Commit 3a6ba7dc authored by Vincent Cheng's avatar Vincent Cheng Committed by David S. Miller

ptp: Add a ptp clock driver for IDT ClockMatrix.

The IDT ClockMatrix (TM) family includes integrated devices that provide
eight PLL channels.  Each PLL channel can be independently configured as a
frequency synthesizer, jitter attenuator, digitally controlled
oscillator (DCO), or a digital phase lock loop (DPLL).  Typically
these devices are used as timing references and clock sources for PTP
applications.  This patch adds support for the device.
Co-developed-by: default avatarRichard Cochran <richardcochran@gmail.com>
Signed-off-by: default avatarRichard Cochran <richardcochran@gmail.com>
Signed-off-by: default avatarVincent Cheng <vincent.cheng.xh@renesas.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 5c5e7aac
......@@ -119,4 +119,16 @@ config PTP_1588_CLOCK_KVM
To compile this driver as a module, choose M here: the module
will be called ptp_kvm.
config PTP_1588_CLOCK_IDTCM
tristate "IDT CLOCKMATRIX as PTP clock"
select PTP_1588_CLOCK
default n
help
This driver adds support for using IDT CLOCKMATRIX(TM) as a PTP
clock. This clock is only useful if your time stamping MAC
is connected to the IDT chip.
To compile this driver as a module, choose M here: the module
will be called ptp_clockmatrix.
endmenu
......@@ -12,3 +12,4 @@ obj-$(CONFIG_PTP_1588_CLOCK_KVM) += ptp_kvm.o
obj-$(CONFIG_PTP_1588_CLOCK_QORIQ) += ptp-qoriq.o
ptp-qoriq-y += ptp_qoriq.o
ptp-qoriq-$(CONFIG_DEBUG_FS) += ptp_qoriq_debugfs.o
obj-$(CONFIG_PTP_1588_CLOCK_IDTCM) += ptp_clockmatrix.o
\ No newline at end of file
/* SPDX-License-Identifier: GPL-2.0+ */
/* idt8a340_reg.h
*
* Originally generated by regen.tcl on Thu Feb 14 19:23:44 PST 2019
* https://github.com/richardcochran/regen
*
* Hand modified to include some HW registers.
* Based on 4.8.0, SCSR rev C commit a03c7ae5
*/
#ifndef HAVE_IDT8A340_REG
#define HAVE_IDT8A340_REG
#define PAGE_ADDR_BASE 0x0000
#define PAGE_ADDR 0x00fc
#define HW_REVISION 0x8180
#define REV_ID 0x007a
#define HW_DPLL_0 (0x8a00)
#define HW_DPLL_1 (0x8b00)
#define HW_DPLL_2 (0x8c00)
#define HW_DPLL_3 (0x8d00)
#define HW_DPLL_TOD_SW_TRIG_ADDR__0 (0x080)
#define HW_DPLL_TOD_CTRL_1 (0x089)
#define HW_DPLL_TOD_CTRL_2 (0x08A)
#define HW_DPLL_TOD_OVR__0 (0x098)
#define HW_DPLL_TOD_OUT_0__0 (0x0B0)
#define HW_Q0_Q1_CH_SYNC_CTRL_0 (0xa740)
#define HW_Q0_Q1_CH_SYNC_CTRL_1 (0xa741)
#define HW_Q2_Q3_CH_SYNC_CTRL_0 (0xa742)
#define HW_Q2_Q3_CH_SYNC_CTRL_1 (0xa743)
#define HW_Q4_Q5_CH_SYNC_CTRL_0 (0xa744)
#define HW_Q4_Q5_CH_SYNC_CTRL_1 (0xa745)
#define HW_Q6_Q7_CH_SYNC_CTRL_0 (0xa746)
#define HW_Q6_Q7_CH_SYNC_CTRL_1 (0xa747)
#define HW_Q8_CH_SYNC_CTRL_0 (0xa748)
#define HW_Q8_CH_SYNC_CTRL_1 (0xa749)
#define HW_Q9_CH_SYNC_CTRL_0 (0xa74a)
#define HW_Q9_CH_SYNC_CTRL_1 (0xa74b)
#define HW_Q10_CH_SYNC_CTRL_0 (0xa74c)
#define HW_Q10_CH_SYNC_CTRL_1 (0xa74d)
#define HW_Q11_CH_SYNC_CTRL_0 (0xa74e)
#define HW_Q11_CH_SYNC_CTRL_1 (0xa74f)
#define SYNC_SOURCE_DPLL0_TOD_PPS 0x14
#define SYNC_SOURCE_DPLL1_TOD_PPS 0x15
#define SYNC_SOURCE_DPLL2_TOD_PPS 0x16
#define SYNC_SOURCE_DPLL3_TOD_PPS 0x17
#define SYNCTRL1_MASTER_SYNC_RST BIT(7)
#define SYNCTRL1_MASTER_SYNC_TRIG BIT(5)
#define SYNCTRL1_TOD_SYNC_TRIG BIT(4)
#define SYNCTRL1_FBDIV_FRAME_SYNC_TRIG BIT(3)
#define SYNCTRL1_FBDIV_SYNC_TRIG BIT(2)
#define SYNCTRL1_Q1_DIV_SYNC_TRIG BIT(1)
#define SYNCTRL1_Q0_DIV_SYNC_TRIG BIT(0)
#define RESET_CTRL 0xc000
#define SM_RESET 0x0012
#define SM_RESET_CMD 0x5A
#define GENERAL_STATUS 0xc014
#define HW_REV_ID 0x000A
#define BOND_ID 0x000B
#define HW_CSR_ID 0x000C
#define HW_IRQ_ID 0x000E
#define MAJ_REL 0x0010
#define MIN_REL 0x0011
#define HOTFIX_REL 0x0012
#define PIPELINE_ID 0x0014
#define BUILD_ID 0x0018
#define JTAG_DEVICE_ID 0x001c
#define PRODUCT_ID 0x001e
#define STATUS 0xc03c
#define USER_GPIO0_TO_7_STATUS 0x008a
#define USER_GPIO8_TO_15_STATUS 0x008b
#define GPIO_USER_CONTROL 0xc160
#define GPIO0_TO_7_OUT 0x0000
#define GPIO8_TO_15_OUT 0x0001
#define STICKY_STATUS_CLEAR 0xc164
#define GPIO_TOD_NOTIFICATION_CLEAR 0xc16c
#define ALERT_CFG 0xc188
#define SYS_DPLL_XO 0xc194
#define SYS_APLL 0xc19c
#define INPUT_0 0xc1b0
#define INPUT_1 0xc1c0
#define INPUT_2 0xc1d0
#define INPUT_3 0xc200
#define INPUT_4 0xc210
#define INPUT_5 0xc220
#define INPUT_6 0xc230
#define INPUT_7 0xc240
#define INPUT_8 0xc250
#define INPUT_9 0xc260
#define INPUT_10 0xc280
#define INPUT_11 0xc290
#define INPUT_12 0xc2a0
#define INPUT_13 0xc2b0
#define INPUT_14 0xc2c0
#define INPUT_15 0xc2d0
#define REF_MON_0 0xc2e0
#define REF_MON_1 0xc2ec
#define REF_MON_2 0xc300
#define REF_MON_3 0xc30c
#define REF_MON_4 0xc318
#define REF_MON_5 0xc324
#define REF_MON_6 0xc330
#define REF_MON_7 0xc33c
#define REF_MON_8 0xc348
#define REF_MON_9 0xc354
#define REF_MON_10 0xc360
#define REF_MON_11 0xc36c
#define REF_MON_12 0xc380
#define REF_MON_13 0xc38c
#define REF_MON_14 0xc398
#define REF_MON_15 0xc3a4
#define DPLL_0 0xc3b0
#define DPLL_CTRL_REG_0 0x0002
#define DPLL_CTRL_REG_1 0x0003
#define DPLL_CTRL_REG_2 0x0004
#define DPLL_TOD_SYNC_CFG 0x0031
#define DPLL_COMBO_SLAVE_CFG_0 0x0032
#define DPLL_COMBO_SLAVE_CFG_1 0x0033
#define DPLL_SLAVE_REF_CFG 0x0034
#define DPLL_REF_MODE 0x0035
#define DPLL_PHASE_MEASUREMENT_CFG 0x0036
#define DPLL_MODE 0x0037
#define DPLL_1 0xc400
#define DPLL_2 0xc438
#define DPLL_3 0xc480
#define DPLL_4 0xc4b8
#define DPLL_5 0xc500
#define DPLL_6 0xc538
#define DPLL_7 0xc580
#define SYS_DPLL 0xc5b8
#define DPLL_CTRL_0 0xc600
#define DPLL_CTRL_DPLL_MANU_REF_CFG 0x0001
#define DPLL_CTRL_1 0xc63c
#define DPLL_CTRL_2 0xc680
#define DPLL_CTRL_3 0xc6bc
#define DPLL_CTRL_4 0xc700
#define DPLL_CTRL_5 0xc73c
#define DPLL_CTRL_6 0xc780
#define DPLL_CTRL_7 0xc7bc
#define SYS_DPLL_CTRL 0xc800
#define DPLL_PHASE_0 0xc818
/* Signed 42-bit FFO in units of 2^(-53) */
#define DPLL_WR_PHASE 0x0000
#define DPLL_PHASE_1 0xc81c
#define DPLL_PHASE_2 0xc820
#define DPLL_PHASE_3 0xc824
#define DPLL_PHASE_4 0xc828
#define DPLL_PHASE_5 0xc82c
#define DPLL_PHASE_6 0xc830
#define DPLL_PHASE_7 0xc834
#define DPLL_FREQ_0 0xc838
/* Signed 42-bit FFO in units of 2^(-53) */
#define DPLL_WR_FREQ 0x0000
#define DPLL_FREQ_1 0xc840
#define DPLL_FREQ_2 0xc848
#define DPLL_FREQ_3 0xc850
#define DPLL_FREQ_4 0xc858
#define DPLL_FREQ_5 0xc860
#define DPLL_FREQ_6 0xc868
#define DPLL_FREQ_7 0xc870
#define DPLL_PHASE_PULL_IN_0 0xc880
#define PULL_IN_OFFSET 0x0000 /* Signed 32 bit */
#define PULL_IN_SLOPE_LIMIT 0x0004 /* Unsigned 24 bit */
#define PULL_IN_CTRL 0x0007
#define DPLL_PHASE_PULL_IN_1 0xc888
#define DPLL_PHASE_PULL_IN_2 0xc890
#define DPLL_PHASE_PULL_IN_3 0xc898
#define DPLL_PHASE_PULL_IN_4 0xc8a0
#define DPLL_PHASE_PULL_IN_5 0xc8a8
#define DPLL_PHASE_PULL_IN_6 0xc8b0
#define DPLL_PHASE_PULL_IN_7 0xc8b8
#define GPIO_CFG 0xc8c0
#define GPIO_CFG_GBL 0x0000
#define GPIO_0 0xc8c2
#define GPIO_DCO_INC_DEC 0x0000
#define GPIO_OUT_CTRL_0 0x0001
#define GPIO_OUT_CTRL_1 0x0002
#define GPIO_TOD_TRIG 0x0003
#define GPIO_DPLL_INDICATOR 0x0004
#define GPIO_LOS_INDICATOR 0x0005
#define GPIO_REF_INPUT_DSQ_0 0x0006
#define GPIO_REF_INPUT_DSQ_1 0x0007
#define GPIO_REF_INPUT_DSQ_2 0x0008
#define GPIO_REF_INPUT_DSQ_3 0x0009
#define GPIO_MAN_CLK_SEL_0 0x000a
#define GPIO_MAN_CLK_SEL_1 0x000b
#define GPIO_MAN_CLK_SEL_2 0x000c
#define GPIO_SLAVE 0x000d
#define GPIO_ALERT_OUT_CFG 0x000e
#define GPIO_TOD_NOTIFICATION_CFG 0x000f
#define GPIO_CTRL 0x0010
#define GPIO_1 0xc8d4
#define GPIO_2 0xc8e6
#define GPIO_3 0xc900
#define GPIO_4 0xc912
#define GPIO_5 0xc924
#define GPIO_6 0xc936
#define GPIO_7 0xc948
#define GPIO_8 0xc95a
#define GPIO_9 0xc980
#define GPIO_10 0xc992
#define GPIO_11 0xc9a4
#define GPIO_12 0xc9b6
#define GPIO_13 0xc9c8
#define GPIO_14 0xc9da
#define GPIO_15 0xca00
#define OUT_DIV_MUX 0xca12
#define OUTPUT_0 0xca14
/* FOD frequency output divider value */
#define OUT_DIV 0x0000
#define OUT_DUTY_CYCLE_HIGH 0x0004
#define OUT_CTRL_0 0x0008
#define OUT_CTRL_1 0x0009
/* Phase adjustment in FOD cycles */
#define OUT_PHASE_ADJ 0x000c
#define OUTPUT_1 0xca24
#define OUTPUT_2 0xca34
#define OUTPUT_3 0xca44
#define OUTPUT_4 0xca54
#define OUTPUT_5 0xca64
#define OUTPUT_6 0xca80
#define OUTPUT_7 0xca90
#define OUTPUT_8 0xcaa0
#define OUTPUT_9 0xcab0
#define OUTPUT_10 0xcac0
#define OUTPUT_11 0xcad0
#define SERIAL 0xcae0
#define PWM_ENCODER_0 0xcb00
#define PWM_ENCODER_1 0xcb08
#define PWM_ENCODER_2 0xcb10
#define PWM_ENCODER_3 0xcb18
#define PWM_ENCODER_4 0xcb20
#define PWM_ENCODER_5 0xcb28
#define PWM_ENCODER_6 0xcb30
#define PWM_ENCODER_7 0xcb38
#define PWM_DECODER_0 0xcb40
#define PWM_DECODER_1 0xcb48
#define PWM_DECODER_2 0xcb50
#define PWM_DECODER_3 0xcb58
#define PWM_DECODER_4 0xcb60
#define PWM_DECODER_5 0xcb68
#define PWM_DECODER_6 0xcb70
#define PWM_DECODER_7 0xcb80
#define PWM_DECODER_8 0xcb88
#define PWM_DECODER_9 0xcb90
#define PWM_DECODER_10 0xcb98
#define PWM_DECODER_11 0xcba0
#define PWM_DECODER_12 0xcba8
#define PWM_DECODER_13 0xcbb0
#define PWM_DECODER_14 0xcbb8
#define PWM_DECODER_15 0xcbc0
#define PWM_USER_DATA 0xcbc8
#define TOD_0 0xcbcc
/* Enable TOD counter, output channel sync and even-PPS mode */
#define TOD_CFG 0x0000
#define TOD_1 0xcbce
#define TOD_2 0xcbd0
#define TOD_3 0xcbd2
#define TOD_WRITE_0 0xcc00
/* 8-bit subns, 32-bit ns, 48-bit seconds */
#define TOD_WRITE 0x0000
/* Counter increments after TOD write is completed */
#define TOD_WRITE_COUNTER 0x000c
/* TOD write trigger configuration */
#define TOD_WRITE_SELECT_CFG_0 0x000d
/* TOD write trigger selection */
#define TOD_WRITE_CMD 0x000f
#define TOD_WRITE_1 0xcc10
#define TOD_WRITE_2 0xcc20
#define TOD_WRITE_3 0xcc30
#define TOD_READ_PRIMARY_0 0xcc40
/* 8-bit subns, 32-bit ns, 48-bit seconds */
#define TOD_READ_PRIMARY 0x0000
/* Counter increments after TOD write is completed */
#define TOD_READ_PRIMARY_COUNTER 0x000b
/* Read trigger configuration */
#define TOD_READ_PRIMARY_SEL_CFG_0 0x000c
/* Read trigger selection */
#define TOD_READ_PRIMARY_CMD 0x000e
#define TOD_READ_PRIMARY_1 0xcc50
#define TOD_READ_PRIMARY_2 0xcc60
#define TOD_READ_PRIMARY_3 0xcc80
#define TOD_READ_SECONDARY_0 0xcc90
#define TOD_READ_SECONDARY_1 0xcca0
#define TOD_READ_SECONDARY_2 0xccb0
#define TOD_READ_SECONDARY_3 0xccc0
#define OUTPUT_TDC_CFG 0xccd0
#define OUTPUT_TDC_0 0xcd00
#define OUTPUT_TDC_1 0xcd08
#define OUTPUT_TDC_2 0xcd10
#define OUTPUT_TDC_3 0xcd18
#define INPUT_TDC 0xcd20
#define SCRATCH 0xcf50
#define EEPROM 0xcf68
#define OTP 0xcf70
#define BYTE 0xcf80
/* Bit definitions for the MAJ_REL register */
#define MAJOR_SHIFT (1)
#define MAJOR_MASK (0x7f)
#define PR_BUILD BIT(0)
/* Bit definitions for the USER_GPIO0_TO_7_STATUS register */
#define GPIO0_LEVEL BIT(0)
#define GPIO1_LEVEL BIT(1)
#define GPIO2_LEVEL BIT(2)
#define GPIO3_LEVEL BIT(3)
#define GPIO4_LEVEL BIT(4)
#define GPIO5_LEVEL BIT(5)
#define GPIO6_LEVEL BIT(6)
#define GPIO7_LEVEL BIT(7)
/* Bit definitions for the USER_GPIO8_TO_15_STATUS register */
#define GPIO8_LEVEL BIT(0)
#define GPIO9_LEVEL BIT(1)
#define GPIO10_LEVEL BIT(2)
#define GPIO11_LEVEL BIT(3)
#define GPIO12_LEVEL BIT(4)
#define GPIO13_LEVEL BIT(5)
#define GPIO14_LEVEL BIT(6)
#define GPIO15_LEVEL BIT(7)
/* Bit definitions for the GPIO0_TO_7_OUT register */
#define GPIO0_DRIVE_LEVEL BIT(0)
#define GPIO1_DRIVE_LEVEL BIT(1)
#define GPIO2_DRIVE_LEVEL BIT(2)
#define GPIO3_DRIVE_LEVEL BIT(3)
#define GPIO4_DRIVE_LEVEL BIT(4)
#define GPIO5_DRIVE_LEVEL BIT(5)
#define GPIO6_DRIVE_LEVEL BIT(6)
#define GPIO7_DRIVE_LEVEL BIT(7)
/* Bit definitions for the GPIO8_TO_15_OUT register */
#define GPIO8_DRIVE_LEVEL BIT(0)
#define GPIO9_DRIVE_LEVEL BIT(1)
#define GPIO10_DRIVE_LEVEL BIT(2)
#define GPIO11_DRIVE_LEVEL BIT(3)
#define GPIO12_DRIVE_LEVEL BIT(4)
#define GPIO13_DRIVE_LEVEL BIT(5)
#define GPIO14_DRIVE_LEVEL BIT(6)
#define GPIO15_DRIVE_LEVEL BIT(7)
/* Bit definitions for the DPLL_TOD_SYNC_CFG register */
#define TOD_SYNC_SOURCE_SHIFT (1)
#define TOD_SYNC_SOURCE_MASK (0x3)
#define TOD_SYNC_EN BIT(0)
/* Bit definitions for the DPLL_MODE register */
#define WRITE_TIMER_MODE BIT(6)
#define PLL_MODE_SHIFT (3)
#define PLL_MODE_MASK (0x7)
#define STATE_MODE_SHIFT (0)
#define STATE_MODE_MASK (0x7)
/* Bit definitions for the GPIO_CFG_GBL register */
#define SUPPLY_MODE_SHIFT (0)
#define SUPPLY_MODE_MASK (0x3)
/* Bit definitions for the GPIO_DCO_INC_DEC register */
#define INCDEC_DPLL_INDEX_SHIFT (0)
#define INCDEC_DPLL_INDEX_MASK (0x7)
/* Bit definitions for the GPIO_OUT_CTRL_0 register */
#define CTRL_OUT_0 BIT(0)
#define CTRL_OUT_1 BIT(1)
#define CTRL_OUT_2 BIT(2)
#define CTRL_OUT_3 BIT(3)
#define CTRL_OUT_4 BIT(4)
#define CTRL_OUT_5 BIT(5)
#define CTRL_OUT_6 BIT(6)
#define CTRL_OUT_7 BIT(7)
/* Bit definitions for the GPIO_OUT_CTRL_1 register */
#define CTRL_OUT_8 BIT(0)
#define CTRL_OUT_9 BIT(1)
#define CTRL_OUT_10 BIT(2)
#define CTRL_OUT_11 BIT(3)
#define CTRL_OUT_12 BIT(4)
#define CTRL_OUT_13 BIT(5)
#define CTRL_OUT_14 BIT(6)
#define CTRL_OUT_15 BIT(7)
/* Bit definitions for the GPIO_TOD_TRIG register */
#define TOD_TRIG_0 BIT(0)
#define TOD_TRIG_1 BIT(1)
#define TOD_TRIG_2 BIT(2)
#define TOD_TRIG_3 BIT(3)
/* Bit definitions for the GPIO_DPLL_INDICATOR register */
#define IND_DPLL_INDEX_SHIFT (0)
#define IND_DPLL_INDEX_MASK (0x7)
/* Bit definitions for the GPIO_LOS_INDICATOR register */
#define REFMON_INDEX_SHIFT (0)
#define REFMON_INDEX_MASK (0xf)
/* Active level of LOS indicator, 0=low 1=high */
#define ACTIVE_LEVEL BIT(4)
/* Bit definitions for the GPIO_REF_INPUT_DSQ_0 register */
#define DSQ_INP_0 BIT(0)
#define DSQ_INP_1 BIT(1)
#define DSQ_INP_2 BIT(2)
#define DSQ_INP_3 BIT(3)
#define DSQ_INP_4 BIT(4)
#define DSQ_INP_5 BIT(5)
#define DSQ_INP_6 BIT(6)
#define DSQ_INP_7 BIT(7)
/* Bit definitions for the GPIO_REF_INPUT_DSQ_1 register */
#define DSQ_INP_8 BIT(0)
#define DSQ_INP_9 BIT(1)
#define DSQ_INP_10 BIT(2)
#define DSQ_INP_11 BIT(3)
#define DSQ_INP_12 BIT(4)
#define DSQ_INP_13 BIT(5)
#define DSQ_INP_14 BIT(6)
#define DSQ_INP_15 BIT(7)
/* Bit definitions for the GPIO_REF_INPUT_DSQ_2 register */
#define DSQ_DPLL_0 BIT(0)
#define DSQ_DPLL_1 BIT(1)
#define DSQ_DPLL_2 BIT(2)
#define DSQ_DPLL_3 BIT(3)
#define DSQ_DPLL_4 BIT(4)
#define DSQ_DPLL_5 BIT(5)
#define DSQ_DPLL_6 BIT(6)
#define DSQ_DPLL_7 BIT(7)
/* Bit definitions for the GPIO_REF_INPUT_DSQ_3 register */
#define DSQ_DPLL_SYS BIT(0)
#define GPIO_DSQ_LEVEL BIT(1)
/* Bit definitions for the GPIO_TOD_NOTIFICATION_CFG register */
#define DPLL_TOD_SHIFT (0)
#define DPLL_TOD_MASK (0x3)
#define TOD_READ_SECONDARY BIT(2)
#define GPIO_ASSERT_LEVEL BIT(3)
/* Bit definitions for the GPIO_CTRL register */
#define GPIO_FUNCTION_EN BIT(0)
#define GPIO_CMOS_OD_MODE BIT(1)
#define GPIO_CONTROL_DIR BIT(2)
#define GPIO_PU_PD_MODE BIT(3)
#define GPIO_FUNCTION_SHIFT (4)
#define GPIO_FUNCTION_MASK (0xf)
/* Bit definitions for the OUT_CTRL_1 register */
#define OUT_SYNC_DISABLE BIT(7)
#define SQUELCH_VALUE BIT(6)
#define SQUELCH_DISABLE BIT(5)
#define PAD_VDDO_SHIFT (2)
#define PAD_VDDO_MASK (0x7)
#define PAD_CMOSDRV_SHIFT (0)
#define PAD_CMOSDRV_MASK (0x3)
/* Bit definitions for the TOD_CFG register */
#define TOD_EVEN_PPS_MODE BIT(2)
#define TOD_OUT_SYNC_ENABLE BIT(1)
#define TOD_ENABLE BIT(0)
/* Bit definitions for the TOD_WRITE_SELECT_CFG_0 register */
#define WR_PWM_DECODER_INDEX_SHIFT (4)
#define WR_PWM_DECODER_INDEX_MASK (0xf)
#define WR_REF_INDEX_SHIFT (0)
#define WR_REF_INDEX_MASK (0xf)
/* Bit definitions for the TOD_WRITE_CMD register */
#define TOD_WRITE_SELECTION_SHIFT (0)
#define TOD_WRITE_SELECTION_MASK (0xf)
/* Bit definitions for the TOD_READ_PRIMARY_SEL_CFG_0 register */
#define RD_PWM_DECODER_INDEX_SHIFT (4)
#define RD_PWM_DECODER_INDEX_MASK (0xf)
#define RD_REF_INDEX_SHIFT (0)
#define RD_REF_INDEX_MASK (0xf)
/* Bit definitions for the TOD_READ_PRIMARY_CMD register */
#define TOD_READ_TRIGGER_MODE BIT(4)
#define TOD_READ_TRIGGER_SHIFT (0)
#define TOD_READ_TRIGGER_MASK (0xf)
#endif
// SPDX-License-Identifier: GPL-2.0+
/*
* PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
* synchronization devices.
*
* Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
*/
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include "ptp_private.h"
#include "ptp_clockmatrix.h"
MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
#define SETTIME_CORRECTION (0)
static int char_array_to_timespec(u8 *buf,
u8 count,
struct timespec64 *ts)
{
u8 i;
u64 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
/* Sub-nanoseconds are in buf[0]. */
nsec = buf[4];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[3 - i];
}
sec = buf[10];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[9 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
return 0;
}
static int timespec_to_char_array(struct timespec64 const *ts,
u8 *buf,
u8 count)
{
u8 i;
s32 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
/* Sub-nanoseconds are in buf[0]. */
buf[0] = 0;
for (i = 1; i < 5; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 5; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
return 0;
}
static int idtcm_xfer(struct idtcm *idtcm,
u8 regaddr,
u8 *buf,
u16 count,
bool write)
{
struct i2c_client *client = idtcm->client;
struct i2c_msg msg[2];
int cnt;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &regaddr;
msg[1].addr = client->addr;
msg[1].flags = write ? 0 : I2C_M_RD;
msg[1].len = count;
msg[1].buf = buf;
cnt = i2c_transfer(client->adapter, msg, 2);
if (cnt < 0) {
dev_err(&client->dev, "i2c_transfer returned %d\n", cnt);
return cnt;
} else if (cnt != 2) {
dev_err(&client->dev,
"i2c_transfer sent only %d of %d messages\n", cnt, 2);
return -EIO;
}
return 0;
}
static int idtcm_page_offset(struct idtcm *idtcm, u8 val)
{
u8 buf[4];
int err;
if (idtcm->page_offset == val)
return 0;
buf[0] = 0x0;
buf[1] = val;
buf[2] = 0x10;
buf[3] = 0x20;
err = idtcm_xfer(idtcm, PAGE_ADDR, buf, sizeof(buf), 1);
if (err)
dev_err(&idtcm->client->dev, "failed to set page offset\n");
else
idtcm->page_offset = val;
return err;
}
static int _idtcm_rdwr(struct idtcm *idtcm,
u16 regaddr,
u8 *buf,
u16 count,
bool write)
{
u8 hi;
u8 lo;
int err;
hi = (regaddr >> 8) & 0xff;
lo = regaddr & 0xff;
err = idtcm_page_offset(idtcm, hi);
if (err)
goto out;
err = idtcm_xfer(idtcm, lo, buf, count, write);
out:
return err;
}
static int idtcm_read(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, false);
}
static int idtcm_write(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return _idtcm_rdwr(idtcm, module + regaddr, buf, count, true);
}
static int _idtcm_gettime(struct idtcm_channel *channel,
struct timespec64 *ts)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 trigger;
int err;
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
trigger &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT);
trigger |= (1 << TOD_READ_TRIGGER_SHIFT);
trigger |= TOD_READ_TRIGGER_MODE;
err = idtcm_write(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger));
if (err)
return err;
if (idtcm->calculate_overhead_flag)
idtcm->start_time = ktime_get_raw();
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY, buf, sizeof(buf));
if (err)
return err;
err = char_array_to_timespec(buf, sizeof(buf), ts);
return err;
}
static int _sync_pll_output(struct idtcm *idtcm,
u8 pll,
u8 sync_src,
u8 qn,
u8 qn_plus_1)
{
int err;
u8 val;
u16 sync_ctrl0;
u16 sync_ctrl1;
if ((qn == 0) && (qn_plus_1 == 0))
return 0;
switch (pll) {
case 0:
sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1;
break;
case 1:
sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1;
break;
case 2:
sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1;
break;
case 3:
sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1;
break;
case 4:
sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1;
break;
case 5:
sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1;
break;
case 6:
sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1;
break;
case 7:
sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1;
break;
default:
return -EINVAL;
}
val = SYNCTRL1_MASTER_SYNC_RST;
/* Place master sync in reset */
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src));
if (err)
return err;
/* Set sync trigger mask */
val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG;
if (qn)
val |= SYNCTRL1_Q0_DIV_SYNC_TRIG;
if (qn_plus_1)
val |= SYNCTRL1_Q1_DIV_SYNC_TRIG;
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
/* Place master sync out of reset */
val &= ~(SYNCTRL1_MASTER_SYNC_RST);
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
return err;
}
static int idtcm_sync_pps_output(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 pll;
u8 sync_src;
u8 qn;
u8 qn_plus_1;
int err = 0;
u16 output_mask = channel->output_mask;
switch (channel->dpll_n) {
case DPLL_0:
sync_src = SYNC_SOURCE_DPLL0_TOD_PPS;
break;
case DPLL_1:
sync_src = SYNC_SOURCE_DPLL1_TOD_PPS;
break;
case DPLL_2:
sync_src = SYNC_SOURCE_DPLL2_TOD_PPS;
break;
case DPLL_3:
sync_src = SYNC_SOURCE_DPLL3_TOD_PPS;
break;
default:
return -EINVAL;
}
for (pll = 0; pll < 8; pll++) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
if (pll < 4) {
/* First 4 pll has 2 outputs */
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
} else {
qn_plus_1 = 0;
}
if ((qn != 0) || (qn_plus_1 != 0))
err = _sync_pll_output(idtcm, pll, sync_src, qn,
qn_plus_1);
if (err)
return err;
}
return err;
}
static int _idtcm_set_dpll_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 cmd;
int err;
struct timespec64 local_ts = *ts;
s64 total_overhead_ns;
/* Configure HW TOD write trigger. */
err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(0x0f);
cmd |= wr_trig | 0x08;
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) {
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
}
/* ARM HW TOD write trigger. */
cmd &= ~(0x08);
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) {
if (idtcm->calculate_overhead_flag) {
total_overhead_ns = ktime_to_ns(ktime_get_raw()
- idtcm->start_time)
+ idtcm->tod_write_overhead_ns
+ SETTIME_CORRECTION;
timespec64_add_ns(&local_ts, total_overhead_ns);
idtcm->calculate_overhead_flag = 0;
}
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
}
return err;
}
static int _idtcm_settime(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
s32 retval;
int err;
int i;
u8 trig_sel;
err = _idtcm_set_dpll_tod(channel, ts, wr_trig);
if (err)
return err;
/* Wait for the operation to complete. */
for (i = 0; i < 10000; i++) {
err = idtcm_read(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_CTRL_1, &trig_sel,
sizeof(trig_sel));
if (err)
return err;
if (trig_sel == 0x4a)
break;
err = 1;
}
if (err)
return err;
retval = idtcm_sync_pps_output(channel);
return retval;
}
static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel,
s32 offset_ns)
{
int err;
int i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[4];
for (i = 0; i < 4; i++) {
buf[i] = 0xff & (offset_ns);
offset_ns >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET,
buf, sizeof(buf));
return err;
}
static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel,
u32 max_ffo_ppb)
{
int err;
u8 i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[3];
if (max_ffo_ppb & 0xff000000)
max_ffo_ppb = 0;
for (i = 0; i < 3; i++) {
buf[i] = 0xff & (max_ffo_ppb);
max_ffo_ppb >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_SLOPE_LIMIT, buf, sizeof(buf));
return err;
}
static int idtcm_start_phase_pull_in(struct idtcm_channel *channel)
{
int err;
struct idtcm *idtcm = channel->idtcm;
u8 buf;
err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL,
&buf, sizeof(buf));
if (err)
return err;
if (buf == 0) {
buf = 0x01;
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_CTRL, &buf, sizeof(buf));
} else {
err = -EBUSY;
}
return err;
}
static int idtcm_do_phase_pull_in(struct idtcm_channel *channel,
s32 offset_ns,
u32 max_ffo_ppb)
{
int err;
err = idtcm_set_phase_pull_in_offset(channel, -offset_ns);
if (err)
return err;
err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb);
if (err)
return err;
err = idtcm_start_phase_pull_in(channel);
return err;
}
static int _idtcm_adjtime(struct idtcm_channel *channel, s64 delta)
{
int err;
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
s64 now;
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) {
err = idtcm_do_phase_pull_in(channel, delta, 0);
} else {
idtcm->calculate_overhead_flag = 1;
err = _idtcm_gettime(channel, &ts);
if (err)
return err;
now = timespec64_to_ns(&ts);
now += delta;
ts = ns_to_timespec64(now);
err = _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
return err;
}
static int idtcm_state_machine_reset(struct idtcm *idtcm)
{
int err;
u8 byte = SM_RESET_CMD;
err = idtcm_write(idtcm, RESET_CTRL, SM_RESET, &byte, sizeof(byte));
if (!err)
msleep_interruptible(POST_SM_RESET_DELAY_MS);
return err;
}
static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HW_REV_ID,
hw_rev_id,
sizeof(u8));
}
static int idtcm_read_bond_id(struct idtcm *idtcm, u8 *bond_id)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
BOND_ID,
bond_id,
sizeof(u8));
}
static int idtcm_read_hw_csr_id(struct idtcm *idtcm, u16 *hw_csr_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, HW_CSR_ID, buf, sizeof(buf));
*hw_csr_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_hw_irq_id(struct idtcm *idtcm, u16 *hw_irq_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, HW_IRQ_ID, buf, sizeof(buf));
*hw_irq_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf));
*product_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major)
{
int err;
u8 buf = 0;
err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf));
*major = buf >> 1;
return err;
}
static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor)
{
return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8));
}
static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HOTFIX_REL,
hotfix,
sizeof(u8));
}
static int idtcm_read_pipeline(struct idtcm *idtcm, u32 *pipeline)
{
int err;
u8 buf[4] = {0};
err = idtcm_read(idtcm,
GENERAL_STATUS,
PIPELINE_ID,
&buf[0],
sizeof(buf));
*pipeline = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
return err;
}
static int process_pll_mask(struct idtcm *idtcm, u32 addr, u8 val, u8 *mask)
{
int err = 0;
if (addr == PLL_MASK_ADDR) {
if ((val & 0xf0) || !(val & 0xf)) {
dev_err(&idtcm->client->dev,
"Invalid PLL mask 0x%hhx\n", val);
err = -EINVAL;
}
*mask = val;
}
return err;
}
static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val)
{
int err = 0;
switch (addr) {
case OUTPUT_MASK_PLL0_ADDR:
SET_U16_LSB(idtcm->channel[0].output_mask, val);
break;
case OUTPUT_MASK_PLL0_ADDR + 1:
SET_U16_MSB(idtcm->channel[0].output_mask, val);
break;
case OUTPUT_MASK_PLL1_ADDR:
SET_U16_LSB(idtcm->channel[1].output_mask, val);
break;
case OUTPUT_MASK_PLL1_ADDR + 1:
SET_U16_MSB(idtcm->channel[1].output_mask, val);
break;
case OUTPUT_MASK_PLL2_ADDR:
SET_U16_LSB(idtcm->channel[2].output_mask, val);
break;
case OUTPUT_MASK_PLL2_ADDR + 1:
SET_U16_MSB(idtcm->channel[2].output_mask, val);
break;
case OUTPUT_MASK_PLL3_ADDR:
SET_U16_LSB(idtcm->channel[3].output_mask, val);
break;
case OUTPUT_MASK_PLL3_ADDR + 1:
SET_U16_MSB(idtcm->channel[3].output_mask, val);
break;
default:
err = -EINVAL;
break;
}
return err;
}
static int check_and_set_masks(struct idtcm *idtcm,
u16 regaddr,
u8 val)
{
int err = 0;
if (set_pll_output_mask(idtcm, regaddr, val)) {
/* Not an output mask, check for pll mask */
err = process_pll_mask(idtcm, regaddr, val, &idtcm->pll_mask);
}
return err;
}
static void display_pll_and_output_masks(struct idtcm *idtcm)
{
u8 i;
u8 mask;
dev_dbg(&idtcm->client->dev, "pllmask = 0x%02x\n", idtcm->pll_mask);
for (i = 0; i < MAX_PHC_PLL; i++) {
mask = 1 << i;
if (mask & idtcm->pll_mask)
dev_dbg(&idtcm->client->dev,
"PLL%d output_mask = 0x%04x\n",
i, idtcm->channel[i].output_mask);
}
}
static int idtcm_load_firmware(struct idtcm *idtcm,
struct device *dev)
{
const struct firmware *fw;
struct idtcm_fwrc *rec;
u32 regaddr;
int err;
s32 len;
u8 val;
u8 loaddr;
dev_dbg(&idtcm->client->dev, "requesting firmware '%s'\n", FW_FILENAME);
err = request_firmware(&fw, FW_FILENAME, dev);
if (err)
return err;
dev_dbg(&idtcm->client->dev, "firmware size %zu bytes\n", fw->size);
rec = (struct idtcm_fwrc *) fw->data;
if (fw->size > 0)
idtcm_state_machine_reset(idtcm);
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(&idtcm->client->dev,
"bad firmware, reserved field non-zero\n");
err = -EINVAL;
} else {
regaddr = rec->hiaddr << 8;
regaddr |= rec->loaddr;
val = rec->value;
loaddr = rec->loaddr;
rec++;
err = check_and_set_masks(idtcm, regaddr, val);
}
if (err == 0) {
/* Top (status registers) and bottom are read-only */
if ((regaddr < GPIO_USER_CONTROL)
|| (regaddr >= SCRATCH))
continue;
/* Page size 128, last 4 bytes of page skipped */
if (((loaddr > 0x7b) && (loaddr <= 0x7f))
|| ((loaddr > 0xfb) && (loaddr <= 0xff)))
continue;
err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val));
}
if (err)
goto out;
}
display_pll_and_output_masks(idtcm);
out:
release_firmware(fw);
return err;
}
static int idtcm_pps_enable(struct idtcm_channel *channel, bool enable)
{
struct idtcm *idtcm = channel->idtcm;
u32 module;
u8 val;
int err;
/*
* This assumes that the 1-PPS is on the second of the two
* output. But is this always true?
*/
switch (channel->dpll_n) {
case DPLL_0:
module = OUTPUT_1;
break;
case DPLL_1:
module = OUTPUT_3;
break;
case DPLL_2:
module = OUTPUT_5;
break;
case DPLL_3:
module = OUTPUT_7;
break;
default:
return -EINVAL;
}
err = idtcm_read(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
if (enable)
val |= SQUELCH_DISABLE;
else
val &= ~SQUELCH_DISABLE;
err = idtcm_write(idtcm, module, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
return 0;
}
static int idtcm_set_pll_mode(struct idtcm_channel *channel,
enum pll_mode pll_mode)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 dpll_mode;
err = idtcm_read(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (pll_mode << PLL_MODE_SHIFT);
channel->pll_mode = pll_mode;
err = idtcm_write(idtcm, channel->dpll_n, DPLL_MODE,
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
return 0;
}
/* PTP Hardware Clock interface */
static int idtcm_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
u8 i;
bool neg_adj = 0;
int err;
u8 buf[6] = {0};
s64 fcw;
if (channel->pll_mode != PLL_MODE_WRITE_FREQUENCY) {
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
return err;
}
/*
* Frequency Control Word unit is: 1.11 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 111
*
* adjfine:
* ppm_16 * 5^12
* FCW = -------------
* 111 * 2^4
*/
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
/* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */
fcw = ppb * 1000000000000ULL;
fcw = div_u64(fcw, 111022);
if (neg_adj)
fcw = -fcw;
for (i = 0; i < 6; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
mutex_lock(&idtcm->reg_lock);
err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ,
buf, sizeof(buf));
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_gettime(channel, ts);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_settime(channel, ts, HW_TOD_WR_TRIG_SEL_MSB);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(&idtcm->reg_lock);
err = _idtcm_adjtime(channel, delta);
mutex_unlock(&idtcm->reg_lock);
return err;
}
static int idtcm_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idtcm_channel *channel =
container_of(ptp, struct idtcm_channel, caps);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (!on)
return idtcm_pps_enable(channel, false);
/* Only accept a 1-PPS aligned to the second. */
if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
return -ERANGE;
return idtcm_pps_enable(channel, true);
default:
break;
}
return -EOPNOTSUPP;
}
static int idtcm_enable_tod(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts = {0, 0};
u8 cfg;
int err;
err = idtcm_pps_enable(channel, false);
if (err)
return err;
/*
* Start the TOD clock ticking.
*/
err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
cfg |= TOD_ENABLE;
err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg));
if (err)
return err;
return _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB);
}
static void idtcm_display_version_info(struct idtcm *idtcm)
{
u8 major;
u8 minor;
u8 hotfix;
u32 pipeline;
u16 product_id;
u16 csr_id;
u16 irq_id;
u8 hw_rev_id;
u8 bond_id;
idtcm_read_major_release(idtcm, &major);
idtcm_read_minor_release(idtcm, &minor);
idtcm_read_hotfix_release(idtcm, &hotfix);
idtcm_read_pipeline(idtcm, &pipeline);
idtcm_read_product_id(idtcm, &product_id);
idtcm_read_hw_rev_id(idtcm, &hw_rev_id);
idtcm_read_bond_id(idtcm, &bond_id);
idtcm_read_hw_csr_id(idtcm, &csr_id);
idtcm_read_hw_irq_id(idtcm, &irq_id);
dev_info(&idtcm->client->dev, "Version: %d.%d.%d, Pipeline %u\t"
"0x%04x, Rev %d, Bond %d, CSR %d, IRQ %d\n",
major, minor, hotfix, pipeline,
product_id, hw_rev_id, bond_id, csr_id, irq_id);
}
static struct ptp_clock_info idtcm_caps = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 1,
.adjfreq = &idtcm_adjfreq,
.adjtime = &idtcm_adjtime,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime,
.enable = &idtcm_enable,
};
static int idtcm_enable_channel(struct idtcm *idtcm, u32 index)
{
struct idtcm_channel *channel;
int err;
if (!(index < MAX_PHC_PLL))
return -EINVAL;
channel = &idtcm->channel[index];
switch (index) {
case 0:
channel->dpll_freq = DPLL_FREQ_0;
channel->dpll_n = DPLL_0;
channel->tod_read_primary = TOD_READ_PRIMARY_0;
channel->tod_write = TOD_WRITE_0;
channel->tod_n = TOD_0;
channel->hw_dpll_n = HW_DPLL_0;
channel->dpll_phase = DPLL_PHASE_0;
channel->dpll_ctrl_n = DPLL_CTRL_0;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0;
break;
case 1:
channel->dpll_freq = DPLL_FREQ_1;
channel->dpll_n = DPLL_1;
channel->tod_read_primary = TOD_READ_PRIMARY_1;
channel->tod_write = TOD_WRITE_1;
channel->tod_n = TOD_1;
channel->hw_dpll_n = HW_DPLL_1;
channel->dpll_phase = DPLL_PHASE_1;
channel->dpll_ctrl_n = DPLL_CTRL_1;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1;
break;
case 2:
channel->dpll_freq = DPLL_FREQ_2;
channel->dpll_n = DPLL_2;
channel->tod_read_primary = TOD_READ_PRIMARY_2;
channel->tod_write = TOD_WRITE_2;
channel->tod_n = TOD_2;
channel->hw_dpll_n = HW_DPLL_2;
channel->dpll_phase = DPLL_PHASE_2;
channel->dpll_ctrl_n = DPLL_CTRL_2;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2;
break;
case 3:
channel->dpll_freq = DPLL_FREQ_3;
channel->dpll_n = DPLL_3;
channel->tod_read_primary = TOD_READ_PRIMARY_3;
channel->tod_write = TOD_WRITE_3;
channel->tod_n = TOD_3;
channel->hw_dpll_n = HW_DPLL_3;
channel->dpll_phase = DPLL_PHASE_3;
channel->dpll_ctrl_n = DPLL_CTRL_3;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3;
break;
default:
return -EINVAL;
}
channel->idtcm = idtcm;
channel->caps = idtcm_caps;
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT CM PLL%u", index);
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
return err;
err = idtcm_enable_tod(channel);
if (err)
return err;
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
dev_info(&idtcm->client->dev, "PLL%d registered as ptp%d\n",
index, channel->ptp_clock->index);
return 0;
}
static void ptp_clock_unregister_all(struct idtcm *idtcm)
{
u8 i;
struct idtcm_channel *channel;
for (i = 0; i < MAX_PHC_PLL; i++) {
channel = &idtcm->channel[i];
if (channel->ptp_clock)
ptp_clock_unregister(channel->ptp_clock);
}
}
static void set_default_masks(struct idtcm *idtcm)
{
idtcm->pll_mask = DEFAULT_PLL_MASK;
idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2;
idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3;
}
static int set_tod_write_overhead(struct idtcm *idtcm)
{
int err;
u8 i;
s64 total_ns = 0;
ktime_t start;
ktime_t stop;
char buf[TOD_BYTE_COUNT];
struct idtcm_channel *channel = &idtcm->channel[2];
/* Set page offset */
idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0,
buf, sizeof(buf));
for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) {
start = ktime_get_raw();
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
stop = ktime_get_raw();
total_ns += ktime_to_ns(stop - start);
}
idtcm->tod_write_overhead_ns = div_s64(total_ns,
TOD_WRITE_OVERHEAD_COUNT_MAX);
return err;
}
static int idtcm_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct idtcm *idtcm;
int err;
u8 i;
/* Unused for now */
(void)id;
idtcm = devm_kzalloc(&client->dev, sizeof(struct idtcm), GFP_KERNEL);
if (!idtcm)
return -ENOMEM;
idtcm->client = client;
idtcm->page_offset = 0xff;
idtcm->calculate_overhead_flag = 0;
set_default_masks(idtcm);
mutex_init(&idtcm->reg_lock);
mutex_lock(&idtcm->reg_lock);
idtcm_display_version_info(idtcm);
err = set_tod_write_overhead(idtcm);
if (err)
return err;
err = idtcm_load_firmware(idtcm, &client->dev);
if (err)
dev_warn(&idtcm->client->dev,
"loading firmware failed with %d\n", err);
if (idtcm->pll_mask) {
for (i = 0; i < MAX_PHC_PLL; i++) {
if (idtcm->pll_mask & (1 << i)) {
err = idtcm_enable_channel(idtcm, i);
if (err)
break;
}
}
} else {
dev_err(&idtcm->client->dev,
"no PLLs flagged as PHCs, nothing to do\n");
err = -ENODEV;
}
mutex_unlock(&idtcm->reg_lock);
if (err) {
ptp_clock_unregister_all(idtcm);
return err;
}
i2c_set_clientdata(client, idtcm);
return 0;
}
static int idtcm_remove(struct i2c_client *client)
{
struct idtcm *idtcm = i2c_get_clientdata(client);
ptp_clock_unregister_all(idtcm);
mutex_destroy(&idtcm->reg_lock);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id idtcm_dt_id[] = {
{ .compatible = "idt,8a34000" },
{ .compatible = "idt,8a34001" },
{ .compatible = "idt,8a34002" },
{ .compatible = "idt,8a34003" },
{ .compatible = "idt,8a34004" },
{ .compatible = "idt,8a34005" },
{ .compatible = "idt,8a34006" },
{ .compatible = "idt,8a34007" },
{ .compatible = "idt,8a34008" },
{ .compatible = "idt,8a34009" },
{ .compatible = "idt,8a34010" },
{ .compatible = "idt,8a34011" },
{ .compatible = "idt,8a34012" },
{ .compatible = "idt,8a34013" },
{ .compatible = "idt,8a34014" },
{ .compatible = "idt,8a34015" },
{ .compatible = "idt,8a34016" },
{ .compatible = "idt,8a34017" },
{ .compatible = "idt,8a34018" },
{ .compatible = "idt,8a34019" },
{ .compatible = "idt,8a34040" },
{ .compatible = "idt,8a34041" },
{ .compatible = "idt,8a34042" },
{ .compatible = "idt,8a34043" },
{ .compatible = "idt,8a34044" },
{ .compatible = "idt,8a34045" },
{ .compatible = "idt,8a34046" },
{ .compatible = "idt,8a34047" },
{ .compatible = "idt,8a34048" },
{ .compatible = "idt,8a34049" },
{},
};
MODULE_DEVICE_TABLE(of, idtcm_dt_id);
#endif
static const struct i2c_device_id idtcm_i2c_id[] = {
{ "8a34000" },
{ "8a34001" },
{ "8a34002" },
{ "8a34003" },
{ "8a34004" },
{ "8a34005" },
{ "8a34006" },
{ "8a34007" },
{ "8a34008" },
{ "8a34009" },
{ "8a34010" },
{ "8a34011" },
{ "8a34012" },
{ "8a34013" },
{ "8a34014" },
{ "8a34015" },
{ "8a34016" },
{ "8a34017" },
{ "8a34018" },
{ "8a34019" },
{ "8a34040" },
{ "8a34041" },
{ "8a34042" },
{ "8a34043" },
{ "8a34044" },
{ "8a34045" },
{ "8a34046" },
{ "8a34047" },
{ "8a34048" },
{ "8a34049" },
{},
};
MODULE_DEVICE_TABLE(i2c, idtcm_i2c_id);
static struct i2c_driver idtcm_driver = {
.driver = {
.of_match_table = of_match_ptr(idtcm_dt_id),
.name = "idtcm",
},
.probe = idtcm_probe,
.remove = idtcm_remove,
.id_table = idtcm_i2c_id,
};
module_i2c_driver(idtcm_driver);
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
* synchronization devices.
*
* Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
*/
#ifndef PTP_IDTCLOCKMATRIX_H
#define PTP_IDTCLOCKMATRIX_H
#include <linux/ktime.h>
#include "idt8a340_reg.h"
#define FW_FILENAME "idtcm.bin"
#define MAX_PHC_PLL 4
#define PLL_MASK_ADDR (0xFFA5)
#define DEFAULT_PLL_MASK (0x04)
#define SET_U16_LSB(orig, val8) (orig = (0xff00 & (orig)) | (val8))
#define SET_U16_MSB(orig, val8) (orig = (0x00ff & (orig)) | (val8 << 8))
#define OUTPUT_MASK_PLL0_ADDR (0xFFB0)
#define OUTPUT_MASK_PLL1_ADDR (0xFFB2)
#define OUTPUT_MASK_PLL2_ADDR (0xFFB4)
#define OUTPUT_MASK_PLL3_ADDR (0xFFB6)
#define DEFAULT_OUTPUT_MASK_PLL0 (0x003)
#define DEFAULT_OUTPUT_MASK_PLL1 (0x00c)
#define DEFAULT_OUTPUT_MASK_PLL2 (0x030)
#define DEFAULT_OUTPUT_MASK_PLL3 (0x0c0)
#define POST_SM_RESET_DELAY_MS (3000)
#define PHASE_PULL_IN_THRESHOLD_NS (150000)
#define TOD_WRITE_OVERHEAD_COUNT_MAX (5)
#define TOD_BYTE_COUNT (11)
/* Values of DPLL_N.DPLL_MODE.PLL_MODE */
enum pll_mode {
PLL_MODE_MIN = 0,
PLL_MODE_NORMAL = PLL_MODE_MIN,
PLL_MODE_WRITE_PHASE = 1,
PLL_MODE_WRITE_FREQUENCY = 2,
PLL_MODE_GPIO_INC_DEC = 3,
PLL_MODE_SYNTHESIS = 4,
PLL_MODE_PHASE_MEASUREMENT = 5,
PLL_MODE_MAX = PLL_MODE_PHASE_MEASUREMENT,
};
enum hw_tod_write_trig_sel {
HW_TOD_WR_TRIG_SEL_MIN = 0,
HW_TOD_WR_TRIG_SEL_MSB = HW_TOD_WR_TRIG_SEL_MIN,
HW_TOD_WR_TRIG_SEL_RESERVED = 1,
HW_TOD_WR_TRIG_SEL_TOD_PPS = 2,
HW_TOD_WR_TRIG_SEL_IRIGB_PPS = 3,
HW_TOD_WR_TRIG_SEL_PWM_PPS = 4,
HW_TOD_WR_TRIG_SEL_GPIO = 5,
HW_TOD_WR_TRIG_SEL_FOD_SYNC = 6,
WR_TRIG_SEL_MAX = HW_TOD_WR_TRIG_SEL_FOD_SYNC,
};
struct idtcm;
struct idtcm_channel {
struct ptp_clock_info caps;
struct ptp_clock *ptp_clock;
struct idtcm *idtcm;
u16 dpll_phase;
u16 dpll_freq;
u16 dpll_n;
u16 dpll_ctrl_n;
u16 dpll_phase_pull_in;
u16 tod_read_primary;
u16 tod_write;
u16 tod_n;
u16 hw_dpll_n;
enum pll_mode pll_mode;
u16 output_mask;
};
struct idtcm {
struct idtcm_channel channel[MAX_PHC_PLL];
struct i2c_client *client;
u8 page_offset;
u8 pll_mask;
/* Overhead calculation for adjtime */
u8 calculate_overhead_flag;
s64 tod_write_overhead_ns;
ktime_t start_time;
/* Protects I2C read/modify/write registers from concurrent access */
struct mutex reg_lock;
};
struct idtcm_fwrc {
u8 hiaddr;
u8 loaddr;
u8 value;
u8 reserved;
} __packed;
#endif /* PTP_IDTCLOCKMATRIX_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment