity.function = function;
sd->entity.ops = &dcmipp_entity_ops;
sd->owner = THIS_MODULE;
strscpy(sd->name, name, sizeof(sd->name));
v4l2_set_subdevdata(sd, ved);
/* Expose this subdev to user space */
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
if (sd->ctrl_handler)
sd->flags |= V4L2_SUBDEV_FL_HAS_EVENTS;
/* Initialize the media entity */
ret = media_entity_pads_init(&sd->entity, num_pads, ved->pads);
if (ret)
goto err_clean_pads;
ret = v4l2_subdev_init_finalize(sd);
if (ret < 0)
goto err_clean_m_ent;
/* Register the subdev with the v4l2 and the media framework */
ret = v4l2_device_register_subdev(v4l2_dev, sd);
if (ret) {
dev_err(v4l2_dev->dev,
"%s: subdev register failed (err=%d)\n",
name, ret);
goto err_clean_m_ent;
}
ved->handler = handler;
ved->thread_fn = thread_fn;
return 0;
err_clean_m_ent:
media_entity_cleanup(&sd->entity);
err_clean_pads:
dcmipp_pads_cleanup(ved->pads);
return ret;
}
void
dcmipp_ent_sd_unregister(struct dcmipp_ent_device *ved, struct v4l2_subdev *sd)
{
media_entity_cleanup(ved->ent);
v4l2_device_unregister_subdev(sd);
}
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#ifndef _DCMIPP_COMMON_H_
#define _DCMIPP_COMMON_H_
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <media/media-device.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#define DCMIPP_PDEV_NAME "dcmipp"
#define DCMIPP_FRAME_MAX_WIDTH 4096
#define DCMIPP_FRAME_MAX_HEIGHT 2160
#define DCMIPP_FRAME_MIN_WIDTH 16
#define DCMIPP_FRAME_MIN_HEIGHT 16
#define DCMIPP_FMT_WIDTH_DEFAULT 640
#define DCMIPP_FMT_HEIGHT_DEFAULT 480
#define DCMIPP_COLORSPACE_DEFAULT V4L2_COLORSPACE_REC709
#define DCMIPP_YCBCR_ENC_DEFAULT V4L2_YCBCR_ENC_DEFAULT
#define DCMIPP_QUANTIZATION_DEFAULT V4L2_QUANTIZATION_DEFAULT
#define DCMIPP_XFER_FUNC_DEFAULT V4L2_XFER_FUNC_DEFAULT
/**
* dcmipp_colorimetry_clamp() - Adjust colorimetry parameters
*
* @fmt: the pointer to struct v4l2_pix_format or
* struct v4l2_mbus_framefmt
*
* Entities must check if colorimetry given by the userspace is valid, if not
* then set them as DEFAULT
*/
#define dcmipp_colorimetry_clamp(fmt) \
do { \
if ((fmt)->colorspace == V4L2_COLORSPACE_DEFAULT || \
(fmt)->colorspace > V4L2_COLORSPACE_DCI_P3) { \
(fmt)->colorspace = DCMIPP_COLORSPACE_DEFAULT; \
(fmt)->ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT; \
(fmt)->quantization = DCMIPP_QUANTIZATION_DEFAULT; \
(fmt)->xfer_func = DCMIPP_XFER_FUNC_DEFAULT; \
} \
if ((fmt)->ycbcr_enc > V4L2_YCBCR_ENC_SMPTE240M) \
(fmt)->ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT; \
if ((fmt)->quantization > V4L2_QUANTIZATION_LIM_RANGE) \
(fmt)->quantization = DCMIPP_QUANTIZATION_DEFAULT; \
if ((fmt)->xfer_func > V4L2_XFER_FUNC_SMPTE2084) \
(fmt)->xfer_func = DCMIPP_XFER_FUNC_DEFAULT; \
} while (0)
/**
* struct dcmipp_ent_device - core struct that represents a node in the topology
*
* @ent: the pointer to struct media_entity for the node
* @pads: the list of pads of the node
* @bus: struct v4l2_mbus_config_parallel describing input bus
* @bus_type: type of input bus (parallel or BT656)
* @handler: irq handler dedicated to the subdev
* @handler_ret: value returned by the irq handler
* @thread_fn: threaded irq handler
*
* The DCMIPP provides a single IRQ line and a IRQ status registers for all
* subdevs, hence once the main irq handler (registered at probe time) is
* called, it will chain calls to the irq handler of each the subdevs of the
* pipelines, using the handler/handler_ret/thread_fn variables.
*
* Each node of the topology must create a dcmipp_ent_device struct.
* Depending on the node it will be of an instance of v4l2_subdev or
* video_device struct where both contains a struct media_entity.
* Those structures should embedded the dcmipp_ent_device struct through
* v4l2_set_subdevdata() and video_set_drvdata() respectivaly, allowing the
* dcmipp_ent_device struct to be retrieved from the corresponding struct
* media_entity
*/
struct dcmipp_ent_device {
struct media_entity *ent;
struct media_pad *pads;
/* Parallel input device */
struct v4l2_mbus_config_parallel bus;
enum v4l2_mbus_type bus_type;
irq_handler_t handler;
irqreturn_t handler_ret;
irq_handler_t thread_fn;
};
/**
* dcmipp_pads_init - initialize pads
*
* @num_pads: number of pads to initialize
* @pads_flags: flags to use in each pad
*
* Helper functions to allocate/initialize pads
*/
struct media_pad *dcmipp_pads_init(u16 num_pads,
const unsigned long *pads_flags);
/**
* dcmipp_pads_cleanup - free pads
*
* @pads: pointer to the pads
*
* Helper function to free the pads initialized with dcmipp_pads_init
*/
static inline void dcmipp_pads_cleanup(struct media_pad *pads)
{
kfree(pads);
}
/**
* dcmipp_ent_sd_register - initialize and register a subdev node
*
* @ved: the dcmipp_ent_device struct to be initialize
* @sd: the v4l2_subdev struct to be initialize and registered
* @v4l2_dev: the v4l2 device to register the v4l2_subdev
* @name: name of the sub-device. Please notice that the name must be
* unique.
* @function: media entity function defined by MEDIA_ENT_F_* macros
* @num_pads: number of pads to initialize
* @pads_flag: flags to use in each pad
* @sd_int_ops: pointer to &struct v4l2_subdev_internal_ops
* @sd_ops: pointer to &struct v4l2_subdev_ops.
* @handler: func pointer of the irq handler
* @thread_fn: func pointer of the threaded irq handler
*
* Helper function initialize and register the struct dcmipp_ent_device and
* struct v4l2_subdev which represents a subdev node in the topology
*/
int dcmipp_ent_sd_register(struct dcmipp_ent_device *ved,
struct v4l2_subdev *sd,
struct v4l2_device *v4l2_dev,
const char *const name,
u32 function,
u16 num_pads,
const unsigned long *pads_flag,
const struct v4l2_subdev_internal_ops *sd_int_ops,
const struct v4l2_subdev_ops *sd_ops,
irq_handler_t handler,
irq_handler_t thread_fn);
/**
* dcmipp_ent_sd_unregister - cleanup and unregister a subdev node
*
* @ved: the dcmipp_ent_device struct to be cleaned up
* @sd: the v4l2_subdev struct to be unregistered
*
* Helper function cleanup and unregister the struct dcmipp_ent_device and
* struct v4l2_subdev which represents a subdev node in the topology
*/
void dcmipp_ent_sd_unregister(struct dcmipp_ent_device *ved,
struct v4l2_subdev *sd);
#define reg_write(device, reg, val) \
(__reg_write((device)->dev, (device)->regs, (reg), (val)))
#define reg_read(device, reg) \
(__reg_read((device)->dev, (device)->regs, (reg)))
#define reg_set(device, reg, mask) \
(__reg_set((device)->dev, (device)->regs, (reg), (mask)))
#define reg_clear(device, reg, mask) \
(__reg_clear((device)->dev, (device)->regs, (reg), (mask)))
static inline u32 __reg_read(struct device *dev, void __iomem *base, u32 reg)
{
u32 val = readl_relaxed(base + reg);
dev_dbg(dev, "RD 0x%x %#10.8x\n", reg, val);
return val;
}
static inline void __reg_write(struct device *dev, void __iomem *base, u32 reg,
u32 val)
{
dev_dbg(dev, "WR 0x%x %#10.8x\n", reg, val);
writel_relaxed(val, base + reg);
}
static inline void __reg_set(struct device *dev, void __iomem *base, u32 reg,
u32 mask)
{
dev_dbg(dev, "SET 0x%x %#10.8x\n", reg, mask);
__reg_write(dev, base, reg, readl_relaxed(base + reg) | mask);
}
static inline void __reg_clear(struct device *dev, void __iomem *base, u32 reg,
u32 mask)
{
dev_dbg(dev, "CLR 0x%x %#10.8x\n", reg, mask);
__reg_write(dev, base, reg, readl_relaxed(base + reg) & ~mask);
}
/* DCMIPP subdev init / release entry points */
struct dcmipp_ent_device *dcmipp_par_ent_init(struct device *dev,
const char *entity_name,
struct v4l2_device *v4l2_dev,
void __iomem *regs);
void dcmipp_par_ent_release(struct dcmipp_ent_device *ved);
struct dcmipp_ent_device *
dcmipp_byteproc_ent_init(struct device *dev, const char *entity_name,
struct v4l2_device *v4l2_dev, void __iomem *regs);
void dcmipp_byteproc_ent_release(struct dcmipp_ent_device *ved);
struct dcmipp_ent_device *dcmipp_bytecap_ent_init(struct device *dev,
const char *entity_name,
struct v4l2_device *v4l2_dev,
void __iomem *regs);
void dcmipp_bytecap_ent_release(struct dcmipp_ent_device *ved);
#endif
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <media/media-device.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include "dcmipp-common.h"
#define DCMIPP_MDEV_MODEL_NAME "DCMIPP MDEV"
#define DCMIPP_ENT_LINK(src, srcpad, sink, sinkpad, link_flags) { \
.src_ent = src, \
.src_pad = srcpad, \
.sink_ent = sink, \
.sink_pad = sinkpad, \
.flags = link_flags, \
}
struct dcmipp_device {
/* The platform device */
struct platform_device pdev;
struct device *dev;
/* Hardware resources */
void __iomem *regs;
struct clk *kclk;
/* The pipeline configuration */
const struct dcmipp_pipeline_config *pipe_cfg;
/* The Associated media_device parent */
struct media_device mdev;
/* Internal v4l2 parent device*/
struct v4l2_device v4l2_dev;
/* Entities */
struct dcmipp_ent_device **entity;
struct v4l2_async_notifier notifier;
};
static inline struct dcmipp_device *
notifier_to_dcmipp(struct v4l2_async_notifier *n)
{
return container_of(n, struct dcmipp_device, notifier);
}
/* Structure which describes individual configuration for each entity */
struct dcmipp_ent_config {
const char *name;
struct dcmipp_ent_device *(*init)
(struct device *dev, const char *entity_name,
struct v4l2_device *v4l2_dev, void __iomem *regs);
void (*release)(struct dcmipp_ent_device *ved);
};
/* Structure which describes links between entities */
struct dcmipp_ent_link {
unsigned int src_ent;
u16 src_pad;
unsigned int sink_ent;
u16 sink_pad;
u32 flags;
};
/* Structure which describes the whole topology */
struct dcmipp_pipeline_config {
const struct dcmipp_ent_config *ents;
size_t num_ents;
const struct dcmipp_ent_link *links;
size_t num_links;
};
/* --------------------------------------------------------------------------
* Topology Configuration
*/
static const struct dcmipp_ent_config stm32mp13_ent_config[] = {
{
.name = "dcmipp_parallel",
.init = dcmipp_par_ent_init,
.release = dcmipp_par_ent_release,
},
{
.name = "dcmipp_dump_postproc",
.init = dcmipp_byteproc_ent_init,
.release = dcmipp_byteproc_ent_release,
},
{
.name = "dcmipp_dump_capture",
.init = dcmipp_bytecap_ent_init,
.release = dcmipp_bytecap_ent_release,
},
};
#define ID_PARALLEL 0
#define ID_DUMP_BYTEPROC 1
#define ID_DUMP_CAPTURE 2
static const struct dcmipp_ent_link stm32mp13_ent_links[] = {
DCMIPP_ENT_LINK(ID_PARALLEL, 1, ID_DUMP_BYTEPROC, 0,
MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE),
DCMIPP_ENT_LINK(ID_DUMP_BYTEPROC, 1, ID_DUMP_CAPTURE, 0,
MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE),
};
static const struct dcmipp_pipeline_config stm32mp13_pipe_cfg = {
.ents = stm32mp13_ent_config,
.num_ents = ARRAY_SIZE(stm32mp13_ent_config),
.links = stm32mp13_ent_links,
.num_links = ARRAY_SIZE(stm32mp13_ent_links)
};
#define LINK_FLAG_TO_STR(f) ((f) == 0 ? "" :\
(f) == MEDIA_LNK_FL_ENABLED ? "ENABLED" :\
(f) == MEDIA_LNK_FL_IMMUTABLE ? "IMMUTABLE" :\
(f) == (MEDIA_LNK_FL_ENABLED |\
MEDIA_LNK_FL_IMMUTABLE) ?\
"ENABLED, IMMUTABLE" :\
"UNKNOWN")
static int dcmipp_create_links(struct dcmipp_device *dcmipp)
{
unsigned int i;
int ret;
/* Initialize the links between entities */
for (i = 0; i < dcmipp->pipe_cfg->num_links; i++) {
const struct dcmipp_ent_link *link =
&dcmipp->pipe_cfg->links[i];
struct dcmipp_ent_device *ved_src =
dcmipp->entity[link->src_ent];
struct dcmipp_ent_device *ved_sink =
dcmipp->entity[link->sink_ent];
dev_dbg(dcmipp->dev, "Create link \"%s\":%d -> %d:\"%s\" [%s]\n",
dcmipp->pipe_cfg->ents[link->src_ent].name,
link->src_pad, link->sink_pad,
dcmipp->pipe_cfg->ents[link->sink_ent].name,
LINK_FLAG_TO_STR(link->flags));
ret = media_create_pad_link(ved_src->ent, link->src_pad,
ved_sink->ent, link->sink_pad,
link->flags);
if (ret)
return ret;
}
return 0;
}
static int dcmipp_graph_init(struct dcmipp_device *dcmipp);
static int dcmipp_create_subdevs(struct dcmipp_device *dcmipp)
{
int ret, i;
/* Call all subdev inits */
for (i = 0; i < dcmipp->pipe_cfg->num_ents; i++) {
const char *name = dcmipp->pipe_cfg->ents[i].name;
dev_dbg(dcmipp->dev, "add subdev %s\n", name);
dcmipp->entity[i] =
dcmipp->pipe_cfg->ents[i].init(dcmipp->dev, name,
&dcmipp->v4l2_dev,
dcmipp->regs);
if (IS_ERR(dcmipp->entity[i])) {
dev_err(dcmipp->dev, "failed to init subdev %s\n",
name);
ret = PTR_ERR(dcmipp->entity[i]);
goto err_init_entity;
}
}
/* Initialize links */
ret = dcmipp_create_links(dcmipp);
if (ret)
goto err_init_entity;
ret = dcmipp_graph_init(dcmipp);
if (ret < 0)
goto err_init_entity;
return 0;
err_init_entity:
while (i > 0)
dcmipp->pipe_cfg->ents[i - 1].release(dcmipp->entity[i - 1]);
return ret;
}
static const struct of_device_id dcmipp_of_match[] = {
{ .compatible = "st,stm32mp13-dcmipp", .data = &stm32mp13_pipe_cfg },
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, dcmipp_of_match);
static irqreturn_t dcmipp_irq_thread(int irq, void *arg)
{
struct dcmipp_device *dcmipp = arg;
struct dcmipp_ent_device *ved;
unsigned int i;
/* Call irq thread of each entities of pipeline */
for (i = 0; i < dcmipp->pipe_cfg->num_ents; i++) {
ved = dcmipp->entity[i];
if (ved->thread_fn && ved->handler_ret == IRQ_WAKE_THREAD)
ved->thread_fn(irq, ved);
}
return IRQ_HANDLED;
}
static irqreturn_t dcmipp_irq_callback(int irq, void *arg)
{
struct dcmipp_device *dcmipp = arg;
struct dcmipp_ent_device *ved;
irqreturn_t ret = IRQ_HANDLED;
unsigned int i;
/* Call irq handler of each entities of pipeline */
for (i = 0; i < dcmipp->pipe_cfg->num_ents; i++) {
ved = dcmipp->entity[i];
if (ved->handler)
ved->handler_ret = ved->handler(irq, ved);
else if (ved->thread_fn)
ved->handler_ret = IRQ_WAKE_THREAD;
else
ved->handler_ret = IRQ_HANDLED;
if (ved->handler_ret != IRQ_HANDLED)
ret = ved->handler_ret;
}
return ret;
}
static int dcmipp_graph_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct dcmipp_device *dcmipp = notifier_to_dcmipp(notifier);
unsigned int ret;
int src_pad;
struct dcmipp_ent_device *sink;
struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_PARALLEL };
struct fwnode_handle *ep;
dev_dbg(dcmipp->dev, "Subdev \"%s\" bound\n", subdev->name);
/*
* Link this sub-device to DCMIPP, it could be
* a parallel camera sensor or a CSI-2 to parallel bridge
*/
src_pad = media_entity_get_fwnode_pad(&subdev->entity,
subdev->fwnode,
MEDIA_PAD_FL_SOURCE);
/* Get bus characteristics from devicetree */
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(dcmipp->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep) {
dev_err(dcmipp->dev, "Could not find the endpoint\n");
return -ENODEV;
}
/* Check for parallel bus-type first, then bt656 */
ret = v4l2_fwnode_endpoint_parse(ep, &vep);
if (ret) {
vep.bus_type = V4L2_MBUS_BT656;
ret = v4l2_fwnode_endpoint_parse(ep, &vep);
if (ret) {
dev_err(dcmipp->dev, "Could not parse the endpoint\n");
fwnode_handle_put(ep);
return ret;
}
}
fwnode_handle_put(ep);
if (vep.bus.parallel.bus_width == 0) {
dev_err(dcmipp->dev, "Invalid parallel interface bus-width\n");
return -ENODEV;
}
/* Only 8 bits bus width supported with BT656 bus */
if (vep.bus_type == V4L2_MBUS_BT656 &&
vep.bus.parallel.bus_width != 8) {
dev_err(dcmipp->dev, "BT656 bus conflicts with %u bits bus width (8 bits required)\n",
vep.bus.parallel.bus_width);
return -ENODEV;
}
/* Parallel input device detected, connect it to parallel subdev */
sink = dcmipp->entity[ID_PARALLEL];
sink->bus.flags = vep.bus.parallel.flags;
sink->bus.bus_width = vep.bus.parallel.bus_width;
sink->bus.data_shift = vep.bus.parallel.data_shift;
sink->bus_type = vep.bus_type;
ret = media_create_pad_link(&subdev->entity, src_pad, sink->ent, 0,
MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
if (ret) {
dev_err(dcmipp->dev, "Failed to create media pad link with subdev \"%s\"\n",
subdev->name);
return ret;
}
dev_dbg(dcmipp->dev, "DCMIPP is now linked to \"%s\"\n", subdev->name);
return 0;
}
static void dcmipp_graph_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_connection *asd)
{
struct dcmipp_device *dcmipp = notifier_to_dcmipp(notifier);
dev_dbg(dcmipp->dev, "Removing %s\n", sd->name);
}
static int dcmipp_graph_notify_complete(struct v4l2_async_notifier *notifier)
{
struct dcmipp_device *dcmipp = notifier_to_dcmipp(notifier);
int ret;
/* Register the media device */
ret = media_device_register(&dcmipp->mdev);
if (ret) {
dev_err(dcmipp->mdev.dev,
"media device register failed (err=%d)\n", ret);
return ret;
}
/* Expose all subdev's nodes*/
ret = v4l2_device_register_subdev_nodes(&dcmipp->v4l2_dev);
if (ret) {
dev_err(dcmipp->mdev.dev,
"dcmipp subdev nodes registration failed (err=%d)\n",
ret);
media_device_unregister(&dcmipp->mdev);
return ret;
}
dev_dbg(dcmipp->dev, "Notify complete !\n");
return 0;
}
static const struct v4l2_async_notifier_operations dcmipp_graph_notify_ops = {
.bound = dcmipp_graph_notify_bound,
.unbind = dcmipp_graph_notify_unbind,
.complete = dcmipp_graph_notify_complete,
};
static int dcmipp_graph_init(struct dcmipp_device *dcmipp)
{
struct v4l2_async_connection *asd;
struct fwnode_handle *ep;
int ret;
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(dcmipp->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep) {
dev_err(dcmipp->dev, "Failed to get next endpoint\n");
return -EINVAL;
}
v4l2_async_nf_init(&dcmipp->notifier, &dcmipp->v4l2_dev);
asd = v4l2_async_nf_add_fwnode_remote(&dcmipp->notifier, ep,
struct v4l2_async_connection);
fwnode_handle_put(ep);
if (IS_ERR(asd)) {
dev_err(dcmipp->dev, "Failed to add fwnode remote subdev\n");
return PTR_ERR(asd);
}
dcmipp->notifier.ops = &dcmipp_graph_notify_ops;
ret = v4l2_async_nf_register(&dcmipp->notifier);
if (ret < 0) {
dev_err(dcmipp->dev, "Failed to register notifier\n");
v4l2_async_nf_cleanup(&dcmipp->notifier);
return ret;
}
return 0;
}
static int dcmipp_probe(struct platform_device *pdev)
{
struct dcmipp_device *dcmipp;
struct clk *kclk;
const struct dcmipp_pipeline_config *pipe_cfg;
struct reset_control *rstc;
int irq;
int ret;
dcmipp = devm_kzalloc(&pdev->dev, sizeof(*dcmipp), GFP_KERNEL);
if (!dcmipp)
return -ENOMEM;
dcmipp->dev = &pdev->dev;
pipe_cfg = device_get_match_data(dcmipp->dev);
if (!pipe_cfg) {
dev_err(&pdev->dev, "Can't get device data\n");
return -ENODEV;
}
dcmipp->pipe_cfg = pipe_cfg;
platform_set_drvdata(pdev, dcmipp);
/* Get hardware resources from devicetree */
rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(rstc))
return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
"Could not get reset control\n");
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
if (irq != -EPROBE_DEFER)
dev_err(&pdev->dev, "Could not get irq\n");
return irq ? irq : -ENXIO;
}
dcmipp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(dcmipp->regs)) {
dev_err(&pdev->dev, "Could not map registers\n");
return PTR_ERR(dcmipp->regs);
}
ret = devm_request_threaded_irq(&pdev->dev, irq, dcmipp_irq_callback,
dcmipp_irq_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), dcmipp);
if (ret) {
dev_err(&pdev->dev, "Unable to request irq %d\n", irq);
return ret;
}
/* Reset device */
ret = reset_control_assert(rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to assert the reset line\n");
return ret;
}
usleep_range(3000, 5000);
ret = reset_control_deassert(rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to deassert the reset line\n");
return ret;
}
kclk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(kclk))
return dev_err_probe(&pdev->dev, PTR_ERR(kclk),
"Unable to get kclk\n");
dcmipp->kclk = kclk;
dcmipp->entity = devm_kcalloc(&pdev->dev, dcmipp->pipe_cfg->num_ents,
sizeof(*dcmipp->entity), GFP_KERNEL);
if (!dcmipp->entity)
return -ENOMEM;
/* Register the v4l2 struct */
ret = v4l2_device_register(&pdev->dev, &dcmipp->v4l2_dev);
if (ret) {
dev_err(&pdev->dev,
"v4l2 device register failed (err=%d)\n", ret);
return ret;
}
/* Link the media device within the v4l2_device */
dcmipp->v4l2_dev.mdev = &dcmipp->mdev;
/* Initialize media device */
strscpy(dcmipp->mdev.model, DCMIPP_MDEV_MODEL_NAME,
sizeof(dcmipp->mdev.model));
dcmipp->mdev.dev = &pdev->dev;
media_device_init(&dcmipp->mdev);
/* Initialize subdevs */
ret = dcmipp_create_subdevs(dcmipp);
if (ret) {
media_device_cleanup(&dcmipp->mdev);
v4l2_device_unregister(&dcmipp->v4l2_dev);
return ret;
}
pm_runtime_enable(dcmipp->dev);
dev_info(&pdev->dev, "Probe done");
return 0;
}
static int dcmipp_remove(struct platform_device *pdev)
{
struct dcmipp_device *dcmipp = platform_get_drvdata(pdev);
unsigned int i;
pm_runtime_disable(&pdev->dev);
v4l2_async_nf_unregister(&dcmipp->notifier);
v4l2_async_nf_cleanup(&dcmipp->notifier);
for (i = 0; i < dcmipp->pipe_cfg->num_ents; i++)
dcmipp->pipe_cfg->ents[i].release(dcmipp->entity[i]);
media_device_unregister(&dcmipp->mdev);
media_device_cleanup(&dcmipp->mdev);
v4l2_device_unregister(&dcmipp->v4l2_dev);
return 0;
}
static int dcmipp_runtime_suspend(struct device *dev)
{
struct dcmipp_device *dcmipp = dev_get_drvdata(dev);
clk_disable_unprepare(dcmipp->kclk);
return 0;
}
static int dcmipp_runtime_resume(struct device *dev)
{
struct dcmipp_device *dcmipp = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dcmipp->kclk);
if (ret)
dev_err(dev, "%s: Failed to prepare_enable kclk\n", __func__);
return ret;
}
static int dcmipp_suspend(struct device *dev)
{
/* disable clock */
pm_runtime_force_suspend(dev);
/* change pinctrl state */
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int dcmipp_resume(struct device *dev)
{
/* restore pinctl default state */
pinctrl_pm_select_default_state(dev);
/* clock enable */
pm_runtime_force_resume(dev);
return 0;
}
static const struct dev_pm_ops dcmipp_pm_ops = {
SYSTEM_SLEEP_PM_OPS(dcmipp_suspend, dcmipp_resume)
RUNTIME_PM_OPS(dcmipp_runtime_suspend, dcmipp_runtime_resume, NULL)
};
static struct platform_driver dcmipp_pdrv = {
.probe = dcmipp_probe,
.remove = dcmipp_remove,
.driver = {
.name = DCMIPP_PDEV_NAME,
.of_match_table = dcmipp_of_match,
.pm = pm_ptr(&dcmipp_pm_ops),
},
};
module_platform_driver(dcmipp_pdrv);
MODULE_AUTHOR("Hugues Fruchet <hugues.fruchet@foss.st.com>");
MODULE_AUTHOR("Alain Volmat <alain.volmat@foss.st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Digital Camera Memory Interface with Pixel Processor driver");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-event.h>
#include <media/v4l2-subdev.h>
#include "dcmipp-common.h"
#define DCMIPP_PRCR 0x104
#define DCMIPP_PRCR_FORMAT_SHIFT 16
#define DCMIPP_PRCR_FORMAT_YUV422 0x1e
#define DCMIPP_PRCR_FORMAT_RGB565 0x22
#define DCMIPP_PRCR_FORMAT_RAW8 0x2a
#define DCMIPP_PRCR_FORMAT_G8 0x4a
#define DCMIPP_PRCR_FORMAT_BYTE_STREAM 0x5a
#define DCMIPP_PRCR_ESS BIT(4)
#define DCMIPP_PRCR_PCKPOL BIT(5)
#define DCMIPP_PRCR_HSPOL BIT(6)
#define DCMIPP_PRCR_VSPOL BIT(7)
#define DCMIPP_PRCR_ENABLE BIT(14)
#define DCMIPP_PRCR_SWAPCYCLES BIT(25)
#define DCMIPP_PRESCR 0x108
#define DCMIPP_PRESUR 0x10c
#define IS_SINK(pad) (!(pad))
#define IS_SRC(pad) ((pad))
struct dcmipp_par_pix_map {
unsigned int code_sink;
unsigned int code_src;
u8 prcr_format;
u8 prcr_swapcycles;
};
#define PIXMAP_SINK_SRC_PRCR_SWAP(sink, src, prcr, swap) \
{ \
.code_sink = MEDIA_BUS_FMT_##sink, \
.code_src = MEDIA_BUS_FMT_##src, \
.prcr_format = DCMIPP_PRCR_FORMAT_##prcr, \
.prcr_swapcycles = swap, \
}
static const struct dcmipp_par_pix_map dcmipp_par_pix_map_list[] = {
/* RGB565 */
PIXMAP_SINK_SRC_PRCR_SWAP(RGB565_2X8_LE, RGB565_2X8_LE, RGB565, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(RGB565_2X8_BE, RGB565_2X8_LE, RGB565, 0),
/* YUV422 */
PIXMAP_SINK_SRC_PRCR_SWAP(YUYV8_2X8, YUYV8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(YUYV8_2X8, UYVY8_2X8, YUV422, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(UYVY8_2X8, UYVY8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(UYVY8_2X8, YUYV8_2X8, YUV422, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(YVYU8_2X8, YVYU8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(VYUY8_2X8, VYUY8_2X8, YUV422, 1),
/* GREY */
PIXMAP_SINK_SRC_PRCR_SWAP(Y8_1X8, Y8_1X8, G8, 0),
/* Raw Bayer */
PIXMAP_SINK_SRC_PRCR_SWAP(SBGGR8_1X8, SBGGR8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SGBRG8_1X8, SGBRG8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SGRBG8_1X8, SGRBG8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SRGGB8_1X8, SRGGB8_1X8, RAW8, 0),
/* JPEG */
PIXMAP_SINK_SRC_PRCR_SWAP(JPEG_1X8, JPEG_1X8, BYTE_STREAM, 0),
};
/*
* Search through the pix_map table, skipping two consecutive entry with the
* same code
*/
static inline const struct dcmipp_par_pix_map *dcmipp_par_pix_map_by_index
(unsigned int index,
unsigned int pad)
{
unsigned int i = 0;
u32 prev_code = 0, cur_code;
while (i < ARRAY_SIZE(dcmipp_par_pix_map_list)) {
if (IS_SRC(pad))
cur_code = dcmipp_par_pix_map_list[i].code_src;
else
cur_code = dcmipp_par_pix_map_list[i].code_sink;
if (cur_code == prev_code) {
i++;
continue;
}
prev_code = cur_code;
if (index == 0)
break;
i++;
index--;
}
if (i >= ARRAY_SIZE(dcmipp_par_pix_map_list))
return NULL;
return &dcmipp_par_pix_map_list[i];
}
static inline const struct dcmipp_par_pix_map *dcmipp_par_pix_map_by_code
(u32 code_sink, u32 code_src)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dcmipp_par_pix_map_list); i++) {
if ((dcmipp_par_pix_map_list[i].code_sink == code_sink &&
dcmipp_par_pix_map_list[i].code_src == code_src) ||
(dcmipp_par_pix_map_list[i].code_sink == code_src &&
dcmipp_par_pix_map_list[i].code_src == code_sink) ||
(dcmipp_par_pix_map_list[i].code_sink == code_sink &&
code_src == 0) ||
(code_sink == 0 &&
dcmipp_par_pix_map_list[i].code_src == code_src))
return &dcmipp_par_pix_map_list[i];
}
return NULL;
}
struct dcmipp_par_device {
struct dcmipp_ent_device ved;
struct v4l2_subdev sd;
struct device *dev;
void __iomem *regs;
bool streaming;
};
static const struct v4l2_mbus_framefmt fmt_default = {
.width = DCMIPP_FMT_WIDTH_DEFAULT,
.height = DCMIPP_FMT_HEIGHT_DEFAULT,
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.field = V4L2_FIELD_NONE,
.colorspace = DCMIPP_COLORSPACE_DEFAULT,
.ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT,
.quantization = DCMIPP_QUANTIZATION_DEFAULT,
.xfer_func = DCMIPP_XFER_FUNC_DEFAULT,
};
static int dcmipp_par_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
unsigned int i;
for (i = 0; i < sd->entity.num_pads; i++) {
struct v4l2_mbus_framefmt *mf;
mf = v4l2_subdev_state_get_format(sd_state, i);
*mf = fmt_default;
}
return 0;
}
static int dcmipp_par_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
const struct dcmipp_par_pix_map *vpix =
dcmipp_par_pix_map_by_index(code->index, code->pad);
if (!vpix)
return -EINVAL;
code->code = IS_SRC(code->pad) ? vpix->code_src : vpix->code_sink;
return 0;
}
static int dcmipp_par_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct dcmipp_par_pix_map *vpix;
if (fse->index)
return -EINVAL;
/* Only accept code in the pix map table */
vpix = dcmipp_par_pix_map_by_code(IS_SINK(fse->pad) ? fse->code : 0,
IS_SRC(fse->pad) ? fse->code : 0);
if (!vpix)
return -EINVAL;
fse->min_width = DCMIPP_FRAME_MIN_WIDTH;
fse->max_width = DCMIPP_FRAME_MAX_WIDTH;
fse->min_height = DCMIPP_FRAME_MIN_HEIGHT;
fse->max_height = DCMIPP_FRAME_MAX_HEIGHT;
return 0;
}
static void dcmipp_par_adjust_fmt(struct dcmipp_par_device *par,
struct v4l2_mbus_framefmt *fmt, __u32 pad)
{
const struct dcmipp_par_pix_map *vpix;
/* Only accept code in the pix map table */
vpix = dcmipp_par_pix_map_by_code(IS_SINK(pad) ? fmt->code : 0,
IS_SRC(pad) ? fmt->code : 0);
if (!vpix)
fmt->code = fmt_default.code;
/* Exclude JPEG if BT656 bus is selected */
if (vpix && vpix->code_sink == MEDIA_BUS_FMT_JPEG_1X8 &&
par->ved.bus_type == V4L2_MBUS_BT656)
fmt->code = fmt_default.code;
fmt->width = clamp_t(u32, fmt->width, DCMIPP_FRAME_MIN_WIDTH,
DCMIPP_FRAME_MAX_WIDTH) & ~1;
fmt->height = clamp_t(u32, fmt->height, DCMIPP_FRAME_MIN_HEIGHT,
DCMIPP_FRAME_MAX_HEIGHT) & ~1;
if (fmt->field == V4L2_FIELD_ANY || fmt->field == V4L2_FIELD_ALTERNATE)
fmt->field = fmt_default.field;
dcmipp_colorimetry_clamp(fmt);
}
static int dcmipp_par_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct dcmipp_par_device *par = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *mf;
if (par->streaming)
return -EBUSY;
mf = v4l2_subdev_state_get_format(sd_state, fmt->pad);
/* Set the new format */
dcmipp_par_adjust_fmt(par, &fmt->format, fmt->pad);
dev_dbg(par->dev, "%s: format update: old:%dx%d (0x%x, %d, %d, %d, %d) new:%dx%d (0x%x, %d, %d, %d, %d)\n",
par->sd.name,
/* old */
mf->width, mf->height, mf->code,
mf->colorspace, mf->quantization,
mf->xfer_func, mf->ycbcr_enc,
/* new */
fmt->format.width, fmt->format.height, fmt->format.code,
fmt->format.colorspace, fmt->format.quantization,
fmt->format.xfer_func, fmt->format.ycbcr_enc);
*mf = fmt->format;
/* When setting the sink format, report that format on the src pad */
if (IS_SINK(fmt->pad)) {
mf = v4l2_subdev_state_get_format(sd_state, 1);
*mf = fmt->format;
dcmipp_par_adjust_fmt(par, mf, 1);
}
return 0;
}
static const struct v4l2_subdev_pad_ops dcmipp_par_pad_ops = {
.enum_mbus_code = dcmipp_par_enum_mbus_code,
.enum_frame_size = dcmipp_par_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = dcmipp_par_set_fmt,
};
static int dcmipp_par_configure(struct dcmipp_par_device *par)
{
u32 val = 0;
const struct dcmipp_par_pix_map *vpix;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *sink_fmt;
struct v4l2_mbus_framefmt *src_fmt;
/* Set vertical synchronization polarity */
if (par->ved.bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
val |= DCMIPP_PRCR_VSPOL;
/* Set horizontal synchronization polarity */
if (par->ved.bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
val |= DCMIPP_PRCR_HSPOL;
/* Set pixel clock polarity */
if (par->ved.bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
val |= DCMIPP_PRCR_PCKPOL;
/*
* BT656 embedded synchronisation bus mode.
*
* Default SAV/EAV mode is supported here with default codes
* SAV=0xff000080 & EAV=0xff00009d.
* With DCMIPP this means LSC=SAV=0x80 & LEC=EAV=0x9d.
*/
if (par->ved.bus_type == V4L2_MBUS_BT656) {
val |= DCMIPP_PRCR_ESS;
/* Unmask all codes */
reg_write(par, DCMIPP_PRESUR, 0xffffffff);/* FEC:LEC:LSC:FSC */
/* Trig on LSC=0x80 & LEC=0x9d codes, ignore FSC and FEC */
reg_write(par, DCMIPP_PRESCR, 0xff9d80ff);/* FEC:LEC:LSC:FSC */
}
/* Set format */
state = v4l2_subdev_lock_and_get_active_state(&par->sd);
sink_fmt = v4l2_subdev_state_get_format(state, 0);
src_fmt = v4l2_subdev_state_get_format(state, 1);
v4l2_subdev_unlock_state(state);
vpix = dcmipp_par_pix_map_by_code(sink_fmt->code, src_fmt->code);
if (!vpix) {
dev_err(par->dev, "Invalid sink/src format configuration\n");
return -EINVAL;
}
val |= vpix->prcr_format << DCMIPP_PRCR_FORMAT_SHIFT;
/* swap cycles */
if (vpix->prcr_swapcycles)
val |= DCMIPP_PRCR_SWAPCYCLES;
reg_write(par, DCMIPP_PRCR, val);
return 0;
}
static int dcmipp_par_s_stream(struct v4l2_subdev *sd, int enable)
{
struct dcmipp_par_device *par =
container_of(sd, struct dcmipp_par_device, sd);
struct v4l2_subdev *s_subdev;
struct media_pad *pad;
int ret = 0;
/* Get source subdev */
pad = media_pad_remote_pad_first(&sd->entity.pads[0]);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
return -EINVAL;
s_subdev = media_entity_to_v4l2_subdev(pad->entity);
if (enable) {
ret = dcmipp_par_configure(par);
if (ret)
return ret;
/* Enable parallel interface */
reg_set(par, DCMIPP_PRCR, DCMIPP_PRCR_ENABLE);
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(par->dev,
"failed to start source subdev streaming (%d)\n",
ret);
return ret;
}
} else {
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(par->dev,
"failed to stop source subdev streaming (%d)\n",
ret);
return ret;
}
/* Disable parallel interface */
reg_clear(par, DCMIPP_PRCR, DCMIPP_PRCR_ENABLE);
}
par->streaming = enable;
return ret;
}
static const struct v4l2_subdev_video_ops dcmipp_par_video_ops = {
.s_stream = dcmipp_par_s_stream,
};
static const struct v4l2_subdev_ops dcmipp_par_ops = {
.pad = &dcmipp_par_pad_ops,
.video = &dcmipp_par_video_ops,
};
static void dcmipp_par_release(struct v4l2_subdev *sd)
{
struct dcmipp_par_device *par =
container_of(sd, struct dcmipp_par_device, sd);
kfree(par);
}
static const struct v4l2_subdev_internal_ops dcmipp_par_int_ops = {
.init_state = dcmipp_par_init_state,
.release = dcmipp_par_release,
};
void dcmipp_par_ent_release(struct dcmipp_ent_device *ved)
{
struct dcmipp_par_device *par =
container_of(ved, struct dcmipp_par_device, ved);
dcmipp_ent_sd_unregister(ved, &par->sd);
}
struct dcmipp_ent_device *dcmipp_par_ent_init(struct device *dev,
const char *entity_name,
struct v4l2_device *v4l2_dev,
void __iomem *regs)
{
struct dcmipp_par_device *par;
const unsigned long pads_flag[] = {
MEDIA_PAD_FL_SINK, MEDIA_PAD_FL_SOURCE,
};
int ret;
/* Allocate the par struct */
par = kzalloc(sizeof(*par), GFP_KERNEL);
if (!par)
return ERR_PTR(-ENOMEM);
par->regs = regs;
/* Initialize ved and sd */
ret = dcmipp_ent_sd_register(&par->ved, &par->sd, v4l2_dev,
entity_name, MEDIA_ENT_F_VID_IF_BRIDGE,
ARRAY_SIZE(pads_flag), pads_flag,
&dcmipp_par_int_ops, &dcmipp_par_ops,
NULL, NULL);
if (ret) {
kfree(par);
return ERR_PTR(ret);
}
par->dev = dev;
return &par->ved;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment