Commit 2d2139c5 authored by Greg Kroah-Hartman's avatar Greg Kroah-Hartman

Merge tag 'iio-for-4.10d' of...

Merge tag 'iio-for-4.10d' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-next

Jonathan writes:

Fourth set of IIO new device support, features and cleaups for the 4.10 cycle.

Probably the final set before the merge window unless things get significantly
delayed.

New device support
* STM32 ADC core
  - new driver.  Interesting device with up to 3 ADCs with complex triggering
    options that will follow later. Note split into an 'mfd like' core that
    handles the interrupt sharing etc between the various instances present and
    a per ADC section that is instantiated as many times as needed.
  - device tree bindings.

Cleanups and minor fixes
* st_accel
  - inline per sensor data as the defines don't add any meaning and make it
    much harder to check if a given sensor has the right values.
* hid-magnetometer
  - sort out the associations of the associated attributes with the two types.
parents 469554a1 6f771d0b
STMicroelectronics STM32 ADC device driver
STM32 ADC is a successive approximation analog-to-digital converter.
It has several multiplexed input channels. Conversions can be performed
in single, continuous, scan or discontinuous mode. Result of the ADC is
stored in a left-aligned or right-aligned 32-bit data register.
Conversions can be launched in software or using hardware triggers.
The analog watchdog feature allows the application to detect if the input
voltage goes beyond the user-defined, higher or lower thresholds.
Each STM32 ADC block can have up to 3 ADC instances.
Each instance supports two contexts to manage conversions, each one has its
own configurable sequence and trigger:
- regular conversion can be done in sequence, running in background
- injected conversions have higher priority, and so have the ability to
interrupt regular conversion sequence (either triggered in SW or HW).
Regular sequence is resumed, in case it has been interrupted.
Contents of a stm32 adc root node:
-----------------------------------
Required properties:
- compatible: Should be "st,stm32f4-adc-core".
- reg: Offset and length of the ADC block register set.
- interrupts: Must contain the interrupt for ADC block.
- clocks: Clock for the analog circuitry (common to all ADCs).
- clock-names: Must be "adc".
- interrupt-controller: Identifies the controller node as interrupt-parent
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
Optional properties:
- A pinctrl state named "default" for each ADC channel may be defined to set
inX ADC pins in mode of operation for analog input on external pin.
Contents of a stm32 adc child node:
-----------------------------------
An ADC block node should contain at least one subnode, representing an
ADC instance available on the machine.
Required properties:
- compatible: Should be "st,stm32f4-adc".
- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
- clocks: Input clock private to this ADC instance.
- interrupt-parent: Phandle to the parent interrupt controller.
- interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or
2 for adc@200).
- st,adc-channels: List of single-ended channels muxed for this ADC.
It can have up to 16 channels, numbered from 0 to 15 (resp. for in0..in15).
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
Documentation/devicetree/bindings/iio/iio-bindings.txt
Example:
adc: adc@40012000 {
compatible = "st,stm32f4-adc-core";
reg = <0x40012000 0x400>;
interrupts = <18>;
clocks = <&rcc 0 168>;
clock-names = "adc";
vref-supply = <&reg_vref>;
interrupt-controller;
pinctrl-names = "default";
pinctrl-0 = <&adc3_in8_pin>;
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
adc@0 {
compatible = "st,stm32f4-adc";
#io-channel-cells = <1>;
reg = <0x0>;
clocks = <&rcc 0 168>;
interrupt-parent = <&adc>;
interrupts = <0>;
st,adc-channels = <8>;
};
...
other adc child nodes follow...
};
......@@ -43,200 +43,6 @@
#define ST_ACCEL_FS_AVL_200G 200
#define ST_ACCEL_FS_AVL_400G 400
/* CUSTOM VALUES FOR SENSOR 1 */
#define ST_ACCEL_1_WAI_EXP 0x33
#define ST_ACCEL_1_ODR_ADDR 0x20
#define ST_ACCEL_1_ODR_MASK 0xf0
#define ST_ACCEL_1_ODR_AVL_1HZ_VAL 0x01
#define ST_ACCEL_1_ODR_AVL_10HZ_VAL 0x02
#define ST_ACCEL_1_ODR_AVL_25HZ_VAL 0x03
#define ST_ACCEL_1_ODR_AVL_50HZ_VAL 0x04
#define ST_ACCEL_1_ODR_AVL_100HZ_VAL 0x05
#define ST_ACCEL_1_ODR_AVL_200HZ_VAL 0x06
#define ST_ACCEL_1_ODR_AVL_400HZ_VAL 0x07
#define ST_ACCEL_1_ODR_AVL_1600HZ_VAL 0x08
#define ST_ACCEL_1_FS_ADDR 0x23
#define ST_ACCEL_1_FS_MASK 0x30
#define ST_ACCEL_1_FS_AVL_2_VAL 0x00
#define ST_ACCEL_1_FS_AVL_4_VAL 0x01
#define ST_ACCEL_1_FS_AVL_8_VAL 0x02
#define ST_ACCEL_1_FS_AVL_16_VAL 0x03
#define ST_ACCEL_1_FS_AVL_2_GAIN IIO_G_TO_M_S_2(1000)
#define ST_ACCEL_1_FS_AVL_4_GAIN IIO_G_TO_M_S_2(2000)
#define ST_ACCEL_1_FS_AVL_8_GAIN IIO_G_TO_M_S_2(4000)
#define ST_ACCEL_1_FS_AVL_16_GAIN IIO_G_TO_M_S_2(12000)
#define ST_ACCEL_1_BDU_ADDR 0x23
#define ST_ACCEL_1_BDU_MASK 0x80
#define ST_ACCEL_1_DRDY_IRQ_ADDR 0x22
#define ST_ACCEL_1_DRDY_IRQ_INT1_MASK 0x10
#define ST_ACCEL_1_DRDY_IRQ_INT2_MASK 0x08
#define ST_ACCEL_1_IHL_IRQ_ADDR 0x25
#define ST_ACCEL_1_IHL_IRQ_MASK 0x02
#define ST_ACCEL_1_MULTIREAD_BIT true
/* CUSTOM VALUES FOR SENSOR 2 */
#define ST_ACCEL_2_WAI_EXP 0x32
#define ST_ACCEL_2_ODR_ADDR 0x20
#define ST_ACCEL_2_ODR_MASK 0x18
#define ST_ACCEL_2_ODR_AVL_50HZ_VAL 0x00
#define ST_ACCEL_2_ODR_AVL_100HZ_VAL 0x01
#define ST_ACCEL_2_ODR_AVL_400HZ_VAL 0x02
#define ST_ACCEL_2_ODR_AVL_1000HZ_VAL 0x03
#define ST_ACCEL_2_PW_ADDR 0x20
#define ST_ACCEL_2_PW_MASK 0xe0
#define ST_ACCEL_2_FS_ADDR 0x23
#define ST_ACCEL_2_FS_MASK 0x30
#define ST_ACCEL_2_FS_AVL_2_VAL 0X00
#define ST_ACCEL_2_FS_AVL_4_VAL 0X01
#define ST_ACCEL_2_FS_AVL_8_VAL 0x03
#define ST_ACCEL_2_FS_AVL_2_GAIN IIO_G_TO_M_S_2(1000)
#define ST_ACCEL_2_FS_AVL_4_GAIN IIO_G_TO_M_S_2(2000)
#define ST_ACCEL_2_FS_AVL_8_GAIN IIO_G_TO_M_S_2(3900)
#define ST_ACCEL_2_BDU_ADDR 0x23
#define ST_ACCEL_2_BDU_MASK 0x80
#define ST_ACCEL_2_DRDY_IRQ_ADDR 0x22
#define ST_ACCEL_2_DRDY_IRQ_INT1_MASK 0x02
#define ST_ACCEL_2_DRDY_IRQ_INT2_MASK 0x10
#define ST_ACCEL_2_IHL_IRQ_ADDR 0x22
#define ST_ACCEL_2_IHL_IRQ_MASK 0x80
#define ST_ACCEL_2_OD_IRQ_ADDR 0x22
#define ST_ACCEL_2_OD_IRQ_MASK 0x40
#define ST_ACCEL_2_MULTIREAD_BIT true
/* CUSTOM VALUES FOR SENSOR 3 */
#define ST_ACCEL_3_WAI_EXP 0x40
#define ST_ACCEL_3_ODR_ADDR 0x20
#define ST_ACCEL_3_ODR_MASK 0xf0
#define ST_ACCEL_3_ODR_AVL_3HZ_VAL 0x01
#define ST_ACCEL_3_ODR_AVL_6HZ_VAL 0x02
#define ST_ACCEL_3_ODR_AVL_12HZ_VAL 0x03
#define ST_ACCEL_3_ODR_AVL_25HZ_VAL 0x04
#define ST_ACCEL_3_ODR_AVL_50HZ_VAL 0x05
#define ST_ACCEL_3_ODR_AVL_100HZ_VAL 0x06
#define ST_ACCEL_3_ODR_AVL_200HZ_VAL 0x07
#define ST_ACCEL_3_ODR_AVL_400HZ_VAL 0x08
#define ST_ACCEL_3_ODR_AVL_800HZ_VAL 0x09
#define ST_ACCEL_3_ODR_AVL_1600HZ_VAL 0x0a
#define ST_ACCEL_3_FS_ADDR 0x24
#define ST_ACCEL_3_FS_MASK 0x38
#define ST_ACCEL_3_FS_AVL_2_VAL 0X00
#define ST_ACCEL_3_FS_AVL_4_VAL 0X01
#define ST_ACCEL_3_FS_AVL_6_VAL 0x02
#define ST_ACCEL_3_FS_AVL_8_VAL 0x03
#define ST_ACCEL_3_FS_AVL_16_VAL 0x04
#define ST_ACCEL_3_FS_AVL_2_GAIN IIO_G_TO_M_S_2(61)
#define ST_ACCEL_3_FS_AVL_4_GAIN IIO_G_TO_M_S_2(122)
#define ST_ACCEL_3_FS_AVL_6_GAIN IIO_G_TO_M_S_2(183)
#define ST_ACCEL_3_FS_AVL_8_GAIN IIO_G_TO_M_S_2(244)
#define ST_ACCEL_3_FS_AVL_16_GAIN IIO_G_TO_M_S_2(732)
#define ST_ACCEL_3_BDU_ADDR 0x20
#define ST_ACCEL_3_BDU_MASK 0x08
#define ST_ACCEL_3_DRDY_IRQ_ADDR 0x23
#define ST_ACCEL_3_DRDY_IRQ_INT1_MASK 0x80
#define ST_ACCEL_3_DRDY_IRQ_INT2_MASK 0x00
#define ST_ACCEL_3_IHL_IRQ_ADDR 0x23
#define ST_ACCEL_3_IHL_IRQ_MASK 0x40
#define ST_ACCEL_3_IG1_EN_ADDR 0x23
#define ST_ACCEL_3_IG1_EN_MASK 0x08
#define ST_ACCEL_3_MULTIREAD_BIT false
/* CUSTOM VALUES FOR SENSOR 4 */
#define ST_ACCEL_4_WAI_EXP 0x3a
#define ST_ACCEL_4_ODR_ADDR 0x20
#define ST_ACCEL_4_ODR_MASK 0x30 /* DF1 and DF0 */
#define ST_ACCEL_4_ODR_AVL_40HZ_VAL 0x00
#define ST_ACCEL_4_ODR_AVL_160HZ_VAL 0x01
#define ST_ACCEL_4_ODR_AVL_640HZ_VAL 0x02
#define ST_ACCEL_4_ODR_AVL_2560HZ_VAL 0x03
#define ST_ACCEL_4_PW_ADDR 0x20
#define ST_ACCEL_4_PW_MASK 0xc0
#define ST_ACCEL_4_FS_ADDR 0x21
#define ST_ACCEL_4_FS_MASK 0x80
#define ST_ACCEL_4_FS_AVL_2_VAL 0X00
#define ST_ACCEL_4_FS_AVL_6_VAL 0X01
#define ST_ACCEL_4_FS_AVL_2_GAIN IIO_G_TO_M_S_2(1024)
#define ST_ACCEL_4_FS_AVL_6_GAIN IIO_G_TO_M_S_2(340)
#define ST_ACCEL_4_BDU_ADDR 0x21
#define ST_ACCEL_4_BDU_MASK 0x40
#define ST_ACCEL_4_DRDY_IRQ_ADDR 0x21
#define ST_ACCEL_4_DRDY_IRQ_INT1_MASK 0x04
#define ST_ACCEL_4_MULTIREAD_BIT true
/* CUSTOM VALUES FOR SENSOR 5 */
#define ST_ACCEL_5_WAI_EXP 0x3b
#define ST_ACCEL_5_ODR_ADDR 0x20
#define ST_ACCEL_5_ODR_MASK 0x80
#define ST_ACCEL_5_ODR_AVL_100HZ_VAL 0x00
#define ST_ACCEL_5_ODR_AVL_400HZ_VAL 0x01
#define ST_ACCEL_5_PW_ADDR 0x20
#define ST_ACCEL_5_PW_MASK 0x40
#define ST_ACCEL_5_FS_ADDR 0x20
#define ST_ACCEL_5_FS_MASK 0x20
#define ST_ACCEL_5_FS_AVL_2_VAL 0X00
#define ST_ACCEL_5_FS_AVL_8_VAL 0X01
/* TODO: check these resulting gain settings, these are not in the datsheet */
#define ST_ACCEL_5_FS_AVL_2_GAIN IIO_G_TO_M_S_2(18000)
#define ST_ACCEL_5_FS_AVL_8_GAIN IIO_G_TO_M_S_2(72000)
#define ST_ACCEL_5_DRDY_IRQ_ADDR 0x22
#define ST_ACCEL_5_DRDY_IRQ_INT1_MASK 0x04
#define ST_ACCEL_5_DRDY_IRQ_INT2_MASK 0x20
#define ST_ACCEL_5_IHL_IRQ_ADDR 0x22
#define ST_ACCEL_5_IHL_IRQ_MASK 0x80
#define ST_ACCEL_5_OD_IRQ_ADDR 0x22
#define ST_ACCEL_5_OD_IRQ_MASK 0x40
#define ST_ACCEL_5_IG1_EN_ADDR 0x21
#define ST_ACCEL_5_IG1_EN_MASK 0x08
#define ST_ACCEL_5_MULTIREAD_BIT false
/* CUSTOM VALUES FOR SENSOR 6 */
#define ST_ACCEL_6_WAI_EXP 0x32
#define ST_ACCEL_6_ODR_ADDR 0x20
#define ST_ACCEL_6_ODR_MASK 0x18
#define ST_ACCEL_6_ODR_AVL_50HZ_VAL 0x00
#define ST_ACCEL_6_ODR_AVL_100HZ_VAL 0x01
#define ST_ACCEL_6_ODR_AVL_400HZ_VAL 0x02
#define ST_ACCEL_6_ODR_AVL_1000HZ_VAL 0x03
#define ST_ACCEL_6_PW_ADDR 0x20
#define ST_ACCEL_6_PW_MASK 0x20
#define ST_ACCEL_6_FS_ADDR 0x23
#define ST_ACCEL_6_FS_MASK 0x30
#define ST_ACCEL_6_FS_AVL_100_VAL 0x00
#define ST_ACCEL_6_FS_AVL_200_VAL 0x01
#define ST_ACCEL_6_FS_AVL_400_VAL 0x03
#define ST_ACCEL_6_FS_AVL_100_GAIN IIO_G_TO_M_S_2(49000)
#define ST_ACCEL_6_FS_AVL_200_GAIN IIO_G_TO_M_S_2(98000)
#define ST_ACCEL_6_FS_AVL_400_GAIN IIO_G_TO_M_S_2(195000)
#define ST_ACCEL_6_BDU_ADDR 0x23
#define ST_ACCEL_6_BDU_MASK 0x80
#define ST_ACCEL_6_DRDY_IRQ_ADDR 0x22
#define ST_ACCEL_6_DRDY_IRQ_INT1_MASK 0x02
#define ST_ACCEL_6_DRDY_IRQ_INT2_MASK 0x10
#define ST_ACCEL_6_IHL_IRQ_ADDR 0x22
#define ST_ACCEL_6_IHL_IRQ_MASK 0x80
#define ST_ACCEL_6_MULTIREAD_BIT true
/* CUSTOM VALUES FOR SENSOR 7 */
#define ST_ACCEL_7_ODR_ADDR 0x20
#define ST_ACCEL_7_ODR_MASK 0x30
#define ST_ACCEL_7_ODR_AVL_280HZ_VAL 0x00
#define ST_ACCEL_7_ODR_AVL_560HZ_VAL 0x01
#define ST_ACCEL_7_ODR_AVL_1120HZ_VAL 0x02
#define ST_ACCEL_7_ODR_AVL_4480HZ_VAL 0x03
#define ST_ACCEL_7_PW_ADDR 0x20
#define ST_ACCEL_7_PW_MASK 0xc0
#define ST_ACCEL_7_FS_AVL_2_GAIN IIO_G_TO_M_S_2(488)
#define ST_ACCEL_7_BDU_ADDR 0x21
#define ST_ACCEL_7_BDU_MASK 0x40
#define ST_ACCEL_7_DRDY_IRQ_ADDR 0x21
#define ST_ACCEL_7_DRDY_IRQ_INT1_MASK 0x04
#define ST_ACCEL_7_MULTIREAD_BIT false
/* CUSTOM VALUES FOR SENSOR 8 */
#define ST_ACCEL_8_FS_AVL_2_GAIN IIO_G_TO_M_S_2(15600)
#define ST_ACCEL_8_FS_AVL_4_GAIN IIO_G_TO_M_S_2(31200)
#define ST_ACCEL_8_FS_AVL_8_GAIN IIO_G_TO_M_S_2(62500)
#define ST_ACCEL_8_FS_AVL_16_GAIN IIO_G_TO_M_S_2(187500)
static const struct iio_chan_spec st_accel_8bit_channels[] = {
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
......@@ -287,7 +93,7 @@ static const struct iio_chan_spec st_accel_16bit_channels[] = {
static const struct st_sensor_settings st_accel_sensors_settings[] = {
{
.wai = ST_ACCEL_1_WAI_EXP,
.wai = 0x33,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS3DH_ACCEL_DEV_NAME,
......@@ -300,22 +106,22 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = ST_ACCEL_1_ODR_ADDR,
.mask = ST_ACCEL_1_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ 1, ST_ACCEL_1_ODR_AVL_1HZ_VAL, },
{ 10, ST_ACCEL_1_ODR_AVL_10HZ_VAL, },
{ 25, ST_ACCEL_1_ODR_AVL_25HZ_VAL, },
{ 50, ST_ACCEL_1_ODR_AVL_50HZ_VAL, },
{ 100, ST_ACCEL_1_ODR_AVL_100HZ_VAL, },
{ 200, ST_ACCEL_1_ODR_AVL_200HZ_VAL, },
{ 400, ST_ACCEL_1_ODR_AVL_400HZ_VAL, },
{ 1600, ST_ACCEL_1_ODR_AVL_1600HZ_VAL, },
{ .hz = 1, .value = 0x01, },
{ .hz = 10, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
{ .hz = 400, .value = 0x07, },
{ .hz = 1600, .value = 0x08, },
},
},
.pw = {
.addr = ST_ACCEL_1_ODR_ADDR,
.mask = ST_ACCEL_1_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
......@@ -323,48 +129,48 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_1_FS_ADDR,
.mask = ST_ACCEL_1_FS_MASK,
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_1_FS_AVL_2_VAL,
.gain = ST_ACCEL_1_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = ST_ACCEL_1_FS_AVL_4_VAL,
.gain = ST_ACCEL_1_FS_AVL_4_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(2000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = ST_ACCEL_1_FS_AVL_8_VAL,
.gain = ST_ACCEL_1_FS_AVL_8_GAIN,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(4000),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = ST_ACCEL_1_FS_AVL_16_VAL,
.gain = ST_ACCEL_1_FS_AVL_16_GAIN,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(12000),
},
},
},
.bdu = {
.addr = ST_ACCEL_1_BDU_ADDR,
.mask = ST_ACCEL_1_BDU_MASK,
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.addr = ST_ACCEL_1_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_1_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_1_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_1_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_1_IHL_IRQ_MASK,
.addr = 0x22,
.mask_int1 = 0x10,
.mask_int2 = 0x08,
.addr_ihl = 0x25,
.mask_ihl = 0x02,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_1_MULTIREAD_BIT,
.multi_read_bit = true,
.bootime = 2,
},
{
.wai = ST_ACCEL_2_WAI_EXP,
.wai = 0x32,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS331DLH_ACCEL_DEV_NAME,
......@@ -374,18 +180,18 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = ST_ACCEL_2_ODR_ADDR,
.mask = ST_ACCEL_2_ODR_MASK,
.addr = 0x20,
.mask = 0x18,
.odr_avl = {
{ 50, ST_ACCEL_2_ODR_AVL_50HZ_VAL, },
{ 100, ST_ACCEL_2_ODR_AVL_100HZ_VAL, },
{ 400, ST_ACCEL_2_ODR_AVL_400HZ_VAL, },
{ 1000, ST_ACCEL_2_ODR_AVL_1000HZ_VAL, },
{ .hz = 50, .value = 0x00, },
{ .hz = 100, .value = 0x01, },
{ .hz = 400, .value = 0x02, },
{ .hz = 1000, .value = 0x03, },
},
},
.pw = {
.addr = ST_ACCEL_2_PW_ADDR,
.mask = ST_ACCEL_2_PW_MASK,
.addr = 0x20,
.mask = 0xe0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
......@@ -394,69 +200,69 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_2_FS_ADDR,
.mask = ST_ACCEL_2_FS_MASK,
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_2_FS_AVL_2_VAL,
.gain = ST_ACCEL_2_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = ST_ACCEL_2_FS_AVL_4_VAL,
.gain = ST_ACCEL_2_FS_AVL_4_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(2000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = ST_ACCEL_2_FS_AVL_8_VAL,
.gain = ST_ACCEL_2_FS_AVL_8_GAIN,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(3900),
},
},
},
.bdu = {
.addr = ST_ACCEL_2_BDU_ADDR,
.mask = ST_ACCEL_2_BDU_MASK,
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.addr = ST_ACCEL_2_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_2_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_2_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_2_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_2_IHL_IRQ_MASK,
.addr_od = ST_ACCEL_2_OD_IRQ_ADDR,
.mask_od = ST_ACCEL_2_OD_IRQ_MASK,
.addr = 0x22,
.mask_int1 = 0x02,
.mask_int2 = 0x10,
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.addr_od = 0x22,
.mask_od = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_2_MULTIREAD_BIT,
.multi_read_bit = true,
.bootime = 2,
},
{
.wai = ST_ACCEL_3_WAI_EXP,
.wai = 0x40,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LSM330_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_16bit_channels,
.odr = {
.addr = ST_ACCEL_3_ODR_ADDR,
.mask = ST_ACCEL_3_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ 3, ST_ACCEL_3_ODR_AVL_3HZ_VAL },
{ 6, ST_ACCEL_3_ODR_AVL_6HZ_VAL, },
{ 12, ST_ACCEL_3_ODR_AVL_12HZ_VAL, },
{ 25, ST_ACCEL_3_ODR_AVL_25HZ_VAL, },
{ 50, ST_ACCEL_3_ODR_AVL_50HZ_VAL, },
{ 100, ST_ACCEL_3_ODR_AVL_100HZ_VAL, },
{ 200, ST_ACCEL_3_ODR_AVL_200HZ_VAL, },
{ 400, ST_ACCEL_3_ODR_AVL_400HZ_VAL, },
{ 800, ST_ACCEL_3_ODR_AVL_800HZ_VAL, },
{ 1600, ST_ACCEL_3_ODR_AVL_1600HZ_VAL, },
{ .hz = 3, .value = 0x01, },
{ .hz = 6, .value = 0x02, },
{ .hz = 12, .value = 0x03, },
{ .hz = 25, .value = 0x04, },
{ .hz = 50, .value = 0x05, },
{ .hz = 100, .value = 0x06, },
{ .hz = 200, .value = 0x07, },
{ .hz = 400, .value = 0x08, },
{ .hz = 800, .value = 0x09, },
{ .hz = 1600, .value = 0x0a, },
},
},
.pw = {
.addr = ST_ACCEL_3_ODR_ADDR,
.mask = ST_ACCEL_3_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
......@@ -464,75 +270,75 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_3_FS_ADDR,
.mask = ST_ACCEL_3_FS_MASK,
.addr = 0x24,
.mask = 0x38,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_3_FS_AVL_2_VAL,
.gain = ST_ACCEL_3_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(61),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = ST_ACCEL_3_FS_AVL_4_VAL,
.gain = ST_ACCEL_3_FS_AVL_4_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(122),
},
[2] = {
.num = ST_ACCEL_FS_AVL_6G,
.value = ST_ACCEL_3_FS_AVL_6_VAL,
.gain = ST_ACCEL_3_FS_AVL_6_GAIN,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(183),
},
[3] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = ST_ACCEL_3_FS_AVL_8_VAL,
.gain = ST_ACCEL_3_FS_AVL_8_GAIN,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(244),
},
[4] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = ST_ACCEL_3_FS_AVL_16_VAL,
.gain = ST_ACCEL_3_FS_AVL_16_GAIN,
.value = 0x04,
.gain = IIO_G_TO_M_S_2(732),
},
},
},
.bdu = {
.addr = ST_ACCEL_3_BDU_ADDR,
.mask = ST_ACCEL_3_BDU_MASK,
.addr = 0x20,
.mask = 0x08,
},
.drdy_irq = {
.addr = ST_ACCEL_3_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_3_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_3_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_3_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_3_IHL_IRQ_MASK,
.addr = 0x23,
.mask_int1 = 0x80,
.mask_int2 = 0x00,
.addr_ihl = 0x23,
.mask_ihl = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
.ig1 = {
.en_addr = ST_ACCEL_3_IG1_EN_ADDR,
.en_mask = ST_ACCEL_3_IG1_EN_MASK,
.en_addr = 0x23,
.en_mask = 0x08,
},
},
.multi_read_bit = ST_ACCEL_3_MULTIREAD_BIT,
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = ST_ACCEL_4_WAI_EXP,
.wai = 0x3a,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS3LV02DL_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = ST_ACCEL_4_ODR_ADDR,
.mask = ST_ACCEL_4_ODR_MASK,
.addr = 0x20,
.mask = 0x30, /* DF1 and DF0 */
.odr_avl = {
{ 40, ST_ACCEL_4_ODR_AVL_40HZ_VAL },
{ 160, ST_ACCEL_4_ODR_AVL_160HZ_VAL, },
{ 640, ST_ACCEL_4_ODR_AVL_640HZ_VAL, },
{ 2560, ST_ACCEL_4_ODR_AVL_2560HZ_VAL, },
{ .hz = 40, .value = 0x00, },
{ .hz = 160, .value = 0x01, },
{ .hz = 640, .value = 0x02, },
{ .hz = 2560, .value = 0x03, },
},
},
.pw = {
.addr = ST_ACCEL_4_PW_ADDR,
.mask = ST_ACCEL_4_PW_MASK,
.addr = 0x20,
.mask = 0xc0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
......@@ -541,51 +347,51 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_4_FS_ADDR,
.mask = ST_ACCEL_4_FS_MASK,
.addr = 0x21,
.mask = 0x80,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_4_FS_AVL_2_VAL,
.gain = ST_ACCEL_4_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1024),
},
[1] = {
.num = ST_ACCEL_FS_AVL_6G,
.value = ST_ACCEL_4_FS_AVL_6_VAL,
.gain = ST_ACCEL_4_FS_AVL_6_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(340),
},
},
},
.bdu = {
.addr = ST_ACCEL_4_BDU_ADDR,
.mask = ST_ACCEL_4_BDU_MASK,
.addr = 0x21,
.mask = 0x40,
},
.drdy_irq = {
.addr = ST_ACCEL_4_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_4_DRDY_IRQ_INT1_MASK,
.addr = 0x21,
.mask_int1 = 0x04,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_4_MULTIREAD_BIT,
.multi_read_bit = true,
.bootime = 2, /* guess */
},
{
.wai = ST_ACCEL_5_WAI_EXP,
.wai = 0x3b,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS331DL_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_8bit_channels,
.odr = {
.addr = ST_ACCEL_5_ODR_ADDR,
.mask = ST_ACCEL_5_ODR_MASK,
.addr = 0x20,
.mask = 0x80,
.odr_avl = {
{ 100, ST_ACCEL_5_ODR_AVL_100HZ_VAL },
{ 400, ST_ACCEL_5_ODR_AVL_400HZ_VAL, },
{ .hz = 100, .value = 0x00, },
{ .hz = 400, .value = 0x01, },
},
},
.pw = {
.addr = ST_ACCEL_5_PW_ADDR,
.mask = ST_ACCEL_5_PW_MASK,
.addr = 0x20,
.mask = 0x40,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
......@@ -594,54 +400,58 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_5_FS_ADDR,
.mask = ST_ACCEL_5_FS_MASK,
.addr = 0x20,
.mask = 0x20,
/*
* TODO: check these resulting gain settings, these are
* not in the datsheet
*/
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_5_FS_AVL_2_VAL,
.gain = ST_ACCEL_5_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(18000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = ST_ACCEL_5_FS_AVL_8_VAL,
.gain = ST_ACCEL_5_FS_AVL_8_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(72000),
},
},
},
.drdy_irq = {
.addr = ST_ACCEL_5_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_5_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_5_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_5_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_5_IHL_IRQ_MASK,
.addr_od = ST_ACCEL_5_OD_IRQ_ADDR,
.mask_od = ST_ACCEL_5_OD_IRQ_MASK,
.addr = 0x22,
.mask_int1 = 0x04,
.mask_int2 = 0x20,
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.addr_od = 0x22,
.mask_od = 0x40,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_5_MULTIREAD_BIT,
.multi_read_bit = false,
.bootime = 2, /* guess */
},
{
.wai = ST_ACCEL_6_WAI_EXP,
.wai = 0x32,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = H3LIS331DL_DRIVER_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = ST_ACCEL_6_ODR_ADDR,
.mask = ST_ACCEL_6_ODR_MASK,
.addr = 0x20,
.mask = 0x18,
.odr_avl = {
{ 50, ST_ACCEL_6_ODR_AVL_50HZ_VAL },
{ 100, ST_ACCEL_6_ODR_AVL_100HZ_VAL, },
{ 400, ST_ACCEL_6_ODR_AVL_400HZ_VAL, },
{ 1000, ST_ACCEL_6_ODR_AVL_1000HZ_VAL, },
{ .hz = 50, .value = 0x00, },
{ .hz = 100, .value = 0x01, },
{ .hz = 400, .value = 0x02, },
{ .hz = 1000, .value = 0x03, },
},
},
.pw = {
.addr = ST_ACCEL_6_PW_ADDR,
.mask = ST_ACCEL_6_PW_MASK,
.addr = 0x20,
.mask = 0x20,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
......@@ -650,38 +460,38 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_6_FS_ADDR,
.mask = ST_ACCEL_6_FS_MASK,
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_100G,
.value = ST_ACCEL_6_FS_AVL_100_VAL,
.gain = ST_ACCEL_6_FS_AVL_100_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(49000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_200G,
.value = ST_ACCEL_6_FS_AVL_200_VAL,
.gain = ST_ACCEL_6_FS_AVL_200_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(98000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_400G,
.value = ST_ACCEL_6_FS_AVL_400_VAL,
.gain = ST_ACCEL_6_FS_AVL_400_GAIN,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(195000),
},
},
},
.bdu = {
.addr = ST_ACCEL_6_BDU_ADDR,
.mask = ST_ACCEL_6_BDU_MASK,
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.addr = ST_ACCEL_6_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_6_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_6_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_6_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_6_IHL_IRQ_MASK,
.addr = 0x22,
.mask_int1 = 0x02,
.mask_int2 = 0x10,
.addr_ihl = 0x22,
.mask_ihl = 0x80,
},
.multi_read_bit = ST_ACCEL_6_MULTIREAD_BIT,
.multi_read_bit = true,
.bootime = 2,
},
{
......@@ -691,18 +501,18 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = ST_ACCEL_7_ODR_ADDR,
.mask = ST_ACCEL_7_ODR_MASK,
.addr = 0x20,
.mask = 0x30,
.odr_avl = {
{ 280, ST_ACCEL_7_ODR_AVL_280HZ_VAL, },
{ 560, ST_ACCEL_7_ODR_AVL_560HZ_VAL, },
{ 1120, ST_ACCEL_7_ODR_AVL_1120HZ_VAL, },
{ 4480, ST_ACCEL_7_ODR_AVL_4480HZ_VAL, },
{ .hz = 280, .value = 0x00, },
{ .hz = 560, .value = 0x01, },
{ .hz = 1120, .value = 0x02, },
{ .hz = 4480, .value = 0x03, },
},
},
.pw = {
.addr = ST_ACCEL_7_PW_ADDR,
.mask = ST_ACCEL_7_PW_MASK,
.addr = 0x20,
.mask = 0xc0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
......@@ -714,7 +524,7 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.gain = ST_ACCEL_7_FS_AVL_2_GAIN,
.gain = IIO_G_TO_M_S_2(488),
},
},
},
......@@ -725,37 +535,37 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.bdu = {
},
.drdy_irq = {
.addr = ST_ACCEL_7_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_7_DRDY_IRQ_INT1_MASK,
.addr = 0x21,
.mask_int1 = 0x04,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_7_MULTIREAD_BIT,
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = ST_ACCEL_1_WAI_EXP,
.wai = 0x33,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LNG2DM_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_8bit_channels,
.odr = {
.addr = ST_ACCEL_1_ODR_ADDR,
.mask = ST_ACCEL_1_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ 1, ST_ACCEL_1_ODR_AVL_1HZ_VAL, },
{ 10, ST_ACCEL_1_ODR_AVL_10HZ_VAL, },
{ 25, ST_ACCEL_1_ODR_AVL_25HZ_VAL, },
{ 50, ST_ACCEL_1_ODR_AVL_50HZ_VAL, },
{ 100, ST_ACCEL_1_ODR_AVL_100HZ_VAL, },
{ 200, ST_ACCEL_1_ODR_AVL_200HZ_VAL, },
{ 400, ST_ACCEL_1_ODR_AVL_400HZ_VAL, },
{ 1600, ST_ACCEL_1_ODR_AVL_1600HZ_VAL, },
{ .hz = 1, .value = 0x01, },
{ .hz = 10, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
{ .hz = 400, .value = 0x07, },
{ .hz = 1600, .value = 0x08, },
},
},
.pw = {
.addr = ST_ACCEL_1_ODR_ADDR,
.mask = ST_ACCEL_1_ODR_MASK,
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
......@@ -763,40 +573,40 @@ static const struct st_sensor_settings st_accel_sensors_settings[] = {
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = ST_ACCEL_1_FS_ADDR,
.mask = ST_ACCEL_1_FS_MASK,
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = ST_ACCEL_1_FS_AVL_2_VAL,
.gain = ST_ACCEL_8_FS_AVL_2_GAIN,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(15600),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = ST_ACCEL_1_FS_AVL_4_VAL,
.gain = ST_ACCEL_8_FS_AVL_4_GAIN,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(31200),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = ST_ACCEL_1_FS_AVL_8_VAL,
.gain = ST_ACCEL_8_FS_AVL_8_GAIN,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(62500),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = ST_ACCEL_1_FS_AVL_16_VAL,
.gain = ST_ACCEL_8_FS_AVL_16_GAIN,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(187500),
},
},
},
.drdy_irq = {
.addr = ST_ACCEL_1_DRDY_IRQ_ADDR,
.mask_int1 = ST_ACCEL_1_DRDY_IRQ_INT1_MASK,
.mask_int2 = ST_ACCEL_1_DRDY_IRQ_INT2_MASK,
.addr_ihl = ST_ACCEL_1_IHL_IRQ_ADDR,
.mask_ihl = ST_ACCEL_1_IHL_IRQ_MASK,
.addr = 0x22,
.mask_int1 = 0x10,
.mask_int2 = 0x08,
.addr_ihl = 0x25,
.mask_ihl = 0x02,
.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
},
.multi_read_bit = ST_ACCEL_1_MULTIREAD_BIT,
.multi_read_bit = true,
.bootime = 2,
},
};
......
......@@ -441,6 +441,28 @@ config ROCKCHIP_SARADC
To compile this driver as a module, choose M here: the
module will be called rockchip_saradc.
config STM32_ADC_CORE
tristate "STMicroelectronics STM32 adc core"
depends on ARCH_STM32 || COMPILE_TEST
depends on OF
depends on REGULATOR
help
Select this option to enable the core driver for STMicroelectronics
STM32 analog-to-digital converter (ADC).
This driver can also be built as a module. If so, the module
will be called stm32-adc-core.
config STM32_ADC
tristate "STMicroelectronics STM32 adc"
depends on STM32_ADC_CORE
help
Say yes here to build support for STMicroelectronics stm32 Analog
to Digital Converter (ADC).
This driver can also be built as a module. If so, the module
will be called stm32-adc.
config STX104
tristate "Apex Embedded Systems STX104 driver"
depends on X86 && ISA_BUS_API
......
......@@ -43,6 +43,8 @@ obj-$(CONFIG_QCOM_SPMI_IADC) += qcom-spmi-iadc.o
obj-$(CONFIG_QCOM_SPMI_VADC) += qcom-spmi-vadc.o
obj-$(CONFIG_ROCKCHIP_SARADC) += rockchip_saradc.o
obj-$(CONFIG_STX104) += stx104.o
obj-$(CONFIG_STM32_ADC_CORE) += stm32-adc-core.o
obj-$(CONFIG_STM32_ADC) += stm32-adc.o
obj-$(CONFIG_TI_ADC081C) += ti-adc081c.o
obj-$(CONFIG_TI_ADC0832) += ti-adc0832.o
obj-$(CONFIG_TI_ADC12138) += ti-adc12138.o
......
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* Inspired from: fsl-imx25-tsadc
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdesc.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "stm32-adc-core.h"
/* STM32F4 - common registers for all ADC instances: 1, 2 & 3 */
#define STM32F4_ADC_CSR (STM32_ADCX_COMN_OFFSET + 0x00)
#define STM32F4_ADC_CCR (STM32_ADCX_COMN_OFFSET + 0x04)
/* STM32F4_ADC_CSR - bit fields */
#define STM32F4_EOC3 BIT(17)
#define STM32F4_EOC2 BIT(9)
#define STM32F4_EOC1 BIT(1)
/* STM32F4_ADC_CCR - bit fields */
#define STM32F4_ADC_ADCPRE_SHIFT 16
#define STM32F4_ADC_ADCPRE_MASK GENMASK(17, 16)
/* STM32 F4 maximum analog clock rate (from datasheet) */
#define STM32F4_ADC_MAX_CLK_RATE 36000000
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @vref: regulator reference
* @common: common data for all ADC instances
*/
struct stm32_adc_priv {
int irq;
struct irq_domain *domain;
struct clk *aclk;
struct regulator *vref;
struct stm32_adc_common common;
};
static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
{
return container_of(com, struct stm32_adc_priv, common);
}
/* STM32F4 ADC internal common clock prescaler division ratios */
static int stm32f4_pclk_div[] = {2, 4, 6, 8};
/**
* stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
* @priv: stm32 ADC core private data
* Select clock prescaler used for analog conversions, before using ADC.
*/
static int stm32f4_adc_clk_sel(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
unsigned long rate;
u32 val;
int i;
rate = clk_get_rate(priv->aclk);
for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
if ((rate / stm32f4_pclk_div[i]) <= STM32F4_ADC_MAX_CLK_RATE)
break;
}
if (i >= ARRAY_SIZE(stm32f4_pclk_div))
return -EINVAL;
val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
val &= ~STM32F4_ADC_ADCPRE_MASK;
val |= i << STM32F4_ADC_ADCPRE_SHIFT;
writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
rate / (stm32f4_pclk_div[i] * 1000));
return 0;
}
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
u32 status;
chained_irq_enter(chip, desc);
status = readl_relaxed(priv->common.base + STM32F4_ADC_CSR);
if (status & STM32F4_EOC1)
generic_handle_irq(irq_find_mapping(priv->domain, 0));
if (status & STM32F4_EOC2)
generic_handle_irq(irq_find_mapping(priv->domain, 1));
if (status & STM32F4_EOC3)
generic_handle_irq(irq_find_mapping(priv->domain, 2));
chained_irq_exit(chip, desc);
};
static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, d->host_data);
irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
return 0;
}
static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops stm32_adc_domain_ops = {
.map = stm32_adc_domain_map,
.unmap = stm32_adc_domain_unmap,
.xlate = irq_domain_xlate_onecell,
};
static int stm32_adc_irq_probe(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
struct device_node *np = pdev->dev.of_node;
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0) {
dev_err(&pdev->dev, "failed to get irq\n");
return priv->irq;
}
priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
&stm32_adc_domain_ops,
priv);
if (!priv->domain) {
dev_err(&pdev->dev, "Failed to add irq domain\n");
return -ENOMEM;
}
irq_set_chained_handler(priv->irq, stm32_adc_irq_handler);
irq_set_handler_data(priv->irq, priv);
return 0;
}
static void stm32_adc_irq_remove(struct platform_device *pdev,
struct stm32_adc_priv *priv)
{
int hwirq;
for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
irq_domain_remove(priv->domain);
irq_set_chained_handler(priv->irq, NULL);
}
static int stm32_adc_probe(struct platform_device *pdev)
{
struct stm32_adc_priv *priv;
struct device_node *np = pdev->dev.of_node;
struct resource *res;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->common.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->common.base))
return PTR_ERR(priv->common.base);
priv->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(priv->vref)) {
ret = PTR_ERR(priv->vref);
dev_err(&pdev->dev, "vref get failed, %d\n", ret);
return ret;
}
ret = regulator_enable(priv->vref);
if (ret < 0) {
dev_err(&pdev->dev, "vref enable failed\n");
return ret;
}
ret = regulator_get_voltage(priv->vref);
if (ret < 0) {
dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
goto err_regulator_disable;
}
priv->common.vref_mv = ret / 1000;
dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
priv->aclk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(priv->aclk)) {
ret = PTR_ERR(priv->aclk);
dev_err(&pdev->dev, "Can't get 'adc' clock\n");
goto err_regulator_disable;
}
ret = clk_prepare_enable(priv->aclk);
if (ret < 0) {
dev_err(&pdev->dev, "adc clk enable failed\n");
goto err_regulator_disable;
}
ret = stm32f4_adc_clk_sel(pdev, priv);
if (ret < 0) {
dev_err(&pdev->dev, "adc clk selection failed\n");
goto err_clk_disable;
}
ret = stm32_adc_irq_probe(pdev, priv);
if (ret < 0)
goto err_clk_disable;
platform_set_drvdata(pdev, &priv->common);
ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to populate DT children\n");
goto err_irq_remove;
}
return 0;
err_irq_remove:
stm32_adc_irq_remove(pdev, priv);
err_clk_disable:
clk_disable_unprepare(priv->aclk);
err_regulator_disable:
regulator_disable(priv->vref);
return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
struct stm32_adc_common *common = platform_get_drvdata(pdev);
struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
of_platform_depopulate(&pdev->dev);
stm32_adc_irq_remove(pdev, priv);
clk_disable_unprepare(priv->aclk);
regulator_disable(priv->vref);
return 0;
}
static const struct of_device_id stm32_adc_of_match[] = {
{ .compatible = "st,stm32f4-adc-core" },
{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
.probe = stm32_adc_probe,
.remove = stm32_adc_remove,
.driver = {
.name = "stm32-adc-core",
.of_match_table = stm32_adc_of_match,
},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc-core");
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __STM32_ADC_H
#define __STM32_ADC_H
/*
* STM32 - ADC global register map
* ________________________________________________________
* | Offset | Register |
* --------------------------------------------------------
* | 0x000 | Master ADC1 |
* --------------------------------------------------------
* | 0x100 | Slave ADC2 |
* --------------------------------------------------------
* | 0x200 | Slave ADC3 |
* --------------------------------------------------------
* | 0x300 | Master & Slave common regs |
* --------------------------------------------------------
*/
#define STM32_ADC_MAX_ADCS 3
#define STM32_ADCX_COMN_OFFSET 0x300
/**
* struct stm32_adc_common - stm32 ADC driver common data (for all instances)
* @base: control registers base cpu addr
* @vref_mv: vref voltage (mv)
*/
struct stm32_adc_common {
void __iomem *base;
int vref_mv;
};
#endif
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include "stm32-adc-core.h"
/* STM32F4 - Registers for each ADC instance */
#define STM32F4_ADC_SR 0x00
#define STM32F4_ADC_CR1 0x04
#define STM32F4_ADC_CR2 0x08
#define STM32F4_ADC_SMPR1 0x0C
#define STM32F4_ADC_SMPR2 0x10
#define STM32F4_ADC_HTR 0x24
#define STM32F4_ADC_LTR 0x28
#define STM32F4_ADC_SQR1 0x2C
#define STM32F4_ADC_SQR2 0x30
#define STM32F4_ADC_SQR3 0x34
#define STM32F4_ADC_JSQR 0x38
#define STM32F4_ADC_JDR1 0x3C
#define STM32F4_ADC_JDR2 0x40
#define STM32F4_ADC_JDR3 0x44
#define STM32F4_ADC_JDR4 0x48
#define STM32F4_ADC_DR 0x4C
/* STM32F4_ADC_SR - bit fields */
#define STM32F4_STRT BIT(4)
#define STM32F4_EOC BIT(1)
/* STM32F4_ADC_CR1 - bit fields */
#define STM32F4_SCAN BIT(8)
#define STM32F4_EOCIE BIT(5)
/* STM32F4_ADC_CR2 - bit fields */
#define STM32F4_SWSTART BIT(30)
#define STM32F4_EXTEN_MASK GENMASK(29, 28)
#define STM32F4_EOCS BIT(10)
#define STM32F4_ADON BIT(0)
/* STM32F4_ADC_SQR1 - bit fields */
#define STM32F4_L_SHIFT 20
#define STM32F4_L_MASK GENMASK(23, 20)
/* STM32F4_ADC_SQR3 - bit fields */
#define STM32F4_SQ1_SHIFT 0
#define STM32F4_SQ1_MASK GENMASK(4, 0)
#define STM32_ADC_TIMEOUT_US 100000
#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
/**
* struct stm32_adc - private data of each ADC IIO instance
* @common: reference to ADC block common data
* @offset: ADC instance register offset in ADC block
* @completion: end of single conversion completion
* @buffer: data buffer
* @clk: clock for this adc instance
* @irq: interrupt for this adc instance
* @lock: spinlock
*/
struct stm32_adc {
struct stm32_adc_common *common;
u32 offset;
struct completion completion;
u16 *buffer;
struct clk *clk;
int irq;
spinlock_t lock; /* interrupt lock */
};
/**
* struct stm32_adc_chan_spec - specification of stm32 adc channel
* @type: IIO channel type
* @channel: channel number (single ended)
* @name: channel name (single ended)
*/
struct stm32_adc_chan_spec {
enum iio_chan_type type;
int channel;
const char *name;
};
/* Input definitions common for all STM32F4 instances */
static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
{ IIO_VOLTAGE, 0, "in0" },
{ IIO_VOLTAGE, 1, "in1" },
{ IIO_VOLTAGE, 2, "in2" },
{ IIO_VOLTAGE, 3, "in3" },
{ IIO_VOLTAGE, 4, "in4" },
{ IIO_VOLTAGE, 5, "in5" },
{ IIO_VOLTAGE, 6, "in6" },
{ IIO_VOLTAGE, 7, "in7" },
{ IIO_VOLTAGE, 8, "in8" },
{ IIO_VOLTAGE, 9, "in9" },
{ IIO_VOLTAGE, 10, "in10" },
{ IIO_VOLTAGE, 11, "in11" },
{ IIO_VOLTAGE, 12, "in12" },
{ IIO_VOLTAGE, 13, "in13" },
{ IIO_VOLTAGE, 14, "in14" },
{ IIO_VOLTAGE, 15, "in15" },
};
/**
* STM32 ADC registers access routines
* @adc: stm32 adc instance
* @reg: reg offset in adc instance
*
* Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
* for adc1, adc2 and adc3.
*/
static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
{
return readl_relaxed(adc->common->base + adc->offset + reg);
}
static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
{
return readw_relaxed(adc->common->base + adc->offset + reg);
}
static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
{
writel_relaxed(val, adc->common->base + adc->offset + reg);
}
static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
unsigned long flags;
spin_lock_irqsave(&adc->lock, flags);
stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
spin_unlock_irqrestore(&adc->lock, flags);
}
static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
unsigned long flags;
spin_lock_irqsave(&adc->lock, flags);
stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
spin_unlock_irqrestore(&adc->lock, flags);
}
/**
* stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
* @adc: stm32 adc instance
*/
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
};
/**
* stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
* @adc: stm32 adc instance
*/
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
}
/**
* stm32_adc_start_conv() - Start conversions for regular channels.
* @adc: stm32 adc instance
*/
static void stm32_adc_start_conv(struct stm32_adc *adc)
{
stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
/* Wait for Power-up time (tSTAB from datasheet) */
usleep_range(2, 3);
/* Software start ? (e.g. trigger detection disabled ?) */
if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}
static void stm32_adc_stop_conv(struct stm32_adc *adc)
{
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_ADON);
}
/**
* stm32_adc_single_conv() - Performs a single conversion
* @indio_dev: IIO device
* @chan: IIO channel
* @res: conversion result
*
* The function performs a single conversion on a given channel:
* - Program sequencer with one channel (e.g. in SQ1 with len = 1)
* - Use SW trigger
* - Start conversion, then wait for interrupt completion.
*/
static int stm32_adc_single_conv(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *res)
{
struct stm32_adc *adc = iio_priv(indio_dev);
long timeout;
u32 val;
u16 result;
int ret;
reinit_completion(&adc->completion);
adc->buffer = &result;
/* Program chan number in regular sequence */
val = stm32_adc_readl(adc, STM32F4_ADC_SQR3);
val &= ~STM32F4_SQ1_MASK;
val |= chan->channel << STM32F4_SQ1_SHIFT;
stm32_adc_writel(adc, STM32F4_ADC_SQR3, val);
/* Set regular sequence len (0 for 1 conversion) */
stm32_adc_clr_bits(adc, STM32F4_ADC_SQR1, STM32F4_L_MASK);
/* Trigger detection disabled (conversion can be launched in SW) */
stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
stm32_adc_conv_irq_enable(adc);
stm32_adc_start_conv(adc);
timeout = wait_for_completion_interruptible_timeout(
&adc->completion, STM32_ADC_TIMEOUT);
if (timeout == 0) {
ret = -ETIMEDOUT;
} else if (timeout < 0) {
ret = timeout;
} else {
*res = result;
ret = IIO_VAL_INT;
}
stm32_adc_stop_conv(adc);
stm32_adc_conv_irq_disable(adc);
return ret;
}
static int stm32_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct stm32_adc *adc = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
if (chan->type == IIO_VOLTAGE)
ret = stm32_adc_single_conv(indio_dev, chan, val);
else
ret = -EINVAL;
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
*val = adc->common->vref_mv;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
}
static irqreturn_t stm32_adc_isr(int irq, void *data)
{
struct stm32_adc *adc = data;
u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
if (status & STM32F4_EOC) {
*adc->buffer = stm32_adc_readw(adc, STM32F4_ADC_DR);
complete(&adc->completion);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++)
if (indio_dev->channels[i].channel == iiospec->args[0])
return i;
return -EINVAL;
}
/**
* stm32_adc_debugfs_reg_access - read or write register value
*
* To read a value from an ADC register:
* echo [ADC reg offset] > direct_reg_access
* cat direct_reg_access
*
* To write a value in a ADC register:
* echo [ADC_reg_offset] [value] > direct_reg_access
*/
static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct stm32_adc *adc = iio_priv(indio_dev);
if (!readval)
stm32_adc_writel(adc, reg, writeval);
else
*readval = stm32_adc_readl(adc, reg);
return 0;
}
static const struct iio_info stm32_adc_iio_info = {
.read_raw = stm32_adc_read_raw,
.debugfs_reg_access = stm32_adc_debugfs_reg_access,
.of_xlate = stm32_adc_of_xlate,
.driver_module = THIS_MODULE,
};
static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
struct iio_chan_spec *chan,
const struct stm32_adc_chan_spec *channel,
int scan_index)
{
chan->type = channel->type;
chan->channel = channel->channel;
chan->datasheet_name = channel->name;
chan->scan_index = scan_index;
chan->indexed = 1;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 12;
chan->scan_type.storagebits = 16;
}
static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
struct device_node *node = indio_dev->dev.of_node;
struct property *prop;
const __be32 *cur;
struct iio_chan_spec *channels;
int scan_index = 0, num_channels;
u32 val;
num_channels = of_property_count_u32_elems(node, "st,adc-channels");
if (num_channels < 0 ||
num_channels >= ARRAY_SIZE(stm32f4_adc123_channels)) {
dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
return num_channels < 0 ? num_channels : -EINVAL;
}
channels = devm_kcalloc(&indio_dev->dev, num_channels,
sizeof(struct iio_chan_spec), GFP_KERNEL);
if (!channels)
return -ENOMEM;
of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
if (val >= ARRAY_SIZE(stm32f4_adc123_channels)) {
dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
return -EINVAL;
}
stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
&stm32f4_adc123_channels[val],
scan_index);
scan_index++;
}
indio_dev->num_channels = scan_index;
indio_dev->channels = channels;
return 0;
}
static int stm32_adc_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct stm32_adc *adc;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->common = dev_get_drvdata(pdev->dev.parent);
spin_lock_init(&adc->lock);
init_completion(&adc->completion);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &stm32_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
platform_set_drvdata(pdev, adc);
ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
if (ret != 0) {
dev_err(&pdev->dev, "missing reg property\n");
return -EINVAL;
}
adc->irq = platform_get_irq(pdev, 0);
if (adc->irq < 0) {
dev_err(&pdev->dev, "failed to get irq\n");
return adc->irq;
}
ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
0, pdev->name, adc);
if (ret) {
dev_err(&pdev->dev, "failed to request IRQ\n");
return ret;
}
adc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(adc->clk)) {
dev_err(&pdev->dev, "Can't get clock\n");
return PTR_ERR(adc->clk);
}
ret = clk_prepare_enable(adc->clk);
if (ret < 0) {
dev_err(&pdev->dev, "clk enable failed\n");
return ret;
}
ret = stm32_adc_chan_of_init(indio_dev);
if (ret < 0)
goto err_clk_disable;
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "iio dev register failed\n");
goto err_clk_disable;
}
return 0;
err_clk_disable:
clk_disable_unprepare(adc->clk);
return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
struct stm32_adc *adc = platform_get_drvdata(pdev);
struct iio_dev *indio_dev = iio_priv_to_dev(adc);
iio_device_unregister(indio_dev);
clk_disable_unprepare(adc->clk);
return 0;
}
static const struct of_device_id stm32_adc_of_match[] = {
{ .compatible = "st,stm32f4-adc" },
{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
.probe = stm32_adc_probe,
.remove = stm32_adc_remove,
.driver = {
.name = "stm32-adc",
.of_match_table = stm32_adc_of_match,
},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc");
......@@ -565,7 +565,7 @@ static ssize_t in_illuminance_lux_table_store(struct device *dev,
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3;
int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3];
int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1];
int ret = -EINVAL;
unsigned int n;
......
......@@ -42,9 +42,17 @@ enum magn_3d_channel {
MAGN_3D_CHANNEL_MAX,
};
struct common_attributes {
int scale_pre_decml;
int scale_post_decml;
int scale_precision;
int value_offset;
};
struct magn_3d_state {
struct hid_sensor_hub_callbacks callbacks;
struct hid_sensor_common common_attributes;
struct hid_sensor_common magn_flux_attributes;
struct hid_sensor_common rot_attributes;
struct hid_sensor_hub_attribute_info magn[MAGN_3D_CHANNEL_MAX];
/* dynamically sized array to hold sensor values */
......@@ -52,10 +60,8 @@ struct magn_3d_state {
/* array of pointers to sensor value */
u32 *magn_val_addr[MAGN_3D_CHANNEL_MAX];
int scale_pre_decml;
int scale_post_decml;
int scale_precision;
int value_offset;
struct common_attributes magn_flux_attr;
struct common_attributes rot_attr;
};
static const u32 magn_3d_addresses[MAGN_3D_CHANNEL_MAX] = {
......@@ -162,41 +168,74 @@ static int magn_3d_read_raw(struct iio_dev *indio_dev,
*val2 = 0;
switch (mask) {
case 0:
hid_sensor_power_state(&magn_state->common_attributes, true);
hid_sensor_power_state(&magn_state->magn_flux_attributes, true);
report_id =
magn_state->magn[chan->address].report_id;
address = magn_3d_addresses[chan->address];
if (report_id >= 0)
*val = sensor_hub_input_attr_get_raw_value(
magn_state->common_attributes.hsdev,
magn_state->magn_flux_attributes.hsdev,
HID_USAGE_SENSOR_COMPASS_3D, address,
report_id,
SENSOR_HUB_SYNC);
else {
*val = 0;
hid_sensor_power_state(&magn_state->common_attributes,
false);
hid_sensor_power_state(
&magn_state->magn_flux_attributes,
false);
return -EINVAL;
}
hid_sensor_power_state(&magn_state->common_attributes, false);
hid_sensor_power_state(&magn_state->magn_flux_attributes,
false);
ret_type = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = magn_state->scale_pre_decml;
*val2 = magn_state->scale_post_decml;
ret_type = magn_state->scale_precision;
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.scale_pre_decml;
*val2 = magn_state->magn_flux_attr.scale_post_decml;
ret_type = magn_state->magn_flux_attr.scale_precision;
break;
case IIO_ROT:
*val = magn_state->rot_attr.scale_pre_decml;
*val2 = magn_state->rot_attr.scale_post_decml;
ret_type = magn_state->rot_attr.scale_precision;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_OFFSET:
*val = magn_state->value_offset;
ret_type = IIO_VAL_INT;
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
case IIO_ROT:
*val = magn_state->rot_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret_type = hid_sensor_read_samp_freq_value(
&magn_state->common_attributes, val, val2);
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->common_attributes, val, val2);
switch (chan->type) {
case IIO_MAGN:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret_type = -EINVAL;
}
break;
default:
ret_type = -EINVAL;
......@@ -219,11 +258,21 @@ static int magn_3d_write_raw(struct iio_dev *indio_dev,
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
ret = hid_sensor_write_samp_freq_value(
&magn_state->common_attributes, val, val2);
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->common_attributes, val, val2);
switch (chan->type) {
case IIO_MAGN:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret = -EINVAL;
}
break;
default:
ret = -EINVAL;
......@@ -254,7 +303,7 @@ static int magn_3d_proc_event(struct hid_sensor_hub_device *hsdev,
struct magn_3d_state *magn_state = iio_priv(indio_dev);
dev_dbg(&indio_dev->dev, "magn_3d_proc_event\n");
if (atomic_read(&magn_state->common_attributes.data_ready))
if (atomic_read(&magn_state->magn_flux_attributes.data_ready))
hid_sensor_push_data(indio_dev, magn_state->iio_vals);
return 0;
......@@ -389,21 +438,48 @@ static int magn_3d_parse_report(struct platform_device *pdev,
dev_dbg(&pdev->dev, "magn_3d Setup %d IIO channels\n",
*chan_count);
st->scale_precision = hid_sensor_format_scale(
st->magn_flux_attr.scale_precision = hid_sensor_format_scale(
HID_USAGE_SENSOR_COMPASS_3D,
&st->magn[CHANNEL_SCAN_INDEX_X],
&st->scale_pre_decml, &st->scale_post_decml);
&st->magn_flux_attr.scale_pre_decml,
&st->magn_flux_attr.scale_post_decml);
st->rot_attr.scale_precision
= hid_sensor_format_scale(
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->magn[CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP],
&st->rot_attr.scale_pre_decml,
&st->rot_attr.scale_post_decml);
/* Set Sensitivity field ids, when there is no individual modifier */
if (st->common_attributes.sensitivity.index < 0) {
if (st->magn_flux_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_DATA_ORIENTATION,
&st->common_attributes.sensitivity);
&st->magn_flux_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->magn_flux_attributes.sensitivity.index,
st->magn_flux_attributes.sensitivity.report_id);
}
if (st->magn_flux_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX,
&st->magn_flux_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->magn_flux_attributes.sensitivity.index,
st->magn_flux_attributes.sensitivity.report_id);
}
if (st->rot_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->rot_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->common_attributes.sensitivity.index,
st->common_attributes.sensitivity.report_id);
st->rot_attributes.sensitivity.index,
st->rot_attributes.sensitivity.report_id);
}
return 0;
......@@ -428,16 +504,17 @@ static int hid_magn_3d_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, indio_dev);
magn_state = iio_priv(indio_dev);
magn_state->common_attributes.hsdev = hsdev;
magn_state->common_attributes.pdev = pdev;
magn_state->magn_flux_attributes.hsdev = hsdev;
magn_state->magn_flux_attributes.pdev = pdev;
ret = hid_sensor_parse_common_attributes(hsdev,
HID_USAGE_SENSOR_COMPASS_3D,
&magn_state->common_attributes);
&magn_state->magn_flux_attributes);
if (ret) {
dev_err(&pdev->dev, "failed to setup common attributes\n");
return ret;
}
magn_state->rot_attributes = magn_state->magn_flux_attributes;
ret = magn_3d_parse_report(pdev, hsdev,
&channels, &chan_count,
......@@ -460,9 +537,9 @@ static int hid_magn_3d_probe(struct platform_device *pdev)
dev_err(&pdev->dev, "failed to initialize trigger buffer\n");
return ret;
}
atomic_set(&magn_state->common_attributes.data_ready, 0);
atomic_set(&magn_state->magn_flux_attributes.data_ready, 0);
ret = hid_sensor_setup_trigger(indio_dev, name,
&magn_state->common_attributes);
&magn_state->magn_flux_attributes);
if (ret < 0) {
dev_err(&pdev->dev, "trigger setup failed\n");
goto error_unreg_buffer_funcs;
......@@ -489,7 +566,7 @@ static int hid_magn_3d_probe(struct platform_device *pdev)
error_iio_unreg:
iio_device_unregister(indio_dev);
error_remove_trigger:
hid_sensor_remove_trigger(&magn_state->common_attributes);
hid_sensor_remove_trigger(&magn_state->magn_flux_attributes);
error_unreg_buffer_funcs:
iio_triggered_buffer_cleanup(indio_dev);
return ret;
......@@ -504,7 +581,7 @@ static int hid_magn_3d_remove(struct platform_device *pdev)
sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D);
iio_device_unregister(indio_dev);
hid_sensor_remove_trigger(&magn_state->common_attributes);
hid_sensor_remove_trigger(&magn_state->magn_flux_attributes);
iio_triggered_buffer_cleanup(indio_dev);
return 0;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment