Commit 3b4f0b66 authored by Björn Töpel's avatar Björn Töpel Committed by Alexei Starovoitov

i40e, xsk: Migrate to new MEM_TYPE_XSK_BUFF_POOL

Remove MEM_TYPE_ZERO_COPY in favor of the new MEM_TYPE_XSK_BUFF_POOL
APIs. The AF_XDP zero-copy rx_bi ring is now simply a struct xdp_buff
pointer.

v4->v5: Fixed "warning: Excess function parameter 'bi' description in
        'i40e_construct_skb_zc'". (Jakub)
Signed-off-by: default avatarBjörn Töpel <bjorn.topel@intel.com>
Signed-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
Cc: intel-wired-lan@lists.osuosl.org
Link: https://lore.kernel.org/bpf/20200520192103.355233-9-bjorn.topel@gmail.com
parent be1222b5
...@@ -3266,21 +3266,19 @@ static int i40e_configure_rx_ring(struct i40e_ring *ring) ...@@ -3266,21 +3266,19 @@ static int i40e_configure_rx_ring(struct i40e_ring *ring)
ret = i40e_alloc_rx_bi_zc(ring); ret = i40e_alloc_rx_bi_zc(ring);
if (ret) if (ret)
return ret; return ret;
ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - ring->rx_buf_len = xsk_umem_get_rx_frame_size(ring->xsk_umem);
XDP_PACKET_HEADROOM;
/* For AF_XDP ZC, we disallow packets to span on /* For AF_XDP ZC, we disallow packets to span on
* multiple buffers, thus letting us skip that * multiple buffers, thus letting us skip that
* handling in the fast-path. * handling in the fast-path.
*/ */
chain_len = 1; chain_len = 1;
ring->zca.free = i40e_zca_free;
ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_ZERO_COPY, MEM_TYPE_XSK_BUFF_POOL,
&ring->zca); NULL);
if (ret) if (ret)
return ret; return ret;
dev_info(&vsi->back->pdev->dev, dev_info(&vsi->back->pdev->dev,
"Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
ring->queue_index); ring->queue_index);
} else { } else {
...@@ -3351,9 +3349,12 @@ static int i40e_configure_rx_ring(struct i40e_ring *ring) ...@@ -3351,9 +3349,12 @@ static int i40e_configure_rx_ring(struct i40e_ring *ring)
ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
writel(0, ring->tail); writel(0, ring->tail);
ok = ring->xsk_umem ? if (ring->xsk_umem) {
i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : xsk_buff_set_rxq_info(ring->xsk_umem, &ring->xdp_rxq);
!i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring));
} else {
ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
}
if (!ok) { if (!ok) {
/* Log this in case the user has forgotten to give the kernel /* Log this in case the user has forgotten to give the kernel
* any buffers, even later in the application. * any buffers, even later in the application.
......
...@@ -301,12 +301,6 @@ struct i40e_rx_buffer { ...@@ -301,12 +301,6 @@ struct i40e_rx_buffer {
__u16 pagecnt_bias; __u16 pagecnt_bias;
}; };
struct i40e_rx_buffer_zc {
dma_addr_t dma;
void *addr;
u64 handle;
};
struct i40e_queue_stats { struct i40e_queue_stats {
u64 packets; u64 packets;
u64 bytes; u64 bytes;
...@@ -356,7 +350,7 @@ struct i40e_ring { ...@@ -356,7 +350,7 @@ struct i40e_ring {
union { union {
struct i40e_tx_buffer *tx_bi; struct i40e_tx_buffer *tx_bi;
struct i40e_rx_buffer *rx_bi; struct i40e_rx_buffer *rx_bi;
struct i40e_rx_buffer_zc *rx_bi_zc; struct xdp_buff **rx_bi_zc;
}; };
DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
u16 queue_index; /* Queue number of ring */ u16 queue_index; /* Queue number of ring */
...@@ -418,7 +412,6 @@ struct i40e_ring { ...@@ -418,7 +412,6 @@ struct i40e_ring {
struct i40e_channel *ch; struct i40e_channel *ch;
struct xdp_rxq_info xdp_rxq; struct xdp_rxq_info xdp_rxq;
struct xdp_umem *xsk_umem; struct xdp_umem *xsk_umem;
struct zero_copy_allocator zca; /* ZC allocator anchor */
} ____cacheline_internodealigned_in_smp; } ____cacheline_internodealigned_in_smp;
static inline bool ring_uses_build_skb(struct i40e_ring *ring) static inline bool ring_uses_build_skb(struct i40e_ring *ring)
......
...@@ -23,68 +23,11 @@ void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring) ...@@ -23,68 +23,11 @@ void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring)
sizeof(*rx_ring->rx_bi_zc) * rx_ring->count); sizeof(*rx_ring->rx_bi_zc) * rx_ring->count);
} }
static struct i40e_rx_buffer_zc *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
{ {
return &rx_ring->rx_bi_zc[idx]; return &rx_ring->rx_bi_zc[idx];
} }
/**
* i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
* @vsi: Current VSI
* @umem: UMEM to DMA map
*
* Returns 0 on success, <0 on failure
**/
static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
struct i40e_pf *pf = vsi->back;
struct device *dev;
unsigned int i, j;
dma_addr_t dma;
dev = &pf->pdev->dev;
for (i = 0; i < umem->npgs; i++) {
dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
if (dma_mapping_error(dev, dma))
goto out_unmap;
umem->pages[i].dma = dma;
}
return 0;
out_unmap:
for (j = 0; j < i; j++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
return -1;
}
/**
* i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
* @vsi: Current VSI
* @umem: UMEM to DMA map
**/
static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
struct i40e_pf *pf = vsi->back;
struct device *dev;
unsigned int i;
dev = &pf->pdev->dev;
for (i = 0; i < umem->npgs; i++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
}
/** /**
* i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
* @vsi: Current VSI * @vsi: Current VSI
...@@ -97,7 +40,6 @@ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, ...@@ -97,7 +40,6 @@ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
u16 qid) u16 qid)
{ {
struct net_device *netdev = vsi->netdev; struct net_device *netdev = vsi->netdev;
struct xdp_umem_fq_reuse *reuseq;
bool if_running; bool if_running;
int err; int err;
...@@ -111,13 +53,7 @@ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, ...@@ -111,13 +53,7 @@ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
qid >= netdev->real_num_tx_queues) qid >= netdev->real_num_tx_queues)
return -EINVAL; return -EINVAL;
reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); err = xsk_buff_dma_map(umem, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR);
if (!reuseq)
return -ENOMEM;
xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
err = i40e_xsk_umem_dma_map(vsi, umem);
if (err) if (err)
return err; return err;
...@@ -170,7 +106,7 @@ static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) ...@@ -170,7 +106,7 @@ static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
} }
clear_bit(qid, vsi->af_xdp_zc_qps); clear_bit(qid, vsi->af_xdp_zc_qps);
i40e_xsk_umem_dma_unmap(vsi, umem); xsk_buff_dma_unmap(umem, I40E_RX_DMA_ATTR);
if (if_running) { if (if_running) {
err = i40e_queue_pair_enable(vsi, qid); err = i40e_queue_pair_enable(vsi, qid);
...@@ -209,11 +145,9 @@ int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, ...@@ -209,11 +145,9 @@ int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
**/ **/
static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
{ {
struct xdp_umem *umem = rx_ring->xsk_umem;
int err, result = I40E_XDP_PASS; int err, result = I40E_XDP_PASS;
struct i40e_ring *xdp_ring; struct i40e_ring *xdp_ring;
struct bpf_prog *xdp_prog; struct bpf_prog *xdp_prog;
u64 offset;
u32 act; u32 act;
rcu_read_lock(); rcu_read_lock();
...@@ -222,9 +156,6 @@ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) ...@@ -222,9 +156,6 @@ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
*/ */
xdp_prog = READ_ONCE(rx_ring->xdp_prog); xdp_prog = READ_ONCE(rx_ring->xdp_prog);
act = bpf_prog_run_xdp(xdp_prog, xdp); act = bpf_prog_run_xdp(xdp_prog, xdp);
offset = xdp->data - xdp->data_hard_start;
xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);
switch (act) { switch (act) {
case XDP_PASS: case XDP_PASS:
...@@ -251,107 +182,26 @@ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) ...@@ -251,107 +182,26 @@ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
return result; return result;
} }
/** bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
* i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer_zc
* @rx_ring: Rx ring
* @bi: Rx buffer to populate
*
* This function allocates an Rx buffer. The buffer can come from fill
* queue, or via the recycle queue (next_to_alloc).
*
* Returns true for a successful allocation, false otherwise
**/
static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
struct i40e_rx_buffer_zc *bi)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
void *addr = bi->addr;
u64 handle, hr;
if (addr) {
rx_ring->rx_stats.page_reuse_count++;
return true;
}
if (!xsk_umem_peek_addr(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
hr = umem->headroom + XDP_PACKET_HEADROOM;
bi->dma = xdp_umem_get_dma(umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(umem, handle);
bi->addr += hr;
bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
xsk_umem_release_addr(umem);
return true;
}
/**
* i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer_zc
* @rx_ring: Rx ring
* @bi: Rx buffer to populate
*
* This function allocates an Rx buffer. The buffer can come from fill
* queue, or via the reuse queue.
*
* Returns true for a successful allocation, false otherwise
**/
static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
struct i40e_rx_buffer_zc *bi)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
u64 handle, hr;
if (!xsk_umem_peek_addr_rq(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
handle &= rx_ring->xsk_umem->chunk_mask;
hr = umem->headroom + XDP_PACKET_HEADROOM;
bi->dma = xdp_umem_get_dma(umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(umem, handle);
bi->addr += hr;
bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
xsk_umem_release_addr_rq(umem);
return true;
}
static __always_inline bool
__i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
bool alloc(struct i40e_ring *rx_ring,
struct i40e_rx_buffer_zc *bi))
{ {
u16 ntu = rx_ring->next_to_use; u16 ntu = rx_ring->next_to_use;
union i40e_rx_desc *rx_desc; union i40e_rx_desc *rx_desc;
struct i40e_rx_buffer_zc *bi; struct xdp_buff **bi, *xdp;
dma_addr_t dma;
bool ok = true; bool ok = true;
rx_desc = I40E_RX_DESC(rx_ring, ntu); rx_desc = I40E_RX_DESC(rx_ring, ntu);
bi = i40e_rx_bi(rx_ring, ntu); bi = i40e_rx_bi(rx_ring, ntu);
do { do {
if (!alloc(rx_ring, bi)) { xdp = xsk_buff_alloc(rx_ring->xsk_umem);
if (!xdp) {
ok = false; ok = false;
goto no_buffers; goto no_buffers;
} }
*bi = xdp;
dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0, dma = xsk_buff_xdp_get_dma(xdp);
rx_ring->rx_buf_len, rx_desc->read.pkt_addr = cpu_to_le64(dma);
DMA_BIDIRECTIONAL); rx_desc->read.hdr_addr = 0;
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
rx_desc++; rx_desc++;
bi++; bi++;
...@@ -363,7 +213,6 @@ __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, ...@@ -363,7 +213,6 @@ __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
ntu = 0; ntu = 0;
} }
rx_desc->wb.qword1.status_error_len = 0;
count--; count--;
} while (count); } while (count);
...@@ -374,130 +223,9 @@ __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count, ...@@ -374,130 +223,9 @@ __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
return ok; return ok;
} }
/**
* i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* This function allocates a number of Rx buffers from the reuse queue
* or fill ring and places them on the Rx ring.
*
* Returns true for a successful allocation, false otherwise
**/
bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
{
return __i40e_alloc_rx_buffers_zc(rx_ring, count,
i40e_alloc_buffer_slow_zc);
}
/**
* i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Returns true for a successful allocation, false otherwise
**/
static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
{
return __i40e_alloc_rx_buffers_zc(rx_ring, count,
i40e_alloc_buffer_zc);
}
/**
* i40e_get_rx_buffer_zc - Return the current Rx buffer
* @rx_ring: Rx ring
* @size: The size of the rx buffer (read from descriptor)
*
* This function returns the current, received Rx buffer, and also
* does DMA synchronization. the Rx ring.
*
* Returns the received Rx buffer
**/
static struct i40e_rx_buffer_zc *i40e_get_rx_buffer_zc(
struct i40e_ring *rx_ring,
const unsigned int size)
{
struct i40e_rx_buffer_zc *bi;
bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
bi->dma, 0,
size,
DMA_BIDIRECTIONAL);
return bi;
}
/**
* i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
* @rx_ring: Rx ring
* @old_bi: The Rx buffer to recycle
*
* This function recycles a finished Rx buffer, and places it on the
* recycle queue (next_to_alloc).
**/
static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
struct i40e_rx_buffer_zc *old_bi)
{
struct i40e_rx_buffer_zc *new_bi = i40e_rx_bi(rx_ring,
rx_ring->next_to_alloc);
u16 nta = rx_ring->next_to_alloc;
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
new_bi->dma = old_bi->dma;
new_bi->addr = old_bi->addr;
new_bi->handle = old_bi->handle;
old_bi->addr = NULL;
}
/**
* i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
* @alloc: Zero-copy allocator
* @handle: Buffer handle
**/
void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
{
struct i40e_rx_buffer_zc *bi;
struct i40e_ring *rx_ring;
u64 hr, mask;
u16 nta;
rx_ring = container_of(alloc, struct i40e_ring, zca);
hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
mask = rx_ring->xsk_umem->chunk_mask;
nta = rx_ring->next_to_alloc;
bi = i40e_rx_bi(rx_ring, nta);
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
handle &= mask;
bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
bi->addr += hr;
bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle,
rx_ring->xsk_umem->headroom);
}
/** /**
* i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
* @rx_ring: Rx ring * @rx_ring: Rx ring
* @bi: Rx buffer
* @xdp: xdp_buff * @xdp: xdp_buff
* *
* This functions allocates a new skb from a zero-copy Rx buffer. * This functions allocates a new skb from a zero-copy Rx buffer.
...@@ -505,7 +233,6 @@ void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle) ...@@ -505,7 +233,6 @@ void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
* Returns the skb, or NULL on failure. * Returns the skb, or NULL on failure.
**/ **/
static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
struct i40e_rx_buffer_zc *bi,
struct xdp_buff *xdp) struct xdp_buff *xdp)
{ {
unsigned int metasize = xdp->data - xdp->data_meta; unsigned int metasize = xdp->data - xdp->data_meta;
...@@ -524,7 +251,7 @@ static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, ...@@ -524,7 +251,7 @@ static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
if (metasize) if (metasize)
skb_metadata_set(skb, metasize); skb_metadata_set(skb, metasize);
i40e_reuse_rx_buffer_zc(rx_ring, bi); xsk_buff_free(xdp);
return skb; return skb;
} }
...@@ -539,24 +266,19 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) ...@@ -539,24 +266,19 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
{ {
unsigned int total_rx_bytes = 0, total_rx_packets = 0; unsigned int total_rx_bytes = 0, total_rx_packets = 0;
u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
struct xdp_umem *umem = rx_ring->xsk_umem;
unsigned int xdp_res, xdp_xmit = 0; unsigned int xdp_res, xdp_xmit = 0;
bool failure = false; bool failure = false;
struct sk_buff *skb; struct sk_buff *skb;
struct xdp_buff xdp;
xdp.rxq = &rx_ring->xdp_rxq;
xdp.frame_sz = xsk_umem_xdp_frame_sz(umem);
while (likely(total_rx_packets < (unsigned int)budget)) { while (likely(total_rx_packets < (unsigned int)budget)) {
struct i40e_rx_buffer_zc *bi;
union i40e_rx_desc *rx_desc; union i40e_rx_desc *rx_desc;
struct xdp_buff **bi;
unsigned int size; unsigned int size;
u64 qword; u64 qword;
if (cleaned_count >= I40E_RX_BUFFER_WRITE) { if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
failure = failure || failure = failure ||
!i40e_alloc_rx_buffers_fast_zc(rx_ring, !i40e_alloc_rx_buffers_zc(rx_ring,
cleaned_count); cleaned_count);
cleaned_count = 0; cleaned_count = 0;
} }
...@@ -575,9 +297,10 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) ...@@ -575,9 +297,10 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
rx_desc->raw.qword[0], rx_desc->raw.qword[0],
qword); qword);
bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
i40e_inc_ntc(rx_ring); xsk_buff_free(*bi);
i40e_reuse_rx_buffer_zc(rx_ring, bi); *bi = NULL;
cleaned_count++; cleaned_count++;
i40e_inc_ntc(rx_ring);
continue; continue;
} }
...@@ -587,22 +310,18 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) ...@@ -587,22 +310,18 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
if (!size) if (!size)
break; break;
bi = i40e_get_rx_buffer_zc(rx_ring, size); bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
xdp.data = bi->addr; (*bi)->data_end = (*bi)->data + size;
xdp.data_meta = xdp.data; xsk_buff_dma_sync_for_cpu(*bi);
xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
xdp.data_end = xdp.data + size;
xdp.handle = bi->handle;
xdp_res = i40e_run_xdp_zc(rx_ring, &xdp); xdp_res = i40e_run_xdp_zc(rx_ring, *bi);
if (xdp_res) { if (xdp_res) {
if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR))
xdp_xmit |= xdp_res; xdp_xmit |= xdp_res;
bi->addr = NULL; else
} else { xsk_buff_free(*bi);
i40e_reuse_rx_buffer_zc(rx_ring, bi);
}
*bi = NULL;
total_rx_bytes += size; total_rx_bytes += size;
total_rx_packets++; total_rx_packets++;
...@@ -618,7 +337,8 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) ...@@ -618,7 +337,8 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
* BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
* SBP is *not* set in PRT_SBPVSI (default not set). * SBP is *not* set in PRT_SBPVSI (default not set).
*/ */
skb = i40e_construct_skb_zc(rx_ring, bi, &xdp); skb = i40e_construct_skb_zc(rx_ring, *bi);
*bi = NULL;
if (!skb) { if (!skb) {
rx_ring->rx_stats.alloc_buff_failed++; rx_ring->rx_stats.alloc_buff_failed++;
break; break;
...@@ -676,10 +396,9 @@ static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) ...@@ -676,10 +396,9 @@ static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
break; break;
dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr); dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma,
dma_sync_single_for_device(xdp_ring->dev, dma, desc.len, desc.len);
DMA_BIDIRECTIONAL);
tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
tx_bi->bytecount = desc.len; tx_bi->bytecount = desc.len;
...@@ -838,13 +557,13 @@ void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) ...@@ -838,13 +557,13 @@ void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
u16 i; u16 i;
for (i = 0; i < rx_ring->count; i++) { for (i = 0; i < rx_ring->count; i++) {
struct i40e_rx_buffer_zc *rx_bi = i40e_rx_bi(rx_ring, i); struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, i);
if (!rx_bi->addr) if (!rx_bi)
continue; continue;
xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle); xsk_buff_free(rx_bi);
rx_bi->addr = NULL; rx_bi = NULL;
} }
} }
......
...@@ -12,7 +12,6 @@ int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair); ...@@ -12,7 +12,6 @@ int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair);
int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair); int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair);
int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
u16 qid); u16 qid);
void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle);
bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 cleaned_count); bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 cleaned_count);
int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget); int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment