Commit 2fd26cc0 authored by Dave Chinner's avatar Dave Chinner Committed by Dave Chinner

xfs: double link the unlinked inode list

Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.

The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.

This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.
Signed-off-by: default avatarDave Chinner <dchinner@redhat.com>
Reviewed-by: default avatarDarrick J. Wong <djwong@kernel.org>
Reviewed-by: default avatarChristoph Hellwig <hch@lst.de>
parent a83d5a8b
...@@ -194,7 +194,6 @@ xfs_free_perag( ...@@ -194,7 +194,6 @@ xfs_free_perag(
XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
cancel_delayed_work_sync(&pag->pag_blockgc_work); cancel_delayed_work_sync(&pag->pag_blockgc_work);
xfs_iunlink_destroy(pag);
xfs_buf_hash_destroy(pag); xfs_buf_hash_destroy(pag);
call_rcu(&pag->rcu_head, __xfs_free_perag); call_rcu(&pag->rcu_head, __xfs_free_perag);
...@@ -323,10 +322,6 @@ xfs_initialize_perag( ...@@ -323,10 +322,6 @@ xfs_initialize_perag(
if (error) if (error)
goto out_remove_pag; goto out_remove_pag;
error = xfs_iunlink_init(pag);
if (error)
goto out_hash_destroy;
/* first new pag is fully initialized */ /* first new pag is fully initialized */
if (first_initialised == NULLAGNUMBER) if (first_initialised == NULLAGNUMBER)
first_initialised = index; first_initialised = index;
...@@ -349,8 +344,6 @@ xfs_initialize_perag( ...@@ -349,8 +344,6 @@ xfs_initialize_perag(
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
return 0; return 0;
out_hash_destroy:
xfs_buf_hash_destroy(pag);
out_remove_pag: out_remove_pag:
radix_tree_delete(&mp->m_perag_tree, index); radix_tree_delete(&mp->m_perag_tree, index);
out_free_pag: out_free_pag:
...@@ -362,7 +355,6 @@ xfs_initialize_perag( ...@@ -362,7 +355,6 @@ xfs_initialize_perag(
if (!pag) if (!pag)
break; break;
xfs_buf_hash_destroy(pag); xfs_buf_hash_destroy(pag);
xfs_iunlink_destroy(pag);
kmem_free(pag); kmem_free(pag);
} }
return error; return error;
......
...@@ -103,12 +103,6 @@ struct xfs_perag { ...@@ -103,12 +103,6 @@ struct xfs_perag {
/* background prealloc block trimming */ /* background prealloc block trimming */
struct delayed_work pag_blockgc_work; struct delayed_work pag_blockgc_work;
/*
* Unlinked inode information. This incore information reflects
* data stored in the AGI, so callers must hold the AGI buffer lock
* or have some other means to control concurrency.
*/
struct rhashtable pagi_unlinked_hash;
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
}; };
......
...@@ -111,6 +111,8 @@ xfs_inode_alloc( ...@@ -111,6 +111,8 @@ xfs_inode_alloc(
INIT_WORK(&ip->i_ioend_work, xfs_end_io); INIT_WORK(&ip->i_ioend_work, xfs_end_io);
INIT_LIST_HEAD(&ip->i_ioend_list); INIT_LIST_HEAD(&ip->i_ioend_list);
spin_lock_init(&ip->i_ioend_lock); spin_lock_init(&ip->i_ioend_lock);
ip->i_next_unlinked = NULLAGINO;
ip->i_prev_unlinked = NULLAGINO;
return ip; return ip;
} }
......
...@@ -1801,197 +1801,22 @@ xfs_inactive( ...@@ -1801,197 +1801,22 @@ xfs_inactive(
* because we must walk that list to find the inode that points to the inode * because we must walk that list to find the inode that points to the inode
* being removed from the unlinked hash bucket list. * being removed from the unlinked hash bucket list.
* *
* What if we modelled the unlinked list as a collection of records capturing * Hence we keep an in-memory double linked list to link each inode on an
* "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
* have a fast way to look up unlinked list predecessors, which avoids the * based lists would require having 64 list heads in the perag, one for each
* slow list walk. That's exactly what we do here (in-core) with a per-AG * list. This is expensive in terms of memory (think millions of AGs) and cache
* rhashtable. * misses on lookups. Instead, use the fact that inodes on the unlinked list
* must be referenced at the VFS level to keep them on the list and hence we
* have an existence guarantee for inodes on the unlinked list.
* *
* Because this is a backref cache, we ignore operational failures since the * Given we have an existence guarantee, we can use lockless inode cache lookups
* iunlink code can fall back to the slow bucket walk. The only errors that * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
* should bubble out are for obviously incorrect situations. * for the double linked unlinked list, and we don't need any extra locking to
* * keep the list safe as all manipulations are done under the AGI buffer lock.
* All users of the backref cache MUST hold the AGI buffer lock to serialize * Keeping the list up to date does not require memory allocation, just finding
* access or have otherwise provided for concurrency control. * the XFS inode and updating the next/prev unlinked list aginos.
*/ */
/* Capture a "X.next_unlinked = Y" relationship. */
struct xfs_iunlink {
struct rhash_head iu_rhash_head;
xfs_agino_t iu_agino; /* X */
xfs_agino_t iu_next_unlinked; /* Y */
};
/* Unlinked list predecessor lookup hashtable construction */
static int
xfs_iunlink_obj_cmpfn(
struct rhashtable_compare_arg *arg,
const void *obj)
{
const xfs_agino_t *key = arg->key;
const struct xfs_iunlink *iu = obj;
if (iu->iu_next_unlinked != *key)
return 1;
return 0;
}
static const struct rhashtable_params xfs_iunlink_hash_params = {
.min_size = XFS_AGI_UNLINKED_BUCKETS,
.key_len = sizeof(xfs_agino_t),
.key_offset = offsetof(struct xfs_iunlink,
iu_next_unlinked),
.head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
.automatic_shrinking = true,
.obj_cmpfn = xfs_iunlink_obj_cmpfn,
};
/*
* Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
* relation is found.
*/
static xfs_agino_t
xfs_iunlink_lookup_backref(
struct xfs_perag *pag,
xfs_agino_t agino)
{
struct xfs_iunlink *iu;
iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
xfs_iunlink_hash_params);
return iu ? iu->iu_agino : NULLAGINO;
}
/*
* Take ownership of an iunlink cache entry and insert it into the hash table.
* If successful, the entry will be owned by the cache; if not, it is freed.
* Either way, the caller does not own @iu after this call.
*/
static int
xfs_iunlink_insert_backref(
struct xfs_perag *pag,
struct xfs_iunlink *iu)
{
int error;
error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
&iu->iu_rhash_head, xfs_iunlink_hash_params);
/*
* Fail loudly if there already was an entry because that's a sign of
* corruption of in-memory data. Also fail loudly if we see an error
* code we didn't anticipate from the rhashtable code. Currently we
* only anticipate ENOMEM.
*/
if (error) {
WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
kmem_free(iu);
}
/*
* Absorb any runtime errors that aren't a result of corruption because
* this is a cache and we can always fall back to bucket list scanning.
*/
if (error != 0 && error != -EEXIST)
error = 0;
return error;
}
/* Remember that @prev_agino.next_unlinked = @this_agino. */
static int
xfs_iunlink_add_backref(
struct xfs_perag *pag,
xfs_agino_t prev_agino,
xfs_agino_t this_agino)
{
struct xfs_iunlink *iu;
if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
return 0;
iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
iu->iu_agino = prev_agino;
iu->iu_next_unlinked = this_agino;
return xfs_iunlink_insert_backref(pag, iu);
}
/*
* Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
* If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
* wasn't any such entry then we don't bother.
*/
static int
xfs_iunlink_change_backref(
struct xfs_perag *pag,
xfs_agino_t agino,
xfs_agino_t next_unlinked)
{
struct xfs_iunlink *iu;
int error;
/* Look up the old entry; if there wasn't one then exit. */
iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
xfs_iunlink_hash_params);
if (!iu)
return 0;
/*
* Remove the entry. This shouldn't ever return an error, but if we
* couldn't remove the old entry we don't want to add it again to the
* hash table, and if the entry disappeared on us then someone's
* violated the locking rules and we need to fail loudly. Either way
* we cannot remove the inode because internal state is or would have
* been corrupt.
*/
error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
&iu->iu_rhash_head, xfs_iunlink_hash_params);
if (error)
return error;
/* If there is no new next entry just free our item and return. */
if (next_unlinked == NULLAGINO) {
kmem_free(iu);
return 0;
}
/* Update the entry and re-add it to the hash table. */
iu->iu_next_unlinked = next_unlinked;
return xfs_iunlink_insert_backref(pag, iu);
}
/* Set up the in-core predecessor structures. */
int
xfs_iunlink_init(
struct xfs_perag *pag)
{
return rhashtable_init(&pag->pagi_unlinked_hash,
&xfs_iunlink_hash_params);
}
/* Free the in-core predecessor structures. */
static void
xfs_iunlink_free_item(
void *ptr,
void *arg)
{
struct xfs_iunlink *iu = ptr;
bool *freed_anything = arg;
*freed_anything = true;
kmem_free(iu);
}
void
xfs_iunlink_destroy(
struct xfs_perag *pag)
{
bool freed_anything = false;
rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
xfs_iunlink_free_item, &freed_anything);
ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
}
/* /*
* Find an inode on the unlinked list. This does not take references to the * Find an inode on the unlinked list. This does not take references to the
* inode as we have existence guarantees by holding the AGI buffer lock and that * inode as we have existence guarantees by holding the AGI buffer lock and that
...@@ -2021,6 +1846,26 @@ xfs_iunlink_lookup( ...@@ -2021,6 +1846,26 @@ xfs_iunlink_lookup(
return ip; return ip;
} }
/* Update the prev pointer of the next agino. */
static int
xfs_iunlink_update_backref(
struct xfs_perag *pag,
xfs_agino_t prev_agino,
xfs_agino_t next_agino)
{
struct xfs_inode *ip;
/* No update necessary if we are at the end of the list. */
if (next_agino == NULLAGINO)
return 0;
ip = xfs_iunlink_lookup(pag, next_agino);
if (!ip)
return -EFSCORRUPTED;
ip->i_prev_unlinked = prev_agino;
return 0;
}
/* /*
* Point the AGI unlinked bucket at an inode and log the results. The caller * Point the AGI unlinked bucket at an inode and log the results. The caller
* is responsible for validating the old value. * is responsible for validating the old value.
...@@ -2172,6 +2017,14 @@ xfs_iunlink_insert_inode( ...@@ -2172,6 +2017,14 @@ xfs_iunlink_insert_inode(
return -EFSCORRUPTED; return -EFSCORRUPTED;
} }
/*
* Update the prev pointer in the next inode to point back to this
* inode.
*/
error = xfs_iunlink_update_backref(pag, agino, next_agino);
if (error)
return error;
if (next_agino != NULLAGINO) { if (next_agino != NULLAGINO) {
xfs_agino_t old_agino; xfs_agino_t old_agino;
...@@ -2185,14 +2038,6 @@ xfs_iunlink_insert_inode( ...@@ -2185,14 +2038,6 @@ xfs_iunlink_insert_inode(
return error; return error;
ASSERT(old_agino == NULLAGINO); ASSERT(old_agino == NULLAGINO);
ip->i_next_unlinked = next_agino; ip->i_next_unlinked = next_agino;
/*
* agino has been unlinked, add a backref from the next inode
* back to agino.
*/
error = xfs_iunlink_add_backref(pag, agino, next_agino);
if (error)
return error;
} }
/* Point the head of the list to point to this inode. */ /* Point the head of the list to point to this inode. */
...@@ -2233,61 +2078,6 @@ xfs_iunlink( ...@@ -2233,61 +2078,6 @@ xfs_iunlink(
return error; return error;
} }
/*
* Walk the unlinked chain from @head_agino until we find the inode that
* points to @target_agino. Return the inode number, map, dinode pointer,
* and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
*
* @tp, @pag, @head_agino, and @target_agino are input parameters.
* @agino, @imap, @dipp, and @bpp are all output parameters.
*
* Do not call this function if @target_agino is the head of the list.
*/
static int
xfs_iunlink_lookup_prev(
struct xfs_perag *pag,
xfs_agino_t head_agino,
xfs_agino_t target_agino,
struct xfs_inode **ipp)
{
struct xfs_inode *ip;
xfs_agino_t next_agino;
*ipp = NULL;
next_agino = xfs_iunlink_lookup_backref(pag, target_agino);
if (next_agino != NULLAGINO) {
ip = xfs_iunlink_lookup(pag, next_agino);
if (ip && ip->i_next_unlinked == target_agino) {
*ipp = ip;
return 0;
}
}
/* Otherwise, walk the entire bucket until we find it. */
next_agino = head_agino;
while (next_agino != NULLAGINO) {
ip = xfs_iunlink_lookup(pag, next_agino);
if (!ip)
return -EFSCORRUPTED;
/*
* Make sure this pointer is valid and isn't an obvious
* infinite loop.
*/
if (!xfs_verify_agino(pag, ip->i_next_unlinked) ||
next_agino == ip->i_next_unlinked)
return -EFSCORRUPTED;
if (ip->i_next_unlinked == target_agino) {
*ipp = ip;
return 0;
}
next_agino = ip->i_next_unlinked;
}
return -EFSCORRUPTED;
}
static int static int
xfs_iunlink_remove_inode( xfs_iunlink_remove_inode(
struct xfs_trans *tp, struct xfs_trans *tp,
...@@ -2326,51 +2116,33 @@ xfs_iunlink_remove_inode( ...@@ -2326,51 +2116,33 @@ xfs_iunlink_remove_inode(
return error; return error;
/* /*
* If there was a backref pointing from the next inode back to this * Update the prev pointer in the next inode to point back to previous
* one, remove it because we've removed this inode from the list. * inode in the chain.
*
* Later, if this inode was in the middle of the list we'll update
* this inode's backref to point from the next inode.
*/ */
if (next_agino != NULLAGINO) { error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); ip->i_next_unlinked);
if (error) if (error)
return error; return error;
}
if (head_agino != agino) { if (head_agino != agino) {
struct xfs_inode *prev_ip; struct xfs_inode *prev_ip;
error = xfs_iunlink_lookup_prev(pag, head_agino, agino, prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
&prev_ip); if (!prev_ip)
if (error) return -EFSCORRUPTED;
return error;
/* Point the previous inode on the list to the next inode. */
error = xfs_iunlink_update_inode(tp, prev_ip, pag, next_agino,
NULL);
if (error)
return error;
error = xfs_iunlink_update_inode(tp, prev_ip, pag,
ip->i_next_unlinked, NULL);
prev_ip->i_next_unlinked = ip->i_next_unlinked; prev_ip->i_next_unlinked = ip->i_next_unlinked;
ip->i_next_unlinked = NULLAGINO; } else {
/* Point the head of the list to the next unlinked inode. */
/* error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
* Now we deal with the backref for this inode. If this inode ip->i_next_unlinked);
* pointed at a real inode, change the backref that pointed to
* us to point to our old next. If this inode was the end of
* the list, delete the backref that pointed to us. Note that
* change_backref takes care of deleting the backref if
* next_agino is NULLAGINO.
*/
return xfs_iunlink_change_backref(agibp->b_pag, agino,
next_agino);
} }
/* Point the head of the list to the next unlinked inode. */
ip->i_next_unlinked = NULLAGINO; ip->i_next_unlinked = NULLAGINO;
return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, ip->i_prev_unlinked = NULLAGINO;
next_agino); return error;
} }
/* /*
......
...@@ -70,6 +70,7 @@ typedef struct xfs_inode { ...@@ -70,6 +70,7 @@ typedef struct xfs_inode {
/* unlinked list pointers */ /* unlinked list pointers */
xfs_agino_t i_next_unlinked; xfs_agino_t i_next_unlinked;
xfs_agino_t i_prev_unlinked;
/* VFS inode */ /* VFS inode */
struct inode i_vnode; /* embedded VFS inode */ struct inode i_vnode; /* embedded VFS inode */
...@@ -508,9 +509,6 @@ extern struct kmem_cache *xfs_inode_cache; ...@@ -508,9 +509,6 @@ extern struct kmem_cache *xfs_inode_cache;
bool xfs_inode_needs_inactive(struct xfs_inode *ip); bool xfs_inode_needs_inactive(struct xfs_inode *ip);
int xfs_iunlink_init(struct xfs_perag *pag);
void xfs_iunlink_destroy(struct xfs_perag *pag);
void xfs_end_io(struct work_struct *work); void xfs_end_io(struct work_struct *work);
int xfs_ilock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2); int xfs_ilock2_io_mmap(struct xfs_inode *ip1, struct xfs_inode *ip2);
......
...@@ -2674,28 +2674,50 @@ xlog_recover_iunlink_bucket( ...@@ -2674,28 +2674,50 @@ xlog_recover_iunlink_bucket(
int bucket) int bucket)
{ {
struct xfs_mount *mp = pag->pag_mount; struct xfs_mount *mp = pag->pag_mount;
struct xfs_inode *prev_ip = NULL;
struct xfs_inode *ip; struct xfs_inode *ip;
xfs_agino_t agino; xfs_agino_t prev_agino, agino;
int error = 0;
agino = be32_to_cpu(agi->agi_unlinked[bucket]); agino = be32_to_cpu(agi->agi_unlinked[bucket]);
while (agino != NULLAGINO) { while (agino != NULLAGINO) {
int error;
error = xfs_iget(mp, NULL, error = xfs_iget(mp, NULL,
XFS_AGINO_TO_INO(mp, pag->pag_agno, agino), XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
0, 0, &ip); 0, 0, &ip);
if (error) if (error)
return error;; break;
ASSERT(VFS_I(ip)->i_nlink == 0); ASSERT(VFS_I(ip)->i_nlink == 0);
ASSERT(VFS_I(ip)->i_mode != 0); ASSERT(VFS_I(ip)->i_mode != 0);
xfs_iflags_clear(ip, XFS_IRECOVERY); xfs_iflags_clear(ip, XFS_IRECOVERY);
agino = ip->i_next_unlinked; agino = ip->i_next_unlinked;
xfs_irele(ip); if (prev_ip) {
cond_resched(); ip->i_prev_unlinked = prev_agino;
xfs_irele(prev_ip);
/*
* Ensure the inode is removed from the unlinked list
* before we continue so that it won't race with
* building the in-memory list here. This could be
* serialised with the agibp lock, but that just
* serialises via lockstepping and it's much simpler
* just to flush the inodegc queue and wait for it to
* complete.
*/
xfs_inodegc_flush(mp);
}
prev_agino = agino;
prev_ip = ip;
} }
return 0;
if (prev_ip) {
ip->i_prev_unlinked = prev_agino;
xfs_irele(prev_ip);
}
xfs_inodegc_flush(mp);
return error;
} }
/* /*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment