Commit 3742e3d7 authored by Tracey Dent's avatar Tracey Dent Committed by Greg Kroah-Hartman

Staging: rtl8187se: r8185b_init: fixed a lot of checkpatch.pl issues

Fixed numerous coding style issues using checkpatch.pl
Signed-off-by: default avatarTracey Dent <tdent48227@gmail.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent de171bd6
...@@ -2,14 +2,14 @@ ...@@ -2,14 +2,14 @@
Copyright (c) Realtek Semiconductor Corp. All rights reserved. Copyright (c) Realtek Semiconductor Corp. All rights reserved.
Module Name: Module Name:
r8185b_init.c r8185b_init.c
Abstract: Abstract:
Hardware Initialization and Hardware IO for RTL8185B Hardware Initialization and Hardware IO for RTL8185B
Major Change History: Major Change History:
When Who What When Who What
---------- --------------- ------------------------------- ---------- --------------- -------------------------------
2006-11-15 Xiong Created 2006-11-15 Xiong Created
Notes: Notes:
...@@ -29,94 +29,94 @@ Major Change History: ...@@ -29,94 +29,94 @@ Major Change History:
#include "ieee80211/dot11d.h" #include "ieee80211/dot11d.h"
//#define CONFIG_RTL8180_IO_MAP /* #define CONFIG_RTL8180_IO_MAP */
#define TC_3W_POLL_MAX_TRY_CNT 5 #define TC_3W_POLL_MAX_TRY_CNT 5
static u8 MAC_REG_TABLE[][2]={ static u8 MAC_REG_TABLE[][2] = {
//PAGA 0: /*PAGA 0: */
// 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185() /* 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185() */
// 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185(). /* 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185(). */
// 0x1F0~0x1F8 set in MacConfig_85BASIC() /* 0x1F0~0x1F8 set in MacConfig_85BASIC() */
{0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42}, {0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
{0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03}, {0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
{0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03}, {0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
{0x94, 0x0F}, {0x95, 0x32}, {0x94, 0x0F}, {0x95, 0x32},
{0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00}, {0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
{0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32}, {0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
{0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4}, {0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
{0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00}, {0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
{0xff, 0x00}, {0xff, 0x00},
//PAGE 1: /*PAGE 1: */
// For Flextronics system Logo PCIHCT failure: /* For Flextronics system Logo PCIHCT failure: */
// 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1 /* 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1 */
{0x5e, 0x01}, {0x5e, 0x01},
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24}, {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
{0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF}, {0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
{0x82, 0xFF}, {0x83, 0x03}, {0x82, 0xFF}, {0x83, 0x03},
{0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, //lzm add 080826 {0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, /* lzm add 080826 */
{0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},//lzm add 080826 {0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},/* lzm add 080826 */
{0xe2, 0x00}, {0xe2, 0x00},
//PAGE 2: /* PAGE 2: */
{0x5e, 0x02}, {0x5e, 0x02},
{0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5}, {0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
{0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff}, {0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
{0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08}, {0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
{0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f}, {0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
{0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f}, {0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
{0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff}, {0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
{0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00}, {0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
//PAGA 0: /* PAGA 0: */
{0x5e, 0x00},{0x9f, 0x03} {0x5e, 0x00}, {0x9f, 0x03}
}; };
static u8 ZEBRA_AGC[]={ static u8 ZEBRA_AGC[] = {
0, 0,
0x7E,0x7E,0x7E,0x7E,0x7D,0x7C,0x7B,0x7A,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72, 0x7E, 0x7E, 0x7E, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72,
0x71,0x70,0x6F,0x6E,0x6D,0x6C,0x6B,0x6A,0x69,0x68,0x67,0x66,0x65,0x64,0x63,0x62, 0x71, 0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62,
0x48,0x47,0x46,0x45,0x44,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x08,0x07, 0x48, 0x47, 0x46, 0x45, 0x44, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x08, 0x07,
0x06,0x05,0x04,0x03,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x10,0x11,0x12,0x13,0x15,0x16, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x15, 0x16,
0x17,0x17,0x18,0x18,0x19,0x1a,0x1a,0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e, 0x17, 0x17, 0x18, 0x18, 0x19, 0x1a, 0x1a, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d, 0x1d, 0x1e, 0x1e,
0x1f,0x1f,0x1f,0x20,0x20,0x20,0x20,0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x24, 0x1f, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x20, 0x21, 0x21, 0x21, 0x22, 0x22, 0x22, 0x23, 0x23, 0x24,
0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F 0x24, 0x25, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F
}; };
static u32 ZEBRA_RF_RX_GAIN_TABLE[]={ static u32 ZEBRA_RF_RX_GAIN_TABLE[] = {
0x0096,0x0076,0x0056,0x0036,0x0016,0x01f6,0x01d6,0x01b6, 0x0096, 0x0076, 0x0056, 0x0036, 0x0016, 0x01f6, 0x01d6, 0x01b6,
0x0196,0x0176,0x00F7,0x00D7,0x00B7,0x0097,0x0077,0x0057, 0x0196, 0x0176, 0x00F7, 0x00D7, 0x00B7, 0x0097, 0x0077, 0x0057,
0x0037,0x00FB,0x00DB,0x00BB,0x00FF,0x00E3,0x00C3,0x00A3, 0x0037, 0x00FB, 0x00DB, 0x00BB, 0x00FF, 0x00E3, 0x00C3, 0x00A3,
0x0083,0x0063,0x0043,0x0023,0x0003,0x01E3,0x01C3,0x01A3, 0x0083, 0x0063, 0x0043, 0x0023, 0x0003, 0x01E3, 0x01C3, 0x01A3,
0x0183,0x0163,0x0143,0x0123,0x0103 0x0183, 0x0163, 0x0143, 0x0123, 0x0103
}; };
static u8 OFDM_CONFIG[]={ static u8 OFDM_CONFIG[] = {
// OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX /* OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX */
// OFDM reg0x3C[4]=1'b1: Enable RX power saving mode /* OFDM reg0x3C[4]=1'b1: Enable RX power saving mode */
// ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test /* ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test */
// 0x00 /* 0x00 */
0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50, 0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
// 0x10 /* 0x10 */
0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26, 0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB, 0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
// 0x20 /* 0x20 */
0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00, 0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00, 0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
// 0x30 /* 0x30 */
0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e, 0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
0xD8, 0x3C, 0x7B, 0x10, 0x10 0xD8, 0x3C, 0x7B, 0x10, 0x10
}; };
/*--------------------------------------------------------------- /* ---------------------------------------------------------------
* Hardware IO * Hardware IO
* the code is ported from Windows source code * the code is ported from Windows source code
----------------------------------------------------------------*/ ----------------------------------------------------------------*/
void void
PlatformIOWrite1Byte( PlatformIOWrite1Byte(
...@@ -126,7 +126,7 @@ PlatformIOWrite1Byte( ...@@ -126,7 +126,7 @@ PlatformIOWrite1Byte(
) )
{ {
write_nic_byte(dev, offset, data); write_nic_byte(dev, offset, data);
read_nic_byte(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko. read_nic_byte(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
} }
...@@ -138,7 +138,7 @@ PlatformIOWrite2Byte( ...@@ -138,7 +138,7 @@ PlatformIOWrite2Byte(
) )
{ {
write_nic_word(dev, offset, data); write_nic_word(dev, offset, data);
read_nic_word(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko. read_nic_word(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
} }
...@@ -151,9 +151,9 @@ PlatformIOWrite4Byte( ...@@ -151,9 +151,9 @@ PlatformIOWrite4Byte(
u32 data u32 data
) )
{ {
//{by amy 080312 /* {by amy 080312 */
if (offset == PhyAddr) if (offset == PhyAddr) {
{//For Base Band configuration. /* For Base Band configuration. */
unsigned char cmdByte; unsigned char cmdByte;
unsigned long dataBytes; unsigned long dataBytes;
unsigned char idx; unsigned char idx;
...@@ -162,37 +162,36 @@ if (offset == PhyAddr) ...@@ -162,37 +162,36 @@ if (offset == PhyAddr)
cmdByte = (u8)(data & 0x000000ff); cmdByte = (u8)(data & 0x000000ff);
dataBytes = data>>8; dataBytes = data>>8;
// /*
// 071010, rcnjko: 071010, rcnjko:
// The critical section is only BB read/write race condition. The critical section is only BB read/write race condition.
// Assumption: Assumption:
// 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
// acquiring the spinlock in such context. acquiring the spinlock in such context.
// 2. PlatformIOWrite4Byte() MUST NOT be recursive. 2. PlatformIOWrite4Byte() MUST NOT be recursive.
// */
// NdisAcquireSpinLock( &(pDevice->IoSpinLock) ); /* NdisAcquireSpinLock( &(pDevice->IoSpinLock) ); */
for(idx = 0; idx < 30; idx++) for (idx = 0; idx < 30; idx++) {
{ // Make sure command bit is clear before access it. /* Make sure command bit is clear before access it. */
u1bTmp = PlatformIORead1Byte(dev, PhyAddr); u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
if((u1bTmp & BIT7) == 0) if ((u1bTmp & BIT7) == 0)
break; break;
else else
mdelay(10); mdelay(10);
} }
for(idx=0; idx < 3; idx++) for (idx = 0; idx < 3; idx++)
{ PlatformIOWrite1Byte(dev, offset+1+idx, ((u8 *)&dataBytes)[idx]);
PlatformIOWrite1Byte(dev,offset+1+idx,((u8*)&dataBytes)[idx] );
}
write_nic_byte(dev, offset, cmdByte); write_nic_byte(dev, offset, cmdByte);
// NdisReleaseSpinLock( &(pDevice->IoSpinLock) ); /* NdisReleaseSpinLock( &(pDevice->IoSpinLock) ); */
} }
//by amy 080312} /* by amy 080312} */
else{ else {
write_nic_dword(dev, offset, data); write_nic_dword(dev, offset, data);
read_nic_dword(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko. read_nic_dword(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
} }
} }
...@@ -256,59 +255,49 @@ HwHSSIThreeWire( ...@@ -256,59 +255,49 @@ HwHSSIThreeWire(
u8 TryCnt; u8 TryCnt;
u8 u1bTmp; u8 u1bTmp;
do do {
{ /* Check if WE and RE are cleared. */
// Check if WE and RE are cleared. for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
{
u1bTmp = read_nic_byte(dev, SW_3W_CMD1); u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 ) if ((u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0)
{
break; break;
}
udelay(10); udelay(10);
} }
if (TryCnt == TC_3W_POLL_MAX_TRY_CNT) if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp); panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
// RTL8187S HSSI Read/Write Function /* RTL8187S HSSI Read/Write Function */
u1bTmp = read_nic_byte(dev, RF_SW_CONFIG); u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
if(bSI) if (bSI)
{ u1bTmp |= RF_SW_CFG_SI; /* reg08[1]=1 Serial Interface(SI) */
u1bTmp |= RF_SW_CFG_SI; //reg08[1]=1 Serial Interface(SI)
}else else
{ u1bTmp &= ~RF_SW_CFG_SI; /* reg08[1]=0 Parallel Interface(PI) */
u1bTmp &= ~RF_SW_CFG_SI; //reg08[1]=0 Parallel Interface(PI)
}
write_nic_byte(dev, RF_SW_CONFIG, u1bTmp); write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
if(bSI) if (bSI) {
{ /* jong: HW SI read must set reg84[3]=0. */
// jong: HW SI read must set reg84[3]=0.
u1bTmp = read_nic_byte(dev, RFPinsSelect); u1bTmp = read_nic_byte(dev, RFPinsSelect);
u1bTmp &= ~BIT3; u1bTmp &= ~BIT3;
write_nic_byte(dev, RFPinsSelect, u1bTmp ); write_nic_byte(dev, RFPinsSelect, u1bTmp);
} }
// Fill up data buffer for write operation. /* Fill up data buffer for write operation. */
if(bWrite) if (bWrite) {
{ if (nDataBufBitCnt == 16) {
if(nDataBufBitCnt == 16) write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
{ } else if (nDataBufBitCnt == 64) {
write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf)); /* RTL8187S shouldn't enter this case */
} write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
else if(nDataBufBitCnt == 64) // RTL8187S shouldn't enter this case write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
{ } else {
write_nic_dword(dev, SW_3W_DB0, *((u32*)pDataBuf));
write_nic_dword(dev, SW_3W_DB1, *((u32*)(pDataBuf + 4)));
}
else
{
int idx; int idx;
int ByteCnt = nDataBufBitCnt / 8; int ByteCnt = nDataBufBitCnt / 8;
//printk("%d\n",nDataBufBitCnt); /* printk("%d\n",nDataBufBitCnt); */
if ((nDataBufBitCnt % 8) != 0) if ((nDataBufBitCnt % 8) != 0)
panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n", panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
nDataBufBitCnt); nDataBufBitCnt);
...@@ -317,67 +306,53 @@ HwHSSIThreeWire( ...@@ -317,67 +306,53 @@ HwHSSIThreeWire(
panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n", panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
nDataBufBitCnt); nDataBufBitCnt);
for(idx = 0; idx < ByteCnt; idx++) for (idx = 0; idx < ByteCnt; idx++)
{
write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx)); write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
}
}
}
else //read
{
if(bSI)
{
// SI - reg274[3:0] : RF register's Address
write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf) );
} }
else } else { /* read */
{ if (bSI) {
// PI - reg274[15:12] : RF register's Address /* SI - reg274[3:0] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, (*((u16*)pDataBuf)) << 12); write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
} else {
/* PI - reg274[15:12] : RF register's Address */
write_nic_word(dev, SW_3W_DB0, (*((u16 *)pDataBuf)) << 12);
} }
} }
// Set up command: WE or RE. /* Set up command: WE or RE. */
if(bWrite) if (bWrite)
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE); write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
}
else else
{
write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE); write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
}
// Check if DONE is set.
for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) /* Check if DONE is set. */
{ for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
u1bTmp = read_nic_byte(dev, SW_3W_CMD1); u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
if( (u1bTmp & SW_3W_CMD1_DONE) != 0 ) if ((u1bTmp & SW_3W_CMD1_DONE) != 0)
{
break; break;
}
udelay(10); udelay(10);
} }
write_nic_byte(dev, SW_3W_CMD1, 0); write_nic_byte(dev, SW_3W_CMD1, 0);
// Read back data for read operation. /* Read back data for read operation. */
if(bWrite == 0) if (bWrite == 0) {
{ if (bSI) {
if(bSI) /* Serial Interface : reg363_362[11:0] */
{ *((u16 *)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
//Serial Interface : reg363_362[11:0] } else {
*((u16*)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ; /* Parallel Interface : reg361_360[11:0] */
} *((u16 *)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
else
{
//Parallel Interface : reg361_360[11:0]
*((u16*)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
} }
*((u16*)pDataBuf) &= 0x0FFF; *((u16 *)pDataBuf) &= 0x0FFF;
} }
}while(0); } while (0);
return bResult; return bResult;
} }
...@@ -410,25 +385,25 @@ u32 RF_ReadReg(struct net_device *dev, u8 offset) ...@@ -410,25 +385,25 @@ u32 RF_ReadReg(struct net_device *dev, u8 offset)
} }
// by Owen on 04/07/14 for writing BB register successfully /* by Owen on 04/07/14 for writing BB register successfully */
void void
WriteBBPortUchar( WriteBBPortUchar(
struct net_device *dev, struct net_device *dev,
u32 Data u32 Data
) )
{ {
//u8 TimeoutCounter; /* u8 TimeoutCounter; */
u8 RegisterContent; u8 RegisterContent;
u8 UCharData; u8 UCharData;
UCharData = (u8)((Data & 0x0000ff00) >> 8); UCharData = (u8)((Data & 0x0000ff00) >> 8);
PlatformIOWrite4Byte(dev, PhyAddr, Data); PlatformIOWrite4Byte(dev, PhyAddr, Data);
//for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--) /* for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--) */
{ {
PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f); PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
RegisterContent = PlatformIORead1Byte(dev, PhyDataR); RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
//if(UCharData == RegisterContent) /*if(UCharData == RegisterContent) */
// break; /* break; */
} }
} }
...@@ -438,7 +413,7 @@ ReadBBPortUchar( ...@@ -438,7 +413,7 @@ ReadBBPortUchar(
u32 addr u32 addr
) )
{ {
//u8 TimeoutCounter; /*u8 TimeoutCounter; */
u8 RegisterContent; u8 RegisterContent;
PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f); PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
...@@ -446,93 +421,87 @@ ReadBBPortUchar( ...@@ -446,93 +421,87 @@ ReadBBPortUchar(
return RegisterContent; return RegisterContent;
} }
//{by amy 080312 /* {by amy 080312 */
// /*
// Description: Description:
// Perform Antenna settings with antenna diversity on 87SE. Perform Antenna settings with antenna diversity on 87SE.
// Created by Roger, 2008.01.25. Created by Roger, 2008.01.25.
// */
bool bool
SetAntennaConfig87SE( SetAntennaConfig87SE(
struct net_device *dev, struct net_device *dev,
u8 DefaultAnt, // 0: Main, 1: Aux. u8 DefaultAnt, /* 0: Main, 1: Aux. */
bool bAntDiversity // 1:Enable, 0: Disable. bool bAntDiversity /* 1:Enable, 0: Disable. */
) )
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bAntennaSwitched = true; bool bAntennaSwitched = true;
//printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity); /* printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity); */
// Threshold for antenna diversity. /* Threshold for antenna diversity. */
write_phy_cck(dev, 0x0c, 0x09); // Reg0c : 09 write_phy_cck(dev, 0x0c, 0x09); /* Reg0c : 09 */
if( bAntDiversity ) // Enable Antenna Diversity. if (bAntDiversity) { /* Enable Antenna Diversity. */
{ if (DefaultAnt == 1) { /* aux antenna */
if( DefaultAnt == 1 ) // aux antenna
{ /* Mac register, aux antenna */
// Mac register, aux antenna
write_nic_byte(dev, ANTSEL, 0x00); write_nic_byte(dev, ANTSEL, 0x00);
// Config CCK RX antenna. /* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7 write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
// Config OFDM RX antenna. /* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54 write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2 write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
} } else { /* use main antenna */
else // use main antenna /* Mac register, main antenna */
{
// Mac register, main antenna
write_nic_byte(dev, ANTSEL, 0x03); write_nic_byte(dev, ANTSEL, 0x03);
//base band /* base band */
// Config CCK RX antenna. /* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7 write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
// Config OFDM RX antenna. /* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0d, 0x5c); // Reg0d : 5c write_phy_ofdm(dev, 0x0d, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0xb2); // Reg18 : b2 write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
} }
} } else {
else // Disable Antenna Diversity. /* Disable Antenna Diversity. */
{ if (DefaultAnt == 1) { /* aux Antenna */
if( DefaultAnt == 1 ) // aux Antenna /* Mac register, aux antenna */
{
// Mac register, aux antenna
write_nic_byte(dev, ANTSEL, 0x00); write_nic_byte(dev, ANTSEL, 0x00);
// Config CCK RX antenna. /* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47 write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
// Config OFDM RX antenna. /* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x54); // Reg0d : 54 write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32 write_phy_ofdm(dev, 0x18, 0x32); /* Reg18 : 32 */
} } else { /* main Antenna */
else // main Antenna /* Mac register, main antenna */
{
// Mac register, main antenna
write_nic_byte(dev, ANTSEL, 0x03); write_nic_byte(dev, ANTSEL, 0x03);
// Config CCK RX antenna. /* Config CCK RX antenna. */
write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47 write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
// Config OFDM RX antenna. /* Config OFDM RX antenna. */
write_phy_ofdm(dev, 0x0D, 0x5c); // Reg0d : 5c write_phy_ofdm(dev, 0x0D, 0x5c); /* Reg0d : 5c */
write_phy_ofdm(dev, 0x18, 0x32); // Reg18 : 32 write_phy_ofdm(dev, 0x18, 0x32); /*Reg18 : 32 */
} }
} }
priv->CurrAntennaIndex = DefaultAnt; // Update default settings. priv->CurrAntennaIndex = DefaultAnt; /* Update default settings. */
return bAntennaSwitched; return bAntennaSwitched;
} }
//by amy 080312 /* by amy 080312 */
/*--------------------------------------------------------------- /*
* Hardware Initialization. ---------------------------------------------------------------
* the code is ported from Windows source code * Hardware Initialization.
----------------------------------------------------------------*/ * the code is ported from Windows source code
----------------------------------------------------------------*/
void void
ZEBRA_Config_85BASIC_HardCode( ZEBRA_Config_85BASIC_HardCode(
...@@ -542,36 +511,38 @@ ZEBRA_Config_85BASIC_HardCode( ...@@ -542,36 +511,38 @@ ZEBRA_Config_85BASIC_HardCode(
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u32 i; u32 i;
u32 addr,data; u32 addr, data;
u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24; u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
u8 u1b24E; u8 u1b24E;
int d_cut = 0; int d_cut = 0;
//============================================================================= /*
// 87S_PCIE :: RADIOCFG.TXT =============================================================================
//============================================================================= 87S_PCIE :: RADIOCFG.TXT
=============================================================================
*/
// Page1 : reg16-reg30 /* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); // switch to page1 RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); /* switch to page1 */
u4bRF23= RF_ReadReg(dev, 0x08); mdelay(1); u4bRF23 = RF_ReadReg(dev, 0x08); mdelay(1);
u4bRF24= RF_ReadReg(dev, 0x09); mdelay(1); u4bRF24 = RF_ReadReg(dev, 0x09); mdelay(1);
if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) { if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
d_cut = 1; d_cut = 1;
printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n"); printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
} }
// Page0 : reg0-reg15 /* Page0 : reg0-reg15 */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);// 1 RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);/* 1 */
RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1); RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);// 2 RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);/* 2 */
RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);// 3 RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);/* 3 */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1); RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
...@@ -587,7 +558,7 @@ ZEBRA_Config_85BASIC_HardCode( ...@@ -587,7 +558,7 @@ ZEBRA_Config_85BASIC_HardCode(
RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1); RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
// Page1 : reg16-reg30 /* Page1 : reg16-reg30 */
RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
RF_WriteReg(dev, 0x03, 0x0806); mdelay(1); RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
...@@ -598,143 +569,142 @@ ZEBRA_Config_85BASIC_HardCode( ...@@ -598,143 +569,142 @@ ZEBRA_Config_85BASIC_HardCode(
RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1); RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
// Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl. /* Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl. */
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1); RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1); RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
if (d_cut) { if (d_cut) {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1); RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); // RX LO buffer RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); /* RX LO buffer */
} else { } else {
RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1); RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); // RX LO buffer RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); /* RX LO buffer */
} }
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1); RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1);// 6 RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1); /* 6 */
RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1); RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1); RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
for(i=0;i<=36;i++) for (i = 0; i <= 36; i++) {
{
RF_WriteReg(dev, 0x01, i); mdelay(1); RF_WriteReg(dev, 0x01, i); mdelay(1);
RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1); RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
} }
RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /// 203, 343 RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /* 203, 343 */
RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); // 400 RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); /* 400 */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30, and HSSI disable 137 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30, and HSSI disable 137 */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); // Z4 synthesizer loop filter setting, 392 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); /* Z4 synthesizer loop filter setting, 392 */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); // switch to reg0-reg15, and HSSI disable RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); /* switch to reg0-reg15, and HSSI disable */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); // CBC on, Tx Rx disable, High gain RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); /* CBC on, Tx Rx disable, High gain */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); // Z4 setted channel 1 RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); /* Z4 setted channel 1 */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); // LC calibration RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); /* LC calibration */
mdelay(200); // Deay 200 ms. //0xfd mdelay(200); /* Deay 200 ms. */ /* 0xfd */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); // switch to reg16-reg30 137, and HSSI disable 137 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30 137, and HSSI disable 137 */
mdelay(10); // Deay 10 ms. //0xfd mdelay(10); /* Deay 10 ms. */ /* 0xfd */
RF_WriteReg(dev, 0x07, 0x0000); mdelay(1); RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0180); mdelay(1); RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
RF_WriteReg(dev, 0x07, 0x0220); mdelay(1); RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1); RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
// DAC calibration off 20070702 /* DAC calibration off 20070702 */
RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1); RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1); RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
//{by amy 080312 /* {by amy 080312 */
// For crystal calibration, added by Roger, 2007.12.11. /* For crystal calibration, added by Roger, 2007.12.11. */
if( priv->bXtalCalibration ) // reg 30. if (priv->bXtalCalibration) { /* reg 30. */
{ // enable crystal calibration. /* enable crystal calibration.
// RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0]. RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
// (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0 (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
// (3)RF signal on/off when calibration[13], default: on, set BIT13=0. (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
// So we should minus 4 BITs offset. So we should minus 4 BITs offset. */
RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5)|(priv->XtalCal_Xout<<1)|BIT11|BIT9); mdelay(1); RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9); mdelay(1);
printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n", printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
(priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11| BIT9); (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9);
} } else {
else /* using default value. Xin=6, Xout=6. */
{ // using default value. Xin=6, Xout=6.
RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1); RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
} }
//by amy 080312 /* by amy 080312 */
RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); // switch to reg0-reg15, and HSSI enable RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); /* switch to reg0-reg15, and HSSI enable */
RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); // Rx BB start calibration, 00c//+edward RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); /* Rx BB start calibration, 00c//+edward */
RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); // temperature meter off RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); /* temperature meter off */
RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); // Rx mode RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); /* Rx mode */
mdelay(10); // Deay 10 ms. //0xfe mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); // Deay 10 ms. //0xfe mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
mdelay(10); // Deay 10 ms. //0xfe mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); // Rx mode//+edward RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); // Rx mode//+edward RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); // Rx mode//+edward RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); // Rx mode//+edward RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); // Rx mode//+edward RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
//power save parameters. /* power save parameters. */
u1b24E = read_nic_byte(dev, 0x24E); u1b24E = read_nic_byte(dev, 0x24E);
write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6)))); write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
//============================================================================= /*=============================================================================
//=============================================================================
// CCKCONF.TXT
//=============================================================================
=============================================================================
CCKCONF.TXT
=============================================================================
*/
/* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27 /* [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
CCK reg0x00[7]=1'b1 :power saving for TX (default) CCK reg0x00[7]=1'b1 :power saving for TX (default)
CCK reg0x00[6]=1'b1: power saving for RX (default) CCK reg0x00[6]=1'b1: power saving for RX (default)
CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation. CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1 CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0 CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
*/ */
write_phy_cck(dev,0x00,0xc8); write_phy_cck(dev, 0x00, 0xc8);
write_phy_cck(dev,0x06,0x1c); write_phy_cck(dev, 0x06, 0x1c);
write_phy_cck(dev,0x10,0x78); write_phy_cck(dev, 0x10, 0x78);
write_phy_cck(dev,0x2e,0xd0); write_phy_cck(dev, 0x2e, 0xd0);
write_phy_cck(dev,0x2f,0x06); write_phy_cck(dev, 0x2f, 0x06);
write_phy_cck(dev,0x01,0x46); write_phy_cck(dev, 0x01, 0x46);
// power control /* power control */
write_nic_byte(dev, CCK_TXAGC, 0x10); write_nic_byte(dev, CCK_TXAGC, 0x10);
write_nic_byte(dev, OFDM_TXAGC, 0x1B); write_nic_byte(dev, OFDM_TXAGC, 0x1B);
write_nic_byte(dev, ANTSEL, 0x03); write_nic_byte(dev, ANTSEL, 0x03);
//============================================================================= /*
// AGC.txt =============================================================================
//============================================================================= AGC.txt
=============================================================================
*/
write_phy_ofdm(dev, 0x00, 0x12); write_phy_ofdm(dev, 0x00, 0x12);
for (i=0; i<128; i++) for (i = 0; i < 128; i++) {
{
data = ZEBRA_AGC[i+1]; data = ZEBRA_AGC[i+1];
data = data << 8; data = data << 8;
data = data | 0x0000008F; data = data | 0x0000008F;
addr = i + 0x80; //enable writing AGC table addr = i + 0x80; /* enable writing AGC table */
addr = addr << 8; addr = addr << 8;
addr = addr | 0x0000008E; addr = addr | 0x0000008E;
...@@ -743,18 +713,19 @@ ZEBRA_Config_85BASIC_HardCode( ...@@ -743,18 +713,19 @@ ZEBRA_Config_85BASIC_HardCode(
WriteBBPortUchar(dev, 0x0000008E); WriteBBPortUchar(dev, 0x0000008E);
} }
PlatformIOWrite4Byte( dev, PhyAddr, 0x00001080); // Annie, 2006-05-05 PlatformIOWrite4Byte(dev, PhyAddr, 0x00001080); /* Annie, 2006-05-05 */
//============================================================================= /*
=============================================================================
//============================================================================= =============================================================================
// OFDMCONF.TXT OFDMCONF.TXT
//============================================================================= =============================================================================
*/
for(i=0; i<60; i++) for (i = 0; i < 60; i++) {
{ u4bRegOffset = i;
u4bRegOffset=i; u4bRegValue = OFDM_CONFIG[i];
u4bRegValue=OFDM_CONFIG[i];
WriteBBPortUchar(dev, WriteBBPortUchar(dev,
(0x00000080 | (0x00000080 |
...@@ -762,14 +733,16 @@ ZEBRA_Config_85BASIC_HardCode( ...@@ -762,14 +733,16 @@ ZEBRA_Config_85BASIC_HardCode(
((u4bRegValue & 0xff) << 8))); ((u4bRegValue & 0xff) << 8)));
} }
//============================================================================= /*
//by amy for antenna =============================================================================
//============================================================================= by amy for antenna
//{by amy 080312 =============================================================================
// Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26. */
/* {by amy 080312 */
/* Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26. */
SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity); SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
//by amy 080312} /* by amy 080312} */
//by amy for antenna /* by amy for antenna */
} }
...@@ -780,13 +753,13 @@ UpdateInitialGain( ...@@ -780,13 +753,13 @@ UpdateInitialGain(
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
//lzm add 080826 /* lzm add 080826 */
if(priv->eRFPowerState != eRfOn) if (priv->eRFPowerState != eRfOn) {
{ /* Don't access BB/RF under disable PLL situation.
//Don't access BB/RF under disable PLL situation. RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
//RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n")); Back to the original state
// Back to the original state */
priv->InitialGain= priv->InitialGainBackUp; priv->InitialGain = priv->InitialGainBackUp;
return; return;
} }
...@@ -846,11 +819,11 @@ UpdateInitialGain( ...@@ -846,11 +819,11 @@ UpdateInitialGain(
break; break;
} }
} }
// /*
// Description: Description:
// Tx Power tracking mechanism routine on 87SE. Tx Power tracking mechanism routine on 87SE.
// Created by Roger, 2007.12.11. Created by Roger, 2007.12.11.
// */
void void
InitTxPwrTracking87SE( InitTxPwrTracking87SE(
struct net_device *dev struct net_device *dev
...@@ -860,7 +833,7 @@ InitTxPwrTracking87SE( ...@@ -860,7 +833,7 @@ InitTxPwrTracking87SE(
u4bRfReg = RF_ReadReg(dev, 0x02); u4bRfReg = RF_ReadReg(dev, 0x02);
// Enable Thermal meter indication. /* Enable Thermal meter indication. */
RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1); RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
} }
...@@ -870,28 +843,27 @@ PhyConfig8185( ...@@ -870,28 +843,27 @@ PhyConfig8185(
) )
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
write_nic_dword(dev, RCR, priv->ReceiveConfig); write_nic_dword(dev, RCR, priv->ReceiveConfig);
priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03; priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
/* RF config */ /* RF config */
ZEBRA_Config_85BASIC_HardCode(dev); ZEBRA_Config_85BASIC_HardCode(dev);
//{by amy 080312 /* {by amy 080312 */
// Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06. /* Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06. */
if(priv->bDigMechanism) if (priv->bDigMechanism) {
{ if (priv->InitialGain == 0)
if(priv->InitialGain == 0)
priv->InitialGain = 4; priv->InitialGain = 4;
} }
// /*
// Enable thermal meter indication to implement TxPower tracking on 87SE. Enable thermal meter indication to implement TxPower tracking on 87SE.
// We initialize thermal meter here to avoid unsuccessful configuration. We initialize thermal meter here to avoid unsuccessful configuration.
// Added by Roger, 2007.12.11. Added by Roger, 2007.12.11.
// */
if(priv->bTxPowerTrack) if (priv->bTxPowerTrack)
InitTxPwrTracking87SE(dev); InitTxPwrTracking87SE(dev);
//by amy 080312} /* by amy 080312} */
priv->InitialGainBackUp= priv->InitialGain; priv->InitialGainBackUp = priv->InitialGain;
UpdateInitialGain(dev); UpdateInitialGain(dev);
return; return;
...@@ -902,63 +874,56 @@ HwConfigureRTL8185( ...@@ -902,63 +874,56 @@ HwConfigureRTL8185(
struct net_device *dev struct net_device *dev
) )
{ {
//RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control. /* RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control. */
u8 bUNIVERSAL_CONTROL_RL = 0; u8 bUNIVERSAL_CONTROL_RL = 0;
u8 bUNIVERSAL_CONTROL_AGC = 1; u8 bUNIVERSAL_CONTROL_AGC = 1;
u8 bUNIVERSAL_CONTROL_ANT = 1; u8 bUNIVERSAL_CONTROL_ANT = 1;
u8 bAUTO_RATE_FALLBACK_CTL = 1; u8 bAUTO_RATE_FALLBACK_CTL = 1;
u8 val8; u8 val8;
write_nic_word(dev, BRSR, 0x0fff); write_nic_word(dev, BRSR, 0x0fff);
// Retry limit /* Retry limit */
val8 = read_nic_byte(dev, CW_CONF); val8 = read_nic_byte(dev, CW_CONF);
if(bUNIVERSAL_CONTROL_RL) if (bUNIVERSAL_CONTROL_RL)
val8 = val8 & 0xfd; val8 = val8 & 0xfd;
else else
val8 = val8 | 0x02; val8 = val8 | 0x02;
write_nic_byte(dev, CW_CONF, val8); write_nic_byte(dev, CW_CONF, val8);
// Tx AGC /* Tx AGC */
val8 = read_nic_byte(dev, TXAGC_CTL); val8 = read_nic_byte(dev, TXAGC_CTL);
if(bUNIVERSAL_CONTROL_AGC) if (bUNIVERSAL_CONTROL_AGC) {
{
write_nic_byte(dev, CCK_TXAGC, 128); write_nic_byte(dev, CCK_TXAGC, 128);
write_nic_byte(dev, OFDM_TXAGC, 128); write_nic_byte(dev, OFDM_TXAGC, 128);
val8 = val8 & 0xfe; val8 = val8 & 0xfe;
} } else {
else
{
val8 = val8 | 0x01 ; val8 = val8 | 0x01 ;
} }
write_nic_byte(dev, TXAGC_CTL, val8); write_nic_byte(dev, TXAGC_CTL, val8);
// Tx Antenna including Feedback control /* Tx Antenna including Feedback control */
val8 = read_nic_byte(dev, TXAGC_CTL ); val8 = read_nic_byte(dev, TXAGC_CTL);
if(bUNIVERSAL_CONTROL_ANT) if (bUNIVERSAL_CONTROL_ANT) {
{
write_nic_byte(dev, ANTSEL, 0x00); write_nic_byte(dev, ANTSEL, 0x00);
val8 = val8 & 0xfd; val8 = val8 & 0xfd;
} } else {
else val8 = val8 & (val8|0x02); /* xiong-2006-11-15 */
{
val8 = val8 & (val8|0x02); //xiong-2006-11-15
} }
write_nic_byte(dev, TXAGC_CTL, val8); write_nic_byte(dev, TXAGC_CTL, val8);
// Auto Rate fallback control /* Auto Rate fallback control */
val8 = read_nic_byte(dev, RATE_FALLBACK); val8 = read_nic_byte(dev, RATE_FALLBACK);
val8 &= 0x7c; val8 &= 0x7c;
if( bAUTO_RATE_FALLBACK_CTL ) if (bAUTO_RATE_FALLBACK_CTL) {
{
val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1; val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
// <RJ_TODO_8185B> We shall set up the ARFR according to user's setting. /* <RJ_TODO_8185B> We shall set up the ARFR according to user's setting. */
PlatformIOWrite2Byte(dev, ARFR, 0x0fff); //set 1M ~ 54Mbps. PlatformIOWrite2Byte(dev, ARFR, 0x0fff); /* set 1M ~ 54Mbps. */
} }
write_nic_byte(dev, RATE_FALLBACK, val8); write_nic_byte(dev, RATE_FALLBACK, val8);
} }
...@@ -967,32 +932,31 @@ static void ...@@ -967,32 +932,31 @@ static void
MacConfig_85BASIC_HardCode( MacConfig_85BASIC_HardCode(
struct net_device *dev) struct net_device *dev)
{ {
//============================================================================ /*
// MACREG.TXT ============================================================================
//============================================================================ MACREG.TXT
============================================================================
*/
int nLinesRead = 0; int nLinesRead = 0;
u32 u4bRegOffset, u4bRegValue,u4bPageIndex = 0; u32 u4bRegOffset, u4bRegValue, u4bPageIndex = 0;
int i; int i;
nLinesRead=sizeof(MAC_REG_TABLE)/2; nLinesRead = sizeof(MAC_REG_TABLE)/2;
for (i = 0; i < nLinesRead; i++) { /* nLinesRead=101 */
u4bRegOffset = MAC_REG_TABLE[i][0];
u4bRegValue = MAC_REG_TABLE[i][1];
if (u4bRegOffset == 0x5e)
u4bPageIndex = u4bRegValue;
else
u4bRegOffset |= (u4bPageIndex << 8);
for(i = 0; i < nLinesRead; i++) //nLinesRead=101
{
u4bRegOffset=MAC_REG_TABLE[i][0];
u4bRegValue=MAC_REG_TABLE[i][1];
if(u4bRegOffset == 0x5e)
{
u4bPageIndex = u4bRegValue;
}
else
{
u4bRegOffset |= (u4bPageIndex << 8);
}
write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue); write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
} }
//============================================================================ /* ============================================================================ */
} }
static void static void
...@@ -1000,34 +964,34 @@ MacConfig_85BASIC( ...@@ -1000,34 +964,34 @@ MacConfig_85BASIC(
struct net_device *dev) struct net_device *dev)
{ {
u8 u1DA; u8 u1DA;
MacConfig_85BASIC_HardCode(dev); MacConfig_85BASIC_HardCode(dev);
//============================================================================ /* ============================================================================ */
// Follow TID_AC_MAP of WMac. /* Follow TID_AC_MAP of WMac. */
write_nic_word(dev, TID_AC_MAP, 0xfa50); write_nic_word(dev, TID_AC_MAP, 0xfa50);
// Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko. /* Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko. */
write_nic_word(dev, IntMig, 0x0000); write_nic_word(dev, IntMig, 0x0000);
// Prevent TPC to cause CRC error. Added by Annie, 2006-06-10. /* Prevent TPC to cause CRC error. Added by Annie, 2006-06-10. */
PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000); PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000); PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
PlatformIOWrite1Byte(dev, 0x1F8, 0x00); PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
// Asked for by SD3 CM Lin, 2006.06.27, by rcnjko. /* Asked for by SD3 CM Lin, 2006.06.27, by rcnjko. */
// power save parameter based on "87SE power save parameters 20071127.doc", as follow. /* power save parameter based on "87SE power save parameters 20071127.doc", as follow. */
//Enable DA10 TX power saving /* Enable DA10 TX power saving */
u1DA = read_nic_byte(dev, PHYPR); u1DA = read_nic_byte(dev, PHYPR);
write_nic_byte(dev, PHYPR, (u1DA | BIT2) ); write_nic_byte(dev, PHYPR, (u1DA | BIT2));
//POWER: /* POWER: */
write_nic_word(dev, 0x360, 0x1000); write_nic_word(dev, 0x360, 0x1000);
write_nic_word(dev, 0x362, 0x1000); write_nic_word(dev, 0x362, 0x1000);
// AFE. /* AFE. */
write_nic_word(dev, 0x370, 0x0560); write_nic_word(dev, 0x370, 0x0560);
write_nic_word(dev, 0x372, 0x0560); write_nic_word(dev, 0x372, 0x0560);
write_nic_word(dev, 0x374, 0x0DA4); write_nic_word(dev, 0x374, 0x0DA4);
...@@ -1035,8 +999,8 @@ MacConfig_85BASIC( ...@@ -1035,8 +999,8 @@ MacConfig_85BASIC(
write_nic_word(dev, 0x378, 0x0560); write_nic_word(dev, 0x378, 0x0560);
write_nic_word(dev, 0x37A, 0x0560); write_nic_word(dev, 0x37A, 0x0560);
write_nic_word(dev, 0x37C, 0x00EC); write_nic_word(dev, 0x37C, 0x00EC);
write_nic_word(dev, 0x37E, 0x00EC);//+edward write_nic_word(dev, 0x37E, 0x00EC); /*+edward */
write_nic_byte(dev, 0x24E,0x01); write_nic_byte(dev, 0x24E, 0x01);
} }
u8 u8
...@@ -1064,63 +1028,60 @@ ActUpdateChannelAccessSetting( ...@@ -1064,63 +1028,60 @@ ActUpdateChannelAccessSetting(
u8 bFollowLegacySetting = 0; u8 bFollowLegacySetting = 0;
u8 u1bAIFS; u8 u1bAIFS;
// /*
// <RJ_TODO_8185B> <RJ_TODO_8185B>
// TODO: We still don't know how to set up these registers, just follow WMAC to TODO: We still don't know how to set up these registers, just follow WMAC to
// verify 8185B FPAG. verify 8185B FPAG.
//
// <RJ_TODO_8185B> <RJ_TODO_8185B>
// Jong said CWmin/CWmax register are not functional in 8185B, Jong said CWmin/CWmax register are not functional in 8185B,
// so we shall fill channel access realted register into AC parameter registers, so we shall fill channel access realted register into AC parameter registers,
// even in nQBss. even in nQBss.
// */
ChnlAccessSetting->SIFS_Timer = 0x22; // Suggested by Jong, 2005.12.08. ChnlAccessSetting->SIFS_Timer = 0x22; /* Suggested by Jong, 2005.12.08. */
ChnlAccessSetting->DIFS_Timer = 0x1C; // 2006.06.02, by rcnjko. ChnlAccessSetting->DIFS_Timer = 0x1C; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->SlotTimeTimer = 9; // 2006.06.02, by rcnjko. ChnlAccessSetting->SlotTimeTimer = 9; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->EIFS_Timer = 0x5B; // Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. ChnlAccessSetting->EIFS_Timer = 0x5B; /* Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
ChnlAccessSetting->CWminIndex = 3; // 2006.06.02, by rcnjko. ChnlAccessSetting->CWminIndex = 3; /* 2006.06.02, by rcnjko. */
ChnlAccessSetting->CWmaxIndex = 7; // 2006.06.02, by rcnjko. ChnlAccessSetting->CWmaxIndex = 7; /* 2006.06.02, by rcnjko. */
write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer); write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29. write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); /* Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29. */
u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer ); u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer);
write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer); write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
write_nic_byte(dev, AckTimeOutReg, 0x5B); // <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. write_nic_byte(dev, AckTimeOutReg, 0x5B); /* <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
{ // Legacy 802.11. { /* Legacy 802.11. */
bFollowLegacySetting = 1; bFollowLegacySetting = 1;
} }
// this setting is copied from rtl8187B. xiong-2006-11-13 /* this setting is copied from rtl8187B. xiong-2006-11-13 */
if(bFollowLegacySetting) if (bFollowLegacySetting) {
{
// /*
// Follow 802.11 seeting to AC parameter, all AC shall use the same parameter. Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
// 2005.12.01, by rcnjko. 2005.12.01, by rcnjko.
// */
AcParam.longData = 0; AcParam.longData = 0;
AcParam.f.AciAifsn.f.AIFSN = 2; // Follow 802.11 DIFS. AcParam.f.AciAifsn.f.AIFSN = 2; /* Follow 802.11 DIFS. */
AcParam.f.AciAifsn.f.ACM = 0; AcParam.f.AciAifsn.f.ACM = 0;
AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; // Follow 802.11 CWmin. AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; /* Follow 802.11 CWmin. */
AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; // Follow 802.11 CWmax. AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; /* Follow 802.11 CWmax. */
AcParam.f.TXOPLimit = 0; AcParam.f.TXOPLimit = 0;
//lzm reserved 080826 /* lzm reserved 080826 */
// For turbo mode setting. port from 87B by Isaiah 2008-08-01 /* For turbo mode setting. port from 87B by Isaiah 2008-08-01 */
if( ieee->current_network.Turbo_Enable == 1 ) if (ieee->current_network.Turbo_Enable == 1)
AcParam.f.TXOPLimit = 0x01FF; AcParam.f.TXOPLimit = 0x01FF;
// For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB) /* For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB) */
if (ieee->iw_mode == IW_MODE_ADHOC) if (ieee->iw_mode == IW_MODE_ADHOC)
AcParam.f.TXOPLimit = 0x0020; AcParam.f.TXOPLimit = 0x0020;
for(eACI = 0; eACI < AC_MAX; eACI++) for (eACI = 0; eACI < AC_MAX; eACI++) {
{
AcParam.f.AciAifsn.f.ACI = (u8)eACI; AcParam.f.AciAifsn.f.ACI = (u8)eACI;
{ {
PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam); PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
...@@ -1128,85 +1089,81 @@ ActUpdateChannelAccessSetting( ...@@ -1128,85 +1089,81 @@ ActUpdateChannelAccessSetting(
u8 u1bAIFS; u8 u1bAIFS;
u32 u4bAcParam; u32 u4bAcParam;
// Retrive paramters to udpate. /* Retrive paramters to udpate. */
eACI = pAcParam->f.AciAifsn.f.ACI; eACI = pAcParam->f.AciAifsn.f.ACI;
u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime; u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
u4bAcParam = ( (((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) | u4bAcParam = ((((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) | (((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
(((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) | (((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
(((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET)); (((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
switch(eACI) switch (eACI) {
{ case AC1_BK:
case AC1_BK: /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
//write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); break;
break;
case AC0_BE: case AC0_BE:
//write_nic_dword(dev, AC_BE_PARAM, u4bAcParam); /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break; break;
case AC2_VI: case AC2_VI:
//write_nic_dword(dev, AC_VI_PARAM, u4bAcParam); /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break; break;
case AC3_VO: case AC3_VO:
//write_nic_dword(dev, AC_VO_PARAM, u4bAcParam); /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
break; break;
default: default:
DMESGW( "SetHwReg8185(): invalid ACI: %d !\n", eACI); DMESGW("SetHwReg8185(): invalid ACI: %d !\n", eACI);
break; break;
} }
// Cehck ACM bit. /* Cehck ACM bit. */
// If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. /* If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. */
{ {
PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn); PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
AC_CODING eACI = pAciAifsn->f.ACI; AC_CODING eACI = pAciAifsn->f.ACI;
//modified Joseph /*modified Joseph */
//for 8187B AsynIORead issue /*for 8187B AsynIORead issue */
u8 AcmCtrl = 0; u8 AcmCtrl = 0;
if( pAciAifsn->f.ACM ) if (pAciAifsn->f.ACM) {
{ // ACM bit is 1. /* ACM bit is 1. */
switch(eACI) switch (eACI) {
{ case AC0_BE:
case AC0_BE: AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); /* or 0x21 */
AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); // or 0x21 break;
break;
case AC2_VI:
case AC2_VI: AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); /* or 0x42 */
AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); // or 0x42 break;
break;
case AC3_VO:
case AC3_VO: AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); /* or 0x84 */
AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); // or 0x84 break;
break;
default:
default: DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI);
DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI ); break;
break;
} }
} } else {
else /* ACM bit is 0. */
{ // ACM bit is 0. switch (eACI) {
switch(eACI) case AC0_BE:
{ AcmCtrl &= ((~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xDE */
case AC0_BE: break;
AcmCtrl &= ( (~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xDE
break; case AC2_VI:
AcmCtrl &= ((~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xBD */
case AC2_VI: break;
AcmCtrl &= ( (~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0xBD
break; case AC3_VO:
AcmCtrl &= ((~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0x7B */
case AC3_VO: break;
AcmCtrl &= ( (~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN) ); // and 0x7B
break; default:
break;
default:
break;
} }
} }
write_nic_byte(dev, ACM_CONTROL, 0); write_nic_byte(dev, ACM_CONTROL, 0);
...@@ -1226,33 +1183,26 @@ ActSetWirelessMode8185( ...@@ -1226,33 +1183,26 @@ ActSetWirelessMode8185(
struct ieee80211_device *ieee = priv->ieee80211; struct ieee80211_device *ieee = priv->ieee80211;
u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev); u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if( (btWirelessMode & btSupportedWirelessMode) == 0 ) if ((btWirelessMode & btSupportedWirelessMode) == 0) {
{ // Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko. /* Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko. */
DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n", DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
btWirelessMode, btSupportedWirelessMode); btWirelessMode, btSupportedWirelessMode);
return; return;
} }
// 1. Assign wireless mode to swtich if necessary. /* 1. Assign wireless mode to swtich if necessary. */
if (btWirelessMode == WIRELESS_MODE_AUTO) if (btWirelessMode == WIRELESS_MODE_AUTO) {
{ if ((btSupportedWirelessMode & WIRELESS_MODE_A)) {
if((btSupportedWirelessMode & WIRELESS_MODE_A))
{
btWirelessMode = WIRELESS_MODE_A; btWirelessMode = WIRELESS_MODE_A;
} } else if (btSupportedWirelessMode & WIRELESS_MODE_G) {
else if((btSupportedWirelessMode & WIRELESS_MODE_G)) btWirelessMode = WIRELESS_MODE_G;
{
btWirelessMode = WIRELESS_MODE_G; } else if ((btSupportedWirelessMode & WIRELESS_MODE_B)) {
} btWirelessMode = WIRELESS_MODE_B;
else if((btSupportedWirelessMode & WIRELESS_MODE_B)) } else {
{ DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
btWirelessMode = WIRELESS_MODE_B; btSupportedWirelessMode);
} btWirelessMode = WIRELESS_MODE_B;
else
{
DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
btSupportedWirelessMode);
btWirelessMode = WIRELESS_MODE_B;
} }
} }
...@@ -1260,17 +1210,16 @@ ActSetWirelessMode8185( ...@@ -1260,17 +1210,16 @@ ActSetWirelessMode8185(
* for example, refresh tables in omc8255, or change initial gain if necessary. * for example, refresh tables in omc8255, or change initial gain if necessary.
* Nothing to do for Zebra to switch band. * Nothing to do for Zebra to switch band.
* Update current wireless mode if we swtich to specified band successfully. */ * Update current wireless mode if we swtich to specified band successfully. */
ieee->mode = (WIRELESS_MODE)btWirelessMode; ieee->mode = (WIRELESS_MODE)btWirelessMode;
// 3. Change related setting. /* 3. Change related setting. */
if( ieee->mode == WIRELESS_MODE_A ){ if( ieee->mode == WIRELESS_MODE_A ) {
DMESG("WIRELESS_MODE_A\n"); DMESG("WIRELESS_MODE_A\n");
} } else if( ieee->mode == WIRELESS_MODE_B ) {
else if( ieee->mode == WIRELESS_MODE_B ){ DMESG("WIRELESS_MODE_B\n");
DMESG("WIRELESS_MODE_B\n"); } else if( ieee->mode == WIRELESS_MODE_G ) {
} DMESG("WIRELESS_MODE_G\n");
else if( ieee->mode == WIRELESS_MODE_G ){
DMESG("WIRELESS_MODE_G\n");
} }
ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting); ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
} }
...@@ -1282,15 +1231,15 @@ void rtl8185b_irq_enable(struct net_device *dev) ...@@ -1282,15 +1231,15 @@ void rtl8185b_irq_enable(struct net_device *dev)
priv->irq_enabled = 1; priv->irq_enabled = 1;
write_nic_dword(dev, IMR, priv->IntrMask); write_nic_dword(dev, IMR, priv->IntrMask);
} }
//by amy for power save /* by amy for power save */
void void
DrvIFIndicateDisassociation( DrvIFIndicateDisassociation(
struct net_device *dev, struct net_device *dev,
u16 reason u16 reason
) )
{ {
// nothing is needed after disassociation request. /* nothing is needed after disassociation request. */
} }
void void
MgntDisconnectIBSS( MgntDisconnectIBSS(
struct net_device *dev struct net_device *dev
...@@ -1300,17 +1249,21 @@ MgntDisconnectIBSS( ...@@ -1300,17 +1249,21 @@ MgntDisconnectIBSS(
u8 i; u8 i;
DrvIFIndicateDisassociation(dev, unspec_reason); DrvIFIndicateDisassociation(dev, unspec_reason);
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x55;
priv->ieee80211->state = IEEE80211_NOLINK; for (i = 0; i < 6 ; i++)
priv->ieee80211->current_network.bssid[i] = 0x55;
//Stop Beacon.
// Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
// Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
// Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
// Disable Beacon Queue Own bit, suggested by jong priv->ieee80211->state = IEEE80211_NOLINK;
/*
Stop Beacon.
Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
Disable Beacon Queue Own bit, suggested by jong */
ieee80211_stop_send_beacons(priv->ieee80211); ieee80211_stop_send_beacons(priv->ieee80211);
priv->ieee80211->link_change(dev); priv->ieee80211->link_change(dev);
...@@ -1319,22 +1272,25 @@ MgntDisconnectIBSS( ...@@ -1319,22 +1272,25 @@ MgntDisconnectIBSS(
void void
MlmeDisassociateRequest( MlmeDisassociateRequest(
struct net_device *dev, struct net_device *dev,
u8* asSta, u8 *asSta,
u8 asRsn u8 asRsn
) )
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
u8 i; u8 i;
SendDisassociation(priv->ieee80211, asSta, asRsn ); SendDisassociation(priv->ieee80211, asSta, asRsn);
if( memcmp(priv->ieee80211->current_network.bssid, asSta, 6 ) == 0 ){ if (memcmp(priv->ieee80211->current_network.bssid, asSta, 6) == 0) {
//ShuChen TODO: change media status. /*ShuChen TODO: change media status. */
//ShuChen TODO: What to do when disassociate. /*ShuChen TODO: What to do when disassociate. */
DrvIFIndicateDisassociation(dev, unspec_reason); DrvIFIndicateDisassociation(dev, unspec_reason);
for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22;
for (i = 0; i < 6; i++)
priv->ieee80211->current_network.bssid[i] = 0x22;
ieee80211_disassociate(priv->ieee80211); ieee80211_disassociate(priv->ieee80211);
} }
...@@ -1348,15 +1304,15 @@ MgntDisconnectAP( ...@@ -1348,15 +1304,15 @@ MgntDisconnectAP(
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
// /*
// Commented out by rcnjko, 2005.01.27: Commented out by rcnjko, 2005.01.27:
// I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE(). I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
//
// //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success 2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
// In WPA WPA2 need to Clear all key ... because new key will set after new handshaking. In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
// 2004.10.11, by rcnjko. 2004.10.11, by rcnjko. */
MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn ); MlmeDisassociateRequest(dev, priv->ieee80211->current_network.bssid, asRsn);
priv->ieee80211->state = IEEE80211_NOLINK; priv->ieee80211->state = IEEE80211_NOLINK;
} }
...@@ -1367,40 +1323,37 @@ MgntDisconnect( ...@@ -1367,40 +1323,37 @@ MgntDisconnect(
) )
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
// /*
// Schedule an workitem to wake up for ps mode, 070109, by rcnjko. Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
// */
if(IS_DOT11D_ENABLE(priv->ieee80211)) if (IS_DOT11D_ENABLE(priv->ieee80211))
Dot11d_Reset(priv->ieee80211); Dot11d_Reset(priv->ieee80211);
// In adhoc mode, update beacon frame. /* In adhoc mode, update beacon frame. */
if( priv->ieee80211->state == IEEE80211_LINKED ) if (priv->ieee80211->state == IEEE80211_LINKED) {
{ if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
{
MgntDisconnectIBSS(dev); MgntDisconnectIBSS(dev);
}
if( priv->ieee80211->iw_mode == IW_MODE_INFRA ) if (priv->ieee80211->iw_mode == IW_MODE_INFRA) {
{ /* We clear key here instead of MgntDisconnectAP() because that
// We clear key here instead of MgntDisconnectAP() because that MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
// MgntActSet_802_11_DISASSOCIATE() is an interface called by OS, e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
// e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is used to handle disassociation related things to AP, e.g. send Disassoc
// used to handle disassociation related things to AP, e.g. send Disassoc frame to AP. 2005.01.27, by rcnjko. */
// frame to AP. 2005.01.27, by rcnjko.
MgntDisconnectAP(dev, asRsn); MgntDisconnectAP(dev, asRsn);
} }
// Inidicate Disconnect, 2005.02.23, by rcnjko. /* Inidicate Disconnect, 2005.02.23, by rcnjko. */
} }
return true; return true;
} }
// /*
// Description: Description:
// Chang RF Power State. Chang RF Power State.
// Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE. Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
//
// Assumption: Assumption:
// PASSIVE LEVEL. PASSIVE LEVEL.
// */
bool bool
SetRFPowerState( SetRFPowerState(
struct net_device *dev, struct net_device *dev,
...@@ -1410,10 +1363,8 @@ SetRFPowerState( ...@@ -1410,10 +1363,8 @@ SetRFPowerState(
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bResult = false; bool bResult = false;
if(eRFPowerState == priv->eRFPowerState) if (eRFPowerState == priv->eRFPowerState)
{
return bResult; return bResult;
}
bResult = SetZebraRFPowerState8185(dev, eRFPowerState); bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
...@@ -1442,83 +1393,70 @@ MgntActSet_RF_State( ...@@ -1442,83 +1393,70 @@ MgntActSet_RF_State(
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
bool bActionAllowed = false; bool bActionAllowed = false;
bool bConnectBySSID = false; bool bConnectBySSID = false;
RT_RF_POWER_STATE rtState; RT_RF_POWER_STATE rtState;
u16 RFWaitCounter = 0; u16 RFWaitCounter = 0;
unsigned long flag; unsigned long flag;
// /*
// Prevent the race condition of RF state change. By Bruce, 2007-11-28. Prevent the race condition of RF state change. By Bruce, 2007-11-28.
// Only one thread can change the RF state at one time, and others should wait to be executed. Only one thread can change the RF state at one time, and others should wait to be executed.
// */
while(true) while (true) {
{ spin_lock_irqsave(&priv->rf_ps_lock, flag);
spin_lock_irqsave(&priv->rf_ps_lock,flag); if (priv->RFChangeInProgress) {
if(priv->RFChangeInProgress) spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
{ /* Set RF after the previous action is done. */
spin_unlock_irqrestore(&priv->rf_ps_lock,flag); while (priv->RFChangeInProgress) {
// Set RF after the previous action is done. RFWaitCounter++;
while(priv->RFChangeInProgress) udelay(1000); /* 1 ms */
{
RFWaitCounter ++; /* Wait too long, return FALSE to avoid to be stuck here. */
udelay(1000); // 1 ms if (RFWaitCounter > 1000) { /* 1sec */
// Wait too long, return FALSE to avoid to be stuck here.
if(RFWaitCounter > 1000) // 1sec
{
printk("MgntActSet_RF_State(): Wait too long to set RF\n"); printk("MgntActSet_RF_State(): Wait too long to set RF\n");
// TODO: Reset RF state? /* TODO: Reset RF state? */
return false; return false;
} }
} }
} } else {
else
{
priv->RFChangeInProgress = true; priv->RFChangeInProgress = true;
spin_unlock_irqrestore(&priv->rf_ps_lock,flag); spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
break; break;
} }
} }
rtState = priv->eRFPowerState; rtState = priv->eRFPowerState;
switch(StateToSet) switch (StateToSet) {
{
case eRfOn: case eRfOn:
// /*
// Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
// the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02. the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
// */
priv->RfOffReason &= (~ChangeSource); priv->RfOffReason &= (~ChangeSource);
if(! priv->RfOffReason) if (!priv->RfOffReason) {
{
priv->RfOffReason = 0; priv->RfOffReason = 0;
bActionAllowed = true; bActionAllowed = true;
if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW && !priv->bInHctTest) if (rtState == eRfOff && ChangeSource >= RF_CHANGE_BY_HW && !priv->bInHctTest)
{
bConnectBySSID = true; bConnectBySSID = true;
}
} } else
else ;
;
break; break;
case eRfOff: case eRfOff:
// 070125, rcnjko: we always keep connected in AP mode. /* 070125, rcnjko: we always keep connected in AP mode. */
if (priv->RfOffReason > RF_CHANGE_BY_IPS) if (priv->RfOffReason > RF_CHANGE_BY_IPS) {
{ /*
// 060808, Annie:
// 060808, Annie: Disconnect to current BSS when radio off. Asked by QuanTa.
// Disconnect to current BSS when radio off. Asked by QuanTa.
// Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
because we do NOT need to set ssid to dummy ones.
// */
// Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(), MgntDisconnect(dev, disas_lv_ss);
// because we do NOT need to set ssid to dummy ones.
// /* Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI. */
MgntDisconnect( dev, disas_lv_ss );
// Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
} }
priv->RfOffReason |= ChangeSource; priv->RfOffReason |= ChangeSource;
...@@ -1532,31 +1470,27 @@ MgntActSet_RF_State( ...@@ -1532,31 +1470,27 @@ MgntActSet_RF_State(
break; break;
} }
if(bActionAllowed) if (bActionAllowed) {
{ /* Config HW to the specified mode. */
// Config HW to the specified mode.
SetRFPowerState(dev, StateToSet); SetRFPowerState(dev, StateToSet);
// Turn on RF. /* Turn on RF. */
if(StateToSet == eRfOn) if (StateToSet == eRfOn) {
{
HalEnableRx8185Dummy(dev); HalEnableRx8185Dummy(dev);
if(bConnectBySSID) if (bConnectBySSID) {
{ /* by amy not supported */
// by amy not supported
} }
} }
// Turn off RF. /* Turn off RF. */
else if(StateToSet == eRfOff) else if (StateToSet == eRfOff)
{
HalDisableRx8185Dummy(dev); HalDisableRx8185Dummy(dev);
}
} }
// Release RF spinlock /* Release RF spinlock */
spin_lock_irqsave(&priv->rf_ps_lock,flag); spin_lock_irqsave(&priv->rf_ps_lock, flag);
priv->RFChangeInProgress = false; priv->RFChangeInProgress = false;
spin_unlock_irqrestore(&priv->rf_ps_lock,flag); spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
return bActionAllowed; return bActionAllowed;
} }
void void
...@@ -1565,28 +1499,28 @@ InactivePowerSave( ...@@ -1565,28 +1499,28 @@ InactivePowerSave(
) )
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
// /*
// This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
// is really scheduled. is really scheduled.
// The old code, sets this flag before scheduling the IPS workitem and however, at the same time the The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
// previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
// blocks the IPS procedure of switching RF. blocks the IPS procedure of switching RF.
// */
priv->bSwRfProcessing = true; priv->bSwRfProcessing = true;
MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS); MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
// /*
// To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20. To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
// */
priv->bSwRfProcessing = false; priv->bSwRfProcessing = false;
} }
// /*
// Description: Description:
// Enter the inactive power save mode. RF will be off Enter the inactive power save mode. RF will be off
// */
void void
IPSEnter( IPSEnter(
struct net_device *dev struct net_device *dev
...@@ -1594,21 +1528,19 @@ IPSEnter( ...@@ -1594,21 +1528,19 @@ IPSEnter(
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState; RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) if (priv->bInactivePs) {
{
rtState = priv->eRFPowerState; rtState = priv->eRFPowerState;
// /*
// Do not enter IPS in the following conditions: Do not enter IPS in the following conditions:
// (1) RF is already OFF or Sleep (1) RF is already OFF or Sleep
// (2) bSwRfProcessing (indicates the IPS is still under going) (2) bSwRfProcessing (indicates the IPS is still under going)
// (3) Connectted (only disconnected can trigger IPS) (3) Connectted (only disconnected can trigger IPS)
// (4) IBSS (send Beacon) (4) IBSS (send Beacon)
// (5) AP mode (send Beacon) (5) AP mode (send Beacon)
// */
if (rtState == eRfOn && !priv->bSwRfProcessing if (rtState == eRfOn && !priv->bSwRfProcessing
&& (priv->ieee80211->state != IEEE80211_LINKED )) && (priv->ieee80211->state != IEEE80211_LINKED)) {
{
priv->eInactivePowerState = eRfOff; priv->eInactivePowerState = eRfOff;
InactivePowerSave(dev); InactivePowerSave(dev);
} }
...@@ -1621,11 +1553,9 @@ IPSLeave( ...@@ -1621,11 +1553,9 @@ IPSLeave(
{ {
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
RT_RF_POWER_STATE rtState; RT_RF_POWER_STATE rtState;
if (priv->bInactivePs) if (priv->bInactivePs) {
{
rtState = priv->eRFPowerState; rtState = priv->eRFPowerState;
if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS) if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS) {
{
priv->eInactivePowerState = eRfOn; priv->eInactivePowerState = eRfOn;
InactivePowerSave(dev); InactivePowerSave(dev);
} }
...@@ -1634,7 +1564,7 @@ IPSLeave( ...@@ -1634,7 +1564,7 @@ IPSLeave(
void rtl8185b_adapter_start(struct net_device *dev) void rtl8185b_adapter_start(struct net_device *dev)
{ {
struct r8180_priv *priv = ieee80211_priv(dev); struct r8180_priv *priv = ieee80211_priv(dev);
struct ieee80211_device *ieee = priv->ieee80211; struct ieee80211_device *ieee = priv->ieee80211;
u8 SupportedWirelessMode; u8 SupportedWirelessMode;
...@@ -1645,141 +1575,133 @@ void rtl8185b_adapter_start(struct net_device *dev) ...@@ -1645,141 +1575,133 @@ void rtl8185b_adapter_start(struct net_device *dev)
u8 TmpU1b; u8 TmpU1b;
u8 btPSR; u8 btPSR;
write_nic_byte(dev,0x24e, (BIT5|BIT6|BIT0)); write_nic_byte(dev, 0x24e, (BIT5|BIT6|BIT0));
rtl8180_reset(dev); rtl8180_reset(dev);
priv->dma_poll_mask = 0; priv->dma_poll_mask = 0;
priv->dma_poll_stop_mask = 0; priv->dma_poll_stop_mask = 0;
HwConfigureRTL8185(dev); HwConfigureRTL8185(dev);
write_nic_dword(dev, MAC0, ((u32*)dev->dev_addr)[0]); write_nic_dword(dev, MAC0, ((u32 *)dev->dev_addr)[0]);
write_nic_word(dev, MAC4, ((u32*)dev->dev_addr)[1] & 0xffff ); write_nic_word(dev, MAC4, ((u32 *)dev->dev_addr)[1] & 0xffff);
write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); // default network type to 'No Link' write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); /* default network type to 'No Link' */
write_nic_word(dev, BcnItv, 100); write_nic_word(dev, BcnItv, 100);
write_nic_word(dev, AtimWnd, 2); write_nic_word(dev, AtimWnd, 2);
PlatformIOWrite2Byte(dev, FEMR, 0xFFFF); PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
write_nic_byte(dev, WPA_CONFIG, 0); write_nic_byte(dev, WPA_CONFIG, 0);
MacConfig_85BASIC(dev); MacConfig_85BASIC(dev);
// Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko. /* Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko. */
// BT_DEMO_BOARD type /* BT_DEMO_BOARD type */
PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a); PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
//----------------------------------------------------------------------------- /*
// Set up PHY related. -----------------------------------------------------------------------------
//----------------------------------------------------------------------------- Set up PHY related.
// Enable Config3.PARAM_En to revise AnaaParm. -----------------------------------------------------------------------------
write_nic_byte(dev, CR9346, 0xc0); // enable config register write */
/* Enable Config3.PARAM_En to revise AnaaParm. */
write_nic_byte(dev, CR9346, 0xc0); /* enable config register write */
tmpu8 = read_nic_byte(dev, CONFIG3); tmpu8 = read_nic_byte(dev, CONFIG3);
write_nic_byte(dev, CONFIG3, (tmpu8 |CONFIG3_PARM_En) ); write_nic_byte(dev, CONFIG3, (tmpu8 | CONFIG3_PARM_En));
// Turn on Analog power. /* Turn on Analog power. */
// Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko. /* Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko. */
write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON); write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON); write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
write_nic_word(dev, ANAPARAM3, 0x0010); write_nic_word(dev, ANAPARAM3, 0x0010);
write_nic_byte(dev, CONFIG3, tmpu8); write_nic_byte(dev, CONFIG3, tmpu8);
write_nic_byte(dev, CR9346, 0x00); write_nic_byte(dev, CR9346, 0x00);
// enable EEM0 and EEM1 in 9346CR /* enable EEM0 and EEM1 in 9346CR */
btCR9346 = read_nic_byte(dev, CR9346); btCR9346 = read_nic_byte(dev, CR9346);
write_nic_byte(dev, CR9346, (btCR9346|0xC0) ); write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));
// B cut use LED1 to control HW RF on/off /* B cut use LED1 to control HW RF on/off */
TmpU1b = read_nic_byte(dev, CONFIG5); TmpU1b = read_nic_byte(dev, CONFIG5);
TmpU1b = TmpU1b & ~BIT3; TmpU1b = TmpU1b & ~BIT3;
write_nic_byte(dev,CONFIG5, TmpU1b); write_nic_byte(dev, CONFIG5, TmpU1b);
// disable EEM0 and EEM1 in 9346CR /* disable EEM0 and EEM1 in 9346CR */
btCR9346 &= ~(0xC0); btCR9346 &= ~(0xC0);
write_nic_byte(dev, CR9346, btCR9346); write_nic_byte(dev, CR9346, btCR9346);
//Enable Led (suggested by Jong) /* Enable Led (suggested by Jong) */
// B-cut RF Radio on/off 5e[3]=0 /* B-cut RF Radio on/off 5e[3]=0 */
btPSR = read_nic_byte(dev, PSR); btPSR = read_nic_byte(dev, PSR);
write_nic_byte(dev, PSR, (btPSR | BIT3)); write_nic_byte(dev, PSR, (btPSR | BIT3));
// setup initial timing for RFE. /* setup initial timing for RFE. */
write_nic_word(dev, RFPinsOutput, 0x0480); write_nic_word(dev, RFPinsOutput, 0x0480);
SetOutputEnableOfRfPins(dev); SetOutputEnableOfRfPins(dev);
write_nic_word(dev, RFPinsSelect, 0x2488); write_nic_word(dev, RFPinsSelect, 0x2488);
// PHY config. /* PHY config. */
PhyConfig8185(dev); PhyConfig8185(dev);
// We assume RegWirelessMode has already been initialized before, /*
// however, we has to validate the wireless mode here and provide a We assume RegWirelessMode has already been initialized before,
// reasonable initialized value if necessary. 2005.01.13, by rcnjko. however, we has to validate the wireless mode here and provide a
reasonable initialized value if necessary. 2005.01.13, by rcnjko.
*/
SupportedWirelessMode = GetSupportedWirelessMode8185(dev); SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
if( (ieee->mode != WIRELESS_MODE_B) && if ((ieee->mode != WIRELESS_MODE_B) &&
(ieee->mode != WIRELESS_MODE_G) && (ieee->mode != WIRELESS_MODE_G) &&
(ieee->mode != WIRELESS_MODE_A) && (ieee->mode != WIRELESS_MODE_A) &&
(ieee->mode != WIRELESS_MODE_AUTO)) (ieee->mode != WIRELESS_MODE_AUTO)) {
{ // It should be one of B, G, A, or AUTO. /* It should be one of B, G, A, or AUTO. */
bInvalidWirelessMode = 1; bInvalidWirelessMode = 1;
} } else {
else /* One of B, G, A, or AUTO. */
{ // One of B, G, A, or AUTO. /* Check if the wireless mode is supported by RF. */
// Check if the wireless mode is supported by RF. if ((ieee->mode != WIRELESS_MODE_AUTO) &&
if( (ieee->mode != WIRELESS_MODE_AUTO) && (ieee->mode & SupportedWirelessMode) == 0) {
(ieee->mode & SupportedWirelessMode) == 0 )
{
bInvalidWirelessMode = 1; bInvalidWirelessMode = 1;
} }
} }
if(bInvalidWirelessMode || ieee->mode==WIRELESS_MODE_AUTO) if (bInvalidWirelessMode || ieee->mode == WIRELESS_MODE_AUTO) {
{ // Auto or other invalid value. /* Auto or other invalid value. */
// Assigne a wireless mode to initialize. /* Assigne a wireless mode to initialize. */
if((SupportedWirelessMode & WIRELESS_MODE_A)) if ((SupportedWirelessMode & WIRELESS_MODE_A)) {
{
InitWirelessMode = WIRELESS_MODE_A; InitWirelessMode = WIRELESS_MODE_A;
} } else if ((SupportedWirelessMode & WIRELESS_MODE_G)) {
else if((SupportedWirelessMode & WIRELESS_MODE_G))
{
InitWirelessMode = WIRELESS_MODE_G; InitWirelessMode = WIRELESS_MODE_G;
} } else if ((SupportedWirelessMode & WIRELESS_MODE_B)) {
else if((SupportedWirelessMode & WIRELESS_MODE_B))
{
InitWirelessMode = WIRELESS_MODE_B; InitWirelessMode = WIRELESS_MODE_B;
} } else {
else
{
DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n", DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
SupportedWirelessMode); SupportedWirelessMode);
InitWirelessMode = WIRELESS_MODE_B; InitWirelessMode = WIRELESS_MODE_B;
} }
// Initialize RegWirelessMode if it is not a valid one. /* Initialize RegWirelessMode if it is not a valid one. */
if(bInvalidWirelessMode) if (bInvalidWirelessMode)
{
ieee->mode = (WIRELESS_MODE)InitWirelessMode; ieee->mode = (WIRELESS_MODE)InitWirelessMode;
}
} } else {
else /* One of B, G, A. */
{ // One of B, G, A.
InitWirelessMode = ieee->mode; InitWirelessMode = ieee->mode;
} }
//by amy for power save /* by amy for power save */
priv->eRFPowerState = eRfOff; priv->eRFPowerState = eRfOff;
priv->RfOffReason = 0; priv->RfOffReason = 0;
{ {
MgntActSet_RF_State(dev, eRfOn, 0); MgntActSet_RF_State(dev, eRfOn, 0);
} }
// /*
// If inactive power mode is enabled, disable rf while in disconnected state. If inactive power mode is enabled, disable rf while in disconnected state.
// */
if (priv->bInactivePs) if (priv->bInactivePs)
{ MgntActSet_RF_State(dev , eRfOff, RF_CHANGE_BY_IPS);
MgntActSet_RF_State(dev,eRfOff, RF_CHANGE_BY_IPS);
} /* by amy for power save */
//by amy for power save
ActSetWirelessMode8185(dev, (u8)(InitWirelessMode)); ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
//----------------------------------------------------------------------------- /* ----------------------------------------------------------------------------- */
rtl8185b_irq_enable(dev); rtl8185b_irq_enable(dev);
netif_start_queue(dev); netif_start_queue(dev);
} }
void rtl8185b_rx_enable(struct net_device *dev) void rtl8185b_rx_enable(struct net_device *dev)
{ {
...@@ -1787,27 +1709,29 @@ void rtl8185b_rx_enable(struct net_device *dev) ...@@ -1787,27 +1709,29 @@ void rtl8185b_rx_enable(struct net_device *dev)
/* for now we accept data, management & ctl frame*/ /* for now we accept data, management & ctl frame*/
struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
if (dev->flags & IFF_PROMISC) DMESG ("NIC in promisc mode");
if(priv->ieee80211->iw_mode == IW_MODE_MONITOR || \ if (dev->flags & IFF_PROMISC)
dev->flags & IFF_PROMISC){ DMESG("NIC in promisc mode");
priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
if (priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
dev->flags & IFF_PROMISC) {
priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP; priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
} }
if(priv->ieee80211->iw_mode == IW_MODE_MONITOR){ if (priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV; priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
}
if( priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
if (priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32; priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
write_nic_dword(dev, RCR, priv->ReceiveConfig); write_nic_dword(dev, RCR, priv->ReceiveConfig);
fix_rx_fifo(dev); fix_rx_fifo(dev);
cmd=read_nic_byte(dev,CMD); cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev,CMD,cmd | (1<<CMD_RX_ENABLE_SHIFT)); write_nic_byte(dev, CMD, cmd | (1<<CMD_RX_ENABLE_SHIFT));
} }
...@@ -1824,7 +1748,7 @@ void rtl8185b_tx_enable(struct net_device *dev) ...@@ -1824,7 +1748,7 @@ void rtl8185b_tx_enable(struct net_device *dev)
fix_tx_fifo(dev); fix_tx_fifo(dev);
cmd=read_nic_byte(dev,CMD); cmd = read_nic_byte(dev, CMD);
write_nic_byte(dev,CMD,cmd | (1<<CMD_TX_ENABLE_SHIFT)); write_nic_byte(dev, CMD, cmd | (1<<CMD_TX_ENABLE_SHIFT));
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment