Commit 35b13763 authored by Jacek Lawrynowicz's avatar Jacek Lawrynowicz Committed by Daniel Vetter

accel/ivpu: Introduce a new DRM driver for Intel VPU

VPU stands for Versatile Processing Unit and it's a CPU-integrated
inference accelerator for Computer Vision and Deep Learning
applications.

The VPU device consist of following components:
  - Buttress - provides CPU to VPU integration, interrupt, frequency and
    power management.
  - Memory Management Unit (based on ARM MMU-600) - translates VPU to
    host DMA addresses, isolates user workloads.
  - RISC based microcontroller - executes firmware that provides job
    execution API for the kernel-mode driver
  - Neural Compute Subsystem (NCS) - does the actual work, provides
    Compute and Copy engines.
  - Network on Chip (NoC) - network fabric connecting all the components

This driver supports VPU IP v2.7 integrated into Intel Meteor Lake
client CPUs (14th generation).

Module sources are at drivers/accel/ivpu and module name is
"intel_vpu.ko".

This patch includes only very besic functionality:
  - module, PCI device and IRQ initialization
  - register definitions and low level register manipulation functions
  - SET/GET_PARAM ioctls
  - power up without firmware
Co-developed-by: default avatarKrystian Pradzynski <krystian.pradzynski@linux.intel.com>
Signed-off-by: default avatarKrystian Pradzynski <krystian.pradzynski@linux.intel.com>
Signed-off-by: default avatarJacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com>
Reviewed-by: default avatarOded Gabbay <ogabbay@kernel.org>
Reviewed-by: default avatarJeffrey Hugo <quic_jhugo@quicinc.com>
Signed-off-by: default avatarDaniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
parent 6f849817
......@@ -6894,6 +6894,15 @@ T: git https://git.kernel.org/pub/scm/linux/kernel/git/ogabbay/accel.git
F: Documentation/accel/
F: drivers/accel/
DRM ACCEL DRIVERS FOR INTEL VPU
M: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com>
M: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
L: dri-devel@lists.freedesktop.org
S: Supported
T: git git://anongit.freedesktop.org/drm/drm-misc
F: drivers/accel/ivpu/
F: include/uapi/drm/ivpu_accel.h
DRM DRIVERS FOR ALLWINNER A10
M: Maxime Ripard <mripard@kernel.org>
M: Chen-Yu Tsai <wens@csie.org>
......
......@@ -189,3 +189,4 @@ obj-$(CONFIG_COUNTER) += counter/
obj-$(CONFIG_MOST) += most/
obj-$(CONFIG_PECI) += peci/
obj-$(CONFIG_HTE) += hte/
obj-$(CONFIG_DRM_ACCEL) += accel/
\ No newline at end of file
......@@ -22,3 +22,5 @@ menuconfig DRM_ACCEL
major number than GPUs, and will be exposed to user-space using
different device files, called accel/accel* (in /dev, sysfs
and debugfs).
source "drivers/accel/ivpu/Kconfig"
# SPDX-License-Identifier: GPL-2.0-only
obj-y += ivpu/
# SPDX-License-Identifier: GPL-2.0-only
config DRM_ACCEL_IVPU
tristate "Intel VPU for Meteor Lake and newer"
depends on DRM_ACCEL
depends on X86_64 && !UML
depends on PCI && PCI_MSI
select FW_LOADER
select SHMEM
help
Choose this option if you have a system that has an 14th generation Intel CPU
or newer. VPU stands for Versatile Processing Unit and it's a CPU-integrated
inference accelerator for Computer Vision and Deep Learning applications.
If "M" is selected, the module will be called intel_vpu.
# SPDX-License-Identifier: GPL-2.0-only
# Copyright (C) 2023 Intel Corporation
intel_vpu-y := \
ivpu_drv.o \
ivpu_hw_mtl.o
obj-$(CONFIG_DRM_ACCEL_IVPU) += intel_vpu.o
\ No newline at end of file
- Move to threaded_irqs to mitigate potential infinite loop in ivpu_ipc_irq_handler()
- Implement support for BLOB IDs
- Add debugfs support to improve debugging and testing
- Add tracing events for performance debugging
- Implement HW based scheduling support
- Use syncobjs for submit/sync
- Refactor IPC protocol to improve message latency
- Implement BO cache and MADVISE IOCTL
- Add support for user allocated buffers using prime import and dma-buf heaps
- Refactor struct ivpu_bo to use struct drm_gem_shmem_object
- Add driver/device documentation
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <drm/drm_accel.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_gem.h>
#include <drm/drm_ioctl.h>
#include "ivpu_drv.h"
#include "ivpu_hw.h"
#ifndef DRIVER_VERSION_STR
#define DRIVER_VERSION_STR __stringify(DRM_IVPU_DRIVER_MAJOR) "." \
__stringify(DRM_IVPU_DRIVER_MINOR) "."
#endif
static const struct drm_driver driver;
int ivpu_dbg_mask;
module_param_named(dbg_mask, ivpu_dbg_mask, int, 0644);
MODULE_PARM_DESC(dbg_mask, "Driver debug mask. See IVPU_DBG_* macros.");
u8 ivpu_pll_min_ratio;
module_param_named(pll_min_ratio, ivpu_pll_min_ratio, byte, 0644);
MODULE_PARM_DESC(pll_min_ratio, "Minimum PLL ratio used to set VPU frequency");
u8 ivpu_pll_max_ratio = U8_MAX;
module_param_named(pll_max_ratio, ivpu_pll_max_ratio, byte, 0644);
MODULE_PARM_DESC(pll_max_ratio, "Maximum PLL ratio used to set VPU frequency");
struct ivpu_file_priv *ivpu_file_priv_get(struct ivpu_file_priv *file_priv)
{
kref_get(&file_priv->ref);
return file_priv;
}
static void file_priv_release(struct kref *ref)
{
struct ivpu_file_priv *file_priv = container_of(ref, struct ivpu_file_priv, ref);
kfree(file_priv);
}
void ivpu_file_priv_put(struct ivpu_file_priv **link)
{
struct ivpu_file_priv *file_priv = *link;
WARN_ON(!file_priv);
*link = NULL;
kref_put(&file_priv->ref, file_priv_release);
}
static int ivpu_get_param_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = file_priv->vdev;
struct pci_dev *pdev = to_pci_dev(vdev->drm.dev);
struct drm_ivpu_param *args = data;
int ret = 0;
switch (args->param) {
case DRM_IVPU_PARAM_DEVICE_ID:
args->value = pdev->device;
break;
case DRM_IVPU_PARAM_DEVICE_REVISION:
args->value = pdev->revision;
break;
case DRM_IVPU_PARAM_PLATFORM_TYPE:
args->value = vdev->platform;
break;
case DRM_IVPU_PARAM_CORE_CLOCK_RATE:
args->value = ivpu_hw_reg_pll_freq_get(vdev);
break;
case DRM_IVPU_PARAM_NUM_CONTEXTS:
args->value = ivpu_get_context_count(vdev);
break;
case DRM_IVPU_PARAM_CONTEXT_BASE_ADDRESS:
args->value = vdev->hw->ranges.user_low.start;
break;
case DRM_IVPU_PARAM_CONTEXT_PRIORITY:
args->value = file_priv->priority;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ivpu_set_param_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct drm_ivpu_param *args = data;
int ret = 0;
switch (args->param) {
case DRM_IVPU_PARAM_CONTEXT_PRIORITY:
if (args->value <= DRM_IVPU_CONTEXT_PRIORITY_REALTIME)
file_priv->priority = args->value;
else
ret = -EINVAL;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int ivpu_open(struct drm_device *dev, struct drm_file *file)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct ivpu_file_priv *file_priv;
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
if (!file_priv)
return -ENOMEM;
file_priv->vdev = vdev;
file_priv->priority = DRM_IVPU_CONTEXT_PRIORITY_NORMAL;
kref_init(&file_priv->ref);
file->driver_priv = file_priv;
return 0;
}
static void ivpu_postclose(struct drm_device *dev, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
ivpu_file_priv_put(&file_priv);
}
static const struct drm_ioctl_desc ivpu_drm_ioctls[] = {
DRM_IOCTL_DEF_DRV(IVPU_GET_PARAM, ivpu_get_param_ioctl, 0),
DRM_IOCTL_DEF_DRV(IVPU_SET_PARAM, ivpu_set_param_ioctl, 0),
};
int ivpu_shutdown(struct ivpu_device *vdev)
{
int ret;
ivpu_hw_irq_disable(vdev);
ret = ivpu_hw_power_down(vdev);
if (ret)
ivpu_warn(vdev, "Failed to power down HW: %d\n", ret);
return ret;
}
static const struct file_operations ivpu_fops = {
.owner = THIS_MODULE,
.mmap = drm_gem_mmap,
DRM_ACCEL_FOPS,
};
static const struct drm_driver driver = {
.driver_features = DRIVER_GEM | DRIVER_COMPUTE_ACCEL,
.open = ivpu_open,
.postclose = ivpu_postclose,
.ioctls = ivpu_drm_ioctls,
.num_ioctls = ARRAY_SIZE(ivpu_drm_ioctls),
.fops = &ivpu_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRM_IVPU_DRIVER_MAJOR,
.minor = DRM_IVPU_DRIVER_MINOR,
};
static int ivpu_irq_init(struct ivpu_device *vdev)
{
struct pci_dev *pdev = to_pci_dev(vdev->drm.dev);
int ret;
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (ret < 0) {
ivpu_err(vdev, "Failed to allocate a MSI IRQ: %d\n", ret);
return ret;
}
vdev->irq = pci_irq_vector(pdev, 0);
ret = devm_request_irq(vdev->drm.dev, vdev->irq, vdev->hw->ops->irq_handler,
IRQF_NO_AUTOEN, DRIVER_NAME, vdev);
if (ret)
ivpu_err(vdev, "Failed to request an IRQ %d\n", ret);
return ret;
}
static int ivpu_pci_init(struct ivpu_device *vdev)
{
struct pci_dev *pdev = to_pci_dev(vdev->drm.dev);
struct resource *bar0 = &pdev->resource[0];
struct resource *bar4 = &pdev->resource[4];
int ret;
ivpu_dbg(vdev, MISC, "Mapping BAR0 (RegV) %pR\n", bar0);
vdev->regv = devm_ioremap_resource(vdev->drm.dev, bar0);
if (IS_ERR(vdev->regv)) {
ivpu_err(vdev, "Failed to map bar 0: %pe\n", vdev->regv);
return PTR_ERR(vdev->regv);
}
ivpu_dbg(vdev, MISC, "Mapping BAR4 (RegB) %pR\n", bar4);
vdev->regb = devm_ioremap_resource(vdev->drm.dev, bar4);
if (IS_ERR(vdev->regb)) {
ivpu_err(vdev, "Failed to map bar 4: %pe\n", vdev->regb);
return PTR_ERR(vdev->regb);
}
ret = dma_set_mask_and_coherent(vdev->drm.dev, DMA_BIT_MASK(38));
if (ret) {
ivpu_err(vdev, "Failed to set DMA mask: %d\n", ret);
return ret;
}
/* Clear any pending errors */
pcie_capability_clear_word(pdev, PCI_EXP_DEVSTA, 0x3f);
ret = pcim_enable_device(pdev);
if (ret) {
ivpu_err(vdev, "Failed to enable PCI device: %d\n", ret);
return ret;
}
pci_set_master(pdev);
return 0;
}
static int ivpu_dev_init(struct ivpu_device *vdev)
{
int ret;
vdev->hw = drmm_kzalloc(&vdev->drm, sizeof(*vdev->hw), GFP_KERNEL);
if (!vdev->hw)
return -ENOMEM;
vdev->hw->ops = &ivpu_hw_mtl_ops;
vdev->platform = IVPU_PLATFORM_INVALID;
vdev->context_xa_limit.min = IVPU_GLOBAL_CONTEXT_MMU_SSID + 1;
vdev->context_xa_limit.max = IVPU_CONTEXT_LIMIT;
xa_init_flags(&vdev->context_xa, XA_FLAGS_ALLOC);
ret = ivpu_pci_init(vdev);
if (ret) {
ivpu_err(vdev, "Failed to initialize PCI device: %d\n", ret);
goto err_xa_destroy;
}
ret = ivpu_irq_init(vdev);
if (ret) {
ivpu_err(vdev, "Failed to initialize IRQs: %d\n", ret);
goto err_xa_destroy;
}
/* Init basic HW info based on buttress registers which are accessible before power up */
ret = ivpu_hw_info_init(vdev);
if (ret) {
ivpu_err(vdev, "Failed to initialize HW info: %d\n", ret);
goto err_xa_destroy;
}
/* Power up early so the rest of init code can access VPU registers */
ret = ivpu_hw_power_up(vdev);
if (ret) {
ivpu_err(vdev, "Failed to power up HW: %d\n", ret);
goto err_xa_destroy;
}
return 0;
err_xa_destroy:
xa_destroy(&vdev->context_xa);
return ret;
}
static void ivpu_dev_fini(struct ivpu_device *vdev)
{
ivpu_shutdown(vdev);
drm_WARN_ON(&vdev->drm, !xa_empty(&vdev->context_xa));
xa_destroy(&vdev->context_xa);
}
static struct pci_device_id ivpu_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_MTL) },
{ }
};
MODULE_DEVICE_TABLE(pci, ivpu_pci_ids);
static int ivpu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct ivpu_device *vdev;
int ret;
vdev = devm_drm_dev_alloc(&pdev->dev, &driver, struct ivpu_device, drm);
if (IS_ERR(vdev))
return PTR_ERR(vdev);
pci_set_drvdata(pdev, vdev);
ret = ivpu_dev_init(vdev);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize VPU device: %d\n", ret);
return ret;
}
ret = drm_dev_register(&vdev->drm, 0);
if (ret) {
dev_err(&pdev->dev, "Failed to register DRM device: %d\n", ret);
ivpu_dev_fini(vdev);
}
return ret;
}
static void ivpu_remove(struct pci_dev *pdev)
{
struct ivpu_device *vdev = pci_get_drvdata(pdev);
drm_dev_unregister(&vdev->drm);
ivpu_dev_fini(vdev);
}
static struct pci_driver ivpu_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = ivpu_pci_ids,
.probe = ivpu_probe,
.remove = ivpu_remove,
};
module_pci_driver(ivpu_pci_driver);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL and additional rights");
MODULE_VERSION(DRIVER_VERSION_STR);
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __IVPU_DRV_H__
#define __IVPU_DRV_H__
#include <drm/drm_device.h>
#include <drm/drm_managed.h>
#include <drm/drm_mm.h>
#include <drm/drm_print.h>
#include <linux/pci.h>
#include <linux/xarray.h>
#include <uapi/drm/ivpu_accel.h>
#define DRIVER_NAME "intel_vpu"
#define DRIVER_DESC "Driver for Intel Versatile Processing Unit (VPU)"
#define DRIVER_DATE "20230117"
#define PCI_DEVICE_ID_MTL 0x7d1d
#define IVPU_GLOBAL_CONTEXT_MMU_SSID 0
#define IVPU_CONTEXT_LIMIT 64
#define IVPU_NUM_ENGINES 2
#define IVPU_PLATFORM_SILICON 0
#define IVPU_PLATFORM_SIMICS 2
#define IVPU_PLATFORM_FPGA 3
#define IVPU_PLATFORM_INVALID 8
#define IVPU_DBG_REG BIT(0)
#define IVPU_DBG_IRQ BIT(1)
#define IVPU_DBG_MMU BIT(2)
#define IVPU_DBG_FILE BIT(3)
#define IVPU_DBG_MISC BIT(4)
#define IVPU_DBG_FW_BOOT BIT(5)
#define IVPU_DBG_PM BIT(6)
#define IVPU_DBG_IPC BIT(7)
#define IVPU_DBG_BO BIT(8)
#define IVPU_DBG_JOB BIT(9)
#define IVPU_DBG_JSM BIT(10)
#define IVPU_DBG_KREF BIT(11)
#define IVPU_DBG_RPM BIT(12)
#define ivpu_err(vdev, fmt, ...) \
drm_err(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_err_ratelimited(vdev, fmt, ...) \
drm_err_ratelimited(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_warn(vdev, fmt, ...) \
drm_warn(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_warn_ratelimited(vdev, fmt, ...) \
drm_err_ratelimited(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_info(vdev, fmt, ...) drm_info(&(vdev)->drm, fmt, ##__VA_ARGS__)
#define ivpu_dbg(vdev, type, fmt, args...) do { \
if (unlikely(IVPU_DBG_##type & ivpu_dbg_mask)) \
dev_dbg((vdev)->drm.dev, "[%s] " fmt, #type, ##args); \
} while (0)
#define IVPU_WA(wa_name) (vdev->wa.wa_name)
struct ivpu_wa_table {
bool punit_disabled;
bool clear_runtime_mem;
};
struct ivpu_hw_info;
struct ivpu_device {
struct drm_device drm;
void __iomem *regb;
void __iomem *regv;
u32 platform;
u32 irq;
struct ivpu_wa_table wa;
struct ivpu_hw_info *hw;
struct xarray context_xa;
struct xa_limit context_xa_limit;
struct {
int boot;
int jsm;
int tdr;
int reschedule_suspend;
} timeout;
};
/*
* file_priv has its own refcount (ref) that allows user space to close the fd
* without blocking even if VPU is still processing some jobs.
*/
struct ivpu_file_priv {
struct kref ref;
struct ivpu_device *vdev;
u32 priority;
};
extern int ivpu_dbg_mask;
extern u8 ivpu_pll_min_ratio;
extern u8 ivpu_pll_max_ratio;
struct ivpu_file_priv *ivpu_file_priv_get(struct ivpu_file_priv *file_priv);
void ivpu_file_priv_put(struct ivpu_file_priv **link);
int ivpu_shutdown(struct ivpu_device *vdev);
static inline bool ivpu_is_mtl(struct ivpu_device *vdev)
{
return to_pci_dev(vdev->drm.dev)->device == PCI_DEVICE_ID_MTL;
}
static inline u8 ivpu_revision(struct ivpu_device *vdev)
{
return to_pci_dev(vdev->drm.dev)->revision;
}
static inline u16 ivpu_device_id(struct ivpu_device *vdev)
{
return to_pci_dev(vdev->drm.dev)->device;
}
static inline struct ivpu_device *to_ivpu_device(struct drm_device *dev)
{
return container_of(dev, struct ivpu_device, drm);
}
static inline u32 ivpu_get_context_count(struct ivpu_device *vdev)
{
struct xa_limit ctx_limit = vdev->context_xa_limit;
return (ctx_limit.max - ctx_limit.min + 1);
}
static inline u32 ivpu_get_platform(struct ivpu_device *vdev)
{
WARN_ON_ONCE(vdev->platform == IVPU_PLATFORM_INVALID);
return vdev->platform;
}
static inline bool ivpu_is_silicon(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_SILICON;
}
static inline bool ivpu_is_simics(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_SIMICS;
}
static inline bool ivpu_is_fpga(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_FPGA;
}
#endif /* __IVPU_DRV_H__ */
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __IVPU_HW_H__
#define __IVPU_HW_H__
#include "ivpu_drv.h"
struct ivpu_hw_ops {
int (*info_init)(struct ivpu_device *vdev);
int (*power_up)(struct ivpu_device *vdev);
int (*boot_fw)(struct ivpu_device *vdev);
int (*power_down)(struct ivpu_device *vdev);
bool (*is_idle)(struct ivpu_device *vdev);
void (*wdt_disable)(struct ivpu_device *vdev);
void (*diagnose_failure)(struct ivpu_device *vdev);
u32 (*reg_pll_freq_get)(struct ivpu_device *vdev);
u32 (*reg_telemetry_offset_get)(struct ivpu_device *vdev);
u32 (*reg_telemetry_size_get)(struct ivpu_device *vdev);
u32 (*reg_telemetry_enable_get)(struct ivpu_device *vdev);
void (*reg_db_set)(struct ivpu_device *vdev, u32 db_id);
u32 (*reg_ipc_rx_addr_get)(struct ivpu_device *vdev);
u32 (*reg_ipc_rx_count_get)(struct ivpu_device *vdev);
void (*reg_ipc_tx_set)(struct ivpu_device *vdev, u32 vpu_addr);
void (*irq_clear)(struct ivpu_device *vdev);
void (*irq_enable)(struct ivpu_device *vdev);
void (*irq_disable)(struct ivpu_device *vdev);
irqreturn_t (*irq_handler)(int irq, void *ptr);
};
struct ivpu_addr_range {
resource_size_t start;
resource_size_t end;
};
struct ivpu_hw_info {
const struct ivpu_hw_ops *ops;
struct {
struct ivpu_addr_range global_low;
struct ivpu_addr_range global_high;
struct ivpu_addr_range user_low;
struct ivpu_addr_range user_high;
struct ivpu_addr_range global_aliased_pio;
} ranges;
struct {
u8 min_ratio;
u8 max_ratio;
/*
* Pll ratio for the efficiency frequency. The VPU has optimum
* performance to power ratio at this frequency.
*/
u8 pn_ratio;
u32 profiling_freq;
} pll;
u32 tile_fuse;
u32 sku;
u16 config;
};
extern const struct ivpu_hw_ops ivpu_hw_mtl_ops;
static inline int ivpu_hw_info_init(struct ivpu_device *vdev)
{
return vdev->hw->ops->info_init(vdev);
};
static inline int ivpu_hw_power_up(struct ivpu_device *vdev)
{
ivpu_dbg(vdev, PM, "HW power up\n");
return vdev->hw->ops->power_up(vdev);
};
static inline int ivpu_hw_boot_fw(struct ivpu_device *vdev)
{
return vdev->hw->ops->boot_fw(vdev);
};
static inline bool ivpu_hw_is_idle(struct ivpu_device *vdev)
{
return vdev->hw->ops->is_idle(vdev);
};
static inline int ivpu_hw_power_down(struct ivpu_device *vdev)
{
ivpu_dbg(vdev, PM, "HW power down\n");
return vdev->hw->ops->power_down(vdev);
};
static inline void ivpu_hw_wdt_disable(struct ivpu_device *vdev)
{
vdev->hw->ops->wdt_disable(vdev);
};
/* Register indirect accesses */
static inline u32 ivpu_hw_reg_pll_freq_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_pll_freq_get(vdev);
};
static inline u32 ivpu_hw_reg_telemetry_offset_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_telemetry_offset_get(vdev);
};
static inline u32 ivpu_hw_reg_telemetry_size_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_telemetry_size_get(vdev);
};
static inline u32 ivpu_hw_reg_telemetry_enable_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_telemetry_enable_get(vdev);
};
static inline void ivpu_hw_reg_db_set(struct ivpu_device *vdev, u32 db_id)
{
vdev->hw->ops->reg_db_set(vdev, db_id);
};
static inline u32 ivpu_hw_reg_ipc_rx_addr_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_ipc_rx_addr_get(vdev);
};
static inline u32 ivpu_hw_reg_ipc_rx_count_get(struct ivpu_device *vdev)
{
return vdev->hw->ops->reg_ipc_rx_count_get(vdev);
};
static inline void ivpu_hw_reg_ipc_tx_set(struct ivpu_device *vdev, u32 vpu_addr)
{
vdev->hw->ops->reg_ipc_tx_set(vdev, vpu_addr);
};
static inline void ivpu_hw_irq_clear(struct ivpu_device *vdev)
{
vdev->hw->ops->irq_clear(vdev);
};
static inline void ivpu_hw_irq_enable(struct ivpu_device *vdev)
{
vdev->hw->ops->irq_enable(vdev);
};
static inline void ivpu_hw_irq_disable(struct ivpu_device *vdev)
{
vdev->hw->ops->irq_disable(vdev);
};
static inline void ivpu_hw_init_range(struct ivpu_addr_range *range, u64 start, u64 size)
{
range->start = start;
range->end = start + size;
}
static inline u64 ivpu_hw_range_size(const struct ivpu_addr_range *range)
{
return range->end - range->start;
}
static inline void ivpu_hw_diagnose_failure(struct ivpu_device *vdev)
{
vdev->hw->ops->diagnose_failure(vdev);
}
#endif /* __IVPU_HW_H__ */
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#include "ivpu_drv.h"
#include "ivpu_hw_mtl_reg.h"
#include "ivpu_hw_reg_io.h"
#include "ivpu_hw.h"
#define TILE_FUSE_ENABLE_BOTH 0x0
#define TILE_FUSE_ENABLE_UPPER 0x1
#define TILE_FUSE_ENABLE_LOWER 0x2
#define TILE_SKU_BOTH_MTL 0x3630
#define TILE_SKU_LOWER_MTL 0x3631
#define TILE_SKU_UPPER_MTL 0x3632
/* Work point configuration values */
#define WP_CONFIG_1_TILE_5_3_RATIO 0x0101
#define WP_CONFIG_1_TILE_4_3_RATIO 0x0102
#define WP_CONFIG_2_TILE_5_3_RATIO 0x0201
#define WP_CONFIG_2_TILE_4_3_RATIO 0x0202
#define WP_CONFIG_0_TILE_PLL_OFF 0x0000
#define PLL_REF_CLK_FREQ (50 * 1000000)
#define PLL_SIMULATION_FREQ (10 * 1000000)
#define PLL_RATIO_TO_FREQ(x) ((x) * PLL_REF_CLK_FREQ)
#define PLL_DEFAULT_EPP_VALUE 0x80
#define TIM_SAFE_ENABLE 0xf1d0dead
#define TIM_WATCHDOG_RESET_VALUE 0xffffffff
#define TIMEOUT_US (150 * USEC_PER_MSEC)
#define PWR_ISLAND_STATUS_TIMEOUT_US (5 * USEC_PER_MSEC)
#define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC)
#define IDLE_TIMEOUT_US (500 * USEC_PER_MSEC)
#define ICB_0_IRQ_MASK ((REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, HOST_IPC_FIFO_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT)))
#define ICB_1_IRQ_MASK ((REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_2_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_3_INT)) | \
(REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_4_INT)))
#define ICB_0_1_IRQ_MASK ((((u64)ICB_1_IRQ_MASK) << 32) | ICB_0_IRQ_MASK)
#define BUTTRESS_IRQ_MASK ((REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, FREQ_CHANGE)) | \
(REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR)) | \
(REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR)))
#define BUTTRESS_IRQ_ENABLE_MASK ((u32)~BUTTRESS_IRQ_MASK)
#define BUTTRESS_IRQ_DISABLE_MASK ((u32)-1)
#define ITF_FIREWALL_VIOLATION_MASK ((REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_ROM_CMX)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_DBG)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_CTRL)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, DEC400)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_NCE)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI)) | \
(REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI_CMX)))
static char *ivpu_platform_to_str(u32 platform)
{
switch (platform) {
case IVPU_PLATFORM_SILICON:
return "IVPU_PLATFORM_SILICON";
case IVPU_PLATFORM_SIMICS:
return "IVPU_PLATFORM_SIMICS";
case IVPU_PLATFORM_FPGA:
return "IVPU_PLATFORM_FPGA";
default:
return "Invalid platform";
}
}
static void ivpu_hw_read_platform(struct ivpu_device *vdev)
{
u32 gen_ctrl = REGV_RD32(MTL_VPU_HOST_SS_GEN_CTRL);
u32 platform = REG_GET_FLD(MTL_VPU_HOST_SS_GEN_CTRL, PS, gen_ctrl);
if (platform == IVPU_PLATFORM_SIMICS || platform == IVPU_PLATFORM_FPGA)
vdev->platform = platform;
else
vdev->platform = IVPU_PLATFORM_SILICON;
ivpu_dbg(vdev, MISC, "Platform type: %s (%d)\n",
ivpu_platform_to_str(vdev->platform), vdev->platform);
}
static void ivpu_hw_wa_init(struct ivpu_device *vdev)
{
vdev->wa.punit_disabled = ivpu_is_fpga(vdev);
vdev->wa.clear_runtime_mem = false;
}
static void ivpu_hw_timeouts_init(struct ivpu_device *vdev)
{
if (ivpu_is_simics(vdev) || ivpu_is_fpga(vdev)) {
vdev->timeout.boot = 100000;
vdev->timeout.jsm = 50000;
vdev->timeout.tdr = 2000000;
vdev->timeout.reschedule_suspend = 1000;
} else {
vdev->timeout.boot = 1000;
vdev->timeout.jsm = 500;
vdev->timeout.tdr = 2000;
vdev->timeout.reschedule_suspend = 10;
}
}
static int ivpu_pll_wait_for_cmd_send(struct ivpu_device *vdev)
{
return REGB_POLL_FLD(MTL_BUTTRESS_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
}
/* Send KMD initiated workpoint change */
static int ivpu_pll_cmd_send(struct ivpu_device *vdev, u16 min_ratio, u16 max_ratio,
u16 target_ratio, u16 config)
{
int ret;
u32 val;
ret = ivpu_pll_wait_for_cmd_send(vdev);
if (ret) {
ivpu_err(vdev, "Failed to sync before WP request: %d\n", ret);
return ret;
}
val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD0);
val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD0, MIN_RATIO, min_ratio, val);
val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD0, MAX_RATIO, max_ratio, val);
REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD0, val);
val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD1);
val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD1, TARGET_RATIO, target_ratio, val);
val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD1, EPP, PLL_DEFAULT_EPP_VALUE, val);
REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD1, val);
val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD2);
val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD2, CONFIG, config, val);
REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD2, val);
val = REGB_RD32(MTL_BUTTRESS_WP_REQ_CMD);
val = REG_SET_FLD(MTL_BUTTRESS_WP_REQ_CMD, SEND, val);
REGB_WR32(MTL_BUTTRESS_WP_REQ_CMD, val);
ret = ivpu_pll_wait_for_cmd_send(vdev);
if (ret)
ivpu_err(vdev, "Failed to sync after WP request: %d\n", ret);
return ret;
}
static int ivpu_pll_wait_for_lock(struct ivpu_device *vdev, bool enable)
{
u32 exp_val = enable ? 0x1 : 0x0;
if (IVPU_WA(punit_disabled))
return 0;
return REGB_POLL_FLD(MTL_BUTTRESS_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
}
static int ivpu_pll_wait_for_status_ready(struct ivpu_device *vdev)
{
if (IVPU_WA(punit_disabled))
return 0;
return REGB_POLL_FLD(MTL_BUTTRESS_VPU_STATUS, READY, 1, PLL_TIMEOUT_US);
}
static void ivpu_pll_init_frequency_ratios(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
u8 fuse_min_ratio, fuse_max_ratio, fuse_pn_ratio;
u32 fmin_fuse, fmax_fuse;
fmin_fuse = REGB_RD32(MTL_BUTTRESS_FMIN_FUSE);
fuse_min_ratio = REG_GET_FLD(MTL_BUTTRESS_FMIN_FUSE, MIN_RATIO, fmin_fuse);
fuse_pn_ratio = REG_GET_FLD(MTL_BUTTRESS_FMIN_FUSE, PN_RATIO, fmin_fuse);
fmax_fuse = REGB_RD32(MTL_BUTTRESS_FMAX_FUSE);
fuse_max_ratio = REG_GET_FLD(MTL_BUTTRESS_FMAX_FUSE, MAX_RATIO, fmax_fuse);
hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, fuse_min_ratio, fuse_max_ratio);
hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, fuse_max_ratio);
hw->pll.pn_ratio = clamp_t(u8, fuse_pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
}
static int ivpu_pll_drive(struct ivpu_device *vdev, bool enable)
{
struct ivpu_hw_info *hw = vdev->hw;
u16 target_ratio;
u16 config;
int ret;
if (IVPU_WA(punit_disabled)) {
ivpu_dbg(vdev, PM, "Skipping PLL request on %s\n",
ivpu_platform_to_str(vdev->platform));
return 0;
}
if (enable) {
target_ratio = hw->pll.pn_ratio;
config = hw->config;
} else {
target_ratio = 0;
config = 0;
}
ivpu_dbg(vdev, PM, "PLL workpoint request: %d Hz\n", PLL_RATIO_TO_FREQ(target_ratio));
ret = ivpu_pll_cmd_send(vdev, hw->pll.min_ratio, hw->pll.max_ratio, target_ratio, config);
if (ret) {
ivpu_err(vdev, "Failed to send PLL workpoint request: %d\n", ret);
return ret;
}
ret = ivpu_pll_wait_for_lock(vdev, enable);
if (ret) {
ivpu_err(vdev, "Timed out waiting for PLL lock\n");
return ret;
}
if (enable) {
ret = ivpu_pll_wait_for_status_ready(vdev);
if (ret) {
ivpu_err(vdev, "Timed out waiting for PLL ready status\n");
return ret;
}
}
return 0;
}
static int ivpu_pll_enable(struct ivpu_device *vdev)
{
return ivpu_pll_drive(vdev, true);
}
static int ivpu_pll_disable(struct ivpu_device *vdev)
{
return ivpu_pll_drive(vdev, false);
}
static void ivpu_boot_host_ss_rst_clr_assert(struct ivpu_device *vdev)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_RST_CLR);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, TOP_NOC, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, DSS_MAS, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, MSS_MAS, val);
REGV_WR32(MTL_VPU_HOST_SS_CPR_RST_CLR, val);
}
static void ivpu_boot_host_ss_rst_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_RST_SET);
if (enable) {
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, TOP_NOC, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, DSS_MAS, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, MSS_MAS, val);
} else {
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, TOP_NOC, val);
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, DSS_MAS, val);
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, MSS_MAS, val);
}
REGV_WR32(MTL_VPU_HOST_SS_CPR_RST_SET, val);
}
static void ivpu_boot_host_ss_clk_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_CLK_SET);
if (enable) {
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, TOP_NOC, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, DSS_MAS, val);
val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, MSS_MAS, val);
} else {
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, TOP_NOC, val);
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, DSS_MAS, val);
val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, MSS_MAS, val);
}
REGV_WR32(MTL_VPU_HOST_SS_CPR_CLK_SET, val);
}
static int ivpu_boot_noc_qreqn_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QREQN);
if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QACCEPTN);
if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QACCEPTN, TOP_SOCMMIO, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QDENY);
if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QDENY, TOP_SOCMMIO, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_top_noc_qrenqn_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QREQN);
if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, exp_val, val) ||
!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_top_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QACCEPTN);
if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QACCEPTN, CPU_CTRL, exp_val, val) ||
!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QACCEPTN, HOSTIF_L2CACHE, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_top_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val)
{
u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QDENY);
if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QDENY, CPU_CTRL, exp_val, val) ||
!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QDENY, HOSTIF_L2CACHE, exp_val, val))
return -EIO;
return 0;
}
static int ivpu_boot_host_ss_configure(struct ivpu_device *vdev)
{
ivpu_boot_host_ss_rst_clr_assert(vdev);
return ivpu_boot_noc_qreqn_check(vdev, 0x0);
}
static void ivpu_boot_vpu_idle_gen_disable(struct ivpu_device *vdev)
{
REGV_WR32(MTL_VPU_HOST_SS_AON_VPU_IDLE_GEN, 0x0);
}
static int ivpu_boot_host_ss_axi_drive(struct ivpu_device *vdev, bool enable)
{
int ret;
u32 val;
val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QREQN);
if (enable)
val = REG_SET_FLD(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val);
else
val = REG_CLR_FLD(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val);
REGV_WR32(MTL_VPU_HOST_SS_NOC_QREQN, val);
ret = ivpu_boot_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0);
if (ret) {
ivpu_err(vdev, "Failed qacceptn check: %d\n", ret);
return ret;
}
ret = ivpu_boot_noc_qdeny_check(vdev, 0x0);
if (ret)
ivpu_err(vdev, "Failed qdeny check: %d\n", ret);
return ret;
}
static int ivpu_boot_host_ss_axi_enable(struct ivpu_device *vdev)
{
return ivpu_boot_host_ss_axi_drive(vdev, true);
}
static int ivpu_boot_host_ss_axi_disable(struct ivpu_device *vdev)
{
return ivpu_boot_host_ss_axi_drive(vdev, false);
}
static int ivpu_boot_host_ss_top_noc_drive(struct ivpu_device *vdev, bool enable)
{
int ret;
u32 val;
val = REGV_RD32(MTL_VPU_TOP_NOC_QREQN);
if (enable) {
val = REG_SET_FLD(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, val);
val = REG_SET_FLD(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, val);
} else {
val = REG_CLR_FLD(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, val);
val = REG_CLR_FLD(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, val);
}
REGV_WR32(MTL_VPU_TOP_NOC_QREQN, val);
ret = ivpu_boot_top_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0);
if (ret) {
ivpu_err(vdev, "Failed qacceptn check: %d\n", ret);
return ret;
}
ret = ivpu_boot_top_noc_qdeny_check(vdev, 0x0);
if (ret)
ivpu_err(vdev, "Failed qdeny check: %d\n", ret);
return ret;
}
static int ivpu_boot_host_ss_top_noc_enable(struct ivpu_device *vdev)
{
return ivpu_boot_host_ss_top_noc_drive(vdev, true);
}
static int ivpu_boot_host_ss_top_noc_disable(struct ivpu_device *vdev)
{
return ivpu_boot_host_ss_top_noc_drive(vdev, false);
}
static void ivpu_boot_pwr_island_trickle_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0);
if (enable)
val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, MSS_CPU, val);
else
val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, MSS_CPU, val);
REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, val);
}
static void ivpu_boot_pwr_island_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0);
if (enable)
val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, MSS_CPU, val);
else
val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, MSS_CPU, val);
REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, val);
}
static int ivpu_boot_wait_for_pwr_island_status(struct ivpu_device *vdev, u32 exp_val)
{
/* FPGA model (UPF) is not power aware, skipped Power Island polling */
if (ivpu_is_fpga(vdev))
return 0;
return REGV_POLL_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_STATUS0, MSS_CPU,
exp_val, PWR_ISLAND_STATUS_TIMEOUT_US);
}
static void ivpu_boot_pwr_island_isolation_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0);
if (enable)
val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, MSS_CPU, val);
else
val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, MSS_CPU, val);
REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, val);
}
static void ivpu_boot_dpu_active_drive(struct ivpu_device *vdev, bool enable)
{
u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_DPU_ACTIVE);
if (enable)
val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, DPU_ACTIVE, val);
else
val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, DPU_ACTIVE, val);
REGV_WR32(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, val);
}
static int ivpu_boot_pwr_domain_disable(struct ivpu_device *vdev)
{
ivpu_boot_dpu_active_drive(vdev, false);
ivpu_boot_pwr_island_isolation_drive(vdev, true);
ivpu_boot_pwr_island_trickle_drive(vdev, false);
ivpu_boot_pwr_island_drive(vdev, false);
return ivpu_boot_wait_for_pwr_island_status(vdev, 0x0);
}
static int ivpu_boot_pwr_domain_enable(struct ivpu_device *vdev)
{
int ret;
ivpu_boot_pwr_island_trickle_drive(vdev, true);
ivpu_boot_pwr_island_drive(vdev, true);
ret = ivpu_boot_wait_for_pwr_island_status(vdev, 0x1);
if (ret) {
ivpu_err(vdev, "Timed out waiting for power island status\n");
return ret;
}
ret = ivpu_boot_top_noc_qrenqn_check(vdev, 0x0);
if (ret) {
ivpu_err(vdev, "Failed qrenqn check %d\n", ret);
return ret;
}
ivpu_boot_host_ss_clk_drive(vdev, true);
ivpu_boot_pwr_island_isolation_drive(vdev, false);
ivpu_boot_host_ss_rst_drive(vdev, true);
ivpu_boot_dpu_active_drive(vdev, true);
return ret;
}
static void ivpu_boot_no_snoop_enable(struct ivpu_device *vdev)
{
u32 val = REGV_RD32(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, NOSNOOP_OVERRIDE_EN, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, AW_NOSNOOP_OVERRIDE, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, AR_NOSNOOP_OVERRIDE, val);
REGV_WR32(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, val);
}
static void ivpu_boot_tbu_mmu_enable(struct ivpu_device *vdev)
{
u32 val = REGV_RD32(MTL_VPU_HOST_IF_TBU_MMUSSIDV);
if (ivpu_is_fpga(vdev)) {
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_ARMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_ARMMUSSIDV, val);
} else {
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_ARMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU1_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU1_ARMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_ARMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU3_AWMMUSSIDV, val);
val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU3_ARMMUSSIDV, val);
}
REGV_WR32(MTL_VPU_HOST_IF_TBU_MMUSSIDV, val);
}
static void ivpu_boot_soc_cpu_boot(struct ivpu_device *vdev)
{
u32 val;
val = REGV_RD32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC);
val = REG_SET_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RSTRUN0, val);
val = REG_CLR_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RSTVEC, val);
REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val);
val = REG_SET_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RESUME0, val);
REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val);
val = REG_CLR_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RESUME0, val);
REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val);
}
static int ivpu_boot_d0i3_drive(struct ivpu_device *vdev, bool enable)
{
int ret;
u32 val;
ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Failed to sync before D0i3 tansition: %d\n", ret);
return ret;
}
val = REGB_RD32(MTL_BUTTRESS_VPU_D0I3_CONTROL);
if (enable)
val = REG_SET_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, I3, val);
else
val = REG_CLR_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, I3, val);
REGB_WR32(MTL_BUTTRESS_VPU_D0I3_CONTROL, val);
ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret)
ivpu_err(vdev, "Failed to sync after D0i3 tansition: %d\n", ret);
return ret;
}
static int ivpu_hw_mtl_info_init(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
u32 tile_fuse;
tile_fuse = REGB_RD32(MTL_BUTTRESS_TILE_FUSE);
if (!REG_TEST_FLD(MTL_BUTTRESS_TILE_FUSE, VALID, tile_fuse))
ivpu_warn(vdev, "Tile Fuse: Invalid (0x%x)\n", tile_fuse);
hw->tile_fuse = REG_GET_FLD(MTL_BUTTRESS_TILE_FUSE, SKU, tile_fuse);
switch (hw->tile_fuse) {
case TILE_FUSE_ENABLE_LOWER:
hw->sku = TILE_SKU_LOWER_MTL;
hw->config = WP_CONFIG_1_TILE_5_3_RATIO;
ivpu_dbg(vdev, MISC, "Tile Fuse: Enable Lower\n");
break;
case TILE_FUSE_ENABLE_UPPER:
hw->sku = TILE_SKU_UPPER_MTL;
hw->config = WP_CONFIG_1_TILE_4_3_RATIO;
ivpu_dbg(vdev, MISC, "Tile Fuse: Enable Upper\n");
break;
case TILE_FUSE_ENABLE_BOTH:
hw->sku = TILE_SKU_BOTH_MTL;
hw->config = WP_CONFIG_2_TILE_5_3_RATIO;
ivpu_dbg(vdev, MISC, "Tile Fuse: Enable Both\n");
break;
default:
hw->config = WP_CONFIG_0_TILE_PLL_OFF;
ivpu_dbg(vdev, MISC, "Tile Fuse: Disable\n");
break;
}
ivpu_pll_init_frequency_ratios(vdev);
ivpu_hw_init_range(&hw->ranges.global_low, 0x80000000, SZ_512M);
ivpu_hw_init_range(&hw->ranges.global_high, 0x180000000, SZ_2M);
ivpu_hw_init_range(&hw->ranges.user_low, 0xc0000000, 255 * SZ_1M);
ivpu_hw_init_range(&hw->ranges.user_high, 0x180000000, SZ_2G);
hw->ranges.global_aliased_pio = hw->ranges.user_low;
return 0;
}
static int ivpu_hw_mtl_reset(struct ivpu_device *vdev)
{
int ret;
u32 val;
if (IVPU_WA(punit_disabled))
return 0;
ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
return ret;
}
val = REGB_RD32(MTL_BUTTRESS_VPU_IP_RESET);
val = REG_SET_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, val);
REGB_WR32(MTL_BUTTRESS_VPU_IP_RESET, val);
ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret)
ivpu_err(vdev, "Timed out waiting for RESET completion\n");
return ret;
}
static int ivpu_hw_mtl_d0i3_enable(struct ivpu_device *vdev)
{
int ret;
ret = ivpu_boot_d0i3_drive(vdev, true);
if (ret)
ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);
udelay(5); /* VPU requires 5 us to complete the transition */
return ret;
}
static int ivpu_hw_mtl_d0i3_disable(struct ivpu_device *vdev)
{
int ret;
ret = ivpu_boot_d0i3_drive(vdev, false);
if (ret)
ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);
return ret;
}
static int ivpu_hw_mtl_power_up(struct ivpu_device *vdev)
{
int ret;
ivpu_hw_read_platform(vdev);
ivpu_hw_wa_init(vdev);
ivpu_hw_timeouts_init(vdev);
ret = ivpu_hw_mtl_reset(vdev);
if (ret)
ivpu_warn(vdev, "Failed to reset HW: %d\n", ret);
ret = ivpu_hw_mtl_d0i3_disable(vdev);
if (ret)
ivpu_warn(vdev, "Failed to disable D0I3: %d\n", ret);
ret = ivpu_pll_enable(vdev);
if (ret) {
ivpu_err(vdev, "Failed to enable PLL: %d\n", ret);
return ret;
}
ret = ivpu_boot_host_ss_configure(vdev);
if (ret) {
ivpu_err(vdev, "Failed to configure host SS: %d\n", ret);
return ret;
}
/*
* The control circuitry for vpu_idle indication logic powers up active.
* To ensure unnecessary low power mode signal from LRT during bring up,
* KMD disables the circuitry prior to bringing up the Main Power island.
*/
ivpu_boot_vpu_idle_gen_disable(vdev);
ret = ivpu_boot_pwr_domain_enable(vdev);
if (ret) {
ivpu_err(vdev, "Failed to enable power domain: %d\n", ret);
return ret;
}
ret = ivpu_boot_host_ss_axi_enable(vdev);
if (ret) {
ivpu_err(vdev, "Failed to enable AXI: %d\n", ret);
return ret;
}
ret = ivpu_boot_host_ss_top_noc_enable(vdev);
if (ret)
ivpu_err(vdev, "Failed to enable TOP NOC: %d\n", ret);
return ret;
}
static int ivpu_hw_mtl_boot_fw(struct ivpu_device *vdev)
{
ivpu_boot_no_snoop_enable(vdev);
ivpu_boot_tbu_mmu_enable(vdev);
ivpu_boot_soc_cpu_boot(vdev);
return 0;
}
static bool ivpu_hw_mtl_is_idle(struct ivpu_device *vdev)
{
u32 val;
if (IVPU_WA(punit_disabled))
return true;
val = REGB_RD32(MTL_BUTTRESS_VPU_STATUS);
return REG_TEST_FLD(MTL_BUTTRESS_VPU_STATUS, READY, val) &&
REG_TEST_FLD(MTL_BUTTRESS_VPU_STATUS, IDLE, val);
}
static int ivpu_hw_mtl_power_down(struct ivpu_device *vdev)
{
int ret = 0;
/* FPGA requires manual clearing of IP_Reset bit by enabling quiescent state */
if (ivpu_is_fpga(vdev)) {
if (ivpu_boot_host_ss_top_noc_disable(vdev)) {
ivpu_err(vdev, "Failed to disable TOP NOC\n");
ret = -EIO;
}
if (ivpu_boot_host_ss_axi_disable(vdev)) {
ivpu_err(vdev, "Failed to disable AXI\n");
ret = -EIO;
}
}
if (ivpu_boot_pwr_domain_disable(vdev)) {
ivpu_err(vdev, "Failed to disable power domain\n");
ret = -EIO;
}
if (ivpu_pll_disable(vdev)) {
ivpu_err(vdev, "Failed to disable PLL\n");
ret = -EIO;
}
if (ivpu_hw_mtl_d0i3_enable(vdev))
ivpu_warn(vdev, "Failed to enable D0I3\n");
return ret;
}
static void ivpu_hw_mtl_wdt_disable(struct ivpu_device *vdev)
{
u32 val;
/* Enable writing and set non-zero WDT value */
REGV_WR32(MTL_VPU_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE);
REGV_WR32(MTL_VPU_CPU_SS_TIM_WATCHDOG, TIM_WATCHDOG_RESET_VALUE);
/* Enable writing and disable watchdog timer */
REGV_WR32(MTL_VPU_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE);
REGV_WR32(MTL_VPU_CPU_SS_TIM_WDOG_EN, 0);
/* Now clear the timeout interrupt */
val = REGV_RD32(MTL_VPU_CPU_SS_TIM_GEN_CONFIG);
val = REG_CLR_FLD(MTL_VPU_CPU_SS_TIM_GEN_CONFIG, WDOG_TO_INT_CLR, val);
REGV_WR32(MTL_VPU_CPU_SS_TIM_GEN_CONFIG, val);
}
/* Register indirect accesses */
static u32 ivpu_hw_mtl_reg_pll_freq_get(struct ivpu_device *vdev)
{
u32 pll_curr_ratio;
pll_curr_ratio = REGB_RD32(MTL_BUTTRESS_CURRENT_PLL);
pll_curr_ratio &= MTL_BUTTRESS_CURRENT_PLL_RATIO_MASK;
if (!ivpu_is_silicon(vdev))
return PLL_SIMULATION_FREQ;
return PLL_RATIO_TO_FREQ(pll_curr_ratio);
}
static u32 ivpu_hw_mtl_reg_telemetry_offset_get(struct ivpu_device *vdev)
{
return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_OFFSET);
}
static u32 ivpu_hw_mtl_reg_telemetry_size_get(struct ivpu_device *vdev)
{
return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_SIZE);
}
static u32 ivpu_hw_mtl_reg_telemetry_enable_get(struct ivpu_device *vdev)
{
return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_ENABLE);
}
static void ivpu_hw_mtl_reg_db_set(struct ivpu_device *vdev, u32 db_id)
{
u32 reg_stride = MTL_VPU_CPU_SS_DOORBELL_1 - MTL_VPU_CPU_SS_DOORBELL_0;
u32 val = REG_FLD(MTL_VPU_CPU_SS_DOORBELL_0, SET);
REGV_WR32I(MTL_VPU_CPU_SS_DOORBELL_0, reg_stride, db_id, val);
}
static u32 ivpu_hw_mtl_reg_ipc_rx_addr_get(struct ivpu_device *vdev)
{
return REGV_RD32(MTL_VPU_HOST_SS_TIM_IPC_FIFO_ATM);
}
static u32 ivpu_hw_mtl_reg_ipc_rx_count_get(struct ivpu_device *vdev)
{
u32 count = REGV_RD32_SILENT(MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT);
return REG_GET_FLD(MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT, FILL_LEVEL, count);
}
static void ivpu_hw_mtl_reg_ipc_tx_set(struct ivpu_device *vdev, u32 vpu_addr)
{
REGV_WR32(MTL_VPU_CPU_SS_TIM_IPC_FIFO, vpu_addr);
}
static void ivpu_hw_mtl_irq_clear(struct ivpu_device *vdev)
{
REGV_WR64(MTL_VPU_HOST_SS_ICB_CLEAR_0, ICB_0_1_IRQ_MASK);
}
static void ivpu_hw_mtl_irq_enable(struct ivpu_device *vdev)
{
REGV_WR32(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, ITF_FIREWALL_VIOLATION_MASK);
REGV_WR64(MTL_VPU_HOST_SS_ICB_ENABLE_0, ICB_0_1_IRQ_MASK);
REGB_WR32(MTL_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_ENABLE_MASK);
REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x0);
}
static void ivpu_hw_mtl_irq_disable(struct ivpu_device *vdev)
{
REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x1);
REGB_WR32(MTL_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_DISABLE_MASK);
REGV_WR64(MTL_VPU_HOST_SS_ICB_ENABLE_0, 0x0ull);
REGB_WR32(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, 0x0);
}
static void ivpu_hw_mtl_irq_wdt_nce_handler(struct ivpu_device *vdev)
{
ivpu_err_ratelimited(vdev, "WDT NCE irq\n");
}
static void ivpu_hw_mtl_irq_wdt_mss_handler(struct ivpu_device *vdev)
{
ivpu_err_ratelimited(vdev, "WDT MSS irq\n");
ivpu_hw_wdt_disable(vdev);
}
static void ivpu_hw_mtl_irq_noc_firewall_handler(struct ivpu_device *vdev)
{
ivpu_err_ratelimited(vdev, "NOC Firewall irq\n");
}
/* Handler for IRQs from VPU core (irqV) */
static u32 ivpu_hw_mtl_irqv_handler(struct ivpu_device *vdev, int irq)
{
u32 status = REGV_RD32(MTL_VPU_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK;
REGV_WR32(MTL_VPU_HOST_SS_ICB_CLEAR_0, status);
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, status))
ivpu_hw_mtl_irq_wdt_mss_handler(vdev);
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, status))
ivpu_hw_mtl_irq_wdt_nce_handler(vdev);
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, status))
ivpu_hw_mtl_irq_noc_firewall_handler(vdev);
return status;
}
/* Handler for IRQs from Buttress core (irqB) */
static u32 ivpu_hw_mtl_irqb_handler(struct ivpu_device *vdev, int irq)
{
u32 status = REGB_RD32(MTL_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK;
if (status == 0)
return 0;
/* Disable global interrupt before handling local buttress interrupts */
REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x1);
if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, FREQ_CHANGE, status))
ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(MTL_BUTTRESS_CURRENT_PLL));
if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR, status)) {
ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(MTL_BUTTRESS_ATS_ERR_LOG_0));
REGB_WR32(MTL_BUTTRESS_ATS_ERR_CLEAR, 0x1);
}
if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR, status)) {
u32 ufi_log = REGB_RD32(MTL_BUTTRESS_UFI_ERR_LOG);
ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
ufi_log, REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, OPCODE, ufi_log),
REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, AXI_ID, ufi_log),
REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, CQ_ID, ufi_log));
REGB_WR32(MTL_BUTTRESS_UFI_ERR_CLEAR, 0x1);
}
/*
* Clear local interrupt status by writing 0 to all bits.
* This must be done after interrupts are cleared at the source.
* Writing 1 triggers an interrupt, so we can't perform read update write.
*/
REGB_WR32(MTL_BUTTRESS_INTERRUPT_STAT, 0x0);
/* Re-enable global interrupt */
REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x0);
return status;
}
static irqreturn_t ivpu_hw_mtl_irq_handler(int irq, void *ptr)
{
struct ivpu_device *vdev = ptr;
u32 ret_irqv, ret_irqb;
ret_irqv = ivpu_hw_mtl_irqv_handler(vdev, irq);
ret_irqb = ivpu_hw_mtl_irqb_handler(vdev, irq);
return IRQ_RETVAL(ret_irqb | ret_irqv);
}
static void ivpu_hw_mtl_diagnose_failure(struct ivpu_device *vdev)
{
u32 irqv = REGV_RD32(MTL_VPU_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK;
u32 irqb = REGB_RD32(MTL_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK;
if (ivpu_hw_mtl_reg_ipc_rx_count_get(vdev))
ivpu_err(vdev, "IPC FIFO queue not empty, missed IPC IRQ");
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, irqv))
ivpu_err(vdev, "WDT MSS timeout detected\n");
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, irqv))
ivpu_err(vdev, "WDT NCE timeout detected\n");
if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, irqv))
ivpu_err(vdev, "NOC Firewall irq detected\n");
if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR, irqb))
ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(MTL_BUTTRESS_ATS_ERR_LOG_0));
if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR, irqb)) {
u32 ufi_log = REGB_RD32(MTL_BUTTRESS_UFI_ERR_LOG);
ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
ufi_log, REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, OPCODE, ufi_log),
REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, AXI_ID, ufi_log),
REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, CQ_ID, ufi_log));
}
}
const struct ivpu_hw_ops ivpu_hw_mtl_ops = {
.info_init = ivpu_hw_mtl_info_init,
.power_up = ivpu_hw_mtl_power_up,
.is_idle = ivpu_hw_mtl_is_idle,
.power_down = ivpu_hw_mtl_power_down,
.boot_fw = ivpu_hw_mtl_boot_fw,
.wdt_disable = ivpu_hw_mtl_wdt_disable,
.diagnose_failure = ivpu_hw_mtl_diagnose_failure,
.reg_pll_freq_get = ivpu_hw_mtl_reg_pll_freq_get,
.reg_telemetry_offset_get = ivpu_hw_mtl_reg_telemetry_offset_get,
.reg_telemetry_size_get = ivpu_hw_mtl_reg_telemetry_size_get,
.reg_telemetry_enable_get = ivpu_hw_mtl_reg_telemetry_enable_get,
.reg_db_set = ivpu_hw_mtl_reg_db_set,
.reg_ipc_rx_addr_get = ivpu_hw_mtl_reg_ipc_rx_addr_get,
.reg_ipc_rx_count_get = ivpu_hw_mtl_reg_ipc_rx_count_get,
.reg_ipc_tx_set = ivpu_hw_mtl_reg_ipc_tx_set,
.irq_clear = ivpu_hw_mtl_irq_clear,
.irq_enable = ivpu_hw_mtl_irq_enable,
.irq_disable = ivpu_hw_mtl_irq_disable,
.irq_handler = ivpu_hw_mtl_irq_handler,
};
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __IVPU_HW_MTL_REG_H__
#define __IVPU_HW_MTL_REG_H__
#include <linux/bits.h>
#define MTL_BUTTRESS_INTERRUPT_TYPE 0x00000000u
#define MTL_BUTTRESS_INTERRUPT_STAT 0x00000004u
#define MTL_BUTTRESS_INTERRUPT_STAT_FREQ_CHANGE_MASK BIT_MASK(0)
#define MTL_BUTTRESS_INTERRUPT_STAT_ATS_ERR_MASK BIT_MASK(1)
#define MTL_BUTTRESS_INTERRUPT_STAT_UFI_ERR_MASK BIT_MASK(2)
#define MTL_BUTTRESS_WP_REQ_PAYLOAD0 0x00000008u
#define MTL_BUTTRESS_WP_REQ_PAYLOAD0_MIN_RATIO_MASK GENMASK(15, 0)
#define MTL_BUTTRESS_WP_REQ_PAYLOAD0_MAX_RATIO_MASK GENMASK(31, 16)
#define MTL_BUTTRESS_WP_REQ_PAYLOAD1 0x0000000cu
#define MTL_BUTTRESS_WP_REQ_PAYLOAD1_TARGET_RATIO_MASK GENMASK(15, 0)
#define MTL_BUTTRESS_WP_REQ_PAYLOAD1_EPP_MASK GENMASK(31, 16)
#define MTL_BUTTRESS_WP_REQ_PAYLOAD2 0x00000010u
#define MTL_BUTTRESS_WP_REQ_PAYLOAD2_CONFIG_MASK GENMASK(15, 0)
#define MTL_BUTTRESS_WP_REQ_CMD 0x00000014u
#define MTL_BUTTRESS_WP_REQ_CMD_SEND_MASK BIT_MASK(0)
#define MTL_BUTTRESS_WP_DOWNLOAD 0x00000018u
#define MTL_BUTTRESS_WP_DOWNLOAD_TARGET_RATIO_MASK GENMASK(15, 0)
#define MTL_BUTTRESS_CURRENT_PLL 0x0000001cu
#define MTL_BUTTRESS_CURRENT_PLL_RATIO_MASK GENMASK(15, 0)
#define MTL_BUTTRESS_PLL_ENABLE 0x00000020u
#define MTL_BUTTRESS_FMIN_FUSE 0x00000024u
#define MTL_BUTTRESS_FMIN_FUSE_MIN_RATIO_MASK GENMASK(7, 0)
#define MTL_BUTTRESS_FMIN_FUSE_PN_RATIO_MASK GENMASK(15, 8)
#define MTL_BUTTRESS_FMAX_FUSE 0x00000028u
#define MTL_BUTTRESS_FMAX_FUSE_MAX_RATIO_MASK GENMASK(7, 0)
#define MTL_BUTTRESS_TILE_FUSE 0x0000002cu
#define MTL_BUTTRESS_TILE_FUSE_VALID_MASK BIT_MASK(0)
#define MTL_BUTTRESS_TILE_FUSE_SKU_MASK GENMASK(3, 2)
#define MTL_BUTTRESS_LOCAL_INT_MASK 0x00000030u
#define MTL_BUTTRESS_GLOBAL_INT_MASK 0x00000034u
#define MTL_BUTTRESS_PLL_STATUS 0x00000040u
#define MTL_BUTTRESS_PLL_STATUS_LOCK_MASK BIT_MASK(1)
#define MTL_BUTTRESS_VPU_STATUS 0x00000044u
#define MTL_BUTTRESS_VPU_STATUS_READY_MASK BIT_MASK(0)
#define MTL_BUTTRESS_VPU_STATUS_IDLE_MASK BIT_MASK(1)
#define MTL_BUTTRESS_VPU_D0I3_CONTROL 0x00000060u
#define MTL_BUTTRESS_VPU_D0I3_CONTROL_INPROGRESS_MASK BIT_MASK(0)
#define MTL_BUTTRESS_VPU_D0I3_CONTROL_I3_MASK BIT_MASK(2)
#define MTL_BUTTRESS_VPU_IP_RESET 0x00000050u
#define MTL_BUTTRESS_VPU_IP_RESET_TRIGGER_MASK BIT_MASK(0)
#define MTL_BUTTRESS_VPU_TELEMETRY_OFFSET 0x00000080u
#define MTL_BUTTRESS_VPU_TELEMETRY_SIZE 0x00000084u
#define MTL_BUTTRESS_VPU_TELEMETRY_ENABLE 0x00000088u
#define MTL_BUTTRESS_ATS_ERR_LOG_0 0x000000a0u
#define MTL_BUTTRESS_ATS_ERR_LOG_1 0x000000a4u
#define MTL_BUTTRESS_ATS_ERR_CLEAR 0x000000a8u
#define MTL_BUTTRESS_UFI_ERR_LOG 0x000000b0u
#define MTL_BUTTRESS_UFI_ERR_LOG_CQ_ID_MASK GENMASK(11, 0)
#define MTL_BUTTRESS_UFI_ERR_LOG_AXI_ID_MASK GENMASK(19, 12)
#define MTL_BUTTRESS_UFI_ERR_LOG_OPCODE_MASK GENMASK(24, 20)
#define MTL_BUTTRESS_UFI_ERR_CLEAR 0x000000b4u
#define MTL_VPU_HOST_SS_CPR_CLK_SET 0x00000084u
#define MTL_VPU_HOST_SS_CPR_CLK_SET_TOP_NOC_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_CPR_CLK_SET_DSS_MAS_MASK BIT_MASK(10)
#define MTL_VPU_HOST_SS_CPR_CLK_SET_MSS_MAS_MASK BIT_MASK(11)
#define MTL_VPU_HOST_SS_CPR_RST_SET 0x00000094u
#define MTL_VPU_HOST_SS_CPR_RST_SET_TOP_NOC_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_CPR_RST_SET_DSS_MAS_MASK BIT_MASK(10)
#define MTL_VPU_HOST_SS_CPR_RST_SET_MSS_MAS_MASK BIT_MASK(11)
#define MTL_VPU_HOST_SS_CPR_RST_CLR 0x00000098u
#define MTL_VPU_HOST_SS_CPR_RST_CLR_TOP_NOC_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_CPR_RST_CLR_DSS_MAS_MASK BIT_MASK(10)
#define MTL_VPU_HOST_SS_CPR_RST_CLR_MSS_MAS_MASK BIT_MASK(11)
#define MTL_VPU_HOST_SS_HW_VERSION 0x00000108u
#define MTL_VPU_HOST_SS_HW_VERSION_SOC_REVISION_MASK GENMASK(7, 0)
#define MTL_VPU_HOST_SS_HW_VERSION_SOC_NUMBER_MASK GENMASK(15, 8)
#define MTL_VPU_HOST_SS_HW_VERSION_VPU_GENERATION_MASK GENMASK(23, 16)
#define MTL_VPU_HOST_SS_GEN_CTRL 0x00000118u
#define MTL_VPU_HOST_SS_GEN_CTRL_PS_MASK GENMASK(31, 29)
#define MTL_VPU_HOST_SS_NOC_QREQN 0x00000154u
#define MTL_VPU_HOST_SS_NOC_QREQN_TOP_SOCMMIO_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_NOC_QACCEPTN 0x00000158u
#define MTL_VPU_HOST_SS_NOC_QACCEPTN_TOP_SOCMMIO_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_NOC_QDENY 0x0000015cu
#define MTL_VPU_HOST_SS_NOC_QDENY_TOP_SOCMMIO_MASK BIT_MASK(0)
#define MTL_VPU_TOP_NOC_QREQN 0x00000160u
#define MTL_VPU_TOP_NOC_QREQN_CPU_CTRL_MASK BIT_MASK(0)
#define MTL_VPU_TOP_NOC_QREQN_HOSTIF_L2CACHE_MASK BIT_MASK(1)
#define MTL_VPU_TOP_NOC_QACCEPTN 0x00000164u
#define MTL_VPU_TOP_NOC_QACCEPTN_CPU_CTRL_MASK BIT_MASK(0)
#define MTL_VPU_TOP_NOC_QACCEPTN_HOSTIF_L2CACHE_MASK BIT_MASK(1)
#define MTL_VPU_TOP_NOC_QDENY 0x00000168u
#define MTL_VPU_TOP_NOC_QDENY_CPU_CTRL_MASK BIT_MASK(0)
#define MTL_VPU_TOP_NOC_QDENY_HOSTIF_L2CACHE_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN 0x00000170u
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_CSS_ROM_CMX_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_CSS_DBG_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_CSS_CTRL_MASK BIT_MASK(2)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_DEC400_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_MSS_NCE_MASK BIT_MASK(4)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_MSS_MBI_MASK BIT_MASK(5)
#define MTL_VPU_HOST_SS_FW_SOC_IRQ_EN_MSS_MBI_CMX_MASK BIT_MASK(6)
#define MTL_VPU_HOST_SS_ICB_STATUS_0 0x00010210u
#define MTL_VPU_HOST_SS_ICB_STATUS_0_TIMER_0_INT_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_TIMER_1_INT_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_TIMER_2_INT_MASK BIT_MASK(2)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_TIMER_3_INT_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_HOST_IPC_FIFO_INT_MASK BIT_MASK(4)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_MMU_IRQ_0_INT_MASK BIT_MASK(5)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_MMU_IRQ_1_INT_MASK BIT_MASK(6)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_MMU_IRQ_2_INT_MASK BIT_MASK(7)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_NOC_FIREWALL_INT_MASK BIT_MASK(8)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_CPU_INT_REDIRECT_0_INT_MASK BIT_MASK(30)
#define MTL_VPU_HOST_SS_ICB_STATUS_0_CPU_INT_REDIRECT_1_INT_MASK BIT_MASK(31)
#define MTL_VPU_HOST_SS_ICB_STATUS_1 0x00010214u
#define MTL_VPU_HOST_SS_ICB_STATUS_1_CPU_INT_REDIRECT_2_INT_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_ICB_STATUS_1_CPU_INT_REDIRECT_3_INT_MASK BIT_MASK(1)
#define MTL_VPU_HOST_SS_ICB_STATUS_1_CPU_INT_REDIRECT_4_INT_MASK BIT_MASK(2)
#define MTL_VPU_HOST_SS_ICB_CLEAR_0 0x00010220u
#define MTL_VPU_HOST_SS_ICB_CLEAR_1 0x00010224u
#define MTL_VPU_HOST_SS_ICB_ENABLE_0 0x00010240u
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_ATM 0x000200f4u
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT 0x000200fcu
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT_READ_POINTER_MASK GENMASK(7, 0)
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT_WRITE_POINTER_MASK GENMASK(15, 8)
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT_FILL_LEVEL_MASK GENMASK(23, 16)
#define MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT_RSVD0_MASK GENMASK(31, 24)
#define MTL_VPU_HOST_SS_AON_PWR_ISO_EN0 0x00030020u
#define MTL_VPU_HOST_SS_AON_PWR_ISO_EN0_MSS_CPU_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0 0x00030024u
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0_MSS_CPU_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0 0x00030028u
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0_MSS_CPU_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_STATUS0 0x0003002cu
#define MTL_VPU_HOST_SS_AON_PWR_ISLAND_STATUS0_MSS_CPU_MASK BIT_MASK(3)
#define MTL_VPU_HOST_SS_AON_VPU_IDLE_GEN 0x00030200u
#define MTL_VPU_HOST_SS_AON_VPU_IDLE_GEN_EN_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_AON_DPU_ACTIVE 0x00030204u
#define MTL_VPU_HOST_SS_AON_DPU_ACTIVE_DPU_ACTIVE_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_LOADING_ADDRESS_LO 0x00041040u
#define MTL_VPU_HOST_SS_LOADING_ADDRESS_LO_DONE_MASK BIT_MASK(0)
#define MTL_VPU_HOST_SS_LOADING_ADDRESS_LO_IOSF_RS_ID_MASK GENMASK(2, 1)
#define MTL_VPU_HOST_SS_LOADING_ADDRESS_LO_IMAGE_LOCATION_MASK GENMASK(31, 3)
#define MTL_VPU_HOST_SS_WORKPOINT_CONFIG_MIRROR 0x00082020u
#define MTL_VPU_HOST_SS_WORKPOINT_CONFIG_MIRROR_FINAL_PLL_FREQ_MASK GENMASK(15, 0)
#define MTL_VPU_HOST_SS_WORKPOINT_CONFIG_MIRROR_CONFIG_ID_MASK GENMASK(31, 16)
#define MTL_VPU_HOST_MMU_IDR0 0x00200000u
#define MTL_VPU_HOST_MMU_IDR1 0x00200004u
#define MTL_VPU_HOST_MMU_IDR3 0x0020000cu
#define MTL_VPU_HOST_MMU_IDR5 0x00200014u
#define MTL_VPU_HOST_MMU_CR0 0x00200020u
#define MTL_VPU_HOST_MMU_CR0ACK 0x00200024u
#define MTL_VPU_HOST_MMU_CR1 0x00200028u
#define MTL_VPU_HOST_MMU_CR2 0x0020002cu
#define MTL_VPU_HOST_MMU_IRQ_CTRL 0x00200050u
#define MTL_VPU_HOST_MMU_IRQ_CTRLACK 0x00200054u
#define MTL_VPU_HOST_MMU_GERROR 0x00200060u
#define MTL_VPU_HOST_MMU_GERROR_CMDQ_MASK BIT_MASK(0)
#define MTL_VPU_HOST_MMU_GERROR_EVTQ_ABT_MASK BIT_MASK(2)
#define MTL_VPU_HOST_MMU_GERROR_PRIQ_ABT_MASK BIT_MASK(3)
#define MTL_VPU_HOST_MMU_GERROR_MSI_CMDQ_ABT_MASK BIT_MASK(4)
#define MTL_VPU_HOST_MMU_GERROR_MSI_EVTQ_ABT_MASK BIT_MASK(5)
#define MTL_VPU_HOST_MMU_GERROR_MSI_PRIQ_ABT_MASK BIT_MASK(6)
#define MTL_VPU_HOST_MMU_GERROR_MSI_ABT_MASK BIT_MASK(7)
#define MTL_VPU_HOST_MMU_GERRORN 0x00200064u
#define MTL_VPU_HOST_MMU_STRTAB_BASE 0x00200080u
#define MTL_VPU_HOST_MMU_STRTAB_BASE_CFG 0x00200088u
#define MTL_VPU_HOST_MMU_CMDQ_BASE 0x00200090u
#define MTL_VPU_HOST_MMU_CMDQ_PROD 0x00200098u
#define MTL_VPU_HOST_MMU_CMDQ_CONS 0x0020009cu
#define MTL_VPU_HOST_MMU_EVTQ_BASE 0x002000a0u
#define MTL_VPU_HOST_MMU_EVTQ_PROD 0x002000a8u
#define MTL_VPU_HOST_MMU_EVTQ_CONS 0x002000acu
#define MTL_VPU_HOST_MMU_EVTQ_PROD_SEC (0x002000a8u + SZ_64K)
#define MTL_VPU_HOST_MMU_EVTQ_CONS_SEC (0x002000acu + SZ_64K)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES 0x00360000u
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_CACHE_OVERRIDE_EN_MASK BIT_MASK(0)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_AWCACHE_OVERRIDE_MASK BIT_MASK(1)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_ARCACHE_OVERRIDE_MASK BIT_MASK(2)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_NOSNOOP_OVERRIDE_EN_MASK BIT_MASK(3)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_AW_NOSNOOP_OVERRIDE_MASK BIT_MASK(4)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_AR_NOSNOOP_OVERRIDE_MASK BIT_MASK(5)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_PTW_AW_CONTEXT_FLAG_MASK GENMASK(10, 6)
#define MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES_PTW_AR_CONTEXT_FLAG_MASK GENMASK(15, 11)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV 0x00360004u
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU0_AWMMUSSIDV_MASK BIT_MASK(0)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU0_ARMMUSSIDV_MASK BIT_MASK(1)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU1_AWMMUSSIDV_MASK BIT_MASK(2)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU1_ARMMUSSIDV_MASK BIT_MASK(3)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU2_AWMMUSSIDV_MASK BIT_MASK(4)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU2_ARMMUSSIDV_MASK BIT_MASK(5)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU3_AWMMUSSIDV_MASK BIT_MASK(6)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU3_ARMMUSSIDV_MASK BIT_MASK(7)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU4_AWMMUSSIDV_MASK BIT_MASK(8)
#define MTL_VPU_HOST_IF_TBU_MMUSSIDV_TBU4_ARMMUSSIDV_MASK BIT_MASK(9)
#define MTL_VPU_CPU_SS_DSU_LEON_RT_BASE 0x04000000u
#define MTL_VPU_CPU_SS_DSU_LEON_RT_DSU_CTRL 0x04000000u
#define MTL_VPU_CPU_SS_DSU_LEON_RT_PC_REG 0x04400010u
#define MTL_VPU_CPU_SS_DSU_LEON_RT_NPC_REG 0x04400014u
#define MTL_VPU_CPU_SS_DSU_LEON_RT_DSU_TRAP_REG 0x04400020u
#define MTL_VPU_CPU_SS_MSSCPU_CPR_CLK_SET 0x06010004u
#define MTL_VPU_CPU_SS_MSSCPU_CPR_CLK_SET_CPU_DSU_MASK BIT_MASK(1)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_RST_CLR 0x06010018u
#define MTL_VPU_CPU_SS_MSSCPU_CPR_RST_CLR_CPU_DSU_MASK BIT_MASK(1)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC 0x06010040u
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC_IRQI_RSTRUN0_MASK BIT_MASK(0)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC_IRQI_RESUME0_MASK BIT_MASK(1)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC_IRQI_RSTRUN1_MASK BIT_MASK(2)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC_IRQI_RESUME1_MASK BIT_MASK(3)
#define MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC_IRQI_RSTVEC_MASK GENMASK(31, 4)
#define MTL_VPU_CPU_SS_TIM_WATCHDOG 0x0602009cu
#define MTL_VPU_CPU_SS_TIM_WDOG_EN 0x060200a4u
#define MTL_VPU_CPU_SS_TIM_SAFE 0x060200a8u
#define MTL_VPU_CPU_SS_TIM_IPC_FIFO 0x060200f0u
#define MTL_VPU_CPU_SS_TIM_GEN_CONFIG 0x06021008u
#define MTL_VPU_CPU_SS_TIM_GEN_CONFIG_WDOG_TO_INT_CLR_MASK BIT_MASK(9)
#define MTL_VPU_CPU_SS_DOORBELL_0 0x06300000u
#define MTL_VPU_CPU_SS_DOORBELL_0_SET_MASK BIT_MASK(0)
#define MTL_VPU_CPU_SS_DOORBELL_1 0x06301000u
#endif /* __IVPU_HW_MTL_REG_H__ */
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __IVPU_HW_REG_IO_H__
#define __IVPU_HW_REG_IO_H__
#include <linux/bitfield.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include "ivpu_drv.h"
#define REG_POLL_SLEEP_US 50
#define REG_IO_ERROR 0xffffffff
#define REGB_RD32(reg) ivpu_hw_reg_rd32(vdev, vdev->regb, (reg), #reg, __func__)
#define REGB_RD32_SILENT(reg) readl(vdev->regb + (reg))
#define REGB_RD64(reg) ivpu_hw_reg_rd64(vdev, vdev->regb, (reg), #reg, __func__)
#define REGB_WR32(reg, val) ivpu_hw_reg_wr32(vdev, vdev->regb, (reg), (val), #reg, __func__)
#define REGB_WR64(reg, val) ivpu_hw_reg_wr64(vdev, vdev->regb, (reg), (val), #reg, __func__)
#define REGV_RD32(reg) ivpu_hw_reg_rd32(vdev, vdev->regv, (reg), #reg, __func__)
#define REGV_RD32_SILENT(reg) readl(vdev->regv + (reg))
#define REGV_RD64(reg) ivpu_hw_reg_rd64(vdev, vdev->regv, (reg), #reg, __func__)
#define REGV_WR32(reg, val) ivpu_hw_reg_wr32(vdev, vdev->regv, (reg), (val), #reg, __func__)
#define REGV_WR64(reg, val) ivpu_hw_reg_wr64(vdev, vdev->regv, (reg), (val), #reg, __func__)
#define REGV_WR32I(reg, stride, index, val) \
ivpu_hw_reg_wr32_index(vdev, vdev->regv, (reg), (stride), (index), (val), #reg, __func__)
#define REG_FLD(REG, FLD) \
(REG##_##FLD##_MASK)
#define REG_FLD_NUM(REG, FLD, num) \
FIELD_PREP(REG##_##FLD##_MASK, num)
#define REG_GET_FLD(REG, FLD, val) \
FIELD_GET(REG##_##FLD##_MASK, val)
#define REG_CLR_FLD(REG, FLD, val) \
((val) & ~(REG##_##FLD##_MASK))
#define REG_SET_FLD(REG, FLD, val) \
((val) | (REG##_##FLD##_MASK))
#define REG_SET_FLD_NUM(REG, FLD, num, val) \
(((val) & ~(REG##_##FLD##_MASK)) | FIELD_PREP(REG##_##FLD##_MASK, num))
#define REG_TEST_FLD(REG, FLD, val) \
((REG##_##FLD##_MASK) == ((val) & (REG##_##FLD##_MASK)))
#define REG_TEST_FLD_NUM(REG, FLD, num, val) \
((num) == FIELD_GET(REG##_##FLD##_MASK, val))
#define REGB_POLL(reg, var, cond, timeout_us) \
read_poll_timeout(REGB_RD32_SILENT, var, cond, REG_POLL_SLEEP_US, timeout_us, false, reg)
#define REGV_POLL(reg, var, cond, timeout_us) \
read_poll_timeout(REGV_RD32_SILENT, var, cond, REG_POLL_SLEEP_US, timeout_us, false, reg)
#define REGB_POLL_FLD(reg, fld, val, timeout_us) \
({ \
u32 var; \
REGB_POLL(reg, var, (FIELD_GET(reg##_##fld##_MASK, var) == (val)), timeout_us); \
})
#define REGV_POLL_FLD(reg, fld, val, timeout_us) \
({ \
u32 var; \
REGV_POLL(reg, var, (FIELD_GET(reg##_##fld##_MASK, var) == (val)), timeout_us); \
})
static inline u32
ivpu_hw_reg_rd32(struct ivpu_device *vdev, void __iomem *base, u32 reg,
const char *name, const char *func)
{
u32 val = readl(base + reg);
ivpu_dbg(vdev, REG, "%s RD: %s (0x%08x) => 0x%08x\n", func, name, reg, val);
return val;
}
static inline u64
ivpu_hw_reg_rd64(struct ivpu_device *vdev, void __iomem *base, u32 reg,
const char *name, const char *func)
{
u64 val = readq(base + reg);
ivpu_dbg(vdev, REG, "%s RD: %s (0x%08x) => 0x%016llx\n", func, name, reg, val);
return val;
}
static inline void
ivpu_hw_reg_wr32(struct ivpu_device *vdev, void __iomem *base, u32 reg, u32 val,
const char *name, const char *func)
{
ivpu_dbg(vdev, REG, "%s WR: %s (0x%08x) <= 0x%08x\n", func, name, reg, val);
writel(val, base + reg);
}
static inline void
ivpu_hw_reg_wr64(struct ivpu_device *vdev, void __iomem *base, u32 reg, u64 val,
const char *name, const char *func)
{
ivpu_dbg(vdev, REG, "%s WR: %s (0x%08x) <= 0x%016llx\n", func, name, reg, val);
writeq(val, base + reg);
}
static inline void
ivpu_hw_reg_wr32_index(struct ivpu_device *vdev, void __iomem *base, u32 reg,
u32 stride, u32 index, u32 val, const char *name,
const char *func)
{
reg += index * stride;
ivpu_dbg(vdev, REG, "%s WR: %s_%d (0x%08x) <= 0x%08x\n", func, name, index, reg, val);
writel(val, base + reg);
}
#endif /* __IVPU_HW_REG_IO_H__ */
/* SPDX-License-Identifier: GPL-2.0-only WITH Linux-syscall-note */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __UAPI_IVPU_DRM_H__
#define __UAPI_IVPU_DRM_H__
#include "drm.h"
#if defined(__cplusplus)
extern "C" {
#endif
#define DRM_IVPU_DRIVER_MAJOR 1
#define DRM_IVPU_DRIVER_MINOR 0
#define DRM_IVPU_GET_PARAM 0x00
#define DRM_IVPU_SET_PARAM 0x01
#define DRM_IOCTL_IVPU_GET_PARAM \
DRM_IOWR(DRM_COMMAND_BASE + DRM_IVPU_GET_PARAM, struct drm_ivpu_param)
#define DRM_IOCTL_IVPU_SET_PARAM \
DRM_IOW(DRM_COMMAND_BASE + DRM_IVPU_SET_PARAM, struct drm_ivpu_param)
/**
* DOC: contexts
*
* VPU contexts have private virtual address space, job queues and priority.
* Each context is identified by an unique ID. Context is created on open().
*/
#define DRM_IVPU_PARAM_DEVICE_ID 0
#define DRM_IVPU_PARAM_DEVICE_REVISION 1
#define DRM_IVPU_PARAM_PLATFORM_TYPE 2
#define DRM_IVPU_PARAM_CORE_CLOCK_RATE 3
#define DRM_IVPU_PARAM_NUM_CONTEXTS 4
#define DRM_IVPU_PARAM_CONTEXT_BASE_ADDRESS 5
#define DRM_IVPU_PARAM_CONTEXT_PRIORITY 6
#define DRM_IVPU_PLATFORM_TYPE_SILICON 0
#define DRM_IVPU_CONTEXT_PRIORITY_IDLE 0
#define DRM_IVPU_CONTEXT_PRIORITY_NORMAL 1
#define DRM_IVPU_CONTEXT_PRIORITY_FOCUS 2
#define DRM_IVPU_CONTEXT_PRIORITY_REALTIME 3
/**
* struct drm_ivpu_param - Get/Set VPU parameters
*/
struct drm_ivpu_param {
/**
* @param:
*
* Supported params:
*
* %DRM_IVPU_PARAM_DEVICE_ID:
* PCI Device ID of the VPU device (read-only)
*
* %DRM_IVPU_PARAM_DEVICE_REVISION:
* VPU device revision (read-only)
*
* %DRM_IVPU_PARAM_PLATFORM_TYPE:
* Returns %DRM_IVPU_PLATFORM_TYPE_SILICON on real hardware or device specific
* platform type when executing on a simulator or emulator (read-only)
*
* %DRM_IVPU_PARAM_CORE_CLOCK_RATE:
* Current PLL frequency (read-only)
*
* %DRM_IVPU_PARAM_NUM_CONTEXTS:
* Maximum number of simultaneously existing contexts (read-only)
*
* %DRM_IVPU_PARAM_CONTEXT_BASE_ADDRESS:
* Lowest VPU virtual address available in the current context (read-only)
*
* %DRM_IVPU_PARAM_CONTEXT_PRIORITY:
* Value of current context scheduling priority (read-write).
* See DRM_IVPU_CONTEXT_PRIORITY_* for possible values.
*
*/
__u32 param;
/** @index: Index for params that have multiple instances */
__u32 index;
/** @value: Param value */
__u64 value;
};
#if defined(__cplusplus)
}
#endif
#endif /* __UAPI_IVPU_DRM_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment