Commit 2eadb9e7 authored by Nikolay Borisov's avatar Nikolay Borisov Committed by David Sterba

btrfs: make btrfs_finish_chunk_alloc private to block-group.c

One of the final things that must be done to add a new chunk is
inserting its device extent items in the device tree. They describe
the portion of allocated device physical space during phase 1 of
chunk allocation. This is currently done in btrfs_finish_chunk_alloc
whose name isn't very informative. What's more, this function is only
used in block-group.c but is defined as public. There isn't anything
special about it that would warrant it being defined in volumes.c.

Just move btrfs_finish_chunk_alloc and alloc_chunk_dev_extent to
block-group.c, make the former static and rename both functions to
insert_dev_extents and insert_dev_extent respectively.
Reviewed-by: default avatarFilipe Manana <fdmanana@suse.com>
Signed-off-by: default avatarNikolay Borisov <nborisov@suse.com>
Signed-off-by: default avatarDavid Sterba <dsterba@suse.com>
parent 4a9531cf
...@@ -2244,6 +2244,95 @@ static int insert_block_group_item(struct btrfs_trans_handle *trans, ...@@ -2244,6 +2244,95 @@ static int insert_block_group_item(struct btrfs_trans_handle *trans,
return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi)); return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
} }
static int insert_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device, u64 chunk_offset,
u64 start, u64 num_bytes)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_path *path;
struct btrfs_dev_extent *extent;
struct extent_buffer *leaf;
struct btrfs_key key;
int ret;
WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = start;
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
if (ret)
goto out;
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
/*
* This function belongs to phase 2.
*
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
* phases.
*/
static int insert_dev_extents(struct btrfs_trans_handle *trans,
u64 chunk_offset, u64 chunk_size)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_device *device;
struct extent_map *em;
struct map_lookup *map;
u64 dev_offset;
u64 stripe_size;
int i;
int ret = 0;
em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
if (IS_ERR(em))
return PTR_ERR(em);
map = em->map_lookup;
stripe_size = em->orig_block_len;
/*
* Take the device list mutex to prevent races with the final phase of
* a device replace operation that replaces the device object associated
* with the map's stripes, because the device object's id can change
* at any time during that final phase of the device replace operation
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
* resulting in persisting a device extent item with such ID.
*/
mutex_lock(&fs_info->fs_devices->device_list_mutex);
for (i = 0; i < map->num_stripes; i++) {
device = map->stripes[i].dev;
dev_offset = map->stripes[i].physical;
ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
stripe_size);
if (ret)
break;
}
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
free_extent_map(em);
return ret;
}
/* /*
* This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
* chunk allocation. * chunk allocation.
...@@ -2278,7 +2367,7 @@ void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) ...@@ -2278,7 +2367,7 @@ void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
if (ret) if (ret)
btrfs_abort_transaction(trans, ret); btrfs_abort_transaction(trans, ret);
} }
ret = btrfs_finish_chunk_alloc(trans, block_group->start, ret = insert_dev_extents(trans, block_group->start,
block_group->length); block_group->length);
if (ret) if (ret)
btrfs_abort_transaction(trans, ret); btrfs_abort_transaction(trans, ret);
......
...@@ -1759,48 +1759,6 @@ static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, ...@@ -1759,48 +1759,6 @@ static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
return ret; return ret;
} }
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 chunk_offset, u64 start, u64 num_bytes)
{
int ret;
struct btrfs_path *path;
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_dev_extent *extent;
struct extent_buffer *leaf;
struct btrfs_key key;
WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.offset = start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*extent));
if (ret)
goto out;
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
btrfs_set_dev_extent_chunk_tree(leaf, extent,
BTRFS_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
static u64 find_next_chunk(struct btrfs_fs_info *fs_info) static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
{ {
struct extent_map_tree *em_tree; struct extent_map_tree *em_tree;
...@@ -5463,56 +5421,6 @@ struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans, ...@@ -5463,56 +5421,6 @@ struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
return block_group; return block_group;
} }
/*
* This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
*
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
* phases.
*/
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
u64 chunk_offset, u64 chunk_size)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_device *device;
struct extent_map *em;
struct map_lookup *map;
u64 dev_offset;
u64 stripe_size;
int i;
int ret = 0;
em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
if (IS_ERR(em))
return PTR_ERR(em);
map = em->map_lookup;
stripe_size = em->orig_block_len;
/*
* Take the device list mutex to prevent races with the final phase of
* a device replace operation that replaces the device object associated
* with the map's stripes, because the device object's id can change
* at any time during that final phase of the device replace operation
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
* resulting in persisting a device extent item with such ID.
*/
mutex_lock(&fs_info->fs_devices->device_list_mutex);
for (i = 0; i < map->num_stripes; i++) {
device = map->stripes[i].dev;
dev_offset = map->stripes[i].physical;
ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
dev_offset, stripe_size);
if (ret)
break;
}
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
free_extent_map(em);
return ret;
}
/* /*
* This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
* phase 1 of chunk allocation. It belongs to phase 2 only when allocating system * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
......
...@@ -508,8 +508,6 @@ int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, ...@@ -508,8 +508,6 @@ int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
u64 logical, u64 len); u64 logical, u64 len);
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
u64 logical); u64 logical);
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
u64 chunk_offset, u64 chunk_size);
int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
struct btrfs_block_group *bg); struct btrfs_block_group *bg);
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment