Commit 2fb585a1 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for_2.6.29' of git://git.kernel.org/pub/scm/linux/kernel/git/kkeil/ISDN-2.6

* 'for_2.6.29' of git://git.kernel.org/pub/scm/linux/kernel/git/kkeil/ISDN-2.6: (28 commits)
  mISDN: Add HFC USB driver
  mISDN: Add layer1 prim MPH_INFORMATION_REQ
  mISDN: Fix kernel crash when doing hardware conference with more than two members
  mISDN: Added missing create_l1() call
  mISDN: Add MODULE_DEVICE_TABLE() to hfcpci
  mISDN: Minor cleanups
  mISDN: Create /sys/class/mISDN
  mISDN: Add missing release functions
  mISDN: Add different different timer settings for hfc-pci
  mISDN: Minor fixes
  mISDN: Correct busy device detection
  mISDN: Fix deactivation, if peer IP is removed from l1oip instance.
  mISDN: Add ISDN_P_TE_UP0 / ISDN_P_NT_UP0
  mISDN: Fix irq detection
  mISDN: Add ISDN sample clock API to mISDN core
  mISDN: Return error on E-channel access
  mISDN: Add E-Channel logging features
  mISDN: Use protocol to detect D-channel
  mISDN: Fixed more indexing bugs
  mISDN: Make debug output a little bit more verbose
  ...
parents 31aeb6c8 69f52adb
...@@ -23,3 +23,10 @@ config MISDN_HFCMULTI ...@@ -23,3 +23,10 @@ config MISDN_HFCMULTI
* HFC-8S (8 S/T interfaces on one chip) * HFC-8S (8 S/T interfaces on one chip)
* HFC-E1 (E1 interface for 2Mbit ISDN) * HFC-E1 (E1 interface for 2Mbit ISDN)
config MISDN_HFCUSB
tristate "Support for HFC-S USB based TAs"
depends on USB
help
Enable support for USB ISDN TAs with Cologne Chip AG's
HFC-S USB ISDN Controller
...@@ -5,3 +5,4 @@ ...@@ -5,3 +5,4 @@
obj-$(CONFIG_MISDN_HFCPCI) += hfcpci.o obj-$(CONFIG_MISDN_HFCPCI) += hfcpci.o
obj-$(CONFIG_MISDN_HFCMULTI) += hfcmulti.o obj-$(CONFIG_MISDN_HFCMULTI) += hfcmulti.o
obj-$(CONFIG_MISDN_HFCUSB) += hfcsusb.o
...@@ -2,10 +2,6 @@ ...@@ -2,10 +2,6 @@
* see notice in hfc_multi.c * see notice in hfc_multi.c
*/ */
extern void ztdummy_extern_interrupt(void);
extern void ztdummy_register_interrupt(void);
extern int ztdummy_unregister_interrupt(void);
#define DEBUG_HFCMULTI_FIFO 0x00010000 #define DEBUG_HFCMULTI_FIFO 0x00010000
#define DEBUG_HFCMULTI_CRC 0x00020000 #define DEBUG_HFCMULTI_CRC 0x00020000
#define DEBUG_HFCMULTI_INIT 0x00040000 #define DEBUG_HFCMULTI_INIT 0x00040000
...@@ -13,6 +9,7 @@ extern int ztdummy_unregister_interrupt(void); ...@@ -13,6 +9,7 @@ extern int ztdummy_unregister_interrupt(void);
#define DEBUG_HFCMULTI_MODE 0x00100000 #define DEBUG_HFCMULTI_MODE 0x00100000
#define DEBUG_HFCMULTI_MSG 0x00200000 #define DEBUG_HFCMULTI_MSG 0x00200000
#define DEBUG_HFCMULTI_STATE 0x00400000 #define DEBUG_HFCMULTI_STATE 0x00400000
#define DEBUG_HFCMULTI_FILL 0x00800000
#define DEBUG_HFCMULTI_SYNC 0x01000000 #define DEBUG_HFCMULTI_SYNC 0x01000000
#define DEBUG_HFCMULTI_DTMF 0x02000000 #define DEBUG_HFCMULTI_DTMF 0x02000000
#define DEBUG_HFCMULTI_LOCK 0x80000000 #define DEBUG_HFCMULTI_LOCK 0x80000000
...@@ -170,6 +167,8 @@ struct hfc_multi { ...@@ -170,6 +167,8 @@ struct hfc_multi {
u_long chip; /* chip configuration */ u_long chip; /* chip configuration */
int masterclk; /* port that provides master clock -1=off */ int masterclk; /* port that provides master clock -1=off */
unsigned char silence;/* silence byte */
unsigned char silence_data[128];/* silence block */
int dtmf; /* flag that dtmf is currently in process */ int dtmf; /* flag that dtmf is currently in process */
int Flen; /* F-buffer size */ int Flen; /* F-buffer size */
int Zlen; /* Z-buffer size (must be int for calculation)*/ int Zlen; /* Z-buffer size (must be int for calculation)*/
...@@ -198,6 +197,9 @@ struct hfc_multi { ...@@ -198,6 +197,9 @@ struct hfc_multi {
spinlock_t lock; /* the lock */ spinlock_t lock; /* the lock */
struct mISDNclock *iclock; /* isdn clock support */
int iclock_on;
/* /*
* the channel index is counted from 0, regardless where the channel * the channel index is counted from 0, regardless where the channel
* is located on the hfc-channel. * is located on the hfc-channel.
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
* change mask and threshold simultaneously * change mask and threshold simultaneously
*/ */
#define HFCPCI_BTRANS_THRESHOLD 128 #define HFCPCI_BTRANS_THRESHOLD 128
#define HFCPCI_BTRANS_MAX 256 #define HFCPCI_FILLEMPTY 64
#define HFCPCI_BTRANS_THRESMASK 0x00 #define HFCPCI_BTRANS_THRESMASK 0x00
/* defines for PCI config */ /* defines for PCI config */
......
...@@ -133,6 +133,12 @@ ...@@ -133,6 +133,12 @@
* Give the value of the clock control register (A_ST_CLK_DLY) * Give the value of the clock control register (A_ST_CLK_DLY)
* of the S/T interfaces in TE mode. * of the S/T interfaces in TE mode.
* This register is needed for the TBR3 certification, so don't change it. * This register is needed for the TBR3 certification, so don't change it.
*
* clock:
* NOTE: only one clock value must be given once
* Selects interface with clock source for mISDN and applications.
* Set to card number starting with 1. Set to -1 to disable.
* By default, the first card is used as clock source.
*/ */
/* /*
...@@ -140,7 +146,7 @@ ...@@ -140,7 +146,7 @@
* #define HFC_REGISTER_DEBUG * #define HFC_REGISTER_DEBUG
*/ */
static const char *hfcmulti_revision = "2.02"; #define HFC_MULTI_VERSION "2.03"
#include <linux/module.h> #include <linux/module.h>
#include <linux/pci.h> #include <linux/pci.h>
...@@ -165,10 +171,6 @@ static LIST_HEAD(HFClist); ...@@ -165,10 +171,6 @@ static LIST_HEAD(HFClist);
static spinlock_t HFClock; /* global hfc list lock */ static spinlock_t HFClock; /* global hfc list lock */
static void ph_state_change(struct dchannel *); static void ph_state_change(struct dchannel *);
static void (*hfc_interrupt)(void);
static void (*register_interrupt)(void);
static int (*unregister_interrupt)(void);
static int interrupt_registered;
static struct hfc_multi *syncmaster; static struct hfc_multi *syncmaster;
static int plxsd_master; /* if we have a master card (yet) */ static int plxsd_master; /* if we have a master card (yet) */
...@@ -184,7 +186,6 @@ static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 }; ...@@ -184,7 +186,6 @@ static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
#define CLKDEL_TE 0x0f /* CLKDEL in TE mode */ #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
(0x60 MUST be included!) */ (0x60 MUST be included!) */
static u_char silence = 0xff; /* silence by LAW */
#define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */ #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
#define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */ #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
...@@ -195,12 +196,13 @@ static u_char silence = 0xff; /* silence by LAW */ ...@@ -195,12 +196,13 @@ static u_char silence = 0xff; /* silence by LAW */
*/ */
static uint type[MAX_CARDS]; static uint type[MAX_CARDS];
static uint pcm[MAX_CARDS]; static int pcm[MAX_CARDS];
static uint dslot[MAX_CARDS]; static int dslot[MAX_CARDS];
static uint iomode[MAX_CARDS]; static uint iomode[MAX_CARDS];
static uint port[MAX_PORTS]; static uint port[MAX_PORTS];
static uint debug; static uint debug;
static uint poll; static uint poll;
static int clock;
static uint timer; static uint timer;
static uint clockdelay_te = CLKDEL_TE; static uint clockdelay_te = CLKDEL_TE;
static uint clockdelay_nt = CLKDEL_NT; static uint clockdelay_nt = CLKDEL_NT;
...@@ -209,14 +211,16 @@ static int HFC_cnt, Port_cnt, PCM_cnt = 99; ...@@ -209,14 +211,16 @@ static int HFC_cnt, Port_cnt, PCM_cnt = 99;
MODULE_AUTHOR("Andreas Eversberg"); MODULE_AUTHOR("Andreas Eversberg");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_VERSION(HFC_MULTI_VERSION);
module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(poll, uint, S_IRUGO | S_IWUSR); module_param(poll, uint, S_IRUGO | S_IWUSR);
module_param(clock, int, S_IRUGO | S_IWUSR);
module_param(timer, uint, S_IRUGO | S_IWUSR); module_param(timer, uint, S_IRUGO | S_IWUSR);
module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR); module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR); module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR); module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR); module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR); module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR); module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR); module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
...@@ -1419,19 +1423,6 @@ init_chip(struct hfc_multi *hc) ...@@ -1419,19 +1423,6 @@ init_chip(struct hfc_multi *hc)
HFC_outb(hc, R_TI_WD, poll_timer); HFC_outb(hc, R_TI_WD, poll_timer);
hc->hw.r_irqmsk_misc |= V_TI_IRQMSK; hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
/*
* set up 125us interrupt, only if function pointer is available
* and module parameter timer is set
*/
if (timer && hfc_interrupt && register_interrupt) {
/* only one chip should use this interrupt */
timer = 0;
interrupt_registered = 1;
hc->hw.r_irqmsk_misc |= V_PROC_IRQMSK;
/* deactivate other interrupts in ztdummy */
register_interrupt();
}
/* set E1 state machine IRQ */ /* set E1 state machine IRQ */
if (hc->type == 1) if (hc->type == 1)
hc->hw.r_irqmsk_misc |= V_STA_IRQMSK; hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
...@@ -1991,6 +1982,17 @@ hfcmulti_tx(struct hfc_multi *hc, int ch) ...@@ -1991,6 +1982,17 @@ hfcmulti_tx(struct hfc_multi *hc, int ch)
return; /* no data */ return; /* no data */
} }
/* "fill fifo if empty" feature */
if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
&& !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
if (debug & DEBUG_HFCMULTI_FILL)
printk(KERN_DEBUG "%s: buffer empty, so we have "
"underrun\n", __func__);
/* fill buffer, to prevent future underrun */
hc->write_fifo(hc, hc->silence_data, poll >> 1);
Zspace -= (poll >> 1);
}
/* if audio data and connected slot */ /* if audio data and connected slot */
if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending) if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
&& slot_tx >= 0) { && slot_tx >= 0) {
...@@ -2027,7 +2029,6 @@ hfcmulti_tx(struct hfc_multi *hc, int ch) ...@@ -2027,7 +2029,6 @@ hfcmulti_tx(struct hfc_multi *hc, int ch)
__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i, __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
temp ? "HDLC":"TRANS"); temp ? "HDLC":"TRANS");
/* Have to prep the audio data */ /* Have to prep the audio data */
hc->write_fifo(hc, d, ii - i); hc->write_fifo(hc, d, ii - i);
*idxp = ii; *idxp = ii;
...@@ -2066,7 +2067,7 @@ hfcmulti_tx(struct hfc_multi *hc, int ch) ...@@ -2066,7 +2067,7 @@ hfcmulti_tx(struct hfc_multi *hc, int ch)
* no more data at all. this prevents sending an undefined value. * no more data at all. this prevents sending an undefined value.
*/ */
if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence); HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
} }
...@@ -2583,7 +2584,6 @@ hfcmulti_interrupt(int intno, void *dev_id) ...@@ -2583,7 +2584,6 @@ hfcmulti_interrupt(int intno, void *dev_id)
static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0, static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
iq5 = 0, iq6 = 0, iqcnt = 0; iq5 = 0, iq6 = 0, iqcnt = 0;
#endif #endif
static int count;
struct hfc_multi *hc = dev_id; struct hfc_multi *hc = dev_id;
struct dchannel *dch; struct dchannel *dch;
u_char r_irq_statech, status, r_irq_misc, r_irq_oview; u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
...@@ -2637,6 +2637,7 @@ hfcmulti_interrupt(int intno, void *dev_id) ...@@ -2637,6 +2637,7 @@ hfcmulti_interrupt(int intno, void *dev_id)
iqcnt = 0; iqcnt = 0;
} }
#endif #endif
if (!r_irq_statech && if (!r_irq_statech &&
!(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA | !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
V_MISC_IRQSTA | V_FR_IRQSTA))) { V_MISC_IRQSTA | V_FR_IRQSTA))) {
...@@ -2657,6 +2658,7 @@ hfcmulti_interrupt(int intno, void *dev_id) ...@@ -2657,6 +2658,7 @@ hfcmulti_interrupt(int intno, void *dev_id)
if (status & V_MISC_IRQSTA) { if (status & V_MISC_IRQSTA) {
/* misc IRQ */ /* misc IRQ */
r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC); r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
if (r_irq_misc & V_STA_IRQ) { if (r_irq_misc & V_STA_IRQ) {
if (hc->type == 1) { if (hc->type == 1) {
/* state machine */ /* state machine */
...@@ -2691,23 +2693,20 @@ hfcmulti_interrupt(int intno, void *dev_id) ...@@ -2691,23 +2693,20 @@ hfcmulti_interrupt(int intno, void *dev_id)
plxsd_checksync(hc, 0); plxsd_checksync(hc, 0);
} }
} }
if (r_irq_misc & V_TI_IRQ) if (r_irq_misc & V_TI_IRQ) {
if (hc->iclock_on)
mISDN_clock_update(hc->iclock, poll, NULL);
handle_timer_irq(hc); handle_timer_irq(hc);
}
if (r_irq_misc & V_DTMF_IRQ) { if (r_irq_misc & V_DTMF_IRQ) {
/* -> DTMF IRQ */
hfcmulti_dtmf(hc); hfcmulti_dtmf(hc);
} }
/* TODO: REPLACE !!!! 125 us Interrupts are not acceptable */
if (r_irq_misc & V_IRQ_PROC) { if (r_irq_misc & V_IRQ_PROC) {
/* IRQ every 125us */ static int irq_proc_cnt;
count++; if (!irq_proc_cnt++)
/* generate 1kHz signal */ printk(KERN_WARNING "%s: got V_IRQ_PROC -"
if (count == 8) { " this should not happen\n", __func__);
if (hfc_interrupt)
hfc_interrupt();
count = 0;
}
} }
} }
...@@ -2954,7 +2953,7 @@ mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, ...@@ -2954,7 +2953,7 @@ mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
HFC_wait(hc); HFC_wait(hc);
/* tx silence */ /* tx silence */
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence); HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
((ch % 4) * 4)) << 1); ((ch % 4) * 4)) << 1);
HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1)); HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
...@@ -2969,7 +2968,7 @@ mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, ...@@ -2969,7 +2968,7 @@ mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
HFC_wait(hc); HFC_wait(hc);
/* tx silence */ /* tx silence */
HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence); HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
/* enable RX fifo */ /* enable RX fifo */
HFC_outb(hc, R_FIFO, (ch<<1)|1); HFC_outb(hc, R_FIFO, (ch<<1)|1);
HFC_wait(hc); HFC_wait(hc);
...@@ -3461,7 +3460,7 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) ...@@ -3461,7 +3460,7 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
switch (cq->op) { switch (cq->op) {
case MISDN_CTRL_GETOP: case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
| MISDN_CTRL_RX_OFF; | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
break; break;
case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */ case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
hc->chan[bch->slot].rx_off = !!cq->p1; hc->chan[bch->slot].rx_off = !!cq->p1;
...@@ -3476,6 +3475,12 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) ...@@ -3476,6 +3475,12 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n", printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
__func__, bch->nr, hc->chan[bch->slot].rx_off); __func__, bch->nr, hc->chan[bch->slot].rx_off);
break; break;
case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
if (debug & DEBUG_HFCMULTI_MSG)
printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
"off=%d)\n", __func__, bch->nr, !!cq->p1);
break;
case MISDN_CTRL_HW_FEATURES: /* fill features structure */ case MISDN_CTRL_HW_FEATURES: /* fill features structure */
if (debug & DEBUG_HFCMULTI_MSG) if (debug & DEBUG_HFCMULTI_MSG)
printk(KERN_DEBUG "%s: HW_FEATURE request\n", printk(KERN_DEBUG "%s: HW_FEATURE request\n",
...@@ -3992,6 +3997,7 @@ open_bchannel(struct hfc_multi *hc, struct dchannel *dch, ...@@ -3992,6 +3997,7 @@ open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
} }
if (test_and_set_bit(FLG_OPEN, &bch->Flags)) if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */ return -EBUSY; /* b-channel can be only open once */
test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
bch->ch.protocol = rq->protocol; bch->ch.protocol = rq->protocol;
hc->chan[ch].rx_off = 0; hc->chan[ch].rx_off = 0;
rq->ch = &bch->ch; rq->ch = &bch->ch;
...@@ -4081,6 +4087,15 @@ hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) ...@@ -4081,6 +4087,15 @@ hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
return err; return err;
} }
static int
clockctl(void *priv, int enable)
{
struct hfc_multi *hc = priv;
hc->iclock_on = enable;
return 0;
}
/* /*
* initialize the card * initialize the card
*/ */
...@@ -4495,10 +4510,14 @@ release_card(struct hfc_multi *hc) ...@@ -4495,10 +4510,14 @@ release_card(struct hfc_multi *hc)
printk(KERN_WARNING "%s: release card (%d) entered\n", printk(KERN_WARNING "%s: release card (%d) entered\n",
__func__, hc->id); __func__, hc->id);
/* unregister clock source */
if (hc->iclock)
mISDN_unregister_clock(hc->iclock);
/* disable irq */
spin_lock_irqsave(&hc->lock, flags); spin_lock_irqsave(&hc->lock, flags);
disable_hwirq(hc); disable_hwirq(hc);
spin_unlock_irqrestore(&hc->lock, flags); spin_unlock_irqrestore(&hc->lock, flags);
udelay(1000); udelay(1000);
/* dimm leds */ /* dimm leds */
...@@ -4699,7 +4718,7 @@ init_e1_port(struct hfc_multi *hc, struct hm_map *m) ...@@ -4699,7 +4718,7 @@ init_e1_port(struct hfc_multi *hc, struct hm_map *m)
} else } else
hc->chan[hc->dslot].jitter = 2; /* default */ hc->chan[hc->dslot].jitter = 2; /* default */
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1); snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
ret = mISDN_register_device(&dch->dev, name); ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
if (ret) if (ret)
goto free_chan; goto free_chan;
hc->created[0] = 1; hc->created[0] = 1;
...@@ -4807,9 +4826,9 @@ init_multi_port(struct hfc_multi *hc, int pt) ...@@ -4807,9 +4826,9 @@ init_multi_port(struct hfc_multi *hc, int pt)
test_and_set_bit(HFC_CFG_DIS_ECHANNEL, test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
&hc->chan[i + 2].cfg); &hc->chan[i + 2].cfg);
} }
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d", snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
hc->type, HFC_cnt + 1, pt + 1); hc->type, HFC_cnt + 1, pt + 1);
ret = mISDN_register_device(&dch->dev, name); ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
if (ret) if (ret)
goto free_chan; goto free_chan;
hc->created[pt] = 1; hc->created[pt] = 1;
...@@ -4828,6 +4847,7 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -4828,6 +4847,7 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
struct hfc_multi *hc; struct hfc_multi *hc;
u_long flags; u_long flags;
u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */ u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
int i;
if (HFC_cnt >= MAX_CARDS) { if (HFC_cnt >= MAX_CARDS) {
printk(KERN_ERR "too many cards (max=%d).\n", printk(KERN_ERR "too many cards (max=%d).\n",
...@@ -4861,11 +4881,11 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -4861,11 +4881,11 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
hc->id = HFC_cnt; hc->id = HFC_cnt;
hc->pcm = pcm[HFC_cnt]; hc->pcm = pcm[HFC_cnt];
hc->io_mode = iomode[HFC_cnt]; hc->io_mode = iomode[HFC_cnt];
if (dslot[HFC_cnt] < 0) { if (dslot[HFC_cnt] < 0 && hc->type == 1) {
hc->dslot = 0; hc->dslot = 0;
printk(KERN_INFO "HFC-E1 card has disabled D-channel, but " printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
"31 B-channels\n"); "31 B-channels\n");
} if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) { } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32 && hc->type == 1) {
hc->dslot = dslot[HFC_cnt]; hc->dslot = dslot[HFC_cnt];
printk(KERN_INFO "HFC-E1 card has alternating D-channel on " printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
"time slot %d\n", dslot[HFC_cnt]); "time slot %d\n", dslot[HFC_cnt]);
...@@ -4876,9 +4896,17 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -4876,9 +4896,17 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
hc->masterclk = -1; hc->masterclk = -1;
if (type[HFC_cnt] & 0x100) { if (type[HFC_cnt] & 0x100) {
test_and_set_bit(HFC_CHIP_ULAW, &hc->chip); test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
silence = 0xff; /* ulaw silence */ hc->silence = 0xff; /* ulaw silence */
} else } else
silence = 0x2a; /* alaw silence */ hc->silence = 0x2a; /* alaw silence */
if ((poll >> 1) > sizeof(hc->silence_data)) {
printk(KERN_ERR "HFCMULTI error: silence_data too small, "
"please fix\n");
return -EINVAL;
}
for (i = 0; i < (poll >> 1); i++)
hc->silence_data[i] = hc->silence;
if (!(type[HFC_cnt] & 0x200)) if (!(type[HFC_cnt] & 0x200))
test_and_set_bit(HFC_CHIP_DTMF, &hc->chip); test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
...@@ -4945,9 +4973,7 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -4945,9 +4973,7 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
switch (m->dip_type) { switch (m->dip_type) {
case DIP_4S: case DIP_4S:
/* /*
* get DIP Setting for beroNet 1S/2S/4S cards * Get DIP setting for beroNet 1S/2S/4S cards
* check if Port Jumper config matches
* module param 'protocol'
* DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) + * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
* GPI 19/23 (R_GPI_IN2)) * GPI 19/23 (R_GPI_IN2))
*/ */
...@@ -4966,9 +4992,8 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -4966,9 +4992,8 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
break; break;
case DIP_8S: case DIP_8S:
/* /*
* get DIP Setting for beroNet 8S0+ cards * Get DIP Setting for beroNet 8S0+ cards
* * Enable PCI auxbridge function
* enable PCI auxbridge function
*/ */
HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
/* prepare access to auxport */ /* prepare access to auxport */
...@@ -5003,6 +5028,10 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -5003,6 +5028,10 @@ hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
list_add_tail(&hc->list, &HFClist); list_add_tail(&hc->list, &HFClist);
spin_unlock_irqrestore(&HFClock, flags); spin_unlock_irqrestore(&HFClock, flags);
/* use as clock source */
if (clock == HFC_cnt + 1)
hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
/* initialize hardware */ /* initialize hardware */
ret_err = init_card(hc); ret_err = init_card(hc);
if (ret_err) { if (ret_err) {
...@@ -5137,8 +5166,7 @@ static struct pci_device_id hfmultipci_ids[] __devinitdata = { ...@@ -5137,8 +5166,7 @@ static struct pci_device_id hfmultipci_ids[] __devinitdata = {
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */ PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
/* IOB8ST Recording */
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */ PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
...@@ -5188,18 +5216,16 @@ hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -5188,18 +5216,16 @@ hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
struct hm_map *m = (struct hm_map *)ent->driver_data; struct hm_map *m = (struct hm_map *)ent->driver_data;
int ret; int ret;
if (m == NULL) { if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
if (ent->vendor == PCI_VENDOR_ID_CCD) ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
if (ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
ent->device == PCI_DEVICE_ID_CCD_HFC8S || ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
ent->device == PCI_DEVICE_ID_CCD_HFCE1) ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
printk(KERN_ERR printk(KERN_ERR
"unknown HFC multiport controller " "Unknown HFC multiport controller (vendor:%x device:%x "
"(vendor:%x device:%x subvendor:%x " "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
"subdevice:%x) Please contact the "
"driver maintainer for support.\n",
ent->vendor, ent->device,
ent->subvendor, ent->subdevice); ent->subvendor, ent->subdevice);
printk(KERN_ERR
"Please contact the driver maintainer for support.\n");
return -ENODEV; return -ENODEV;
} }
ret = hfcmulti_init(pdev, ent); ret = hfcmulti_init(pdev, ent);
...@@ -5222,22 +5248,9 @@ HFCmulti_cleanup(void) ...@@ -5222,22 +5248,9 @@ HFCmulti_cleanup(void)
{ {
struct hfc_multi *card, *next; struct hfc_multi *card, *next;
/* unload interrupt function symbol */ /* get rid of all devices of this driver */
if (hfc_interrupt)
symbol_put(ztdummy_extern_interrupt);
if (register_interrupt)
symbol_put(ztdummy_register_interrupt);
if (unregister_interrupt) {
if (interrupt_registered) {
interrupt_registered = 0;
unregister_interrupt();
}
symbol_put(ztdummy_unregister_interrupt);
}
list_for_each_entry_safe(card, next, &HFClist, list) list_for_each_entry_safe(card, next, &HFClist, list)
release_card(card); release_card(card);
/* get rid of all devices of this driver */
pci_unregister_driver(&hfcmultipci_driver); pci_unregister_driver(&hfcmultipci_driver);
} }
...@@ -5246,8 +5259,10 @@ HFCmulti_init(void) ...@@ -5246,8 +5259,10 @@ HFCmulti_init(void)
{ {
int err; int err;
printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
#ifdef IRQ_DEBUG #ifdef IRQ_DEBUG
printk(KERN_ERR "%s: IRQ_DEBUG IS ENABLED!\n", __func__); printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
#endif #endif
spin_lock_init(&HFClock); spin_lock_init(&HFClock);
...@@ -5256,22 +5271,11 @@ HFCmulti_init(void) ...@@ -5256,22 +5271,11 @@ HFCmulti_init(void)
if (debug & DEBUG_HFCMULTI_INIT) if (debug & DEBUG_HFCMULTI_INIT)
printk(KERN_DEBUG "%s: init entered\n", __func__); printk(KERN_DEBUG "%s: init entered\n", __func__);
hfc_interrupt = symbol_get(ztdummy_extern_interrupt);
register_interrupt = symbol_get(ztdummy_register_interrupt);
unregister_interrupt = symbol_get(ztdummy_unregister_interrupt);
printk(KERN_INFO "mISDN: HFC-multi driver %s\n",
hfcmulti_revision);
switch (poll) { switch (poll) {
case 0: case 0:
poll_timer = 6; poll_timer = 6;
poll = 128; poll = 128;
break; break;
/*
* wenn dieses break nochmal verschwindet,
* gibt es heisse ohren :-)
* "without the break you will get hot ears ???"
*/
case 8: case 8:
poll_timer = 2; poll_timer = 2;
break; break;
...@@ -5298,20 +5302,12 @@ HFCmulti_init(void) ...@@ -5298,20 +5302,12 @@ HFCmulti_init(void)
} }
if (!clock)
clock = 1;
err = pci_register_driver(&hfcmultipci_driver); err = pci_register_driver(&hfcmultipci_driver);
if (err < 0) { if (err < 0) {
printk(KERN_ERR "error registering pci driver: %x\n", err); printk(KERN_ERR "error registering pci driver: %x\n", err);
if (hfc_interrupt)
symbol_put(ztdummy_extern_interrupt);
if (register_interrupt)
symbol_put(ztdummy_register_interrupt);
if (unregister_interrupt) {
if (interrupt_registered) {
interrupt_registered = 0;
unregister_interrupt();
}
symbol_put(ztdummy_unregister_interrupt);
}
return err; return err;
} }
return 0; return 0;
......
...@@ -23,6 +23,25 @@ ...@@ -23,6 +23,25 @@
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* *
* Module options:
*
* debug:
* NOTE: only one poll value must be given for all cards
* See hfc_pci.h for debug flags.
*
* poll:
* NOTE: only one poll value must be given for all cards
* Give the number of samples for each fifo process.
* By default 128 is used. Decrease to reduce delay, increase to
* reduce cpu load. If unsure, don't mess with it!
* A value of 128 will use controller's interrupt. Other values will
* use kernel timer, because the controller will not allow lower values
* than 128.
* Also note that the value depends on the kernel timer frequency.
* If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
* If the kernel uses 100 Hz, steps of 80 samples are possible.
* If the kernel uses 300 Hz, steps of about 26 samples are possible.
*
*/ */
#include <linux/module.h> #include <linux/module.h>
...@@ -34,16 +53,16 @@ ...@@ -34,16 +53,16 @@
static const char *hfcpci_revision = "2.0"; static const char *hfcpci_revision = "2.0";
#define MAX_CARDS 8
static int HFC_cnt; static int HFC_cnt;
static uint debug; static uint debug;
static uint poll, tics;
struct timer_list hfc_tl;
u32 hfc_jiffies;
MODULE_AUTHOR("Karsten Keil"); MODULE_AUTHOR("Karsten Keil");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
module_param(debug, uint, 0); module_param(debug, uint, 0);
module_param(poll, uint, S_IRUGO | S_IWUSR);
static LIST_HEAD(HFClist);
static DEFINE_RWLOCK(HFClock);
enum { enum {
HFC_CCD_2BD0, HFC_CCD_2BD0,
...@@ -114,7 +133,6 @@ struct hfcPCI_hw { ...@@ -114,7 +133,6 @@ struct hfcPCI_hw {
struct hfc_pci { struct hfc_pci {
struct list_head list;
u_char subtype; u_char subtype;
u_char chanlimit; u_char chanlimit;
u_char initdone; u_char initdone;
...@@ -520,9 +538,9 @@ receive_dmsg(struct hfc_pci *hc) ...@@ -520,9 +538,9 @@ receive_dmsg(struct hfc_pci *hc)
} }
/* /*
* check for transparent receive data and read max one threshold size if avail * check for transparent receive data and read max one 'poll' size if avail
*/ */
static int static void
hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata) hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata)
{ {
__le16 *z1r, *z2r; __le16 *z1r, *z2r;
...@@ -534,17 +552,19 @@ hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata) ...@@ -534,17 +552,19 @@ hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata)
fcnt = le16_to_cpu(*z1r) - le16_to_cpu(*z2r); fcnt = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
if (!fcnt) if (!fcnt)
return 0; /* no data avail */ return; /* no data avail */
if (fcnt <= 0) if (fcnt <= 0)
fcnt += B_FIFO_SIZE; /* bytes actually buffered */ fcnt += B_FIFO_SIZE; /* bytes actually buffered */
if (fcnt > HFCPCI_BTRANS_THRESHOLD)
fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
new_z2 = le16_to_cpu(*z2r) + fcnt; /* new position in fifo */ new_z2 = le16_to_cpu(*z2r) + fcnt; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */ new_z2 -= B_FIFO_SIZE; /* buffer wrap */
if (fcnt > MAX_DATA_SIZE) { /* flush, if oversized */
*z2r = cpu_to_le16(new_z2); /* new position */
return;
}
bch->rx_skb = mI_alloc_skb(fcnt, GFP_ATOMIC); bch->rx_skb = mI_alloc_skb(fcnt, GFP_ATOMIC);
if (bch->rx_skb) { if (bch->rx_skb) {
ptr = skb_put(bch->rx_skb, fcnt); ptr = skb_put(bch->rx_skb, fcnt);
...@@ -569,7 +589,6 @@ hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata) ...@@ -569,7 +589,6 @@ hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *bz, u_char *bdata)
printk(KERN_WARNING "HFCPCI: receive out of memory\n"); printk(KERN_WARNING "HFCPCI: receive out of memory\n");
*z2r = cpu_to_le16(new_z2); /* new position */ *z2r = cpu_to_le16(new_z2); /* new position */
return 1;
} }
/* /*
...@@ -580,12 +599,11 @@ main_rec_hfcpci(struct bchannel *bch) ...@@ -580,12 +599,11 @@ main_rec_hfcpci(struct bchannel *bch)
{ {
struct hfc_pci *hc = bch->hw; struct hfc_pci *hc = bch->hw;
int rcnt, real_fifo; int rcnt, real_fifo;
int receive, count = 5; int receive = 0, count = 5;
struct bzfifo *bz; struct bzfifo *bz;
u_char *bdata; u_char *bdata;
struct zt *zp; struct zt *zp;
if ((bch->nr & 2) && (!hc->hw.bswapped)) { if ((bch->nr & 2) && (!hc->hw.bswapped)) {
bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2; bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
...@@ -625,9 +643,10 @@ main_rec_hfcpci(struct bchannel *bch) ...@@ -625,9 +643,10 @@ main_rec_hfcpci(struct bchannel *bch)
receive = 1; receive = 1;
else else
receive = 0; receive = 0;
} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
receive = hfcpci_empty_fifo_trans(bch, bz, bdata); hfcpci_empty_fifo_trans(bch, bz, bdata);
else return;
} else
receive = 0; receive = 0;
if (count && receive) if (count && receive)
goto Begin; goto Begin;
...@@ -751,11 +770,41 @@ hfcpci_fill_fifo(struct bchannel *bch) ...@@ -751,11 +770,41 @@ hfcpci_fill_fifo(struct bchannel *bch)
/* fcnt contains available bytes in fifo */ /* fcnt contains available bytes in fifo */
fcnt = B_FIFO_SIZE - fcnt; fcnt = B_FIFO_SIZE - fcnt;
/* remaining bytes to send (bytes in fifo) */ /* remaining bytes to send (bytes in fifo) */
/* "fill fifo if empty" feature */
if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
/* printk(KERN_DEBUG "%s: buffer empty, so we have "
"underrun\n", __func__); */
/* fill buffer, to prevent future underrun */
count = HFCPCI_FILLEMPTY;
new_z1 = le16_to_cpu(*z1t) + count;
/* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
/* end of fifo */
if (bch->debug & DEBUG_HW_BFIFO)
printk(KERN_DEBUG "hfcpci_FFt fillempty "
"fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
fcnt, maxlen, new_z1, dst);
fcnt += count;
if (maxlen > count)
maxlen = count; /* limit size */
memset(dst, 0x2a, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
memset(dst, 0x2a, count);
}
*z1t = cpu_to_le16(new_z1); /* now send data */
}
next_t_frame: next_t_frame:
count = bch->tx_skb->len - bch->tx_idx; count = bch->tx_skb->len - bch->tx_idx;
/* maximum fill shall be HFCPCI_BTRANS_MAX */ /* maximum fill shall be poll*2 */
if (count > HFCPCI_BTRANS_MAX - fcnt) if (count > (poll << 1) - fcnt)
count = HFCPCI_BTRANS_MAX - fcnt; count = (poll << 1) - fcnt;
if (count <= 0) if (count <= 0)
return; return;
/* data is suitable for fifo */ /* data is suitable for fifo */
...@@ -1135,37 +1184,37 @@ hfcpci_int(int intno, void *dev_id) ...@@ -1135,37 +1184,37 @@ hfcpci_int(int intno, void *dev_id)
val &= ~0x80; val &= ~0x80;
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
} }
if (val & 0x08) { if (val & 0x08) { /* B1 rx */
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch) if (bch)
main_rec_hfcpci(bch); main_rec_hfcpci(bch);
else if (hc->dch.debug) else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n"); printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
} }
if (val & 0x10) { if (val & 0x10) { /* B2 rx */
bch = Sel_BCS(hc, 2); bch = Sel_BCS(hc, 2);
if (bch) if (bch)
main_rec_hfcpci(bch); main_rec_hfcpci(bch);
else if (hc->dch.debug) else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n"); printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
} }
if (val & 0x01) { if (val & 0x01) { /* B1 tx */
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch) if (bch)
tx_birq(bch); tx_birq(bch);
else if (hc->dch.debug) else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n"); printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
} }
if (val & 0x02) { if (val & 0x02) { /* B2 tx */
bch = Sel_BCS(hc, 2); bch = Sel_BCS(hc, 2);
if (bch) if (bch)
tx_birq(bch); tx_birq(bch);
else if (hc->dch.debug) else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n"); printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
} }
if (val & 0x20) if (val & 0x20) /* D rx */
receive_dmsg(hc); receive_dmsg(hc);
if (val & 0x04) { /* dframe transmitted */ if (val & 0x04) { /* D tx */
if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags)) if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
del_timer(&hc->dch.timer); del_timer(&hc->dch.timer);
tx_dirq(&hc->dch); tx_dirq(&hc->dch);
...@@ -1283,12 +1332,14 @@ mode_hfcpci(struct bchannel *bch, int bc, int protocol) ...@@ -1283,12 +1332,14 @@ mode_hfcpci(struct bchannel *bch, int bc, int protocol)
} }
if (fifo2 & 2) { if (fifo2 & 2) {
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
if (!tics)
hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS + hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
HFCPCI_INTS_B2REC); HFCPCI_INTS_B2REC);
hc->hw.ctmt |= 2; hc->hw.ctmt |= 2;
hc->hw.conn &= ~0x18; hc->hw.conn &= ~0x18;
} else { } else {
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
if (!tics)
hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS + hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
HFCPCI_INTS_B1REC); HFCPCI_INTS_B1REC);
hc->hw.ctmt |= 1; hc->hw.ctmt |= 1;
...@@ -1398,6 +1449,7 @@ set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) ...@@ -1398,6 +1449,7 @@ set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
if (chan & 2) { if (chan & 2) {
hc->hw.sctrl_r |= SCTRL_B2_ENA; hc->hw.sctrl_r |= SCTRL_B2_ENA;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
if (!tics)
hc->hw.int_m1 |= HFCPCI_INTS_B2REC; hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
hc->hw.ctmt |= 2; hc->hw.ctmt |= 2;
hc->hw.conn &= ~0x18; hc->hw.conn &= ~0x18;
...@@ -1407,6 +1459,7 @@ set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) ...@@ -1407,6 +1459,7 @@ set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
} else { } else {
hc->hw.sctrl_r |= SCTRL_B1_ENA; hc->hw.sctrl_r |= SCTRL_B1_ENA;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
if (!tics)
hc->hw.int_m1 |= HFCPCI_INTS_B1REC; hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
hc->hw.ctmt |= 1; hc->hw.ctmt |= 1;
hc->hw.conn &= ~0x03; hc->hw.conn &= ~0x03;
...@@ -1485,7 +1538,13 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) ...@@ -1485,7 +1538,13 @@ channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
switch (cq->op) { switch (cq->op) {
case MISDN_CTRL_GETOP: case MISDN_CTRL_GETOP:
cq->op = 0; cq->op = MISDN_CTRL_FILL_EMPTY;
break;
case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
"off=%d)\n", __func__, bch->nr, !!cq->p1);
break; break;
default: default:
printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
...@@ -1859,6 +1918,10 @@ open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, ...@@ -1859,6 +1918,10 @@ open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
hc->dch.dev.id, __builtin_return_address(0)); hc->dch.dev.id, __builtin_return_address(0));
if (rq->protocol == ISDN_P_NONE) if (rq->protocol == ISDN_P_NONE)
return -EINVAL; return -EINVAL;
if (rq->adr.channel == 1) {
/* TODO: E-Channel */
return -EINVAL;
}
if (!hc->initdone) { if (!hc->initdone) {
if (rq->protocol == ISDN_P_TE_S0) { if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hc->dch, hfc_l1callback); err = create_l1(&hc->dch, hfc_l1callback);
...@@ -1874,6 +1937,11 @@ open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, ...@@ -1874,6 +1937,11 @@ open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
if (rq->protocol != ch->protocol) { if (rq->protocol != ch->protocol) {
if (hc->hw.protocol == ISDN_P_TE_S0) if (hc->hw.protocol == ISDN_P_TE_S0)
l1_event(hc->dch.l1, CLOSE_CHANNEL); l1_event(hc->dch.l1, CLOSE_CHANNEL);
if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hc->dch, hfc_l1callback);
if (err)
return err;
}
hc->hw.protocol = rq->protocol; hc->hw.protocol = rq->protocol;
ch->protocol = rq->protocol; ch->protocol = rq->protocol;
hfcpci_setmode(hc); hfcpci_setmode(hc);
...@@ -1903,6 +1971,7 @@ open_bchannel(struct hfc_pci *hc, struct channel_req *rq) ...@@ -1903,6 +1971,7 @@ open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
bch = &hc->bch[rq->adr.channel - 1]; bch = &hc->bch[rq->adr.channel - 1];
if (test_and_set_bit(FLG_OPEN, &bch->Flags)) if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */ return -EBUSY; /* b-channel can be only open once */
test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
bch->ch.protocol = rq->protocol; bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch; /* TODO: E-channel */ rq->ch = &bch->ch; /* TODO: E-channel */
if (!try_module_get(THIS_MODULE)) if (!try_module_get(THIS_MODULE))
...@@ -1928,7 +1997,8 @@ hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) ...@@ -1928,7 +1997,8 @@ hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
switch (cmd) { switch (cmd) {
case OPEN_CHANNEL: case OPEN_CHANNEL:
rq = arg; rq = arg;
if (rq->adr.channel == 0) if ((rq->protocol == ISDN_P_TE_S0) ||
(rq->protocol == ISDN_P_NT_S0))
err = open_dchannel(hc, ch, rq); err = open_dchannel(hc, ch, rq);
else else
err = open_bchannel(hc, rq); err = open_bchannel(hc, rq);
...@@ -2027,7 +2097,6 @@ release_card(struct hfc_pci *hc) { ...@@ -2027,7 +2097,6 @@ release_card(struct hfc_pci *hc) {
mISDN_freebchannel(&hc->bch[1]); mISDN_freebchannel(&hc->bch[1]);
mISDN_freebchannel(&hc->bch[0]); mISDN_freebchannel(&hc->bch[0]);
mISDN_freedchannel(&hc->dch); mISDN_freedchannel(&hc->dch);
list_del(&hc->list);
pci_set_drvdata(hc->pdev, NULL); pci_set_drvdata(hc->pdev, NULL);
kfree(hc); kfree(hc);
} }
...@@ -2037,12 +2106,8 @@ setup_card(struct hfc_pci *card) ...@@ -2037,12 +2106,8 @@ setup_card(struct hfc_pci *card)
{ {
int err = -EINVAL; int err = -EINVAL;
u_int i; u_int i;
u_long flags;
char name[MISDN_MAX_IDLEN]; char name[MISDN_MAX_IDLEN];
if (HFC_cnt >= MAX_CARDS)
return -EINVAL; /* maybe better value */
card->dch.debug = debug; card->dch.debug = debug;
spin_lock_init(&card->lock); spin_lock_init(&card->lock);
mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state); mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
...@@ -2068,13 +2133,10 @@ setup_card(struct hfc_pci *card) ...@@ -2068,13 +2133,10 @@ setup_card(struct hfc_pci *card)
if (err) if (err)
goto error; goto error;
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1); snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
err = mISDN_register_device(&card->dch.dev, name); err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
if (err) if (err)
goto error; goto error;
HFC_cnt++; HFC_cnt++;
write_lock_irqsave(&HFClock, flags);
list_add_tail(&card->list, &HFClist);
write_unlock_irqrestore(&HFClock, flags);
printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt); printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
return 0; return 0;
error: error:
...@@ -2210,15 +2272,12 @@ static void __devexit ...@@ -2210,15 +2272,12 @@ static void __devexit
hfc_remove_pci(struct pci_dev *pdev) hfc_remove_pci(struct pci_dev *pdev)
{ {
struct hfc_pci *card = pci_get_drvdata(pdev); struct hfc_pci *card = pci_get_drvdata(pdev);
u_long flags;
if (card) { if (card)
write_lock_irqsave(&HFClock, flags);
release_card(card); release_card(card);
write_unlock_irqrestore(&HFClock, flags); else
} else
if (debug) if (debug)
printk(KERN_WARNING "%s: drvdata allready removed\n", printk(KERN_WARNING "%s: drvdata already removed\n",
__func__); __func__);
} }
...@@ -2230,25 +2289,97 @@ static struct pci_driver hfc_driver = { ...@@ -2230,25 +2289,97 @@ static struct pci_driver hfc_driver = {
.id_table = hfc_ids, .id_table = hfc_ids,
}; };
static int
_hfcpci_softirq(struct device *dev, void *arg)
{
struct hfc_pci *hc = dev_get_drvdata(dev);
struct bchannel *bch;
if (hc == NULL)
return 0;
if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
spin_lock(&hc->lock);
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
main_rec_hfcpci(bch);
tx_birq(bch);
}
bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
main_rec_hfcpci(bch);
tx_birq(bch);
}
spin_unlock(&hc->lock);
}
return 0;
}
static void
hfcpci_softirq(void *arg)
{
(void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
_hfcpci_softirq);
/* if next event would be in the past ... */
if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
hfc_jiffies = jiffies + 1;
else
hfc_jiffies += tics;
hfc_tl.expires = hfc_jiffies;
add_timer(&hfc_tl);
}
static int __init static int __init
HFC_init(void) HFC_init(void)
{ {
int err; int err;
if (!poll)
poll = HFCPCI_BTRANS_THRESHOLD;
if (poll != HFCPCI_BTRANS_THRESHOLD) {
tics = (poll * HZ) / 8000;
if (tics < 1)
tics = 1;
poll = (tics * 8000) / HZ;
if (poll > 256 || poll < 8) {
printk(KERN_ERR "%s: Wrong poll value %d not in range "
"of 8..256.\n", __func__, poll);
err = -EINVAL;
return err;
}
}
if (poll != HFCPCI_BTRANS_THRESHOLD) {
printk(KERN_INFO "%s: Using alternative poll value of %d\n",
__func__, poll);
hfc_tl.function = (void *)hfcpci_softirq;
hfc_tl.data = 0;
init_timer(&hfc_tl);
hfc_tl.expires = jiffies + tics;
hfc_jiffies = hfc_tl.expires;
add_timer(&hfc_tl);
} else
tics = 0; /* indicate the use of controller's timer */
err = pci_register_driver(&hfc_driver); err = pci_register_driver(&hfc_driver);
if (err) {
if (timer_pending(&hfc_tl))
del_timer(&hfc_tl);
}
return err; return err;
} }
static void __exit static void __exit
HFC_cleanup(void) HFC_cleanup(void)
{ {
struct hfc_pci *card, *next; if (timer_pending(&hfc_tl))
del_timer(&hfc_tl);
list_for_each_entry_safe(card, next, &HFClist, list) {
release_card(card);
}
pci_unregister_driver(&hfc_driver); pci_unregister_driver(&hfc_driver);
} }
module_init(HFC_init); module_init(HFC_init);
module_exit(HFC_cleanup); module_exit(HFC_cleanup);
MODULE_DEVICE_TABLE(pci, hfc_ids);
/* hfcsusb.c
* mISDN driver for Colognechip HFC-S USB chip
*
* Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
* Copyright 2008 by Martin Bachem (info@bachem-it.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* module params
* debug=<n>, default=0, with n=0xHHHHGGGG
* H - l1 driver flags described in hfcsusb.h
* G - common mISDN debug flags described at mISDNhw.h
*
* poll=<n>, default 128
* n : burst size of PH_DATA_IND at transparent rx data
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/usb.h>
#include <linux/mISDNhw.h>
#include "hfcsusb.h"
const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
static unsigned int debug;
static int poll = DEFAULT_TRANSP_BURST_SZ;
static LIST_HEAD(HFClist);
static DEFINE_RWLOCK(HFClock);
MODULE_AUTHOR("Martin Bachem");
MODULE_LICENSE("GPL");
module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(poll, int, 0);
static int hfcsusb_cnt;
/* some function prototypes */
static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
static void release_hw(struct hfcsusb *hw);
static void reset_hfcsusb(struct hfcsusb *hw);
static void setPortMode(struct hfcsusb *hw);
static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
static void deactivate_bchannel(struct bchannel *bch);
static void hfcsusb_ph_info(struct hfcsusb *hw);
/* start next background transfer for control channel */
static void
ctrl_start_transfer(struct hfcsusb *hw)
{
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
if (hw->ctrl_cnt) {
hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
hw->ctrl_urb->transfer_buffer = NULL;
hw->ctrl_urb->transfer_buffer_length = 0;
hw->ctrl_write.wIndex =
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
hw->ctrl_write.wValue =
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
}
}
/*
* queue a control transfer request to write HFC-S USB
* chip register using CTRL resuest queue
*/
static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
{
struct ctrl_buf *buf;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
hw->name, __func__, reg, val);
spin_lock(&hw->ctrl_lock);
if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE)
return 1;
buf = &hw->ctrl_buff[hw->ctrl_in_idx];
buf->hfcs_reg = reg;
buf->reg_val = val;
if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
hw->ctrl_in_idx = 0;
if (++hw->ctrl_cnt == 1)
ctrl_start_transfer(hw);
spin_unlock(&hw->ctrl_lock);
return 0;
}
/* control completion routine handling background control cmds */
static void
ctrl_complete(struct urb *urb)
{
struct hfcsusb *hw = (struct hfcsusb *) urb->context;
struct ctrl_buf *buf;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
urb->dev = hw->dev;
if (hw->ctrl_cnt) {
buf = &hw->ctrl_buff[hw->ctrl_out_idx];
hw->ctrl_cnt--; /* decrement actual count */
if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
hw->ctrl_out_idx = 0; /* pointer wrap */
ctrl_start_transfer(hw); /* start next transfer */
}
}
/* handle LED bits */
static void
set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
{
if (set_on) {
if (led_bits < 0)
hw->led_state &= ~abs(led_bits);
else
hw->led_state |= led_bits;
} else {
if (led_bits < 0)
hw->led_state |= abs(led_bits);
else
hw->led_state &= ~led_bits;
}
}
/* handle LED requests */
static void
handle_led(struct hfcsusb *hw, int event)
{
struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
hfcsusb_idtab[hw->vend_idx].driver_info;
__u8 tmpled;
if (driver_info->led_scheme == LED_OFF)
return;
tmpled = hw->led_state;
switch (event) {
case LED_POWER_ON:
set_led_bit(hw, driver_info->led_bits[0], 1);
set_led_bit(hw, driver_info->led_bits[1], 0);
set_led_bit(hw, driver_info->led_bits[2], 0);
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
case LED_POWER_OFF:
set_led_bit(hw, driver_info->led_bits[0], 0);
set_led_bit(hw, driver_info->led_bits[1], 0);
set_led_bit(hw, driver_info->led_bits[2], 0);
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
case LED_S0_ON:
set_led_bit(hw, driver_info->led_bits[1], 1);
break;
case LED_S0_OFF:
set_led_bit(hw, driver_info->led_bits[1], 0);
break;
case LED_B1_ON:
set_led_bit(hw, driver_info->led_bits[2], 1);
break;
case LED_B1_OFF:
set_led_bit(hw, driver_info->led_bits[2], 0);
break;
case LED_B2_ON:
set_led_bit(hw, driver_info->led_bits[3], 1);
break;
case LED_B2_OFF:
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
}
if (hw->led_state != tmpled) {
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
hw->name, __func__,
HFCUSB_P_DATA, hw->led_state);
write_reg(hw, HFCUSB_P_DATA, hw->led_state);
}
}
/*
* Layer2 -> Layer 1 Bchannel data
*/
static int
hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct hfcsusb *hw = bch->hw;
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
u_long flags;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(&hw->lock, flags);
ret = bchannel_senddata(bch, skb);
spin_unlock_irqrestore(&hw->lock, flags);
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
hw->name, __func__, ret);
if (ret > 0) {
/*
* other l1 drivers don't send early confirms on
* transp data, but hfcsusb does because tx_next
* skb is needed in tx_iso_complete()
*/
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
ret = 0;
}
return ret;
case PH_ACTIVATE_REQ:
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
hfcsusb_start_endpoint(hw, bch->nr);
ret = hfcsusb_setup_bch(bch, ch->protocol);
} else
ret = 0;
if (!ret)
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
break;
case PH_DEACTIVATE_REQ:
deactivate_bchannel(bch);
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
ret = 0;
break;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* send full D/B channel status information
* as MPH_INFORMATION_IND
*/
static void
hfcsusb_ph_info(struct hfcsusb *hw)
{
struct ph_info *phi;
struct dchannel *dch = &hw->dch;
int i;
phi = kzalloc(sizeof(struct ph_info) +
dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
phi->dch.ch.protocol = hw->protocol;
phi->dch.ch.Flags = dch->Flags;
phi->dch.state = dch->state;
phi->dch.num_bch = dch->dev.nrbchan;
for (i = 0; i < dch->dev.nrbchan; i++) {
phi->bch[i].protocol = hw->bch[i].ch.protocol;
phi->bch[i].Flags = hw->bch[i].Flags;
}
_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
sizeof(struct ph_info_dch) + dch->dev.nrbchan *
sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
}
/*
* Layer2 -> Layer 1 Dchannel data
*/
static int
hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct mISDNhead *hh = mISDN_HEAD_P(skb);
struct hfcsusb *hw = dch->hw;
int ret = -EINVAL;
u_long flags;
switch (hh->prim) {
case PH_DATA_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
hw->name, __func__);
spin_lock_irqsave(&hw->lock, flags);
ret = dchannel_senddata(dch, skb);
spin_unlock_irqrestore(&hw->lock, flags);
if (ret > 0) {
ret = 0;
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
}
break;
case PH_ACTIVATE_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
hw->name, __func__,
(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
if (hw->protocol == ISDN_P_NT_S0) {
ret = 0;
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
_queue_data(&dch->dev.D,
PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_ATOMIC);
} else {
hfcsusb_ph_command(hw,
HFC_L1_ACTIVATE_NT);
test_and_set_bit(FLG_L2_ACTIVATED,
&dch->Flags);
}
} else {
hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
ret = l1_event(dch->l1, hh->prim);
}
break;
case PH_DEACTIVATE_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
hw->name, __func__);
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
if (hw->protocol == ISDN_P_NT_S0) {
hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
spin_lock_irqsave(&hw->lock, flags);
skb_queue_purge(&dch->squeue);
if (dch->tx_skb) {
dev_kfree_skb(dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
dev_kfree_skb(dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
spin_unlock_irqrestore(&hw->lock, flags);
#ifdef FIXME
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
#endif
ret = 0;
} else
ret = l1_event(dch->l1, hh->prim);
break;
case MPH_INFORMATION_REQ:
hfcsusb_ph_info(hw);
ret = 0;
break;
}
return ret;
}
/*
* Layer 1 callback function
*/
static int
hfc_l1callback(struct dchannel *dch, u_int cmd)
{
struct hfcsusb *hw = dch->hw;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
hw->name, __func__, cmd);
switch (cmd) {
case INFO3_P8:
case INFO3_P10:
case HW_RESET_REQ:
case HW_POWERUP_REQ:
break;
case HW_DEACT_REQ:
skb_queue_purge(&dch->squeue);
if (dch->tx_skb) {
dev_kfree_skb(dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
dev_kfree_skb(dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
break;
case PH_ACTIVATE_IND:
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
case PH_DEACTIVATE_IND:
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
hw->name, __func__, cmd);
return -1;
}
hfcsusb_ph_info(hw);
return 0;
}
static int
open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
struct channel_req *rq)
{
int err = 0;
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
__builtin_return_address(0));
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
hfcsusb_start_endpoint(hw, HFC_CHAN_D);
/* E-Channel logging */
if (rq->adr.channel == 1) {
if (hw->fifos[HFCUSB_PCM_RX].pipe) {
hfcsusb_start_endpoint(hw, HFC_CHAN_E);
set_bit(FLG_ACTIVE, &hw->ech.Flags);
_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
} else
return -EINVAL;
}
if (!hw->initdone) {
hw->protocol = rq->protocol;
if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hw->dch, hfc_l1callback);
if (err)
return err;
}
setPortMode(hw);
ch->protocol = rq->protocol;
hw->initdone = 1;
} else {
if (rq->protocol != ch->protocol)
return -EPROTONOSUPPORT;
}
if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
rq->ch = ch;
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s: %s: cannot get module\n",
hw->name, __func__);
return 0;
}
static int
open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
{
struct bchannel *bch;
if (rq->adr.channel > 2)
return -EINVAL;
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s B%i\n",
hw->name, __func__, rq->adr.channel);
bch = &hw->bch[rq->adr.channel - 1];
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */
test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch;
/* start USB endpoint for bchannel */
if (rq->adr.channel == 1)
hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
else
hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s: %s:cannot get module\n",
hw->name, __func__);
return 0;
}
static int
channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
{
int ret = 0;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
hw->name, __func__, (cq->op), (cq->channel));
switch (cq->op) {
case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
MISDN_CTRL_DISCONNECT;
break;
default:
printk(KERN_WARNING "%s: %s: unknown Op %x\n",
hw->name, __func__, cq->op);
ret = -EINVAL;
break;
}
return ret;
}
/*
* device control function
*/
static int
hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct hfcsusb *hw = dch->hw;
struct channel_req *rq;
int err = 0;
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
hw->name, __func__, cmd, arg);
switch (cmd) {
case OPEN_CHANNEL:
rq = arg;
if ((rq->protocol == ISDN_P_TE_S0) ||
(rq->protocol == ISDN_P_NT_S0))
err = open_dchannel(hw, ch, rq);
else
err = open_bchannel(hw, rq);
if (!err)
hw->open++;
break;
case CLOSE_CHANNEL:
hw->open--;
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG
"%s: %s: dev(%d) close from %p (open %d)\n",
hw->name, __func__, hw->dch.dev.id,
__builtin_return_address(0), hw->open);
if (!hw->open) {
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
if (hw->fifos[HFCUSB_PCM_RX].pipe)
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
handle_led(hw, LED_POWER_ON);
}
module_put(THIS_MODULE);
break;
case CONTROL_CHANNEL:
err = channel_ctrl(hw, arg);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: unknown command %x\n",
hw->name, __func__, cmd);
return -EINVAL;
}
return err;
}
/*
* S0 TE state change event handler
*/
static void
ph_state_te(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (debug & DEBUG_HW) {
if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
HFC_TE_LAYER1_STATES[dch->state]);
else
printk(KERN_DEBUG "%s: %s: TE F%d\n",
hw->name, __func__, dch->state);
}
switch (dch->state) {
case 0:
l1_event(dch->l1, HW_RESET_IND);
break;
case 3:
l1_event(dch->l1, HW_DEACT_IND);
break;
case 5:
case 8:
l1_event(dch->l1, ANYSIGNAL);
break;
case 6:
l1_event(dch->l1, INFO2);
break;
case 7:
l1_event(dch->l1, INFO4_P8);
break;
}
if (dch->state == 7)
handle_led(hw, LED_S0_ON);
else
handle_led(hw, LED_S0_OFF);
}
/*
* S0 NT state change event handler
*/
static void
ph_state_nt(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (debug & DEBUG_HW) {
if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
printk(KERN_DEBUG "%s: %s: %s\n",
hw->name, __func__,
HFC_NT_LAYER1_STATES[dch->state]);
else
printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
hw->name, __func__, dch->state);
}
switch (dch->state) {
case (1):
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
handle_led(hw, LED_S0_OFF);
break;
case (2):
if (hw->nt_timer < 0) {
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
} else {
hw->timers |= NT_ACTIVATION_TIMER;
hw->nt_timer = NT_T1_COUNT;
/* allow G2 -> G3 transition */
write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
}
break;
case (3):
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
handle_led(hw, LED_S0_ON);
break;
case (4):
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
break;
default:
break;
}
hfcsusb_ph_info(hw);
}
static void
ph_state(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (hw->protocol == ISDN_P_NT_S0)
ph_state_nt(dch);
else if (hw->protocol == ISDN_P_TE_S0)
ph_state_te(dch);
}
/*
* disable/enable BChannel for desired protocoll
*/
static int
hfcsusb_setup_bch(struct bchannel *bch, int protocol)
{
struct hfcsusb *hw = bch->hw;
__u8 conhdlc, sctrl, sctrl_r;
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
hw->name, __func__, bch->state, protocol,
bch->nr);
/* setup val for CON_HDLC */
conhdlc = 0;
if (protocol > ISDN_P_NONE)
conhdlc = 8; /* enable FIFO */
switch (protocol) {
case (-1): /* used for init */
bch->state = -1;
/* fall trough */
case (ISDN_P_NONE):
if (bch->state == ISDN_P_NONE)
return 0; /* already in idle state */
bch->state = ISDN_P_NONE;
clear_bit(FLG_HDLC, &bch->Flags);
clear_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_RAW):
conhdlc |= 2;
bch->state = protocol;
set_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_HDLC):
bch->state = protocol;
set_bit(FLG_HDLC, &bch->Flags);
break;
default:
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: prot not known %x\n",
hw->name, __func__, protocol);
return -ENOPROTOOPT;
}
if (protocol >= ISDN_P_NONE) {
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
write_reg(hw, HFCUSB_INC_RES_F, 2);
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
write_reg(hw, HFCUSB_INC_RES_F, 2);
sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
sctrl_r = 0x0;
if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
sctrl |= 1;
sctrl_r |= 1;
}
if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
sctrl |= 2;
sctrl_r |= 2;
}
write_reg(hw, HFCUSB_SCTRL, sctrl);
write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
if (protocol > ISDN_P_NONE)
handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
else
handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
LED_B2_OFF);
}
hfcsusb_ph_info(hw);
return 0;
}
static void
hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
{
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: %x\n",
hw->name, __func__, command);
switch (command) {
case HFC_L1_ACTIVATE_TE:
/* force sending sending INFO1 */
write_reg(hw, HFCUSB_STATES, 0x14);
/* start l1 activation */
write_reg(hw, HFCUSB_STATES, 0x04);
break;
case HFC_L1_FORCE_DEACTIVATE_TE:
write_reg(hw, HFCUSB_STATES, 0x10);
write_reg(hw, HFCUSB_STATES, 0x03);
break;
case HFC_L1_ACTIVATE_NT:
if (hw->dch.state == 3)
_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
else
write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
break;
case HFC_L1_DEACTIVATE_NT:
write_reg(hw, HFCUSB_STATES,
HFCUSB_DO_ACTION);
break;
}
}
/*
* Layer 1 B-channel hardware access
*/
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
int ret = 0;
switch (cq->op) {
case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_FILL_EMPTY;
break;
case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
"off=%d)\n", __func__, bch->nr, !!cq->p1);
break;
default:
printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
ret = -EINVAL;
break;
}
return ret;
}
/* collect data from incoming interrupt or isochron USB data */
static void
hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
int finish)
{
struct hfcsusb *hw = fifo->hw;
struct sk_buff *rx_skb = NULL;
int maxlen = 0;
int fifon = fifo->fifonum;
int i;
int hdlc = 0;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
"dch(%p) bch(%p) ech(%p)\n",
hw->name, __func__, fifon, len,
fifo->dch, fifo->bch, fifo->ech);
if (!len)
return;
if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
printk(KERN_DEBUG "%s: %s: undefined channel\n",
hw->name, __func__);
return;
}
spin_lock(&hw->lock);
if (fifo->dch) {
rx_skb = fifo->dch->rx_skb;
maxlen = fifo->dch->maxlen;
hdlc = 1;
}
if (fifo->bch) {
rx_skb = fifo->bch->rx_skb;
maxlen = fifo->bch->maxlen;
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
}
if (fifo->ech) {
rx_skb = fifo->ech->rx_skb;
maxlen = fifo->ech->maxlen;
hdlc = 1;
}
if (!rx_skb) {
rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
if (rx_skb) {
if (fifo->dch)
fifo->dch->rx_skb = rx_skb;
if (fifo->bch)
fifo->bch->rx_skb = rx_skb;
if (fifo->ech)
fifo->ech->rx_skb = rx_skb;
skb_trim(rx_skb, 0);
} else {
printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
hw->name, __func__);
spin_unlock(&hw->lock);
return;
}
}
if (fifo->dch || fifo->ech) {
/* D/E-Channel SKB range check */
if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
"for fifo(%d) HFCUSB_D_RX\n",
hw->name, __func__, fifon);
skb_trim(rx_skb, 0);
spin_unlock(&hw->lock);
return;
}
} else if (fifo->bch) {
/* B-Channel SKB range check */
if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
"for fifo(%d) HFCUSB_B_RX\n",
hw->name, __func__, fifon);
skb_trim(rx_skb, 0);
spin_unlock(&hw->lock);
return;
}
}
memcpy(skb_put(rx_skb, len), data, len);
if (hdlc) {
/* we have a complete hdlc packet */
if (finish) {
if ((rx_skb->len > 3) &&
(!(rx_skb->data[rx_skb->len - 1]))) {
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG "%s: %s: fifon(%i)"
" new RX len(%i): ",
hw->name, __func__, fifon,
rx_skb->len);
i = 0;
while (i < rx_skb->len)
printk("%02x ",
rx_skb->data[i++]);
printk("\n");
}
/* remove CRC & status */
skb_trim(rx_skb, rx_skb->len - 3);
if (fifo->dch)
recv_Dchannel(fifo->dch);
if (fifo->bch)
recv_Bchannel(fifo->bch);
if (fifo->ech)
recv_Echannel(fifo->ech,
&hw->dch);
} else {
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG
"%s: CRC or minlen ERROR fifon(%i) "
"RX len(%i): ",
hw->name, fifon, rx_skb->len);
i = 0;
while (i < rx_skb->len)
printk("%02x ",
rx_skb->data[i++]);
printk("\n");
}
skb_trim(rx_skb, 0);
}
}
} else {
/* deliver transparent data to layer2 */
if (rx_skb->len >= poll)
recv_Bchannel(fifo->bch);
}
spin_unlock(&hw->lock);
}
void
fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
void *buf, int num_packets, int packet_size, int interval,
usb_complete_t complete, void *context)
{
int k;
usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
complete, context);
urb->number_of_packets = num_packets;
urb->transfer_flags = URB_ISO_ASAP;
urb->actual_length = 0;
urb->interval = interval;
for (k = 0; k < num_packets; k++) {
urb->iso_frame_desc[k].offset = packet_size * k;
urb->iso_frame_desc[k].length = packet_size;
urb->iso_frame_desc[k].actual_length = 0;
}
}
/* receive completion routine for all ISO tx fifos */
static void
rx_iso_complete(struct urb *urb)
{
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
struct hfcsusb *hw = fifo->hw;
int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
status, iso_status, i;
__u8 *buf;
static __u8 eof[8];
__u8 s0_state;
fifon = fifo->fifonum;
status = urb->status;
spin_lock(&hw->lock);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock(&hw->lock);
return;
}
spin_unlock(&hw->lock);
/*
* ISO transfer only partially completed,
* look at individual frame status for details
*/
if (status == -EXDEV) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: with -EXDEV "
"urb->status %d, fifonum %d\n",
hw->name, __func__, status, fifon);
/* clear status, so go on with ISO transfers */
status = 0;
}
s0_state = 0;
if (fifo->active && !status) {
num_isoc_packets = iso_packets[fifon];
maxlen = fifo->usb_packet_maxlen;
for (k = 0; k < num_isoc_packets; ++k) {
len = urb->iso_frame_desc[k].actual_length;
offset = urb->iso_frame_desc[k].offset;
buf = context_iso_urb->buffer + offset;
iso_status = urb->iso_frame_desc[k].status;
if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
printk(KERN_DEBUG "%s: %s: "
"ISO packet %i, status: %i\n",
hw->name, __func__, k, iso_status);
}
/* USB data log for every D ISO in */
if ((fifon == HFCUSB_D_RX) &&
(debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG
"%s: %s: %d (%d/%d) len(%d) ",
hw->name, __func__, urb->start_frame,
k, num_isoc_packets-1,
len);
for (i = 0; i < len; i++)
printk("%x ", buf[i]);
printk("\n");
}
if (!iso_status) {
if (fifo->last_urblen != maxlen) {
/*
* save fifo fill-level threshold bits
* to use them later in TX ISO URB
* completions
*/
hw->threshold_mask = buf[1];
if (fifon == HFCUSB_D_RX)
s0_state = (buf[0] >> 4);
eof[fifon] = buf[0] & 1;
if (len > 2)
hfcsusb_rx_frame(fifo, buf + 2,
len - 2, (len < maxlen)
? eof[fifon] : 0);
} else
hfcsusb_rx_frame(fifo, buf, len,
(len < maxlen) ?
eof[fifon] : 0);
fifo->last_urblen = len;
}
}
/* signal S0 layer1 state change */
if ((s0_state) && (hw->initdone) &&
(s0_state != hw->dch.state)) {
hw->dch.state = s0_state;
schedule_event(&hw->dch, FLG_PHCHANGE);
}
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
(usb_complete_t)rx_iso_complete, urb->context);
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: error submitting "
"ISO URB: %d\n",
hw->name, __func__, errcode);
}
} else {
if (status && (debug & DBG_HFC_URB_INFO))
printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
"urb->status %d, fifonum %d\n",
hw->name, __func__, status, fifon);
}
}
/* receive completion routine for all interrupt rx fifos */
static void
rx_int_complete(struct urb *urb)
{
int len, status, i;
__u8 *buf, maxlen, fifon;
struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
struct hfcsusb *hw = fifo->hw;
static __u8 eof[8];
spin_lock(&hw->lock);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock(&hw->lock);
return;
}
spin_unlock(&hw->lock);
fifon = fifo->fifonum;
if ((!fifo->active) || (urb->status)) {
if (debug & DBG_HFC_URB_ERROR)
printk(KERN_DEBUG
"%s: %s: RX-Fifo %i is going down (%i)\n",
hw->name, __func__, fifon, urb->status);
fifo->urb->interval = 0; /* cancel automatic rescheduling */
return;
}
len = urb->actual_length;
buf = fifo->buffer;
maxlen = fifo->usb_packet_maxlen;
/* USB data log for every D INT in */
if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
hw->name, __func__, len);
for (i = 0; i < len; i++)
printk("%02x ", buf[i]);
printk("\n");
}
if (fifo->last_urblen != fifo->usb_packet_maxlen) {
/* the threshold mask is in the 2nd status byte */
hw->threshold_mask = buf[1];
/* signal S0 layer1 state change */
if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
hw->dch.state = (buf[0] >> 4);
schedule_event(&hw->dch, FLG_PHCHANGE);
}
eof[fifon] = buf[0] & 1;
/* if we have more than the 2 status bytes -> collect data */
if (len > 2)
hfcsusb_rx_frame(fifo, buf + 2,
urb->actual_length - 2,
(len < maxlen) ? eof[fifon] : 0);
} else {
hfcsusb_rx_frame(fifo, buf, urb->actual_length,
(len < maxlen) ? eof[fifon] : 0);
}
fifo->last_urblen = urb->actual_length;
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
hw->name, __func__);
}
}
/* transmit completion routine for all ISO tx fifos */
static void
tx_iso_complete(struct urb *urb)
{
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
struct hfcsusb *hw = fifo->hw;
struct sk_buff *tx_skb;
int k, tx_offset, num_isoc_packets, sink, remain, current_len,
errcode, hdlc, i;
int *tx_idx;
int frame_complete, fifon, status;
__u8 threshbit;
spin_lock(&hw->lock);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock(&hw->lock);
return;
}
if (fifo->dch) {
tx_skb = fifo->dch->tx_skb;
tx_idx = &fifo->dch->tx_idx;
hdlc = 1;
} else if (fifo->bch) {
tx_skb = fifo->bch->tx_skb;
tx_idx = &fifo->bch->tx_idx;
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
} else {
printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
hw->name, __func__);
spin_unlock(&hw->lock);
return;
}
fifon = fifo->fifonum;
status = urb->status;
tx_offset = 0;
/*
* ISO transfer only partially completed,
* look at individual frame status for details
*/
if (status == -EXDEV) {
if (debug & DBG_HFC_URB_ERROR)
printk(KERN_DEBUG "%s: %s: "
"-EXDEV (%i) fifon (%d)\n",
hw->name, __func__, status, fifon);
/* clear status, so go on with ISO transfers */
status = 0;
}
if (fifo->active && !status) {
/* is FifoFull-threshold set for our channel? */
threshbit = (hw->threshold_mask & (1 << fifon));
num_isoc_packets = iso_packets[fifon];
/* predict dataflow to avoid fifo overflow */
if (fifon >= HFCUSB_D_TX)
sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
else
sink = (threshbit) ? SINK_MIN : SINK_MAX;
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
(usb_complete_t)tx_iso_complete, urb->context);
memset(context_iso_urb->buffer, 0,
sizeof(context_iso_urb->buffer));
frame_complete = 0;
for (k = 0; k < num_isoc_packets; ++k) {
/* analyze tx success of previous ISO packets */
if (debug & DBG_HFC_URB_ERROR) {
errcode = urb->iso_frame_desc[k].status;
if (errcode) {
printk(KERN_DEBUG "%s: %s: "
"ISO packet %i, status: %i\n",
hw->name, __func__, k, errcode);
}
}
/* Generate next ISO Packets */
if (tx_skb)
remain = tx_skb->len - *tx_idx;
else
remain = 0;
if (remain > 0) {
fifo->bit_line -= sink;
current_len = (0 - fifo->bit_line) / 8;
if (current_len > 14)
current_len = 14;
if (current_len < 0)
current_len = 0;
if (remain < current_len)
current_len = remain;
/* how much bit do we put on the line? */
fifo->bit_line += current_len * 8;
context_iso_urb->buffer[tx_offset] = 0;
if (current_len == remain) {
if (hdlc) {
/* signal frame completion */
context_iso_urb->
buffer[tx_offset] = 1;
/* add 2 byte flags and 16bit
* CRC at end of ISDN frame */
fifo->bit_line += 32;
}
frame_complete = 1;
}
/* copy tx data to iso-urb buffer */
memcpy(context_iso_urb->buffer + tx_offset + 1,
(tx_skb->data + *tx_idx), current_len);
*tx_idx += current_len;
urb->iso_frame_desc[k].offset = tx_offset;
urb->iso_frame_desc[k].length = current_len + 1;
/* USB data log for every D ISO out */
if ((fifon == HFCUSB_D_RX) &&
(debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG
"%s: %s (%d/%d) offs(%d) len(%d) ",
hw->name, __func__,
k, num_isoc_packets-1,
urb->iso_frame_desc[k].offset,
urb->iso_frame_desc[k].length);
for (i = urb->iso_frame_desc[k].offset;
i < (urb->iso_frame_desc[k].offset
+ urb->iso_frame_desc[k].length);
i++)
printk("%x ",
context_iso_urb->buffer[i]);
printk(" skb->len(%i) tx-idx(%d)\n",
tx_skb->len, *tx_idx);
}
tx_offset += (current_len + 1);
} else {
urb->iso_frame_desc[k].offset = tx_offset++;
urb->iso_frame_desc[k].length = 1;
/* we lower data margin every msec */
fifo->bit_line -= sink;
if (fifo->bit_line < BITLINE_INF)
fifo->bit_line = BITLINE_INF;
}
if (frame_complete) {
frame_complete = 0;
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG "%s: %s: "
"fifon(%i) new TX len(%i): ",
hw->name, __func__,
fifon, tx_skb->len);
i = 0;
while (i < tx_skb->len)
printk("%02x ",
tx_skb->data[i++]);
printk("\n");
}
dev_kfree_skb(tx_skb);
tx_skb = NULL;
if (fifo->dch && get_next_dframe(fifo->dch))
tx_skb = fifo->dch->tx_skb;
else if (fifo->bch &&
get_next_bframe(fifo->bch)) {
if (test_bit(FLG_TRANSPARENT,
&fifo->bch->Flags))
confirm_Bsend(fifo->bch);
tx_skb = fifo->bch->tx_skb;
}
}
}
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG
"%s: %s: error submitting ISO URB: %d \n",
hw->name, __func__, errcode);
}
/*
* abuse DChannel tx iso completion to trigger NT mode state
* changes tx_iso_complete is assumed to be called every
* fifo->intervall (ms)
*/
if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
&& (hw->timers & NT_ACTIVATION_TIMER)) {
if ((--hw->nt_timer) < 0)
schedule_event(&hw->dch, FLG_PHCHANGE);
}
} else {
if (status && (debug & DBG_HFC_URB_ERROR))
printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
"fifonum=%d\n",
hw->name, __func__,
symbolic(urb_errlist, status), status, fifon);
}
spin_unlock(&hw->lock);
}
/*
* allocs urbs and start isoc transfer with two pending urbs to avoid
* gaps in the transfer chain
*/
static int
start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
usb_complete_t complete, int packet_size)
{
struct hfcsusb *hw = fifo->hw;
int i, k, errcode;
if (debug)
printk(KERN_DEBUG "%s: %s: fifo %i\n",
hw->name, __func__, fifo->fifonum);
/* allocate Memory for Iso out Urbs */
for (i = 0; i < 2; i++) {
if (!(fifo->iso[i].urb)) {
fifo->iso[i].urb =
usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
if (!(fifo->iso[i].urb)) {
printk(KERN_DEBUG
"%s: %s: alloc urb for fifo %i failed",
hw->name, __func__, fifo->fifonum);
}
fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
fifo->iso[i].indx = i;
/* Init the first iso */
if (ISO_BUFFER_SIZE >=
(fifo->usb_packet_maxlen *
num_packets_per_urb)) {
fill_isoc_urb(fifo->iso[i].urb,
fifo->hw->dev, fifo->pipe,
fifo->iso[i].buffer,
num_packets_per_urb,
fifo->usb_packet_maxlen,
fifo->intervall, complete,
&fifo->iso[i]);
memset(fifo->iso[i].buffer, 0,
sizeof(fifo->iso[i].buffer));
for (k = 0; k < num_packets_per_urb; k++) {
fifo->iso[i].urb->
iso_frame_desc[k].offset =
k * packet_size;
fifo->iso[i].urb->
iso_frame_desc[k].length =
packet_size;
}
} else {
printk(KERN_DEBUG
"%s: %s: ISO Buffer size to small!\n",
hw->name, __func__);
}
}
fifo->bit_line = BITLINE_INF;
errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
fifo->active = (errcode >= 0) ? 1 : 0;
fifo->stop_gracefull = 0;
if (errcode < 0) {
printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
hw->name, __func__,
symbolic(urb_errlist, errcode), i);
}
}
return fifo->active;
}
static void
stop_iso_gracefull(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int i, timeout;
u_long flags;
for (i = 0; i < 2; i++) {
spin_lock_irqsave(&hw->lock, flags);
if (debug)
printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
hw->name, __func__, fifo->fifonum, i);
fifo->stop_gracefull = 1;
spin_unlock_irqrestore(&hw->lock, flags);
}
for (i = 0; i < 2; i++) {
timeout = 3;
while (fifo->stop_gracefull && timeout--)
schedule_timeout_interruptible((HZ/1000)*16);
if (debug && fifo->stop_gracefull)
printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
hw->name, __func__, fifo->fifonum, i);
}
}
static void
stop_int_gracefull(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int timeout;
u_long flags;
spin_lock_irqsave(&hw->lock, flags);
if (debug)
printk(KERN_DEBUG "%s: %s for fifo %i\n",
hw->name, __func__, fifo->fifonum);
fifo->stop_gracefull = 1;
spin_unlock_irqrestore(&hw->lock, flags);
timeout = 3;
while (fifo->stop_gracefull && timeout--)
schedule_timeout_interruptible((HZ/1000)*3);
if (debug && fifo->stop_gracefull)
printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
hw->name, __func__, fifo->fifonum);
}
/* start the interrupt transfer for the given fifo */
static void
start_int_fifo(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int errcode;
if (debug)
printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
hw->name, __func__, fifo->fifonum);
if (!fifo->urb) {
fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!fifo->urb)
return;
}
usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
fifo->buffer, fifo->usb_packet_maxlen,
(usb_complete_t)rx_int_complete, fifo, fifo->intervall);
fifo->active = 1;
fifo->stop_gracefull = 0;
errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
if (errcode) {
printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
hw->name, __func__, errcode);
fifo->active = 0;
}
}
static void
setPortMode(struct hfcsusb *hw)
{
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
(hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
if (hw->protocol == ISDN_P_TE_S0) {
write_reg(hw, HFCUSB_SCTRL, 0x40);
write_reg(hw, HFCUSB_SCTRL_E, 0x00);
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
write_reg(hw, HFCUSB_STATES, 3 | 0x10);
write_reg(hw, HFCUSB_STATES, 3);
} else {
write_reg(hw, HFCUSB_SCTRL, 0x44);
write_reg(hw, HFCUSB_SCTRL_E, 0x09);
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
write_reg(hw, HFCUSB_STATES, 1 | 0x10);
write_reg(hw, HFCUSB_STATES, 1);
}
}
static void
reset_hfcsusb(struct hfcsusb *hw)
{
struct usb_fifo *fifo;
int i;
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
/* do Chip reset */
write_reg(hw, HFCUSB_CIRM, 8);
/* aux = output, reset off */
write_reg(hw, HFCUSB_CIRM, 0x10);
/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
((hw->packet_size / 8) << 4));
/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
/* enable PCM/GCI master mode */
write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
/* init the fifos */
write_reg(hw, HFCUSB_F_THRES,
(HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
fifo = hw->fifos;
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
fifo[i].max_size =
(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
fifo[i].last_urblen = 0;
/* set 2 bit for D- & E-channel */
write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
/* enable all fifos */
if (i == HFCUSB_D_TX)
write_reg(hw, HFCUSB_CON_HDLC,
(hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
else
write_reg(hw, HFCUSB_CON_HDLC, 0x08);
write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
}
write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
handle_led(hw, LED_POWER_ON);
}
/* start USB data pipes dependand on device's endpoint configuration */
static void
hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
{
/* quick check if endpoint already running */
if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
return;
if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
return;
if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
return;
if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
return;
/* start rx endpoints using USB INT IN method */
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
start_int_fifo(hw->fifos + channel*2 + 1);
/* start rx endpoints using USB ISO IN method */
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
switch (channel) {
case HFC_CHAN_D:
start_isoc_chain(hw->fifos + HFCUSB_D_RX,
ISOC_PACKETS_D,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_E:
start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
ISOC_PACKETS_D,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_B1:
start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
ISOC_PACKETS_B,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_B2:
start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
ISOC_PACKETS_B,
(usb_complete_t)rx_iso_complete,
16);
break;
}
}
/* start tx endpoints using USB ISO OUT method */
switch (channel) {
case HFC_CHAN_D:
start_isoc_chain(hw->fifos + HFCUSB_D_TX,
ISOC_PACKETS_B,
(usb_complete_t)tx_iso_complete, 1);
break;
case HFC_CHAN_B1:
start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
ISOC_PACKETS_D,
(usb_complete_t)tx_iso_complete, 1);
break;
case HFC_CHAN_B2:
start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
ISOC_PACKETS_B,
(usb_complete_t)tx_iso_complete, 1);
break;
}
}
/* stop USB data pipes dependand on device's endpoint configuration */
static void
hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
{
/* quick check if endpoint currently running */
if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
return;
if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
return;
if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
return;
if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
return;
/* rx endpoints using USB INT IN method */
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
stop_int_gracefull(hw->fifos + channel*2 + 1);
/* rx endpoints using USB ISO IN method */
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
stop_iso_gracefull(hw->fifos + channel*2 + 1);
/* tx endpoints using USB ISO OUT method */
if (channel != HFC_CHAN_E)
stop_iso_gracefull(hw->fifos + channel*2);
}
/* Hardware Initialization */
int
setup_hfcsusb(struct hfcsusb *hw)
{
int err;
u_char b;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
/* check the chip id */
if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
hw->name, __func__);
return 1;
}
if (b != HFCUSB_CHIPID) {
printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
hw->name, __func__, b);
return 1;
}
/* first set the needed config, interface and alternate */
err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
hw->led_state = 0;
/* init the background machinery for control requests */
hw->ctrl_read.bRequestType = 0xc0;
hw->ctrl_read.bRequest = 1;
hw->ctrl_read.wLength = cpu_to_le16(1);
hw->ctrl_write.bRequestType = 0x40;
hw->ctrl_write.bRequest = 0;
hw->ctrl_write.wLength = 0;
usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
(u_char *)&hw->ctrl_write, NULL, 0,
(usb_complete_t)ctrl_complete, hw);
reset_hfcsusb(hw);
return 0;
}
static void
release_hw(struct hfcsusb *hw)
{
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
/*
* stop all endpoints gracefully
* TODO: mISDN_core should generate CLOSE_CHANNEL
* signals after calling mISDN_unregister_device()
*/
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
if (hw->fifos[HFCUSB_PCM_RX].pipe)
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
if (hw->protocol == ISDN_P_TE_S0)
l1_event(hw->dch.l1, CLOSE_CHANNEL);
mISDN_unregister_device(&hw->dch.dev);
mISDN_freebchannel(&hw->bch[1]);
mISDN_freebchannel(&hw->bch[0]);
mISDN_freedchannel(&hw->dch);
if (hw->ctrl_urb) {
usb_kill_urb(hw->ctrl_urb);
usb_free_urb(hw->ctrl_urb);
hw->ctrl_urb = NULL;
}
if (hw->intf)
usb_set_intfdata(hw->intf, NULL);
list_del(&hw->list);
kfree(hw);
hw = NULL;
}
static void
deactivate_bchannel(struct bchannel *bch)
{
struct hfcsusb *hw = bch->hw;
u_long flags;
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
hw->name, __func__, bch->nr);
spin_lock_irqsave(&hw->lock, flags);
if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
dev_kfree_skb(bch->next_skb);
bch->next_skb = NULL;
}
if (bch->tx_skb) {
dev_kfree_skb(bch->tx_skb);
bch->tx_skb = NULL;
}
bch->tx_idx = 0;
if (bch->rx_skb) {
dev_kfree_skb(bch->rx_skb);
bch->rx_skb = NULL;
}
clear_bit(FLG_ACTIVE, &bch->Flags);
clear_bit(FLG_TX_BUSY, &bch->Flags);
spin_unlock_irqrestore(&hw->lock, flags);
hfcsusb_setup_bch(bch, ISDN_P_NONE);
hfcsusb_stop_endpoint(hw, bch->nr);
}
/*
* Layer 1 B-channel hardware access
*/
static int
hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
int ret = -EINVAL;
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
switch (cmd) {
case HW_TESTRX_RAW:
case HW_TESTRX_HDLC:
case HW_TESTRX_OFF:
ret = -EINVAL;
break;
case CLOSE_CHANNEL:
test_and_clear_bit(FLG_OPEN, &bch->Flags);
if (test_bit(FLG_ACTIVE, &bch->Flags))
deactivate_bchannel(bch);
ch->protocol = ISDN_P_NONE;
ch->peer = NULL;
module_put(THIS_MODULE);
ret = 0;
break;
case CONTROL_CHANNEL:
ret = channel_bctrl(bch, arg);
break;
default:
printk(KERN_WARNING "%s: unknown prim(%x)\n",
__func__, cmd);
}
return ret;
}
static int
setup_instance(struct hfcsusb *hw, struct device *parent)
{
u_long flags;
int err, i;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
spin_lock_init(&hw->ctrl_lock);
spin_lock_init(&hw->lock);
mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
hw->dch.debug = debug & 0xFFFF;
hw->dch.hw = hw;
hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
hw->dch.dev.D.send = hfcusb_l2l1D;
hw->dch.dev.D.ctrl = hfc_dctrl;
/* enable E-Channel logging */
if (hw->fifos[HFCUSB_PCM_RX].pipe)
mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
hw->dch.dev.nrbchan = 2;
for (i = 0; i < 2; i++) {
hw->bch[i].nr = i + 1;
set_channelmap(i + 1, hw->dch.dev.channelmap);
hw->bch[i].debug = debug;
mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
hw->bch[i].hw = hw;
hw->bch[i].ch.send = hfcusb_l2l1B;
hw->bch[i].ch.ctrl = hfc_bctrl;
hw->bch[i].ch.nr = i + 1;
list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
}
hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
err = setup_hfcsusb(hw);
if (err)
goto out;
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
hfcsusb_cnt + 1);
printk(KERN_INFO "%s: registered as '%s'\n",
DRIVER_NAME, hw->name);
err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
if (err)
goto out;
hfcsusb_cnt++;
write_lock_irqsave(&HFClock, flags);
list_add_tail(&hw->list, &HFClist);
write_unlock_irqrestore(&HFClock, flags);
return 0;
out:
mISDN_freebchannel(&hw->bch[1]);
mISDN_freebchannel(&hw->bch[0]);
mISDN_freedchannel(&hw->dch);
kfree(hw);
return err;
}
static int
hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct hfcsusb *hw;
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_host_interface *iface = intf->cur_altsetting;
struct usb_host_interface *iface_used = NULL;
struct usb_host_endpoint *ep;
struct hfcsusb_vdata *driver_info;
int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
alt_used = 0;
vend_idx = 0xffff;
for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
if ((le16_to_cpu(dev->descriptor.idVendor)
== hfcsusb_idtab[i].idVendor) &&
(le16_to_cpu(dev->descriptor.idProduct)
== hfcsusb_idtab[i].idProduct)) {
vend_idx = i;
continue;
}
}
printk(KERN_DEBUG
"%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
__func__, ifnum, iface->desc.bAlternateSetting,
intf->minor, vend_idx);
if (vend_idx == 0xffff) {
printk(KERN_WARNING
"%s: no valid vendor found in USB descriptor\n",
__func__);
return -EIO;
}
/* if vendor and product ID is OK, start probing alternate settings */
alt_idx = 0;
small_match = -1;
/* default settings */
iso_packet_size = 16;
packet_size = 64;
while (alt_idx < intf->num_altsetting) {
iface = intf->altsetting + alt_idx;
probe_alt_setting = iface->desc.bAlternateSetting;
cfg_used = 0;
while (validconf[cfg_used][0]) {
cfg_found = 1;
vcf = validconf[cfg_used];
ep = iface->endpoint;
memcpy(cmptbl, vcf, 16 * sizeof(int));
/* check for all endpoints in this alternate setting */
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
ep_addr = ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (ep_addr & 0x80)
idx++;
attr = ep->desc.bmAttributes;
if (cmptbl[idx] != EP_NOP) {
if (cmptbl[idx] == EP_NUL)
cfg_found = 0;
if (attr == USB_ENDPOINT_XFER_INT
&& cmptbl[idx] == EP_INT)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_BULK
&& cmptbl[idx] == EP_BLK)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_ISOC
&& cmptbl[idx] == EP_ISO)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_INT &&
ep->desc.bInterval < vcf[17]) {
cfg_found = 0;
}
}
ep++;
}
for (i = 0; i < 16; i++)
if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
cfg_found = 0;
if (cfg_found) {
if (small_match < cfg_used) {
small_match = cfg_used;
alt_used = probe_alt_setting;
iface_used = iface;
}
}
cfg_used++;
}
alt_idx++;
} /* (alt_idx < intf->num_altsetting) */
/* not found a valid USB Ta Endpoint config */
if (small_match == -1)
return -EIO;
iface = iface_used;
hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
if (!hw)
return -ENOMEM; /* got no mem */
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
ep = iface->endpoint;
vcf = validconf[small_match];
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
struct usb_fifo *f;
ep_addr = ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (ep_addr & 0x80)
idx++;
f = &hw->fifos[idx & 7];
/* init Endpoints */
if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
ep++;
continue;
}
switch (ep->desc.bmAttributes) {
case USB_ENDPOINT_XFER_INT:
f->pipe = usb_rcvintpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_INT;
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_BULK:
if (ep_addr & 0x80)
f->pipe = usb_rcvbulkpipe(dev,
ep->desc.bEndpointAddress);
else
f->pipe = usb_sndbulkpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_BULK;
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_ISOC:
if (ep_addr & 0x80)
f->pipe = usb_rcvisocpipe(dev,
ep->desc.bEndpointAddress);
else
f->pipe = usb_sndisocpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_ISOC;
iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
default:
f->pipe = 0;
}
if (f->pipe) {
f->fifonum = idx & 7;
f->hw = hw;
f->usb_packet_maxlen =
le16_to_cpu(ep->desc.wMaxPacketSize);
f->intervall = ep->desc.bInterval;
}
ep++;
}
hw->dev = dev; /* save device */
hw->if_used = ifnum; /* save used interface */
hw->alt_used = alt_used; /* and alternate config */
hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
hw->cfg_used = vcf[16]; /* store used config */
hw->vend_idx = vend_idx; /* store found vendor */
hw->packet_size = packet_size;
hw->iso_packet_size = iso_packet_size;
/* create the control pipes needed for register access */
hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
driver_info =
(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
hw->name, __func__, driver_info->vend_name,
conf_str[small_match], ifnum, alt_used);
if (setup_instance(hw, dev->dev.parent))
return -EIO;
hw->intf = intf;
usb_set_intfdata(hw->intf, hw);
return 0;
}
/* function called when an active device is removed */
static void
hfcsusb_disconnect(struct usb_interface *intf)
{
struct hfcsusb *hw = usb_get_intfdata(intf);
struct hfcsusb *next;
int cnt = 0;
printk(KERN_INFO "%s: device disconnected\n", hw->name);
handle_led(hw, LED_POWER_OFF);
release_hw(hw);
list_for_each_entry_safe(hw, next, &HFClist, list)
cnt++;
if (!cnt)
hfcsusb_cnt = 0;
usb_set_intfdata(intf, NULL);
}
static struct usb_driver hfcsusb_drv = {
.name = DRIVER_NAME,
.id_table = hfcsusb_idtab,
.probe = hfcsusb_probe,
.disconnect = hfcsusb_disconnect,
};
static int __init
hfcsusb_init(void)
{
printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
hfcsusb_rev, debug, poll);
if (usb_register(&hfcsusb_drv)) {
printk(KERN_INFO DRIVER_NAME
": Unable to register hfcsusb module at usb stack\n");
return -ENODEV;
}
return 0;
}
static void __exit
hfcsusb_cleanup(void)
{
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
/* unregister Hardware */
usb_deregister(&hfcsusb_drv); /* release our driver */
}
module_init(hfcsusb_init);
module_exit(hfcsusb_cleanup);
/*
* hfcsusb.h, HFC-S USB mISDN driver
*/
#ifndef __HFCSUSB_H__
#define __HFCSUSB_H__
#define DRIVER_NAME "HFC-S_USB"
#define DBG_HFC_CALL_TRACE 0x00010000
#define DBG_HFC_FIFO_VERBOSE 0x00020000
#define DBG_HFC_USB_VERBOSE 0x00100000
#define DBG_HFC_URB_INFO 0x00200000
#define DBG_HFC_URB_ERROR 0x00400000
#define DEFAULT_TRANSP_BURST_SZ 128
#define HFC_CTRL_TIMEOUT 20 /* 5ms timeout writing/reading regs */
#define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
/* hfcsusb Layer1 commands */
#define HFC_L1_ACTIVATE_TE 1
#define HFC_L1_ACTIVATE_NT 2
#define HFC_L1_DEACTIVATE_NT 3
#define HFC_L1_FORCE_DEACTIVATE_TE 4
/* cmd FLAGS in HFCUSB_STATES register */
#define HFCUSB_LOAD_STATE 0x10
#define HFCUSB_ACTIVATE 0x20
#define HFCUSB_DO_ACTION 0x40
#define HFCUSB_NT_G2_G3 0x80
/* timers */
#define NT_ACTIVATION_TIMER 0x01 /* enables NT mode activation Timer */
#define NT_T1_COUNT 10
#define MAX_BCH_SIZE 2048 /* allowed B-channel packet size */
#define HFCUSB_RX_THRESHOLD 64 /* threshold for fifo report bit rx */
#define HFCUSB_TX_THRESHOLD 96 /* threshold for fifo report bit tx */
#define HFCUSB_CHIP_ID 0x16 /* Chip ID register index */
#define HFCUSB_CIRM 0x00 /* cirm register index */
#define HFCUSB_USB_SIZE 0x07 /* int length register */
#define HFCUSB_USB_SIZE_I 0x06 /* iso length register */
#define HFCUSB_F_CROSS 0x0b /* bit order register */
#define HFCUSB_CLKDEL 0x37 /* bit delay register */
#define HFCUSB_CON_HDLC 0xfa /* channel connect register */
#define HFCUSB_HDLC_PAR 0xfb
#define HFCUSB_SCTRL 0x31 /* S-bus control register (tx) */
#define HFCUSB_SCTRL_E 0x32 /* same for E and special funcs */
#define HFCUSB_SCTRL_R 0x33 /* S-bus control register (rx) */
#define HFCUSB_F_THRES 0x0c /* threshold register */
#define HFCUSB_FIFO 0x0f /* fifo select register */
#define HFCUSB_F_USAGE 0x1a /* fifo usage register */
#define HFCUSB_MST_MODE0 0x14
#define HFCUSB_MST_MODE1 0x15
#define HFCUSB_P_DATA 0x1f
#define HFCUSB_INC_RES_F 0x0e
#define HFCUSB_B1_SSL 0x20
#define HFCUSB_B2_SSL 0x21
#define HFCUSB_B1_RSL 0x24
#define HFCUSB_B2_RSL 0x25
#define HFCUSB_STATES 0x30
#define HFCUSB_CHIPID 0x40 /* ID value of HFC-S USB */
/* fifo registers */
#define HFCUSB_NUM_FIFOS 8 /* maximum number of fifos */
#define HFCUSB_B1_TX 0 /* index for B1 transmit bulk/int */
#define HFCUSB_B1_RX 1 /* index for B1 receive bulk/int */
#define HFCUSB_B2_TX 2
#define HFCUSB_B2_RX 3
#define HFCUSB_D_TX 4
#define HFCUSB_D_RX 5
#define HFCUSB_PCM_TX 6
#define HFCUSB_PCM_RX 7
#define USB_INT 0
#define USB_BULK 1
#define USB_ISOC 2
#define ISOC_PACKETS_D 8
#define ISOC_PACKETS_B 8
#define ISO_BUFFER_SIZE 128
/* defines how much ISO packets are handled in one URB */
static int iso_packets[8] =
{ ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B, ISOC_PACKETS_B,
ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D, ISOC_PACKETS_D
};
/* Fifo flow Control for TX ISO */
#define SINK_MAX 68
#define SINK_MIN 48
#define SINK_DMIN 12
#define SINK_DMAX 18
#define BITLINE_INF (-96*8)
/* HFC-S USB register access by Control-URSs */
#define write_reg_atomic(a, b, c) \
usb_control_msg((a)->dev, (a)->ctrl_out_pipe, 0, 0x40, (c), (b), \
0, 0, HFC_CTRL_TIMEOUT)
#define read_reg_atomic(a, b, c) \
usb_control_msg((a)->dev, (a)->ctrl_in_pipe, 1, 0xC0, 0, (b), (c), \
1, HFC_CTRL_TIMEOUT)
#define HFC_CTRL_BUFSIZE 64
struct ctrl_buf {
__u8 hfcs_reg; /* register number */
__u8 reg_val; /* value to be written (or read) */
};
/*
* URB error codes
* Used to represent a list of values and their respective symbolic names
*/
struct hfcusb_symbolic_list {
const int num;
const char *name;
};
static struct hfcusb_symbolic_list urb_errlist[] = {
{-ENOMEM, "No memory for allocation of internal structures"},
{-ENOSPC, "The host controller's bandwidth is already consumed"},
{-ENOENT, "URB was canceled by unlink_urb"},
{-EXDEV, "ISO transfer only partially completed"},
{-EAGAIN, "Too match scheduled for the future"},
{-ENXIO, "URB already queued"},
{-EFBIG, "Too much ISO frames requested"},
{-ENOSR, "Buffer error (overrun)"},
{-EPIPE, "Specified endpoint is stalled (device not responding)"},
{-EOVERFLOW, "Babble (bad cable?)"},
{-EPROTO, "Bit-stuff error (bad cable?)"},
{-EILSEQ, "CRC/Timeout"},
{-ETIMEDOUT, "NAK (device does not respond)"},
{-ESHUTDOWN, "Device unplugged"},
{-1, NULL}
};
static inline const char *
symbolic(struct hfcusb_symbolic_list list[], const int num)
{
int i;
for (i = 0; list[i].name != NULL; i++)
if (list[i].num == num)
return list[i].name;
return "<unkown USB Error>";
}
/* USB descriptor need to contain one of the following EndPoint combination: */
#define CNF_4INT3ISO 1 /* 4 INT IN, 3 ISO OUT */
#define CNF_3INT3ISO 2 /* 3 INT IN, 3 ISO OUT */
#define CNF_4ISO3ISO 3 /* 4 ISO IN, 3 ISO OUT */
#define CNF_3ISO3ISO 4 /* 3 ISO IN, 3 ISO OUT */
#define EP_NUL 1 /* Endpoint at this position not allowed */
#define EP_NOP 2 /* all type of endpoints allowed at this position */
#define EP_ISO 3 /* Isochron endpoint mandatory at this position */
#define EP_BLK 4 /* Bulk endpoint mandatory at this position */
#define EP_INT 5 /* Interrupt endpoint mandatory at this position */
#define HFC_CHAN_B1 0
#define HFC_CHAN_B2 1
#define HFC_CHAN_D 2
#define HFC_CHAN_E 3
/*
* List of all supported enpoints configiration sets, used to find the
* best matching endpoint configuration within a devices' USB descriptor.
* We need at least 3 RX endpoints, and 3 TX endpoints, either
* INT-in and ISO-out, or ISO-in and ISO-out)
* with 4 RX endpoints even E-Channel logging is possible
*/
static int
validconf[][19] = {
/* INT in, ISO out config */
{EP_NUL, EP_INT, EP_NUL, EP_INT, EP_NUL, EP_INT, EP_NOP, EP_INT,
EP_ISO, EP_NUL, EP_ISO, EP_NUL, EP_ISO, EP_NUL, EP_NUL, EP_NUL,
CNF_4INT3ISO, 2, 1},
{EP_NUL, EP_INT, EP_NUL, EP_INT, EP_NUL, EP_INT, EP_NUL, EP_NUL,
EP_ISO, EP_NUL, EP_ISO, EP_NUL, EP_ISO, EP_NUL, EP_NUL, EP_NUL,
CNF_3INT3ISO, 2, 0},
/* ISO in, ISO out config */
{EP_NOP, EP_NOP, EP_NOP, EP_NOP, EP_NOP, EP_NOP, EP_NOP, EP_NOP,
EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_NOP, EP_ISO,
CNF_4ISO3ISO, 2, 1},
{EP_NUL, EP_NUL, EP_NUL, EP_NUL, EP_NUL, EP_NUL, EP_NUL, EP_NUL,
EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_ISO, EP_NUL, EP_NUL,
CNF_3ISO3ISO, 2, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} /* EOL element */
};
/* string description of chosen config */
char *conf_str[] = {
"4 Interrupt IN + 3 Isochron OUT",
"3 Interrupt IN + 3 Isochron OUT",
"4 Isochron IN + 3 Isochron OUT",
"3 Isochron IN + 3 Isochron OUT"
};
#define LED_OFF 0 /* no LED support */
#define LED_SCHEME1 1 /* LED standard scheme */
#define LED_SCHEME2 2 /* not used yet... */
#define LED_POWER_ON 1
#define LED_POWER_OFF 2
#define LED_S0_ON 3
#define LED_S0_OFF 4
#define LED_B1_ON 5
#define LED_B1_OFF 6
#define LED_B1_DATA 7
#define LED_B2_ON 8
#define LED_B2_OFF 9
#define LED_B2_DATA 10
#define LED_NORMAL 0 /* LEDs are normal */
#define LED_INVERTED 1 /* LEDs are inverted */
/* time in ms to perform a Flashing LED when B-Channel has traffic */
#define LED_TIME 250
struct hfcsusb;
struct usb_fifo;
/* structure defining input+output fifos (interrupt/bulk mode) */
struct iso_urb {
struct urb *urb;
__u8 buffer[ISO_BUFFER_SIZE]; /* buffer rx/tx USB URB data */
struct usb_fifo *owner_fifo; /* pointer to owner fifo */
__u8 indx; /* Fifos's ISO double buffer 0 or 1 ? */
#ifdef ISO_FRAME_START_DEBUG
int start_frames[ISO_FRAME_START_RING_COUNT];
__u8 iso_frm_strt_pos; /* index in start_frame[] */
#endif
};
struct usb_fifo {
int fifonum; /* fifo index attached to this structure */
int active; /* fifo is currently active */
struct hfcsusb *hw; /* pointer to main structure */
int pipe; /* address of endpoint */
__u8 usb_packet_maxlen; /* maximum length for usb transfer */
unsigned int max_size; /* maximum size of receive/send packet */
__u8 intervall; /* interrupt interval */
struct urb *urb; /* transfer structure for usb routines */
__u8 buffer[128]; /* buffer USB INT OUT URB data */
int bit_line; /* how much bits are in the fifo? */
__u8 usb_transfer_mode; /* switched between ISO and INT */
struct iso_urb iso[2]; /* two urbs to have one always
one pending */
struct dchannel *dch; /* link to hfcsusb_t->dch */
struct bchannel *bch; /* link to hfcsusb_t->bch */
struct dchannel *ech; /* link to hfcsusb_t->ech, TODO: E-CHANNEL */
int last_urblen; /* remember length of last packet */
__u8 stop_gracefull; /* stops URB retransmission */
};
struct hfcsusb {
struct list_head list;
struct dchannel dch;
struct bchannel bch[2];
struct dchannel ech; /* TODO : wait for struct echannel ;) */
struct usb_device *dev; /* our device */
struct usb_interface *intf; /* used interface */
int if_used; /* used interface number */
int alt_used; /* used alternate config */
int cfg_used; /* configuration index used */
int vend_idx; /* index in hfcsusb_idtab */
int packet_size;
int iso_packet_size;
struct usb_fifo fifos[HFCUSB_NUM_FIFOS];
/* control pipe background handling */
struct ctrl_buf ctrl_buff[HFC_CTRL_BUFSIZE];
int ctrl_in_idx, ctrl_out_idx, ctrl_cnt;
struct urb *ctrl_urb;
struct usb_ctrlrequest ctrl_write;
struct usb_ctrlrequest ctrl_read;
int ctrl_paksize;
int ctrl_in_pipe, ctrl_out_pipe;
spinlock_t ctrl_lock; /* lock for ctrl */
spinlock_t lock;
__u8 threshold_mask;
__u8 led_state;
__u8 protocol;
int nt_timer;
int open;
__u8 timers;
__u8 initdone;
char name[MISDN_MAX_IDLEN];
};
/* private vendor specific data */
struct hfcsusb_vdata {
__u8 led_scheme; /* led display scheme */
signed short led_bits[8]; /* array of 8 possible LED bitmask */
char *vend_name; /* device name */
};
#define HFC_MAX_TE_LAYER1_STATE 8
#define HFC_MAX_NT_LAYER1_STATE 4
const char *HFC_TE_LAYER1_STATES[HFC_MAX_TE_LAYER1_STATE + 1] = {
"TE F0 - Reset",
"TE F1 - Reset",
"TE F2 - Sensing",
"TE F3 - Deactivated",
"TE F4 - Awaiting signal",
"TE F5 - Identifying input",
"TE F6 - Synchronized",
"TE F7 - Activated",
"TE F8 - Lost framing",
};
const char *HFC_NT_LAYER1_STATES[HFC_MAX_NT_LAYER1_STATE + 1] = {
"NT G0 - Reset",
"NT G1 - Deactive",
"NT G2 - Pending activation",
"NT G3 - Active",
"NT G4 - Pending deactivation",
};
/* supported devices */
static struct usb_device_id hfcsusb_idtab[] = {
{
USB_DEVICE(0x0959, 0x2bd0),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_OFF, {4, 0, 2, 1},
"ISDN USB TA (Cologne Chip HFC-S USB based)"}),
},
{
USB_DEVICE(0x0675, 0x1688),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {1, 2, 0, 0},
"DrayTek miniVigor 128 USB ISDN TA"}),
},
{
USB_DEVICE(0x07b0, 0x0007),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Billion tiny USB ISDN TA 128"}),
},
{
USB_DEVICE(0x0742, 0x2008),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"Stollmann USB TA"}),
},
{
USB_DEVICE(0x0742, 0x2009),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"Aceex USB ISDN TA"}),
},
{
USB_DEVICE(0x0742, 0x200A),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {4, 0, 2, 1},
"OEM USB ISDN TA"}),
},
{
USB_DEVICE(0x08e3, 0x0301),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {2, 0, 1, 4},
"Olitec USB RNIS"}),
},
{
USB_DEVICE(0x07fa, 0x0846),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Bewan Modem RNIS USB"}),
},
{
USB_DEVICE(0x07fa, 0x0847),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Djinn Numeris USB"}),
},
{
USB_DEVICE(0x07b0, 0x0006),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x80, -64, -32, -16},
"Twister ISDN TA"}),
},
{
USB_DEVICE(0x071d, 0x1005),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x02, 0, 0x01, 0x04},
"Eicon DIVA USB 4.0"}),
},
{
USB_DEVICE(0x0586, 0x0102),
.driver_info = (unsigned long) &((struct hfcsusb_vdata)
{LED_SCHEME1, {0x88, -64, -32, -16},
"ZyXEL OMNI.NET USB II"}),
},
{ }
};
MODULE_DEVICE_TABLE(usb, hfcsusb_idtab);
#endif /* __HFCSUSB_H__ */
...@@ -8,6 +8,6 @@ obj-$(CONFIG_MISDN_L1OIP) += l1oip.o ...@@ -8,6 +8,6 @@ obj-$(CONFIG_MISDN_L1OIP) += l1oip.o
# multi objects # multi objects
mISDN_core-objs := core.o fsm.o socket.o hwchannel.o stack.o layer1.o layer2.o tei.o timerdev.o mISDN_core-objs := core.o fsm.o socket.o clock.o hwchannel.o stack.o layer1.o layer2.o tei.o timerdev.o
mISDN_dsp-objs := dsp_core.o dsp_cmx.o dsp_tones.o dsp_dtmf.o dsp_audio.o dsp_blowfish.o dsp_pipeline.o dsp_hwec.o mISDN_dsp-objs := dsp_core.o dsp_cmx.o dsp_tones.o dsp_dtmf.o dsp_audio.o dsp_blowfish.o dsp_pipeline.o dsp_hwec.o
l1oip-objs := l1oip_core.o l1oip_codec.o l1oip-objs := l1oip_core.o l1oip_codec.o
/*
* Copyright 2008 by Andreas Eversberg <andreas@eversberg.eu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Quick API description:
*
* A clock source registers using mISDN_register_clock:
* name = text string to name clock source
* priority = value to priorize clock sources (0 = default)
* ctl = callback function to enable/disable clock source
* priv = private pointer of clock source
* return = pointer to clock source structure;
*
* Note: Callback 'ctl' can be called before mISDN_register_clock returns!
* Also it can be called during mISDN_unregister_clock.
*
* A clock source calls mISDN_clock_update with given samples elapsed, if
* enabled. If function call is delayed, tv must be set with the timestamp
* of the actual event.
*
* A clock source unregisters using mISDN_unregister_clock.
*
* To get current clock, call mISDN_clock_get. The signed short value
* counts the number of samples since. Time since last clock event is added.
*
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/spinlock.h>
#include <linux/mISDNif.h>
#include "core.h"
static u_int *debug;
static LIST_HEAD(iclock_list);
DEFINE_RWLOCK(iclock_lock);
u16 iclock_count; /* counter of last clock */
struct timeval iclock_tv; /* time stamp of last clock */
int iclock_tv_valid; /* already received one timestamp */
struct mISDNclock *iclock_current;
void
mISDN_init_clock(u_int *dp)
{
debug = dp;
do_gettimeofday(&iclock_tv);
}
static void
select_iclock(void)
{
struct mISDNclock *iclock, *bestclock = NULL, *lastclock = NULL;
int pri = -128;
list_for_each_entry(iclock, &iclock_list, list) {
if (iclock->pri > pri) {
pri = iclock->pri;
bestclock = iclock;
}
if (iclock_current == iclock)
lastclock = iclock;
}
if (lastclock && bestclock != lastclock) {
/* last used clock source still exists but changes, disable */
if (*debug & DEBUG_CLOCK)
printk(KERN_DEBUG "Old clock source '%s' disable.\n",
lastclock->name);
lastclock->ctl(lastclock->priv, 0);
}
if (bestclock && bestclock != iclock_current) {
/* new clock source selected, enable */
if (*debug & DEBUG_CLOCK)
printk(KERN_DEBUG "New clock source '%s' enable.\n",
bestclock->name);
bestclock->ctl(bestclock->priv, 1);
}
if (bestclock != iclock_current) {
/* no clock received yet */
iclock_tv_valid = 0;
}
iclock_current = bestclock;
}
struct mISDNclock
*mISDN_register_clock(char *name, int pri, clockctl_func_t *ctl, void *priv)
{
u_long flags;
struct mISDNclock *iclock;
if (*debug & (DEBUG_CORE | DEBUG_CLOCK))
printk(KERN_DEBUG "%s: %s %d\n", __func__, name, pri);
iclock = kzalloc(sizeof(struct mISDNclock), GFP_ATOMIC);
if (!iclock) {
printk(KERN_ERR "%s: No memory for clock entry.\n", __func__);
return NULL;
}
strncpy(iclock->name, name, sizeof(iclock->name)-1);
iclock->pri = pri;
iclock->priv = priv;
iclock->ctl = ctl;
write_lock_irqsave(&iclock_lock, flags);
list_add_tail(&iclock->list, &iclock_list);
select_iclock();
write_unlock_irqrestore(&iclock_lock, flags);
return iclock;
}
EXPORT_SYMBOL(mISDN_register_clock);
void
mISDN_unregister_clock(struct mISDNclock *iclock)
{
u_long flags;
if (*debug & (DEBUG_CORE | DEBUG_CLOCK))
printk(KERN_DEBUG "%s: %s %d\n", __func__, iclock->name,
iclock->pri);
write_lock_irqsave(&iclock_lock, flags);
if (iclock_current == iclock) {
if (*debug & DEBUG_CLOCK)
printk(KERN_DEBUG
"Current clock source '%s' unregisters.\n",
iclock->name);
iclock->ctl(iclock->priv, 0);
}
list_del(&iclock->list);
select_iclock();
write_unlock_irqrestore(&iclock_lock, flags);
}
EXPORT_SYMBOL(mISDN_unregister_clock);
void
mISDN_clock_update(struct mISDNclock *iclock, int samples, struct timeval *tv)
{
u_long flags;
struct timeval tv_now;
time_t elapsed_sec;
int elapsed_8000th;
write_lock_irqsave(&iclock_lock, flags);
if (iclock_current != iclock) {
printk(KERN_ERR "%s: '%s' sends us clock updates, but we do "
"listen to '%s'. This is a bug!\n", __func__,
iclock->name,
iclock_current ? iclock_current->name : "nothing");
iclock->ctl(iclock->priv, 0);
write_unlock_irqrestore(&iclock_lock, flags);
return;
}
if (iclock_tv_valid) {
/* increment sample counter by given samples */
iclock_count += samples;
if (tv) { /* tv must be set, if function call is delayed */
iclock_tv.tv_sec = tv->tv_sec;
iclock_tv.tv_usec = tv->tv_usec;
} else
do_gettimeofday(&iclock_tv);
} else {
/* calc elapsed time by system clock */
if (tv) { /* tv must be set, if function call is delayed */
tv_now.tv_sec = tv->tv_sec;
tv_now.tv_usec = tv->tv_usec;
} else
do_gettimeofday(&tv_now);
elapsed_sec = tv_now.tv_sec - iclock_tv.tv_sec;
elapsed_8000th = (tv_now.tv_usec / 125)
- (iclock_tv.tv_usec / 125);
if (elapsed_8000th < 0) {
elapsed_sec -= 1;
elapsed_8000th += 8000;
}
/* add elapsed time to counter and set new timestamp */
iclock_count += elapsed_sec * 8000 + elapsed_8000th;
iclock_tv.tv_sec = tv_now.tv_sec;
iclock_tv.tv_usec = tv_now.tv_usec;
iclock_tv_valid = 1;
if (*debug & DEBUG_CLOCK)
printk("Received first clock from source '%s'.\n",
iclock_current ? iclock_current->name : "nothing");
}
write_unlock_irqrestore(&iclock_lock, flags);
}
EXPORT_SYMBOL(mISDN_clock_update);
unsigned short
mISDN_clock_get(void)
{
u_long flags;
struct timeval tv_now;
time_t elapsed_sec;
int elapsed_8000th;
u16 count;
read_lock_irqsave(&iclock_lock, flags);
/* calc elapsed time by system clock */
do_gettimeofday(&tv_now);
elapsed_sec = tv_now.tv_sec - iclock_tv.tv_sec;
elapsed_8000th = (tv_now.tv_usec / 125) - (iclock_tv.tv_usec / 125);
if (elapsed_8000th < 0) {
elapsed_sec -= 1;
elapsed_8000th += 8000;
}
/* add elapsed time to counter */
count = iclock_count + elapsed_sec * 8000 + elapsed_8000th;
read_unlock_irqrestore(&iclock_lock, flags);
return count;
}
EXPORT_SYMBOL(mISDN_clock_get);
...@@ -25,39 +25,183 @@ MODULE_AUTHOR("Karsten Keil"); ...@@ -25,39 +25,183 @@ MODULE_AUTHOR("Karsten Keil");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(debug, uint, S_IRUGO | S_IWUSR);
static LIST_HEAD(devices);
static DEFINE_RWLOCK(device_lock);
static u64 device_ids; static u64 device_ids;
#define MAX_DEVICE_ID 63 #define MAX_DEVICE_ID 63
static LIST_HEAD(Bprotocols); static LIST_HEAD(Bprotocols);
static DEFINE_RWLOCK(bp_lock); static DEFINE_RWLOCK(bp_lock);
static void mISDN_dev_release(struct device *dev)
{
/* nothing to do: the device is part of its parent's data structure */
}
static ssize_t _show_id(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return -ENODEV;
return sprintf(buf, "%d\n", mdev->id);
}
static ssize_t _show_nrbchan(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return -ENODEV;
return sprintf(buf, "%d\n", mdev->nrbchan);
}
static ssize_t _show_d_protocols(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return -ENODEV;
return sprintf(buf, "%d\n", mdev->Dprotocols);
}
static ssize_t _show_b_protocols(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return -ENODEV;
return sprintf(buf, "%d\n", mdev->Bprotocols | get_all_Bprotocols());
}
static ssize_t _show_protocol(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return -ENODEV;
return sprintf(buf, "%d\n", mdev->D.protocol);
}
static ssize_t _show_name(struct device *dev,
struct device_attribute *attr, char *buf)
{
strcpy(buf, dev_name(dev));
return strlen(buf);
}
#if 0 /* hangs */
static ssize_t _set_name(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int err = 0;
char *out = kmalloc(count + 1, GFP_KERNEL);
if (!out)
return -ENOMEM;
memcpy(out, buf, count);
if (count && out[count - 1] == '\n')
out[--count] = 0;
if (count)
err = device_rename(dev, out);
kfree(out);
return (err < 0) ? err : count;
}
#endif
static ssize_t _show_channelmap(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
char *bp = buf;
int i;
for (i = 0; i <= mdev->nrbchan; i++)
*bp++ = test_channelmap(i, mdev->channelmap) ? '1' : '0';
return bp - buf;
}
static struct device_attribute mISDN_dev_attrs[] = {
__ATTR(id, S_IRUGO, _show_id, NULL),
__ATTR(d_protocols, S_IRUGO, _show_d_protocols, NULL),
__ATTR(b_protocols, S_IRUGO, _show_b_protocols, NULL),
__ATTR(protocol, S_IRUGO, _show_protocol, NULL),
__ATTR(channelmap, S_IRUGO, _show_channelmap, NULL),
__ATTR(nrbchan, S_IRUGO, _show_nrbchan, NULL),
__ATTR(name, S_IRUGO, _show_name, NULL),
/* __ATTR(name, S_IRUGO|S_IWUSR, _show_name, _set_name), */
{}
};
#ifdef CONFIG_HOTPLUG
static int mISDN_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return 0;
if (add_uevent_var(env, "nchans=%d", mdev->nrbchan))
return -ENOMEM;
return 0;
}
#endif
static void mISDN_class_release(struct class *cls)
{
/* do nothing, it's static */
}
static struct class mISDN_class = {
.name = "mISDN",
.owner = THIS_MODULE,
#ifdef CONFIG_HOTPLUG
.dev_uevent = mISDN_uevent,
#endif
.dev_attrs = mISDN_dev_attrs,
.dev_release = mISDN_dev_release,
.class_release = mISDN_class_release,
};
static int
_get_mdevice(struct device *dev, void *id)
{
struct mISDNdevice *mdev = dev_to_mISDN(dev);
if (!mdev)
return 0;
if (mdev->id != *(u_int *)id)
return 0;
return 1;
}
struct mISDNdevice struct mISDNdevice
*get_mdevice(u_int id) *get_mdevice(u_int id)
{ {
struct mISDNdevice *dev; return dev_to_mISDN(class_find_device(&mISDN_class, NULL, &id,
_get_mdevice));
}
read_lock(&device_lock); static int
list_for_each_entry(dev, &devices, D.list) _get_mdevice_count(struct device *dev, void *cnt)
if (dev->id == id) { {
read_unlock(&device_lock); *(int *)cnt += 1;
return dev; return 0;
}
read_unlock(&device_lock);
return NULL;
} }
int int
get_mdevice_count(void) get_mdevice_count(void)
{ {
struct mISDNdevice *dev;
int cnt = 0; int cnt = 0;
read_lock(&device_lock); class_for_each_device(&mISDN_class, NULL, &cnt, _get_mdevice_count);
list_for_each_entry(dev, &devices, D.list)
cnt++;
read_unlock(&device_lock);
return cnt; return cnt;
} }
...@@ -68,48 +212,66 @@ get_free_devid(void) ...@@ -68,48 +212,66 @@ get_free_devid(void)
for (i = 0; i <= MAX_DEVICE_ID; i++) for (i = 0; i <= MAX_DEVICE_ID; i++)
if (!test_and_set_bit(i, (u_long *)&device_ids)) if (!test_and_set_bit(i, (u_long *)&device_ids))
return i; break;
if (i > MAX_DEVICE_ID)
return -1; return -1;
return i;
} }
int int
mISDN_register_device(struct mISDNdevice *dev, char *name) mISDN_register_device(struct mISDNdevice *dev,
struct device *parent, char *name)
{ {
u_long flags;
int err; int err;
dev->id = get_free_devid(); dev->id = get_free_devid();
err = -EBUSY;
if (dev->id < 0) if (dev->id < 0)
return -EBUSY; goto error1;
device_initialize(&dev->dev);
if (name && name[0]) if (name && name[0])
strcpy(dev->name, name); dev_set_name(&dev->dev, "%s", name);
else else
sprintf(dev->name, "mISDN%d", dev->id); dev_set_name(&dev->dev, "mISDN%d", dev->id);
if (debug & DEBUG_CORE) if (debug & DEBUG_CORE)
printk(KERN_DEBUG "mISDN_register %s %d\n", printk(KERN_DEBUG "mISDN_register %s %d\n",
dev->name, dev->id); dev_name(&dev->dev), dev->id);
err = create_stack(dev); err = create_stack(dev);
if (err) if (err)
return err; goto error1;
write_lock_irqsave(&device_lock, flags);
list_add_tail(&dev->D.list, &devices); dev->dev.class = &mISDN_class;
write_unlock_irqrestore(&device_lock, flags); dev->dev.platform_data = dev;
dev->dev.parent = parent;
dev_set_drvdata(&dev->dev, dev);
err = device_add(&dev->dev);
if (err)
goto error3;
return 0; return 0;
error3:
delete_stack(dev);
return err;
error1:
return err;
} }
EXPORT_SYMBOL(mISDN_register_device); EXPORT_SYMBOL(mISDN_register_device);
void void
mISDN_unregister_device(struct mISDNdevice *dev) { mISDN_unregister_device(struct mISDNdevice *dev) {
u_long flags;
if (debug & DEBUG_CORE) if (debug & DEBUG_CORE)
printk(KERN_DEBUG "mISDN_unregister %s %d\n", printk(KERN_DEBUG "mISDN_unregister %s %d\n",
dev->name, dev->id); dev_name(&dev->dev), dev->id);
write_lock_irqsave(&device_lock, flags); /* sysfs_remove_link(&dev->dev.kobj, "device"); */
list_del(&dev->D.list); device_del(&dev->dev);
write_unlock_irqrestore(&device_lock, flags); dev_set_drvdata(&dev->dev, NULL);
test_and_clear_bit(dev->id, (u_long *)&device_ids); test_and_clear_bit(dev->id, (u_long *)&device_ids);
delete_stack(dev); delete_stack(dev);
put_device(&dev->dev);
} }
EXPORT_SYMBOL(mISDN_unregister_device); EXPORT_SYMBOL(mISDN_unregister_device);
...@@ -199,43 +361,45 @@ mISDNInit(void) ...@@ -199,43 +361,45 @@ mISDNInit(void)
printk(KERN_INFO "Modular ISDN core version %d.%d.%d\n", printk(KERN_INFO "Modular ISDN core version %d.%d.%d\n",
MISDN_MAJOR_VERSION, MISDN_MINOR_VERSION, MISDN_RELEASE); MISDN_MAJOR_VERSION, MISDN_MINOR_VERSION, MISDN_RELEASE);
mISDN_init_clock(&debug);
mISDN_initstack(&debug); mISDN_initstack(&debug);
err = class_register(&mISDN_class);
if (err)
goto error1;
err = mISDN_inittimer(&debug); err = mISDN_inittimer(&debug);
if (err) if (err)
goto error; goto error2;
err = l1_init(&debug); err = l1_init(&debug);
if (err) { if (err)
mISDN_timer_cleanup(); goto error3;
goto error;
}
err = Isdnl2_Init(&debug); err = Isdnl2_Init(&debug);
if (err) { if (err)
mISDN_timer_cleanup(); goto error4;
l1_cleanup();
goto error;
}
err = misdn_sock_init(&debug); err = misdn_sock_init(&debug);
if (err) { if (err)
mISDN_timer_cleanup(); goto error5;
l1_cleanup(); return 0;
error5:
Isdnl2_cleanup(); Isdnl2_cleanup();
} error4:
error: l1_cleanup();
error3:
mISDN_timer_cleanup();
error2:
class_unregister(&mISDN_class);
error1:
return err; return err;
} }
static void mISDN_cleanup(void) static void mISDN_cleanup(void)
{ {
misdn_sock_cleanup(); misdn_sock_cleanup();
mISDN_timer_cleanup();
l1_cleanup();
Isdnl2_cleanup(); Isdnl2_cleanup();
l1_cleanup();
mISDN_timer_cleanup();
class_unregister(&mISDN_class);
if (!list_empty(&devices))
printk(KERN_ERR "%s devices still registered\n", __func__);
if (!list_empty(&Bprotocols))
printk(KERN_ERR "%s Bprotocols still registered\n", __func__);
printk(KERN_DEBUG "mISDNcore unloaded\n"); printk(KERN_DEBUG "mISDNcore unloaded\n");
} }
......
...@@ -74,4 +74,6 @@ extern void l1_cleanup(void); ...@@ -74,4 +74,6 @@ extern void l1_cleanup(void);
extern int Isdnl2_Init(u_int *); extern int Isdnl2_Init(u_int *);
extern void Isdnl2_cleanup(void); extern void Isdnl2_cleanup(void);
extern void mISDN_init_clock(u_int *);
#endif #endif
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#define DEBUG_DSP_TONE 0x0020 #define DEBUG_DSP_TONE 0x0020
#define DEBUG_DSP_BLOWFISH 0x0040 #define DEBUG_DSP_BLOWFISH 0x0040
#define DEBUG_DSP_DELAY 0x0100 #define DEBUG_DSP_DELAY 0x0100
#define DEBUG_DSP_CLOCK 0x0200
#define DEBUG_DSP_DTMFCOEFF 0x8000 /* heavy output */ #define DEBUG_DSP_DTMFCOEFF 0x8000 /* heavy output */
/* options may be: /* options may be:
...@@ -198,6 +199,7 @@ struct dsp { ...@@ -198,6 +199,7 @@ struct dsp {
/* hardware stuff */ /* hardware stuff */
struct dsp_features features; struct dsp_features features;
int features_rx_off; /* set if rx_off is featured */ int features_rx_off; /* set if rx_off is featured */
int features_fill_empty; /* set if fill_empty is featured */
int pcm_slot_rx; /* current PCM slot (or -1) */ int pcm_slot_rx; /* current PCM slot (or -1) */
int pcm_bank_rx; int pcm_bank_rx;
int pcm_slot_tx; int pcm_slot_tx;
......
...@@ -137,6 +137,7 @@ ...@@ -137,6 +137,7 @@
/* #define CMX_CONF_DEBUG */ /* #define CMX_CONF_DEBUG */
/*#define CMX_DEBUG * massive read/write pointer output */ /*#define CMX_DEBUG * massive read/write pointer output */
/*#define CMX_DELAY_DEBUG * gives rx-buffer delay overview */
/*#define CMX_TX_DEBUG * massive read/write on tx-buffer with content */ /*#define CMX_TX_DEBUG * massive read/write on tx-buffer with content */
static inline int static inline int
...@@ -744,11 +745,11 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp) ...@@ -744,11 +745,11 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp)
if (dsp->pcm_slot_rx >= 0 && if (dsp->pcm_slot_rx >= 0 &&
dsp->pcm_slot_rx < dsp->pcm_slot_rx <
sizeof(freeslots)) sizeof(freeslots))
freeslots[dsp->pcm_slot_tx] = 0; freeslots[dsp->pcm_slot_rx] = 0;
if (dsp->pcm_slot_tx >= 0 && if (dsp->pcm_slot_tx >= 0 &&
dsp->pcm_slot_tx < dsp->pcm_slot_tx <
sizeof(freeslots)) sizeof(freeslots))
freeslots[dsp->pcm_slot_rx] = 0; freeslots[dsp->pcm_slot_tx] = 0;
} }
} }
i = 0; i = 0;
...@@ -836,11 +837,11 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp) ...@@ -836,11 +837,11 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp)
if (dsp->pcm_slot_rx >= 0 && if (dsp->pcm_slot_rx >= 0 &&
dsp->pcm_slot_rx < dsp->pcm_slot_rx <
sizeof(freeslots)) sizeof(freeslots))
freeslots[dsp->pcm_slot_tx] = 0; freeslots[dsp->pcm_slot_rx] = 0;
if (dsp->pcm_slot_tx >= 0 && if (dsp->pcm_slot_tx >= 0 &&
dsp->pcm_slot_tx < dsp->pcm_slot_tx <
sizeof(freeslots)) sizeof(freeslots))
freeslots[dsp->pcm_slot_rx] = 0; freeslots[dsp->pcm_slot_tx] = 0;
} }
} }
i1 = 0; i1 = 0;
...@@ -926,10 +927,6 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp) ...@@ -926,10 +927,6 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp)
/* for more than two members.. */ /* for more than two members.. */
/* in case of hdlc, we change to software */
if (dsp->hdlc)
goto conf_software;
/* if all members already have the same conference */ /* if all members already have the same conference */
if (all_conf) if (all_conf)
return; return;
...@@ -940,6 +937,9 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp) ...@@ -940,6 +937,9 @@ dsp_cmx_hardware(struct dsp_conf *conf, struct dsp *dsp)
if (current_conf >= 0) { if (current_conf >= 0) {
join_members: join_members:
list_for_each_entry(member, &conf->mlist, list) { list_for_each_entry(member, &conf->mlist, list) {
/* in case of hdlc, change to software */
if (member->dsp->hdlc)
goto conf_software;
/* join to current conference */ /* join to current conference */
if (member->dsp->hfc_conf == current_conf) if (member->dsp->hfc_conf == current_conf)
continue; continue;
...@@ -1135,6 +1135,25 @@ dsp_cmx_conf(struct dsp *dsp, u32 conf_id) ...@@ -1135,6 +1135,25 @@ dsp_cmx_conf(struct dsp *dsp, u32 conf_id)
return 0; return 0;
} }
#ifdef CMX_DELAY_DEBUG
int delaycount;
static void
showdelay(struct dsp *dsp, int samples, int delay)
{
char bar[] = "--------------------------------------------------|";
int sdelay;
delaycount += samples;
if (delaycount < 8000)
return;
delaycount = 0;
sdelay = delay * 50 / (dsp_poll << 2);
printk(KERN_DEBUG "DELAY (%s) %3d >%s\n", dsp->name, delay,
sdelay > 50 ? "..." : bar + 50 - sdelay);
}
#endif
/* /*
* audio data is received from card * audio data is received from card
...@@ -1168,11 +1187,18 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb) ...@@ -1168,11 +1187,18 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb)
dsp->rx_init = 0; dsp->rx_init = 0;
if (dsp->features.unordered) { if (dsp->features.unordered) {
dsp->rx_R = (hh->id & CMX_BUFF_MASK); dsp->rx_R = (hh->id & CMX_BUFF_MASK);
if (dsp->cmx_delay)
dsp->rx_W = (dsp->rx_R + dsp->cmx_delay) dsp->rx_W = (dsp->rx_R + dsp->cmx_delay)
& CMX_BUFF_MASK; & CMX_BUFF_MASK;
else
dsp->rx_W = (dsp->rx_R + (dsp_poll >> 1))
& CMX_BUFF_MASK;
} else { } else {
dsp->rx_R = 0; dsp->rx_R = 0;
if (dsp->cmx_delay)
dsp->rx_W = dsp->cmx_delay; dsp->rx_W = dsp->cmx_delay;
else
dsp->rx_W = dsp_poll >> 1;
} }
} }
/* if frame contains time code, write directly */ /* if frame contains time code, write directly */
...@@ -1185,19 +1211,25 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb) ...@@ -1185,19 +1211,25 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb)
* we set our new read pointer, and write silence to buffer * we set our new read pointer, and write silence to buffer
*/ */
if (((dsp->rx_W-dsp->rx_R) & CMX_BUFF_MASK) >= CMX_BUFF_HALF) { if (((dsp->rx_W-dsp->rx_R) & CMX_BUFF_MASK) >= CMX_BUFF_HALF) {
if (dsp_debug & DEBUG_DSP_CMX) if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG printk(KERN_DEBUG
"cmx_receive(dsp=%lx): UNDERRUN (or overrun the " "cmx_receive(dsp=%lx): UNDERRUN (or overrun the "
"maximum delay), adjusting read pointer! " "maximum delay), adjusting read pointer! "
"(inst %s)\n", (u_long)dsp, dsp->name); "(inst %s)\n", (u_long)dsp, dsp->name);
/* flush buffer */ /* flush rx buffer and set delay to dsp_poll / 2 */
if (dsp->features.unordered) { if (dsp->features.unordered) {
dsp->rx_R = (hh->id & CMX_BUFF_MASK); dsp->rx_R = (hh->id & CMX_BUFF_MASK);
if (dsp->cmx_delay)
dsp->rx_W = (dsp->rx_R + dsp->cmx_delay) dsp->rx_W = (dsp->rx_R + dsp->cmx_delay)
& CMX_BUFF_MASK; & CMX_BUFF_MASK;
dsp->rx_W = (dsp->rx_R + (dsp_poll >> 1))
& CMX_BUFF_MASK;
} else { } else {
dsp->rx_R = 0; dsp->rx_R = 0;
if (dsp->cmx_delay)
dsp->rx_W = dsp->cmx_delay; dsp->rx_W = dsp->cmx_delay;
else
dsp->rx_W = dsp_poll >> 1;
} }
memset(dsp->rx_buff, dsp_silence, sizeof(dsp->rx_buff)); memset(dsp->rx_buff, dsp_silence, sizeof(dsp->rx_buff));
} }
...@@ -1205,7 +1237,7 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb) ...@@ -1205,7 +1237,7 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb)
if (dsp->cmx_delay) if (dsp->cmx_delay)
if (((dsp->rx_W - dsp->rx_R) & CMX_BUFF_MASK) >= if (((dsp->rx_W - dsp->rx_R) & CMX_BUFF_MASK) >=
(dsp->cmx_delay << 1)) { (dsp->cmx_delay << 1)) {
if (dsp_debug & DEBUG_DSP_CMX) if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG printk(KERN_DEBUG
"cmx_receive(dsp=%lx): OVERRUN (because " "cmx_receive(dsp=%lx): OVERRUN (because "
"twice the delay is reached), adjusting " "twice the delay is reached), adjusting "
...@@ -1243,6 +1275,9 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb) ...@@ -1243,6 +1275,9 @@ dsp_cmx_receive(struct dsp *dsp, struct sk_buff *skb)
/* increase write-pointer */ /* increase write-pointer */
dsp->rx_W = ((dsp->rx_W+len) & CMX_BUFF_MASK); dsp->rx_W = ((dsp->rx_W+len) & CMX_BUFF_MASK);
#ifdef CMX_DELAY_DEBUG
showdelay(dsp, len, (dsp->rx_W-dsp->rx_R) & CMX_BUFF_MASK);
#endif
} }
...@@ -1360,8 +1395,12 @@ dsp_cmx_send_member(struct dsp *dsp, int len, s32 *c, int members) ...@@ -1360,8 +1395,12 @@ dsp_cmx_send_member(struct dsp *dsp, int len, s32 *c, int members)
t = (t+1) & CMX_BUFF_MASK; t = (t+1) & CMX_BUFF_MASK;
r = (r+1) & CMX_BUFF_MASK; r = (r+1) & CMX_BUFF_MASK;
} }
if (r != rr) if (r != rr) {
if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG "%s: RX empty\n",
__func__);
memset(d, dsp_silence, (rr-r)&CMX_BUFF_MASK); memset(d, dsp_silence, (rr-r)&CMX_BUFF_MASK);
}
/* -> if echo is enabled */ /* -> if echo is enabled */
} else { } else {
/* /*
...@@ -1540,13 +1579,11 @@ dsp_cmx_send_member(struct dsp *dsp, int len, s32 *c, int members) ...@@ -1540,13 +1579,11 @@ dsp_cmx_send_member(struct dsp *dsp, int len, s32 *c, int members)
schedule_work(&dsp->workq); schedule_work(&dsp->workq);
} }
static u32 samplecount; static u32 jittercount; /* counter for jitter check */;
struct timer_list dsp_spl_tl; struct timer_list dsp_spl_tl;
u32 dsp_spl_jiffies; /* calculate the next time to fire */ u32 dsp_spl_jiffies; /* calculate the next time to fire */
#ifdef UNUSED static u16 dsp_count; /* last sample count */
static u32 dsp_start_jiffies; /* jiffies at the time, the calculation begins */ static int dsp_count_valid ; /* if we have last sample count */
#endif /* UNUSED */
static struct timeval dsp_start_tv; /* time at start of calculation */
void void
dsp_cmx_send(void *arg) dsp_cmx_send(void *arg)
...@@ -1560,38 +1597,32 @@ dsp_cmx_send(void *arg) ...@@ -1560,38 +1597,32 @@ dsp_cmx_send(void *arg)
int r, rr; int r, rr;
int jittercheck = 0, delay, i; int jittercheck = 0, delay, i;
u_long flags; u_long flags;
struct timeval tv; u16 length, count;
u32 elapsed;
s16 length;
/* lock */ /* lock */
spin_lock_irqsave(&dsp_lock, flags); spin_lock_irqsave(&dsp_lock, flags);
if (!dsp_start_tv.tv_sec) { if (!dsp_count_valid) {
do_gettimeofday(&dsp_start_tv); dsp_count = mISDN_clock_get();
length = dsp_poll; length = dsp_poll;
dsp_count_valid = 1;
} else { } else {
do_gettimeofday(&tv); count = mISDN_clock_get();
elapsed = ((tv.tv_sec - dsp_start_tv.tv_sec) * 8000) length = count - dsp_count;
+ ((s32)(tv.tv_usec / 125) - (dsp_start_tv.tv_usec / 125)); dsp_count = count;
dsp_start_tv.tv_sec = tv.tv_sec;
dsp_start_tv.tv_usec = tv.tv_usec;
length = elapsed;
} }
if (length > MAX_POLL + 100) if (length > MAX_POLL + 100)
length = MAX_POLL + 100; length = MAX_POLL + 100;
/* printk(KERN_DEBUG "len=%d dsp_count=0x%x.%04x dsp_poll_diff=0x%x.%04x\n", /* printk(KERN_DEBUG "len=%d dsp_count=0x%x\n", length, dsp_count); */
length, dsp_count >> 16, dsp_count & 0xffff, dsp_poll_diff >> 16,
dsp_poll_diff & 0xffff);
*/
/* /*
* check if jitter needs to be checked * check if jitter needs to be checked (this is every second)
* (this is about every second = 8192 samples)
*/ */
samplecount += length; jittercount += length;
if ((samplecount & 8191) < length) if (jittercount >= 8000) {
jittercount -= 8000;
jittercheck = 1; jittercheck = 1;
}
/* loop all members that do not require conference mixing */ /* loop all members that do not require conference mixing */
list_for_each_entry(dsp, &dsp_ilist, list) { list_for_each_entry(dsp, &dsp_ilist, list) {
...@@ -1704,17 +1735,19 @@ dsp_cmx_send(void *arg) ...@@ -1704,17 +1735,19 @@ dsp_cmx_send(void *arg)
} }
/* /*
* remove rx_delay only if we have delay AND we * remove rx_delay only if we have delay AND we
* have not preset cmx_delay * have not preset cmx_delay AND
* the delay is greater dsp_poll
*/ */
if (delay && !dsp->cmx_delay) { if (delay > dsp_poll && !dsp->cmx_delay) {
if (dsp_debug & DEBUG_DSP_CMX) if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG printk(KERN_DEBUG
"%s lowest rx_delay of %d bytes for" "%s lowest rx_delay of %d bytes for"
" dsp %s are now removed.\n", " dsp %s are now removed.\n",
__func__, delay, __func__, delay,
dsp->name); dsp->name);
r = dsp->rx_R; r = dsp->rx_R;
rr = (r + delay) & CMX_BUFF_MASK; rr = (r + delay - (dsp_poll >> 1))
& CMX_BUFF_MASK;
/* delete rx-data */ /* delete rx-data */
while (r != rr) { while (r != rr) {
p[r] = dsp_silence; p[r] = dsp_silence;
...@@ -1736,15 +1769,16 @@ dsp_cmx_send(void *arg) ...@@ -1736,15 +1769,16 @@ dsp_cmx_send(void *arg)
* remove delay only if we have delay AND we * remove delay only if we have delay AND we
* have enabled tx_dejitter * have enabled tx_dejitter
*/ */
if (delay && dsp->tx_dejitter) { if (delay > dsp_poll && dsp->tx_dejitter) {
if (dsp_debug & DEBUG_DSP_CMX) if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG printk(KERN_DEBUG
"%s lowest tx_delay of %d bytes for" "%s lowest tx_delay of %d bytes for"
" dsp %s are now removed.\n", " dsp %s are now removed.\n",
__func__, delay, __func__, delay,
dsp->name); dsp->name);
r = dsp->tx_R; r = dsp->tx_R;
rr = (r + delay) & CMX_BUFF_MASK; rr = (r + delay - (dsp_poll >> 1))
& CMX_BUFF_MASK;
/* delete tx-data */ /* delete tx-data */
while (r != rr) { while (r != rr) {
q[r] = dsp_silence; q[r] = dsp_silence;
...@@ -1797,14 +1831,16 @@ dsp_cmx_transmit(struct dsp *dsp, struct sk_buff *skb) ...@@ -1797,14 +1831,16 @@ dsp_cmx_transmit(struct dsp *dsp, struct sk_buff *skb)
ww = dsp->tx_R; ww = dsp->tx_R;
p = dsp->tx_buff; p = dsp->tx_buff;
d = skb->data; d = skb->data;
space = ww-w; space = (ww - w - 1) & CMX_BUFF_MASK;
if (space <= 0)
space += CMX_BUFF_SIZE;
/* write-pointer should not overrun nor reach read pointer */ /* write-pointer should not overrun nor reach read pointer */
if (space-1 < skb->len) if (space < skb->len) {
/* write to the space we have left */ /* write to the space we have left */
ww = (ww - 1) & CMX_BUFF_MASK; ww = (ww - 1) & CMX_BUFF_MASK; /* end one byte prior tx_R */
else if (dsp_debug & DEBUG_DSP_CLOCK)
printk(KERN_DEBUG "%s: TX overflow space=%d skb->len="
"%d, w=0x%04x, ww=0x%04x\n", __func__, space,
skb->len, w, ww);
} else
/* write until all byte are copied */ /* write until all byte are copied */
ww = (w + skb->len) & CMX_BUFF_MASK; ww = (w + skb->len) & CMX_BUFF_MASK;
dsp->tx_W = ww; dsp->tx_W = ww;
......
...@@ -191,6 +191,8 @@ dsp_rx_off_member(struct dsp *dsp) ...@@ -191,6 +191,8 @@ dsp_rx_off_member(struct dsp *dsp)
struct mISDN_ctrl_req cq; struct mISDN_ctrl_req cq;
int rx_off = 1; int rx_off = 1;
memset(&cq, 0, sizeof(cq));
if (!dsp->features_rx_off) if (!dsp->features_rx_off)
return; return;
...@@ -249,6 +251,32 @@ dsp_rx_off(struct dsp *dsp) ...@@ -249,6 +251,32 @@ dsp_rx_off(struct dsp *dsp)
} }
} }
/* enable "fill empty" feature */
static void
dsp_fill_empty(struct dsp *dsp)
{
struct mISDN_ctrl_req cq;
memset(&cq, 0, sizeof(cq));
if (!dsp->ch.peer) {
if (dsp_debug & DEBUG_DSP_CORE)
printk(KERN_DEBUG "%s: no peer, no fill_empty\n",
__func__);
return;
}
cq.op = MISDN_CTRL_FILL_EMPTY;
cq.p1 = 1;
if (dsp->ch.peer->ctrl(dsp->ch.peer, CONTROL_CHANNEL, &cq)) {
printk(KERN_DEBUG "%s: CONTROL_CHANNEL failed\n",
__func__);
return;
}
if (dsp_debug & DEBUG_DSP_CORE)
printk(KERN_DEBUG "%s: %s set fill_empty = 1\n",
__func__, dsp->name);
}
static int static int
dsp_control_req(struct dsp *dsp, struct mISDNhead *hh, struct sk_buff *skb) dsp_control_req(struct dsp *dsp, struct mISDNhead *hh, struct sk_buff *skb)
{ {
...@@ -273,6 +301,7 @@ dsp_control_req(struct dsp *dsp, struct mISDNhead *hh, struct sk_buff *skb) ...@@ -273,6 +301,7 @@ dsp_control_req(struct dsp *dsp, struct mISDNhead *hh, struct sk_buff *skb)
if (dsp_debug & DEBUG_DSP_CORE) if (dsp_debug & DEBUG_DSP_CORE)
printk(KERN_DEBUG "%s: start dtmf\n", __func__); printk(KERN_DEBUG "%s: start dtmf\n", __func__);
if (len == sizeof(int)) { if (len == sizeof(int)) {
if (dsp_debug & DEBUG_DSP_CORE)
printk(KERN_NOTICE "changing DTMF Threshold " printk(KERN_NOTICE "changing DTMF Threshold "
"to %d\n", *((int *)data)); "to %d\n", *((int *)data));
dsp->dtmf.treshold = (*(int *)data) * 10000; dsp->dtmf.treshold = (*(int *)data) * 10000;
...@@ -593,8 +622,6 @@ get_features(struct mISDNchannel *ch) ...@@ -593,8 +622,6 @@ get_features(struct mISDNchannel *ch)
struct dsp *dsp = container_of(ch, struct dsp, ch); struct dsp *dsp = container_of(ch, struct dsp, ch);
struct mISDN_ctrl_req cq; struct mISDN_ctrl_req cq;
if (dsp_options & DSP_OPT_NOHARDWARE)
return;
if (!ch->peer) { if (!ch->peer) {
if (dsp_debug & DEBUG_DSP_CORE) if (dsp_debug & DEBUG_DSP_CORE)
printk(KERN_DEBUG "%s: no peer, no features\n", printk(KERN_DEBUG "%s: no peer, no features\n",
...@@ -610,6 +637,10 @@ get_features(struct mISDNchannel *ch) ...@@ -610,6 +637,10 @@ get_features(struct mISDNchannel *ch)
} }
if (cq.op & MISDN_CTRL_RX_OFF) if (cq.op & MISDN_CTRL_RX_OFF)
dsp->features_rx_off = 1; dsp->features_rx_off = 1;
if (cq.op & MISDN_CTRL_FILL_EMPTY)
dsp->features_fill_empty = 1;
if (dsp_options & DSP_OPT_NOHARDWARE)
return;
if ((cq.op & MISDN_CTRL_HW_FEATURES_OP)) { if ((cq.op & MISDN_CTRL_HW_FEATURES_OP)) {
cq.op = MISDN_CTRL_HW_FEATURES; cq.op = MISDN_CTRL_HW_FEATURES;
*((u_long *)&cq.p1) = (u_long)&dsp->features; *((u_long *)&cq.p1) = (u_long)&dsp->features;
...@@ -837,11 +868,14 @@ dsp_function(struct mISDNchannel *ch, struct sk_buff *skb) ...@@ -837,11 +868,14 @@ dsp_function(struct mISDNchannel *ch, struct sk_buff *skb)
} }
if (dsp->hdlc) { if (dsp->hdlc) {
/* hdlc */ /* hdlc */
if (!dsp->b_active) {
ret = -EIO;
break;
}
hh->prim = PH_DATA_REQ;
spin_lock_irqsave(&dsp_lock, flags); spin_lock_irqsave(&dsp_lock, flags);
if (dsp->b_active) {
skb_queue_tail(&dsp->sendq, skb); skb_queue_tail(&dsp->sendq, skb);
schedule_work(&dsp->workq); schedule_work(&dsp->workq);
}
spin_unlock_irqrestore(&dsp_lock, flags); spin_unlock_irqrestore(&dsp_lock, flags);
return 0; return 0;
} }
...@@ -865,6 +899,9 @@ dsp_function(struct mISDNchannel *ch, struct sk_buff *skb) ...@@ -865,6 +899,9 @@ dsp_function(struct mISDNchannel *ch, struct sk_buff *skb)
if (dsp->dtmf.hardware || dsp->dtmf.software) if (dsp->dtmf.hardware || dsp->dtmf.software)
dsp_dtmf_goertzel_init(dsp); dsp_dtmf_goertzel_init(dsp);
get_features(ch); get_features(ch);
/* enable fill_empty feature */
if (dsp->features_fill_empty)
dsp_fill_empty(dsp);
/* send ph_activate */ /* send ph_activate */
hh->prim = PH_ACTIVATE_REQ; hh->prim = PH_ACTIVATE_REQ;
if (ch->peer) if (ch->peer)
...@@ -1105,7 +1142,7 @@ static int dsp_init(void) ...@@ -1105,7 +1142,7 @@ static int dsp_init(void)
} else { } else {
poll = 8; poll = 8;
while (poll <= MAX_POLL) { while (poll <= MAX_POLL) {
tics = poll * HZ / 8000; tics = (poll * HZ) / 8000;
if (tics * 8000 == poll * HZ) { if (tics * 8000 == poll * HZ) {
dsp_tics = tics; dsp_tics = tics;
dsp_poll = poll; dsp_poll = poll;
......
...@@ -75,6 +75,15 @@ static struct device_attribute element_attributes[] = { ...@@ -75,6 +75,15 @@ static struct device_attribute element_attributes[] = {
__ATTR(args, 0444, attr_show_args, NULL), __ATTR(args, 0444, attr_show_args, NULL),
}; };
static void
mISDN_dsp_dev_release(struct device *dev)
{
struct dsp_element_entry *entry =
container_of(dev, struct dsp_element_entry, dev);
list_del(&entry->list);
kfree(entry);
}
int mISDN_dsp_element_register(struct mISDN_dsp_element *elem) int mISDN_dsp_element_register(struct mISDN_dsp_element *elem)
{ {
struct dsp_element_entry *entry; struct dsp_element_entry *entry;
...@@ -83,13 +92,14 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem) ...@@ -83,13 +92,14 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem)
if (!elem) if (!elem)
return -EINVAL; return -EINVAL;
entry = kzalloc(sizeof(struct dsp_element_entry), GFP_KERNEL); entry = kzalloc(sizeof(struct dsp_element_entry), GFP_ATOMIC);
if (!entry) if (!entry)
return -ENOMEM; return -ENOMEM;
entry->elem = elem; entry->elem = elem;
entry->dev.class = elements_class; entry->dev.class = elements_class;
entry->dev.release = mISDN_dsp_dev_release;
dev_set_drvdata(&entry->dev, elem); dev_set_drvdata(&entry->dev, elem);
dev_set_name(&entry->dev, elem->name); dev_set_name(&entry->dev, elem->name);
ret = device_register(&entry->dev); ret = device_register(&entry->dev);
...@@ -98,6 +108,7 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem) ...@@ -98,6 +108,7 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem)
__func__, elem->name); __func__, elem->name);
goto err1; goto err1;
} }
list_add_tail(&entry->list, &dsp_elements);
for (i = 0; i < (sizeof(element_attributes) for (i = 0; i < (sizeof(element_attributes)
/ sizeof(struct device_attribute)); ++i) / sizeof(struct device_attribute)); ++i)
...@@ -109,14 +120,15 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem) ...@@ -109,14 +120,15 @@ int mISDN_dsp_element_register(struct mISDN_dsp_element *elem)
goto err2; goto err2;
} }
list_add_tail(&entry->list, &dsp_elements); #ifdef PIPELINE_DEBUG
printk(KERN_DEBUG "%s: %s registered\n", __func__, elem->name); printk(KERN_DEBUG "%s: %s registered\n", __func__, elem->name);
#endif
return 0; return 0;
err2: err2:
device_unregister(&entry->dev); device_unregister(&entry->dev);
return ret;
err1: err1:
kfree(entry); kfree(entry);
return ret; return ret;
...@@ -132,11 +144,11 @@ void mISDN_dsp_element_unregister(struct mISDN_dsp_element *elem) ...@@ -132,11 +144,11 @@ void mISDN_dsp_element_unregister(struct mISDN_dsp_element *elem)
list_for_each_entry_safe(entry, n, &dsp_elements, list) list_for_each_entry_safe(entry, n, &dsp_elements, list)
if (entry->elem == elem) { if (entry->elem == elem) {
list_del(&entry->list);
device_unregister(&entry->dev); device_unregister(&entry->dev);
kfree(entry); #ifdef PIPELINE_DEBUG
printk(KERN_DEBUG "%s: %s unregistered\n", printk(KERN_DEBUG "%s: %s unregistered\n",
__func__, elem->name); __func__, elem->name);
#endif
return; return;
} }
printk(KERN_ERR "%s: element %s not in list.\n", __func__, elem->name); printk(KERN_ERR "%s: element %s not in list.\n", __func__, elem->name);
...@@ -173,7 +185,9 @@ void dsp_pipeline_module_exit(void) ...@@ -173,7 +185,9 @@ void dsp_pipeline_module_exit(void)
kfree(entry); kfree(entry);
} }
#ifdef PIPELINE_DEBUG
printk(KERN_DEBUG "%s: dsp pipeline module exited\n", __func__); printk(KERN_DEBUG "%s: dsp pipeline module exited\n", __func__);
#endif
} }
int dsp_pipeline_init(struct dsp_pipeline *pipeline) int dsp_pipeline_init(struct dsp_pipeline *pipeline)
...@@ -239,7 +253,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg) ...@@ -239,7 +253,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg)
if (!len) if (!len)
return 0; return 0;
dup = kmalloc(len + 1, GFP_KERNEL); dup = kmalloc(len + 1, GFP_ATOMIC);
if (!dup) if (!dup)
return 0; return 0;
strcpy(dup, cfg); strcpy(dup, cfg);
...@@ -256,9 +270,9 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg) ...@@ -256,9 +270,9 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg)
elem = entry->elem; elem = entry->elem;
pipeline_entry = kmalloc(sizeof(struct pipeline_entry = kmalloc(sizeof(struct
dsp_pipeline_entry), GFP_KERNEL); dsp_pipeline_entry), GFP_ATOMIC);
if (!pipeline_entry) { if (!pipeline_entry) {
printk(KERN_DEBUG "%s: failed to add " printk(KERN_ERR "%s: failed to add "
"entry to pipeline: %s (out of " "entry to pipeline: %s (out of "
"memory)\n", __func__, elem->name); "memory)\n", __func__, elem->name);
incomplete = 1; incomplete = 1;
...@@ -286,7 +300,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg) ...@@ -286,7 +300,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg)
args : ""); args : "");
#endif #endif
} else { } else {
printk(KERN_DEBUG "%s: failed " printk(KERN_ERR "%s: failed "
"to add entry to pipeline: " "to add entry to pipeline: "
"%s (new() returned NULL)\n", "%s (new() returned NULL)\n",
__func__, elem->name); __func__, elem->name);
...@@ -301,7 +315,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg) ...@@ -301,7 +315,7 @@ int dsp_pipeline_build(struct dsp_pipeline *pipeline, const char *cfg)
if (found) if (found)
found = 0; found = 0;
else { else {
printk(KERN_DEBUG "%s: element not found, skipping: " printk(KERN_ERR "%s: element not found, skipping: "
"%s\n", __func__, name); "%s\n", __func__, name);
incomplete = 1; incomplete = 1;
} }
......
...@@ -50,9 +50,6 @@ bchannel_bh(struct work_struct *ws) ...@@ -50,9 +50,6 @@ bchannel_bh(struct work_struct *ws)
if (test_and_clear_bit(FLG_RECVQUEUE, &bch->Flags)) { if (test_and_clear_bit(FLG_RECVQUEUE, &bch->Flags)) {
while ((skb = skb_dequeue(&bch->rqueue))) { while ((skb = skb_dequeue(&bch->rqueue))) {
if (bch->rcount >= 64)
printk(KERN_WARNING "B-channel %p receive "
"queue if full, but empties...\n", bch);
bch->rcount--; bch->rcount--;
if (likely(bch->ch.peer)) { if (likely(bch->ch.peer)) {
err = bch->ch.recv(bch->ch.peer, skb); err = bch->ch.recv(bch->ch.peer, skb);
...@@ -168,6 +165,25 @@ recv_Dchannel(struct dchannel *dch) ...@@ -168,6 +165,25 @@ recv_Dchannel(struct dchannel *dch)
} }
EXPORT_SYMBOL(recv_Dchannel); EXPORT_SYMBOL(recv_Dchannel);
void
recv_Echannel(struct dchannel *ech, struct dchannel *dch)
{
struct mISDNhead *hh;
if (ech->rx_skb->len < 2) { /* at least 2 for sapi / tei */
dev_kfree_skb(ech->rx_skb);
ech->rx_skb = NULL;
return;
}
hh = mISDN_HEAD_P(ech->rx_skb);
hh->prim = PH_DATA_E_IND;
hh->id = get_sapi_tei(ech->rx_skb->data);
skb_queue_tail(&dch->rqueue, ech->rx_skb);
ech->rx_skb = NULL;
schedule_event(dch, FLG_RECVQUEUE);
}
EXPORT_SYMBOL(recv_Echannel);
void void
recv_Bchannel(struct bchannel *bch) recv_Bchannel(struct bchannel *bch)
{ {
...@@ -177,8 +193,10 @@ recv_Bchannel(struct bchannel *bch) ...@@ -177,8 +193,10 @@ recv_Bchannel(struct bchannel *bch)
hh->prim = PH_DATA_IND; hh->prim = PH_DATA_IND;
hh->id = MISDN_ID_ANY; hh->id = MISDN_ID_ANY;
if (bch->rcount >= 64) { if (bch->rcount >= 64) {
dev_kfree_skb(bch->rx_skb); printk(KERN_WARNING "B-channel %p receive queue overflow, "
bch->rx_skb = NULL; "fushing!\n", bch);
skb_queue_purge(&bch->rqueue);
bch->rcount = 0;
return; return;
} }
bch->rcount++; bch->rcount++;
...@@ -200,8 +218,10 @@ void ...@@ -200,8 +218,10 @@ void
recv_Bchannel_skb(struct bchannel *bch, struct sk_buff *skb) recv_Bchannel_skb(struct bchannel *bch, struct sk_buff *skb)
{ {
if (bch->rcount >= 64) { if (bch->rcount >= 64) {
dev_kfree_skb(skb); printk(KERN_WARNING "B-channel %p receive queue overflow, "
return; "fushing!\n", bch);
skb_queue_purge(&bch->rqueue);
bch->rcount = 0;
} }
bch->rcount++; bch->rcount++;
skb_queue_tail(&bch->rqueue, skb); skb_queue_tail(&bch->rqueue, skb);
...@@ -245,8 +265,12 @@ confirm_Bsend(struct bchannel *bch) ...@@ -245,8 +265,12 @@ confirm_Bsend(struct bchannel *bch)
{ {
struct sk_buff *skb; struct sk_buff *skb;
if (bch->rcount >= 64) if (bch->rcount >= 64) {
return; printk(KERN_WARNING "B-channel %p receive queue overflow, "
"fushing!\n", bch);
skb_queue_purge(&bch->rqueue);
bch->rcount = 0;
}
skb = _alloc_mISDN_skb(PH_DATA_CNF, mISDN_HEAD_ID(bch->tx_skb), skb = _alloc_mISDN_skb(PH_DATA_CNF, mISDN_HEAD_ID(bch->tx_skb),
0, NULL, GFP_ATOMIC); 0, NULL, GFP_ATOMIC);
if (!skb) { if (!skb) {
......
...@@ -777,6 +777,8 @@ l1oip_socket_thread(void *data) ...@@ -777,6 +777,8 @@ l1oip_socket_thread(void *data)
static void static void
l1oip_socket_close(struct l1oip *hc) l1oip_socket_close(struct l1oip *hc)
{ {
struct dchannel *dch = hc->chan[hc->d_idx].dch;
/* kill thread */ /* kill thread */
if (hc->socket_thread) { if (hc->socket_thread) {
if (debug & DEBUG_L1OIP_SOCKET) if (debug & DEBUG_L1OIP_SOCKET)
...@@ -785,6 +787,16 @@ l1oip_socket_close(struct l1oip *hc) ...@@ -785,6 +787,16 @@ l1oip_socket_close(struct l1oip *hc)
send_sig(SIGTERM, hc->socket_thread, 0); send_sig(SIGTERM, hc->socket_thread, 0);
wait_for_completion(&hc->socket_complete); wait_for_completion(&hc->socket_complete);
} }
/* if active, we send up a PH_DEACTIVATE and deactivate */
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
if (debug & (DEBUG_L1OIP_MSG|DEBUG_L1OIP_SOCKET))
printk(KERN_DEBUG "%s: interface become deactivated "
"due to timeout\n", __func__);
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_ATOMIC);
}
} }
static int static int
...@@ -944,7 +956,8 @@ channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) ...@@ -944,7 +956,8 @@ channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
switch (cq->op) { switch (cq->op) {
case MISDN_CTRL_GETOP: case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_SETPEER | MISDN_CTRL_UNSETPEER; cq->op = MISDN_CTRL_SETPEER | MISDN_CTRL_UNSETPEER
| MISDN_CTRL_GETPEER;
break; break;
case MISDN_CTRL_SETPEER: case MISDN_CTRL_SETPEER:
hc->remoteip = (u32)cq->p1; hc->remoteip = (u32)cq->p1;
...@@ -964,6 +977,13 @@ channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) ...@@ -964,6 +977,13 @@ channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
hc->remoteip = 0; hc->remoteip = 0;
l1oip_socket_open(hc); l1oip_socket_open(hc);
break; break;
case MISDN_CTRL_GETPEER:
if (debug & DEBUG_L1OIP_SOCKET)
printk(KERN_DEBUG "%s: getting ip address.\n",
__func__);
cq->p1 = hc->remoteip;
cq->p2 = hc->remoteport | (hc->localport << 16);
break;
default: default:
printk(KERN_WARNING "%s: unknown Op %x\n", printk(KERN_WARNING "%s: unknown Op %x\n",
__func__, cq->op); __func__, cq->op);
...@@ -1413,7 +1433,8 @@ init_card(struct l1oip *hc, int pri, int bundle) ...@@ -1413,7 +1433,8 @@ init_card(struct l1oip *hc, int pri, int bundle)
hc->chan[i + ch].bch = bch; hc->chan[i + ch].bch = bch;
set_channelmap(bch->nr, dch->dev.channelmap); set_channelmap(bch->nr, dch->dev.channelmap);
} }
ret = mISDN_register_device(&dch->dev, hc->name); /* TODO: create a parent device for this driver */
ret = mISDN_register_device(&dch->dev, NULL, hc->name);
if (ret) if (ret)
return ret; return ret;
hc->registered = 1; hc->registered = 1;
......
...@@ -101,7 +101,7 @@ l1m_debug(struct FsmInst *fi, char *fmt, ...) ...@@ -101,7 +101,7 @@ l1m_debug(struct FsmInst *fi, char *fmt, ...)
va_list va; va_list va;
va_start(va, fmt); va_start(va, fmt);
printk(KERN_DEBUG "%s: ", l1->dch->dev.name); printk(KERN_DEBUG "%s: ", dev_name(&l1->dch->dev.dev));
vprintk(fmt, va); vprintk(fmt, va);
printk("\n"); printk("\n");
va_end(va); va_end(va);
......
...@@ -381,7 +381,7 @@ data_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) ...@@ -381,7 +381,7 @@ data_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
memcpy(di.channelmap, dev->channelmap, memcpy(di.channelmap, dev->channelmap,
sizeof(di.channelmap)); sizeof(di.channelmap));
di.nrbchan = dev->nrbchan; di.nrbchan = dev->nrbchan;
strcpy(di.name, dev->name); strcpy(di.name, dev_name(&dev->dev));
if (copy_to_user((void __user *)arg, &di, sizeof(di))) if (copy_to_user((void __user *)arg, &di, sizeof(di)))
err = -EFAULT; err = -EFAULT;
} else } else
...@@ -460,6 +460,8 @@ data_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) ...@@ -460,6 +460,8 @@ data_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{ {
struct sockaddr_mISDN *maddr = (struct sockaddr_mISDN *) addr; struct sockaddr_mISDN *maddr = (struct sockaddr_mISDN *) addr;
struct sock *sk = sock->sk; struct sock *sk = sock->sk;
struct hlist_node *node;
struct sock *csk;
int err = 0; int err = 0;
if (*debug & DEBUG_SOCKET) if (*debug & DEBUG_SOCKET)
...@@ -480,6 +482,26 @@ data_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) ...@@ -480,6 +482,26 @@ data_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
err = -ENODEV; err = -ENODEV;
goto done; goto done;
} }
if (sk->sk_protocol < ISDN_P_B_START) {
read_lock_bh(&data_sockets.lock);
sk_for_each(csk, node, &data_sockets.head) {
if (sk == csk)
continue;
if (_pms(csk)->dev != _pms(sk)->dev)
continue;
if (csk->sk_protocol >= ISDN_P_B_START)
continue;
if (IS_ISDN_P_TE(csk->sk_protocol)
== IS_ISDN_P_TE(sk->sk_protocol))
continue;
read_unlock_bh(&data_sockets.lock);
err = -EBUSY;
goto done;
}
read_unlock_bh(&data_sockets.lock);
}
_pms(sk)->ch.send = mISDN_send; _pms(sk)->ch.send = mISDN_send;
_pms(sk)->ch.ctrl = mISDN_ctrl; _pms(sk)->ch.ctrl = mISDN_ctrl;
...@@ -639,12 +661,27 @@ base_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) ...@@ -639,12 +661,27 @@ base_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
memcpy(di.channelmap, dev->channelmap, memcpy(di.channelmap, dev->channelmap,
sizeof(di.channelmap)); sizeof(di.channelmap));
di.nrbchan = dev->nrbchan; di.nrbchan = dev->nrbchan;
strcpy(di.name, dev->name); strcpy(di.name, dev_name(&dev->dev));
if (copy_to_user((void __user *)arg, &di, sizeof(di))) if (copy_to_user((void __user *)arg, &di, sizeof(di)))
err = -EFAULT; err = -EFAULT;
} else } else
err = -ENODEV; err = -ENODEV;
break; break;
case IMSETDEVNAME:
{
struct mISDN_devrename dn;
if (copy_from_user(&dn, (void __user *)arg,
sizeof(dn))) {
err = -EFAULT;
break;
}
dev = get_mdevice(dn.id);
if (dev)
err = device_rename(&dev->dev, dn.name);
else
err = -ENODEV;
}
break;
default: default:
err = -EINVAL; err = -EINVAL;
} }
......
...@@ -172,7 +172,8 @@ send_msg_to_layer(struct mISDNstack *st, struct sk_buff *skb) ...@@ -172,7 +172,8 @@ send_msg_to_layer(struct mISDNstack *st, struct sk_buff *skb)
else else
printk(KERN_WARNING printk(KERN_WARNING
"%s: dev(%s) prim(%x) id(%x) no channel\n", "%s: dev(%s) prim(%x) id(%x) no channel\n",
__func__, st->dev->name, hh->prim, hh->id); __func__, dev_name(&st->dev->dev), hh->prim,
hh->id);
} else if (lm == 0x8) { } else if (lm == 0x8) {
WARN_ON(lm == 0x8); WARN_ON(lm == 0x8);
ch = get_channel4id(st, hh->id); ch = get_channel4id(st, hh->id);
...@@ -181,11 +182,12 @@ send_msg_to_layer(struct mISDNstack *st, struct sk_buff *skb) ...@@ -181,11 +182,12 @@ send_msg_to_layer(struct mISDNstack *st, struct sk_buff *skb)
else else
printk(KERN_WARNING printk(KERN_WARNING
"%s: dev(%s) prim(%x) id(%x) no channel\n", "%s: dev(%s) prim(%x) id(%x) no channel\n",
__func__, st->dev->name, hh->prim, hh->id); __func__, dev_name(&st->dev->dev), hh->prim,
hh->id);
} else { } else {
/* broadcast not handled yet */ /* broadcast not handled yet */
printk(KERN_WARNING "%s: dev(%s) prim %x not delivered\n", printk(KERN_WARNING "%s: dev(%s) prim %x not delivered\n",
__func__, st->dev->name, hh->prim); __func__, dev_name(&st->dev->dev), hh->prim);
} }
return -ESRCH; return -ESRCH;
} }
...@@ -209,7 +211,8 @@ mISDNStackd(void *data) ...@@ -209,7 +211,8 @@ mISDNStackd(void *data)
unlock_kernel(); unlock_kernel();
#endif #endif
if (*debug & DEBUG_MSG_THREAD) if (*debug & DEBUG_MSG_THREAD)
printk(KERN_DEBUG "mISDNStackd %s started\n", st->dev->name); printk(KERN_DEBUG "mISDNStackd %s started\n",
dev_name(&st->dev->dev));
if (st->notify != NULL) { if (st->notify != NULL) {
complete(st->notify); complete(st->notify);
...@@ -245,7 +248,7 @@ mISDNStackd(void *data) ...@@ -245,7 +248,7 @@ mISDNStackd(void *data)
printk(KERN_DEBUG printk(KERN_DEBUG
"%s: %s prim(%x) id(%x) " "%s: %s prim(%x) id(%x) "
"send call(%d)\n", "send call(%d)\n",
__func__, st->dev->name, __func__, dev_name(&st->dev->dev),
mISDN_HEAD_PRIM(skb), mISDN_HEAD_PRIM(skb),
mISDN_HEAD_ID(skb), err); mISDN_HEAD_ID(skb), err);
dev_kfree_skb(skb); dev_kfree_skb(skb);
...@@ -288,7 +291,7 @@ mISDNStackd(void *data) ...@@ -288,7 +291,7 @@ mISDNStackd(void *data)
mISDN_STACK_ACTION_MASK)); mISDN_STACK_ACTION_MASK));
if (*debug & DEBUG_MSG_THREAD) if (*debug & DEBUG_MSG_THREAD)
printk(KERN_DEBUG "%s: %s wake status %08lx\n", printk(KERN_DEBUG "%s: %s wake status %08lx\n",
__func__, st->dev->name, st->status); __func__, dev_name(&st->dev->dev), st->status);
test_and_set_bit(mISDN_STACK_ACTIVE, &st->status); test_and_set_bit(mISDN_STACK_ACTIVE, &st->status);
test_and_clear_bit(mISDN_STACK_WAKEUP, &st->status); test_and_clear_bit(mISDN_STACK_WAKEUP, &st->status);
...@@ -303,15 +306,16 @@ mISDNStackd(void *data) ...@@ -303,15 +306,16 @@ mISDNStackd(void *data)
#ifdef MISDN_MSG_STATS #ifdef MISDN_MSG_STATS
printk(KERN_DEBUG "mISDNStackd daemon for %s proceed %d " printk(KERN_DEBUG "mISDNStackd daemon for %s proceed %d "
"msg %d sleep %d stopped\n", "msg %d sleep %d stopped\n",
st->dev->name, st->msg_cnt, st->sleep_cnt, st->stopped_cnt); dev_name(&st->dev->dev), st->msg_cnt, st->sleep_cnt,
st->stopped_cnt);
printk(KERN_DEBUG printk(KERN_DEBUG
"mISDNStackd daemon for %s utime(%ld) stime(%ld)\n", "mISDNStackd daemon for %s utime(%ld) stime(%ld)\n",
st->dev->name, st->thread->utime, st->thread->stime); dev_name(&st->dev->dev), st->thread->utime, st->thread->stime);
printk(KERN_DEBUG printk(KERN_DEBUG
"mISDNStackd daemon for %s nvcsw(%ld) nivcsw(%ld)\n", "mISDNStackd daemon for %s nvcsw(%ld) nivcsw(%ld)\n",
st->dev->name, st->thread->nvcsw, st->thread->nivcsw); dev_name(&st->dev->dev), st->thread->nvcsw, st->thread->nivcsw);
printk(KERN_DEBUG "mISDNStackd daemon for %s killed now\n", printk(KERN_DEBUG "mISDNStackd daemon for %s killed now\n",
st->dev->name); dev_name(&st->dev->dev));
#endif #endif
test_and_set_bit(mISDN_STACK_KILLED, &st->status); test_and_set_bit(mISDN_STACK_KILLED, &st->status);
test_and_clear_bit(mISDN_STACK_RUNNING, &st->status); test_and_clear_bit(mISDN_STACK_RUNNING, &st->status);
...@@ -401,15 +405,16 @@ create_stack(struct mISDNdevice *dev) ...@@ -401,15 +405,16 @@ create_stack(struct mISDNdevice *dev)
newst->own.send = mISDN_queue_message; newst->own.send = mISDN_queue_message;
newst->own.recv = mISDN_queue_message; newst->own.recv = mISDN_queue_message;
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: st(%s)\n", __func__, newst->dev->name); printk(KERN_DEBUG "%s: st(%s)\n", __func__,
dev_name(&newst->dev->dev));
newst->notify = &done; newst->notify = &done;
newst->thread = kthread_run(mISDNStackd, (void *)newst, "mISDN_%s", newst->thread = kthread_run(mISDNStackd, (void *)newst, "mISDN_%s",
newst->dev->name); dev_name(&newst->dev->dev));
if (IS_ERR(newst->thread)) { if (IS_ERR(newst->thread)) {
err = PTR_ERR(newst->thread); err = PTR_ERR(newst->thread);
printk(KERN_ERR printk(KERN_ERR
"mISDN:cannot create kernel thread for %s (%d)\n", "mISDN:cannot create kernel thread for %s (%d)\n",
newst->dev->name, err); dev_name(&newst->dev->dev), err);
delete_teimanager(dev->teimgr); delete_teimanager(dev->teimgr);
kfree(newst); kfree(newst);
} else } else
...@@ -428,29 +433,21 @@ connect_layer1(struct mISDNdevice *dev, struct mISDNchannel *ch, ...@@ -428,29 +433,21 @@ connect_layer1(struct mISDNdevice *dev, struct mISDNchannel *ch,
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n", printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n",
__func__, dev->name, protocol, adr->dev, adr->channel, __func__, dev_name(&dev->dev), protocol, adr->dev,
adr->sapi, adr->tei); adr->channel, adr->sapi, adr->tei);
switch (protocol) { switch (protocol) {
case ISDN_P_NT_S0: case ISDN_P_NT_S0:
case ISDN_P_NT_E1: case ISDN_P_NT_E1:
case ISDN_P_TE_S0: case ISDN_P_TE_S0:
case ISDN_P_TE_E1: case ISDN_P_TE_E1:
#ifdef PROTOCOL_CHECK
/* this should be enhanced */
if (!list_empty(&dev->D.st->layer2)
&& dev->D.protocol != protocol)
return -EBUSY;
if (!hlist_empty(&dev->D.st->l1sock.head)
&& dev->D.protocol != protocol)
return -EBUSY;
#endif
ch->recv = mISDN_queue_message; ch->recv = mISDN_queue_message;
ch->peer = &dev->D.st->own; ch->peer = &dev->D.st->own;
ch->st = dev->D.st; ch->st = dev->D.st;
rq.protocol = protocol; rq.protocol = protocol;
rq.adr.channel = 0; rq.adr.channel = adr->channel;
err = dev->D.ctrl(&dev->D, OPEN_CHANNEL, &rq); err = dev->D.ctrl(&dev->D, OPEN_CHANNEL, &rq);
printk(KERN_DEBUG "%s: ret 1 %d\n", __func__, err); printk(KERN_DEBUG "%s: ret %d (dev %d)\n", __func__, err,
dev->id);
if (err) if (err)
return err; return err;
write_lock_bh(&dev->D.st->l1sock.lock); write_lock_bh(&dev->D.st->l1sock.lock);
...@@ -473,7 +470,7 @@ connect_Bstack(struct mISDNdevice *dev, struct mISDNchannel *ch, ...@@ -473,7 +470,7 @@ connect_Bstack(struct mISDNdevice *dev, struct mISDNchannel *ch,
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n", printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n",
__func__, dev->name, protocol, __func__, dev_name(&dev->dev), protocol,
adr->dev, adr->channel, adr->sapi, adr->dev, adr->channel, adr->sapi,
adr->tei); adr->tei);
ch->st = dev->D.st; ch->st = dev->D.st;
...@@ -529,7 +526,7 @@ create_l2entity(struct mISDNdevice *dev, struct mISDNchannel *ch, ...@@ -529,7 +526,7 @@ create_l2entity(struct mISDNdevice *dev, struct mISDNchannel *ch,
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n", printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n",
__func__, dev->name, protocol, __func__, dev_name(&dev->dev), protocol,
adr->dev, adr->channel, adr->sapi, adr->dev, adr->channel, adr->sapi,
adr->tei); adr->tei);
rq.protocol = ISDN_P_TE_S0; rq.protocol = ISDN_P_TE_S0;
...@@ -541,15 +538,6 @@ create_l2entity(struct mISDNdevice *dev, struct mISDNchannel *ch, ...@@ -541,15 +538,6 @@ create_l2entity(struct mISDNdevice *dev, struct mISDNchannel *ch,
if (dev->Dprotocols & (1 << ISDN_P_NT_E1)) if (dev->Dprotocols & (1 << ISDN_P_NT_E1))
rq.protocol = ISDN_P_NT_E1; rq.protocol = ISDN_P_NT_E1;
case ISDN_P_LAPD_TE: case ISDN_P_LAPD_TE:
#ifdef PROTOCOL_CHECK
/* this should be enhanced */
if (!list_empty(&dev->D.st->layer2)
&& dev->D.protocol != protocol)
return -EBUSY;
if (!hlist_empty(&dev->D.st->l1sock.head)
&& dev->D.protocol != protocol)
return -EBUSY;
#endif
ch->recv = mISDN_queue_message; ch->recv = mISDN_queue_message;
ch->peer = &dev->D.st->own; ch->peer = &dev->D.st->own;
ch->st = dev->D.st; ch->st = dev->D.st;
...@@ -590,7 +578,7 @@ delete_channel(struct mISDNchannel *ch) ...@@ -590,7 +578,7 @@ delete_channel(struct mISDNchannel *ch)
} }
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: st(%s) protocol(%x)\n", __func__, printk(KERN_DEBUG "%s: st(%s) protocol(%x)\n", __func__,
ch->st->dev->name, ch->protocol); dev_name(&ch->st->dev->dev), ch->protocol);
if (ch->protocol >= ISDN_P_B_START) { if (ch->protocol >= ISDN_P_B_START) {
if (ch->peer) { if (ch->peer) {
ch->peer->ctrl(ch->peer, CLOSE_CHANNEL, NULL); ch->peer->ctrl(ch->peer, CLOSE_CHANNEL, NULL);
...@@ -643,7 +631,7 @@ delete_stack(struct mISDNdevice *dev) ...@@ -643,7 +631,7 @@ delete_stack(struct mISDNdevice *dev)
if (*debug & DEBUG_CORE_FUNC) if (*debug & DEBUG_CORE_FUNC)
printk(KERN_DEBUG "%s: st(%s)\n", __func__, printk(KERN_DEBUG "%s: st(%s)\n", __func__,
st->dev->name); dev_name(&st->dev->dev));
if (dev->teimgr) if (dev->teimgr)
delete_teimanager(dev->teimgr); delete_teimanager(dev->teimgr);
if (st->thread) { if (st->thread) {
......
...@@ -968,9 +968,9 @@ create_teimgr(struct manager *mgr, struct channel_req *crq) ...@@ -968,9 +968,9 @@ create_teimgr(struct manager *mgr, struct channel_req *crq)
if (*debug & DEBUG_L2_TEI) if (*debug & DEBUG_L2_TEI)
printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n", printk(KERN_DEBUG "%s: %s proto(%x) adr(%d %d %d %d)\n",
__func__, mgr->ch.st->dev->name, crq->protocol, __func__, dev_name(&mgr->ch.st->dev->dev),
crq->adr.dev, crq->adr.channel, crq->adr.sapi, crq->protocol, crq->adr.dev, crq->adr.channel,
crq->adr.tei); crq->adr.sapi, crq->adr.tei);
if (crq->adr.sapi != 0) /* not supported yet */ if (crq->adr.sapi != 0) /* not supported yet */
return -EINVAL; return -EINVAL;
if (crq->adr.tei > GROUP_TEI) if (crq->adr.tei > GROUP_TEI)
......
...@@ -57,20 +57,21 @@ ...@@ -57,20 +57,21 @@
#define FLG_L2DATA 14 /* channel use L2 DATA primitivs */ #define FLG_L2DATA 14 /* channel use L2 DATA primitivs */
#define FLG_ORIGIN 15 /* channel is on origin site */ #define FLG_ORIGIN 15 /* channel is on origin site */
/* channel specific stuff */ /* channel specific stuff */
#define FLG_FILLEMPTY 16 /* fill fifo on first frame (empty) */
/* arcofi specific */ /* arcofi specific */
#define FLG_ARCOFI_TIMER 16 #define FLG_ARCOFI_TIMER 17
#define FLG_ARCOFI_ERROR 17 #define FLG_ARCOFI_ERROR 18
/* isar specific */ /* isar specific */
#define FLG_INITIALIZED 16 #define FLG_INITIALIZED 17
#define FLG_DLEETX 17 #define FLG_DLEETX 18
#define FLG_LASTDLE 18 #define FLG_LASTDLE 19
#define FLG_FIRST 19 #define FLG_FIRST 20
#define FLG_LASTDATA 20 #define FLG_LASTDATA 21
#define FLG_NMD_DATA 21 #define FLG_NMD_DATA 22
#define FLG_FTI_RUN 22 #define FLG_FTI_RUN 23
#define FLG_LL_OK 23 #define FLG_LL_OK 24
#define FLG_LL_CONN 24 #define FLG_LL_CONN 25
#define FLG_DTMFSEND 25 #define FLG_DTMFSEND 26
/* workq events */ /* workq events */
#define FLG_RECVQUEUE 30 #define FLG_RECVQUEUE 30
...@@ -183,6 +184,7 @@ extern void queue_ch_frame(struct mISDNchannel *, u_int, ...@@ -183,6 +184,7 @@ extern void queue_ch_frame(struct mISDNchannel *, u_int,
extern int dchannel_senddata(struct dchannel *, struct sk_buff *); extern int dchannel_senddata(struct dchannel *, struct sk_buff *);
extern int bchannel_senddata(struct bchannel *, struct sk_buff *); extern int bchannel_senddata(struct bchannel *, struct sk_buff *);
extern void recv_Dchannel(struct dchannel *); extern void recv_Dchannel(struct dchannel *);
extern void recv_Echannel(struct dchannel *, struct dchannel *);
extern void recv_Bchannel(struct bchannel *); extern void recv_Bchannel(struct bchannel *);
extern void recv_Dchannel_skb(struct dchannel *, struct sk_buff *); extern void recv_Dchannel_skb(struct dchannel *, struct sk_buff *);
extern void recv_Bchannel_skb(struct bchannel *, struct sk_buff *); extern void recv_Bchannel_skb(struct bchannel *, struct sk_buff *);
......
...@@ -36,8 +36,8 @@ ...@@ -36,8 +36,8 @@
* - should be incremented on every checkin * - should be incremented on every checkin
*/ */
#define MISDN_MAJOR_VERSION 1 #define MISDN_MAJOR_VERSION 1
#define MISDN_MINOR_VERSION 0 #define MISDN_MINOR_VERSION 1
#define MISDN_RELEASE 19 #define MISDN_RELEASE 20
/* primitives for information exchange /* primitives for information exchange
* generell format * generell format
...@@ -80,6 +80,7 @@ ...@@ -80,6 +80,7 @@
#define PH_DEACTIVATE_IND 0x0202 #define PH_DEACTIVATE_IND 0x0202
#define PH_DEACTIVATE_CNF 0x4202 #define PH_DEACTIVATE_CNF 0x4202
#define PH_DATA_IND 0x2002 #define PH_DATA_IND 0x2002
#define PH_DATA_E_IND 0x3002
#define MPH_ACTIVATE_IND 0x0502 #define MPH_ACTIVATE_IND 0x0502
#define MPH_DEACTIVATE_IND 0x0602 #define MPH_DEACTIVATE_IND 0x0602
#define MPH_INFORMATION_IND 0x0702 #define MPH_INFORMATION_IND 0x0702
...@@ -199,6 +200,18 @@ ...@@ -199,6 +200,18 @@
#define ISDN_P_NT_S0 0x02 #define ISDN_P_NT_S0 0x02
#define ISDN_P_TE_E1 0x03 #define ISDN_P_TE_E1 0x03
#define ISDN_P_NT_E1 0x04 #define ISDN_P_NT_E1 0x04
#define ISDN_P_TE_UP0 0x05
#define ISDN_P_NT_UP0 0x06
#define IS_ISDN_P_TE(p) ((p == ISDN_P_TE_S0) || (p == ISDN_P_TE_E1) || \
(p == ISDN_P_TE_UP0) || (p == ISDN_P_LAPD_TE))
#define IS_ISDN_P_NT(p) ((p == ISDN_P_NT_S0) || (p == ISDN_P_NT_E1) || \
(p == ISDN_P_NT_UP0) || (p == ISDN_P_LAPD_NT))
#define IS_ISDN_P_S0(p) ((p == ISDN_P_TE_S0) || (p == ISDN_P_NT_S0))
#define IS_ISDN_P_E1(p) ((p == ISDN_P_TE_E1) || (p == ISDN_P_NT_E1))
#define IS_ISDN_P_UP0(p) ((p == ISDN_P_TE_UP0) || (p == ISDN_P_NT_UP0))
#define ISDN_P_LAPD_TE 0x10 #define ISDN_P_LAPD_TE 0x10
#define ISDN_P_LAPD_NT 0x11 #define ISDN_P_LAPD_NT 0x11
...@@ -255,16 +268,6 @@ struct sockaddr_mISDN { ...@@ -255,16 +268,6 @@ struct sockaddr_mISDN {
unsigned char tei; unsigned char tei;
}; };
/* timer device ioctl */
#define IMADDTIMER _IOR('I', 64, int)
#define IMDELTIMER _IOR('I', 65, int)
/* socket ioctls */
#define IMGETVERSION _IOR('I', 66, int)
#define IMGETCOUNT _IOR('I', 67, int)
#define IMGETDEVINFO _IOR('I', 68, int)
#define IMCTRLREQ _IOR('I', 69, int)
#define IMCLEAR_L2 _IOR('I', 70, int)
struct mISDNversion { struct mISDNversion {
unsigned char major; unsigned char major;
unsigned char minor; unsigned char minor;
...@@ -281,6 +284,40 @@ struct mISDN_devinfo { ...@@ -281,6 +284,40 @@ struct mISDN_devinfo {
char name[MISDN_MAX_IDLEN]; char name[MISDN_MAX_IDLEN];
}; };
struct mISDN_devrename {
u_int id;
char name[MISDN_MAX_IDLEN]; /* new name */
};
/* MPH_INFORMATION_REQ payload */
struct ph_info_ch {
__u32 protocol;
__u64 Flags;
};
struct ph_info_dch {
struct ph_info_ch ch;
__u16 state;
__u16 num_bch;
};
struct ph_info {
struct ph_info_dch dch;
struct ph_info_ch bch[];
};
/* timer device ioctl */
#define IMADDTIMER _IOR('I', 64, int)
#define IMDELTIMER _IOR('I', 65, int)
/* socket ioctls */
#define IMGETVERSION _IOR('I', 66, int)
#define IMGETCOUNT _IOR('I', 67, int)
#define IMGETDEVINFO _IOR('I', 68, int)
#define IMCTRLREQ _IOR('I', 69, int)
#define IMCLEAR_L2 _IOR('I', 70, int)
#define IMSETDEVNAME _IOR('I', 71, struct mISDN_devrename)
static inline int static inline int
test_channelmap(u_int nr, u_char *map) test_channelmap(u_int nr, u_char *map)
{ {
...@@ -312,6 +349,8 @@ clear_channelmap(u_int nr, u_char *map) ...@@ -312,6 +349,8 @@ clear_channelmap(u_int nr, u_char *map)
#define MISDN_CTRL_SETPEER 0x0040 #define MISDN_CTRL_SETPEER 0x0040
#define MISDN_CTRL_UNSETPEER 0x0080 #define MISDN_CTRL_UNSETPEER 0x0080
#define MISDN_CTRL_RX_OFF 0x0100 #define MISDN_CTRL_RX_OFF 0x0100
#define MISDN_CTRL_FILL_EMPTY 0x0200
#define MISDN_CTRL_GETPEER 0x0400
#define MISDN_CTRL_HW_FEATURES_OP 0x2000 #define MISDN_CTRL_HW_FEATURES_OP 0x2000
#define MISDN_CTRL_HW_FEATURES 0x2001 #define MISDN_CTRL_HW_FEATURES 0x2001
#define MISDN_CTRL_HFC_OP 0x4000 #define MISDN_CTRL_HFC_OP 0x4000
...@@ -362,6 +401,7 @@ struct mISDN_ctrl_req { ...@@ -362,6 +401,7 @@ struct mISDN_ctrl_req {
#define DEBUG_L2_TEI 0x00100000 #define DEBUG_L2_TEI 0x00100000
#define DEBUG_L2_TEIFSM 0x00200000 #define DEBUG_L2_TEIFSM 0x00200000
#define DEBUG_TIMER 0x01000000 #define DEBUG_TIMER 0x01000000
#define DEBUG_CLOCK 0x02000000
#define mISDN_HEAD_P(s) ((struct mISDNhead *)&s->cb[0]) #define mISDN_HEAD_P(s) ((struct mISDNhead *)&s->cb[0])
#define mISDN_HEAD_PRIM(s) (((struct mISDNhead *)&s->cb[0])->prim) #define mISDN_HEAD_PRIM(s) (((struct mISDNhead *)&s->cb[0])->prim)
...@@ -375,6 +415,7 @@ struct mISDN_ctrl_req { ...@@ -375,6 +415,7 @@ struct mISDN_ctrl_req {
struct mISDNchannel; struct mISDNchannel;
struct mISDNdevice; struct mISDNdevice;
struct mISDNstack; struct mISDNstack;
struct mISDNclock;
struct channel_req { struct channel_req {
u_int protocol; u_int protocol;
...@@ -423,7 +464,6 @@ struct mISDN_sock { ...@@ -423,7 +464,6 @@ struct mISDN_sock {
struct mISDNdevice { struct mISDNdevice {
struct mISDNchannel D; struct mISDNchannel D;
u_int id; u_int id;
char name[MISDN_MAX_IDLEN];
u_int Dprotocols; u_int Dprotocols;
u_int Bprotocols; u_int Bprotocols;
u_int nrbchan; u_int nrbchan;
...@@ -452,6 +492,16 @@ struct mISDNstack { ...@@ -452,6 +492,16 @@ struct mISDNstack {
#endif #endif
}; };
typedef int (clockctl_func_t)(void *, int);
struct mISDNclock {
struct list_head list;
char name[64];
int pri;
clockctl_func_t *ctl;
void *priv;
};
/* global alloc/queue functions */ /* global alloc/queue functions */
static inline struct sk_buff * static inline struct sk_buff *
...@@ -498,12 +548,23 @@ _queue_data(struct mISDNchannel *ch, u_int prim, ...@@ -498,12 +548,23 @@ _queue_data(struct mISDNchannel *ch, u_int prim,
/* global register/unregister functions */ /* global register/unregister functions */
extern int mISDN_register_device(struct mISDNdevice *, char *name); extern int mISDN_register_device(struct mISDNdevice *,
struct device *parent, char *name);
extern void mISDN_unregister_device(struct mISDNdevice *); extern void mISDN_unregister_device(struct mISDNdevice *);
extern int mISDN_register_Bprotocol(struct Bprotocol *); extern int mISDN_register_Bprotocol(struct Bprotocol *);
extern void mISDN_unregister_Bprotocol(struct Bprotocol *); extern void mISDN_unregister_Bprotocol(struct Bprotocol *);
extern struct mISDNclock *mISDN_register_clock(char *, int, clockctl_func_t *,
void *);
extern void mISDN_unregister_clock(struct mISDNclock *);
static inline struct mISDNdevice *dev_to_mISDN(struct device *dev)
{
return dev_get_drvdata(dev);
}
extern void set_channel_address(struct mISDNchannel *, u_int, u_int); extern void set_channel_address(struct mISDNchannel *, u_int, u_int);
extern void mISDN_clock_update(struct mISDNclock *, int, struct timeval *);
extern unsigned short mISDN_clock_get(void);
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif /* mISDNIF_H */ #endif /* mISDNIF_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment