Commit 3c4b2390 authored by Salvatore Benedetto's avatar Salvatore Benedetto Committed by Herbert Xu

crypto: ecdh - Add ECDH software support

* Implement ECDH under kpp API
 * Provide ECC software support for curve P-192 and
   P-256.
 * Add kpp test for ECDH with data generated by OpenSSL
Signed-off-by: default avatarSalvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 802c7f1c
...@@ -118,6 +118,11 @@ config CRYPTO_DH ...@@ -118,6 +118,11 @@ config CRYPTO_DH
help help
Generic implementation of the Diffie-Hellman algorithm. Generic implementation of the Diffie-Hellman algorithm.
config CRYPTO_ECDH
tristate "ECDH algorithm"
select CRYTPO_KPP
help
Generic implementation of the ECDH algorithm
config CRYPTO_MANAGER config CRYPTO_MANAGER
tristate "Cryptographic algorithm manager" tristate "Cryptographic algorithm manager"
......
...@@ -35,6 +35,10 @@ obj-$(CONFIG_CRYPTO_KPP2) += kpp.o ...@@ -35,6 +35,10 @@ obj-$(CONFIG_CRYPTO_KPP2) += kpp.o
dh_generic-y := dh.o dh_generic-y := dh.o
dh_generic-y += dh_helper.o dh_generic-y += dh_helper.o
obj-$(CONFIG_CRYPTO_DH) += dh_generic.o obj-$(CONFIG_CRYPTO_DH) += dh_generic.o
ecdh_generic-y := ecc.o
ecdh_generic-y += ecdh.o
ecdh_generic-y += ecdh_helper.o
obj-$(CONFIG_CRYPTO_ECDH) += ecdh_generic.o
$(obj)/rsapubkey-asn1.o: $(obj)/rsapubkey-asn1.c $(obj)/rsapubkey-asn1.h $(obj)/rsapubkey-asn1.o: $(obj)/rsapubkey-asn1.c $(obj)/rsapubkey-asn1.h
$(obj)/rsaprivkey-asn1.o: $(obj)/rsaprivkey-asn1.c $(obj)/rsaprivkey-asn1.h $(obj)/rsaprivkey-asn1.o: $(obj)/rsaprivkey-asn1.c $(obj)/rsaprivkey-asn1.h
......
/*
* Copyright (c) 2013, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/swab.h>
#include <linux/fips.h>
#include <crypto/ecdh.h>
#include "ecc.h"
#include "ecc_curve_defs.h"
typedef struct {
u64 m_low;
u64 m_high;
} uint128_t;
static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
{
switch (curve_id) {
/* In FIPS mode only allow P256 and higher */
case ECC_CURVE_NIST_P192:
return fips_enabled ? NULL : &nist_p192;
case ECC_CURVE_NIST_P256:
return &nist_p256;
default:
return NULL;
}
}
static u64 *ecc_alloc_digits_space(unsigned int ndigits)
{
size_t len = ndigits * sizeof(u64);
if (!len)
return NULL;
return kmalloc(len, GFP_KERNEL);
}
static void ecc_free_digits_space(u64 *space)
{
kzfree(space);
}
static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
{
struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return NULL;
p->x = ecc_alloc_digits_space(ndigits);
if (!p->x)
goto err_alloc_x;
p->y = ecc_alloc_digits_space(ndigits);
if (!p->y)
goto err_alloc_y;
p->ndigits = ndigits;
return p;
err_alloc_y:
ecc_free_digits_space(p->x);
err_alloc_x:
kfree(p);
return NULL;
}
static void ecc_free_point(struct ecc_point *p)
{
if (!p)
return;
kzfree(p->x);
kzfree(p->y);
kzfree(p);
}
static void vli_clear(u64 *vli, unsigned int ndigits)
{
int i;
for (i = 0; i < ndigits; i++)
vli[i] = 0;
}
/* Returns true if vli == 0, false otherwise. */
static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
{
int i;
for (i = 0; i < ndigits; i++) {
if (vli[i])
return false;
}
return true;
}
/* Returns nonzero if bit bit of vli is set. */
static u64 vli_test_bit(const u64 *vli, unsigned int bit)
{
return (vli[bit / 64] & ((u64)1 << (bit % 64)));
}
/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
{
int i;
/* Search from the end until we find a non-zero digit.
* We do it in reverse because we expect that most digits will
* be nonzero.
*/
for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
return (i + 1);
}
/* Counts the number of bits required for vli. */
static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
{
unsigned int i, num_digits;
u64 digit;
num_digits = vli_num_digits(vli, ndigits);
if (num_digits == 0)
return 0;
digit = vli[num_digits - 1];
for (i = 0; digit; i++)
digit >>= 1;
return ((num_digits - 1) * 64 + i);
}
/* Sets dest = src. */
static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
{
int i;
for (i = 0; i < ndigits; i++)
dest[i] = src[i];
}
/* Returns sign of left - right. */
static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
{
int i;
for (i = ndigits - 1; i >= 0; i--) {
if (left[i] > right[i])
return 1;
else if (left[i] < right[i])
return -1;
}
return 0;
}
/* Computes result = in << c, returning carry. Can modify in place
* (if result == in). 0 < shift < 64.
*/
static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
unsigned int ndigits)
{
u64 carry = 0;
int i;
for (i = 0; i < ndigits; i++) {
u64 temp = in[i];
result[i] = (temp << shift) | carry;
carry = temp >> (64 - shift);
}
return carry;
}
/* Computes vli = vli >> 1. */
static void vli_rshift1(u64 *vli, unsigned int ndigits)
{
u64 *end = vli;
u64 carry = 0;
vli += ndigits;
while (vli-- > end) {
u64 temp = *vli;
*vli = (temp >> 1) | carry;
carry = temp << 63;
}
}
/* Computes result = left + right, returning carry. Can modify in place. */
static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
{
u64 carry = 0;
int i;
for (i = 0; i < ndigits; i++) {
u64 sum;
sum = left[i] + right[i] + carry;
if (sum != left[i])
carry = (sum < left[i]);
result[i] = sum;
}
return carry;
}
/* Computes result = left - right, returning borrow. Can modify in place. */
static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
{
u64 borrow = 0;
int i;
for (i = 0; i < ndigits; i++) {
u64 diff;
diff = left[i] - right[i] - borrow;
if (diff != left[i])
borrow = (diff > left[i]);
result[i] = diff;
}
return borrow;
}
static uint128_t mul_64_64(u64 left, u64 right)
{
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
u64 b1 = right >> 32;
u64 m0 = a0 * b0;
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
uint128_t result;
m2 += (m0 >> 32);
m2 += m1;
/* Overflow */
if (m2 < m1)
m3 += 0x100000000ull;
result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
result.m_high = m3 + (m2 >> 32);
return result;
}
static uint128_t add_128_128(uint128_t a, uint128_t b)
{
uint128_t result;
result.m_low = a.m_low + b.m_low;
result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
return result;
}
static void vli_mult(u64 *result, const u64 *left, const u64 *right,
unsigned int ndigits)
{
uint128_t r01 = { 0, 0 };
u64 r2 = 0;
unsigned int i, k;
/* Compute each digit of result in sequence, maintaining the
* carries.
*/
for (k = 0; k < ndigits * 2 - 1; k++) {
unsigned int min;
if (k < ndigits)
min = 0;
else
min = (k + 1) - ndigits;
for (i = min; i <= k && i < ndigits; i++) {
uint128_t product;
product = mul_64_64(left[i], right[k - i]);
r01 = add_128_128(r01, product);
r2 += (r01.m_high < product.m_high);
}
result[k] = r01.m_low;
r01.m_low = r01.m_high;
r01.m_high = r2;
r2 = 0;
}
result[ndigits * 2 - 1] = r01.m_low;
}
static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
{
uint128_t r01 = { 0, 0 };
u64 r2 = 0;
int i, k;
for (k = 0; k < ndigits * 2 - 1; k++) {
unsigned int min;
if (k < ndigits)
min = 0;
else
min = (k + 1) - ndigits;
for (i = min; i <= k && i <= k - i; i++) {
uint128_t product;
product = mul_64_64(left[i], left[k - i]);
if (i < k - i) {
r2 += product.m_high >> 63;
product.m_high = (product.m_high << 1) |
(product.m_low >> 63);
product.m_low <<= 1;
}
r01 = add_128_128(r01, product);
r2 += (r01.m_high < product.m_high);
}
result[k] = r01.m_low;
r01.m_low = r01.m_high;
r01.m_high = r2;
r2 = 0;
}
result[ndigits * 2 - 1] = r01.m_low;
}
/* Computes result = (left + right) % mod.
* Assumes that left < mod and right < mod, result != mod.
*/
static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
const u64 *mod, unsigned int ndigits)
{
u64 carry;
carry = vli_add(result, left, right, ndigits);
/* result > mod (result = mod + remainder), so subtract mod to
* get remainder.
*/
if (carry || vli_cmp(result, mod, ndigits) >= 0)
vli_sub(result, result, mod, ndigits);
}
/* Computes result = (left - right) % mod.
* Assumes that left < mod and right < mod, result != mod.
*/
static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
const u64 *mod, unsigned int ndigits)
{
u64 borrow = vli_sub(result, left, right, ndigits);
/* In this case, p_result == -diff == (max int) - diff.
* Since -x % d == d - x, we can get the correct result from
* result + mod (with overflow).
*/
if (borrow)
vli_add(result, result, mod, ndigits);
}
/* Computes p_result = p_product % curve_p.
* See algorithm 5 and 6 from
* http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
*/
static void vli_mmod_fast_192(u64 *result, const u64 *product,
const u64 *curve_prime, u64 *tmp)
{
const unsigned int ndigits = 3;
int carry;
vli_set(result, product, ndigits);
vli_set(tmp, &product[3], ndigits);
carry = vli_add(result, result, tmp, ndigits);
tmp[0] = 0;
tmp[1] = product[3];
tmp[2] = product[4];
carry += vli_add(result, result, tmp, ndigits);
tmp[0] = tmp[1] = product[5];
tmp[2] = 0;
carry += vli_add(result, result, tmp, ndigits);
while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
carry -= vli_sub(result, result, curve_prime, ndigits);
}
/* Computes result = product % curve_prime
* from http://www.nsa.gov/ia/_files/nist-routines.pdf
*/
static void vli_mmod_fast_256(u64 *result, const u64 *product,
const u64 *curve_prime, u64 *tmp)
{
int carry;
const unsigned int ndigits = 4;
/* t */
vli_set(result, product, ndigits);
/* s1 */
tmp[0] = 0;
tmp[1] = product[5] & 0xffffffff00000000ull;
tmp[2] = product[6];
tmp[3] = product[7];
carry = vli_lshift(tmp, tmp, 1, ndigits);
carry += vli_add(result, result, tmp, ndigits);
/* s2 */
tmp[1] = product[6] << 32;
tmp[2] = (product[6] >> 32) | (product[7] << 32);
tmp[3] = product[7] >> 32;
carry += vli_lshift(tmp, tmp, 1, ndigits);
carry += vli_add(result, result, tmp, ndigits);
/* s3 */
tmp[0] = product[4];
tmp[1] = product[5] & 0xffffffff;
tmp[2] = 0;
tmp[3] = product[7];
carry += vli_add(result, result, tmp, ndigits);
/* s4 */
tmp[0] = (product[4] >> 32) | (product[5] << 32);
tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
tmp[2] = product[7];
tmp[3] = (product[6] >> 32) | (product[4] << 32);
carry += vli_add(result, result, tmp, ndigits);
/* d1 */
tmp[0] = (product[5] >> 32) | (product[6] << 32);
tmp[1] = (product[6] >> 32);
tmp[2] = 0;
tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
carry -= vli_sub(result, result, tmp, ndigits);
/* d2 */
tmp[0] = product[6];
tmp[1] = product[7];
tmp[2] = 0;
tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
carry -= vli_sub(result, result, tmp, ndigits);
/* d3 */
tmp[0] = (product[6] >> 32) | (product[7] << 32);
tmp[1] = (product[7] >> 32) | (product[4] << 32);
tmp[2] = (product[4] >> 32) | (product[5] << 32);
tmp[3] = (product[6] << 32);
carry -= vli_sub(result, result, tmp, ndigits);
/* d4 */
tmp[0] = product[7];
tmp[1] = product[4] & 0xffffffff00000000ull;
tmp[2] = product[5];
tmp[3] = product[6] & 0xffffffff00000000ull;
carry -= vli_sub(result, result, tmp, ndigits);
if (carry < 0) {
do {
carry += vli_add(result, result, curve_prime, ndigits);
} while (carry < 0);
} else {
while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
carry -= vli_sub(result, result, curve_prime, ndigits);
}
}
/* Computes result = product % curve_prime
* from http://www.nsa.gov/ia/_files/nist-routines.pdf
*/
static bool vli_mmod_fast(u64 *result, u64 *product,
const u64 *curve_prime, unsigned int ndigits)
{
u64 tmp[2 * ndigits];
switch (ndigits) {
case 3:
vli_mmod_fast_192(result, product, curve_prime, tmp);
break;
case 4:
vli_mmod_fast_256(result, product, curve_prime, tmp);
break;
default:
pr_err("unsupports digits size!\n");
return false;
}
return true;
}
/* Computes result = (left * right) % curve_prime. */
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
const u64 *curve_prime, unsigned int ndigits)
{
u64 product[2 * ndigits];
vli_mult(product, left, right, ndigits);
vli_mmod_fast(result, product, curve_prime, ndigits);
}
/* Computes result = left^2 % curve_prime. */
static void vli_mod_square_fast(u64 *result, const u64 *left,
const u64 *curve_prime, unsigned int ndigits)
{
u64 product[2 * ndigits];
vli_square(product, left, ndigits);
vli_mmod_fast(result, product, curve_prime, ndigits);
}
#define EVEN(vli) (!(vli[0] & 1))
/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
* See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
* https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
*/
static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
unsigned int ndigits)
{
u64 a[ndigits], b[ndigits];
u64 u[ndigits], v[ndigits];
u64 carry;
int cmp_result;
if (vli_is_zero(input, ndigits)) {
vli_clear(result, ndigits);
return;
}
vli_set(a, input, ndigits);
vli_set(b, mod, ndigits);
vli_clear(u, ndigits);
u[0] = 1;
vli_clear(v, ndigits);
while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
carry = 0;
if (EVEN(a)) {
vli_rshift1(a, ndigits);
if (!EVEN(u))
carry = vli_add(u, u, mod, ndigits);
vli_rshift1(u, ndigits);
if (carry)
u[ndigits - 1] |= 0x8000000000000000ull;
} else if (EVEN(b)) {
vli_rshift1(b, ndigits);
if (!EVEN(v))
carry = vli_add(v, v, mod, ndigits);
vli_rshift1(v, ndigits);
if (carry)
v[ndigits - 1] |= 0x8000000000000000ull;
} else if (cmp_result > 0) {
vli_sub(a, a, b, ndigits);
vli_rshift1(a, ndigits);
if (vli_cmp(u, v, ndigits) < 0)
vli_add(u, u, mod, ndigits);
vli_sub(u, u, v, ndigits);
if (!EVEN(u))
carry = vli_add(u, u, mod, ndigits);
vli_rshift1(u, ndigits);
if (carry)
u[ndigits - 1] |= 0x8000000000000000ull;
} else {
vli_sub(b, b, a, ndigits);
vli_rshift1(b, ndigits);
if (vli_cmp(v, u, ndigits) < 0)
vli_add(v, v, mod, ndigits);
vli_sub(v, v, u, ndigits);
if (!EVEN(v))
carry = vli_add(v, v, mod, ndigits);
vli_rshift1(v, ndigits);
if (carry)
v[ndigits - 1] |= 0x8000000000000000ull;
}
}
vli_set(result, u, ndigits);
}
/* ------ Point operations ------ */
/* Returns true if p_point is the point at infinity, false otherwise. */
static bool ecc_point_is_zero(const struct ecc_point *point)
{
return (vli_is_zero(point->x, point->ndigits) &&
vli_is_zero(point->y, point->ndigits));
}
/* Point multiplication algorithm using Montgomery's ladder with co-Z
* coordinates. From http://eprint.iacr.org/2011/338.pdf
*/
/* Double in place */
static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
u64 *curve_prime, unsigned int ndigits)
{
/* t1 = x, t2 = y, t3 = z */
u64 t4[ndigits];
u64 t5[ndigits];
if (vli_is_zero(z1, ndigits))
return;
/* t4 = y1^2 */
vli_mod_square_fast(t4, y1, curve_prime, ndigits);
/* t5 = x1*y1^2 = A */
vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
/* t4 = y1^4 */
vli_mod_square_fast(t4, t4, curve_prime, ndigits);
/* t2 = y1*z1 = z3 */
vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
/* t3 = z1^2 */
vli_mod_square_fast(z1, z1, curve_prime, ndigits);
/* t1 = x1 + z1^2 */
vli_mod_add(x1, x1, z1, curve_prime, ndigits);
/* t3 = 2*z1^2 */
vli_mod_add(z1, z1, z1, curve_prime, ndigits);
/* t3 = x1 - z1^2 */
vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
/* t1 = x1^2 - z1^4 */
vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
/* t3 = 2*(x1^2 - z1^4) */
vli_mod_add(z1, x1, x1, curve_prime, ndigits);
/* t1 = 3*(x1^2 - z1^4) */
vli_mod_add(x1, x1, z1, curve_prime, ndigits);
if (vli_test_bit(x1, 0)) {
u64 carry = vli_add(x1, x1, curve_prime, ndigits);
vli_rshift1(x1, ndigits);
x1[ndigits - 1] |= carry << 63;
} else {
vli_rshift1(x1, ndigits);
}
/* t1 = 3/2*(x1^2 - z1^4) = B */
/* t3 = B^2 */
vli_mod_square_fast(z1, x1, curve_prime, ndigits);
/* t3 = B^2 - A */
vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
/* t3 = B^2 - 2A = x3 */
vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
/* t5 = A - x3 */
vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
/* t1 = B * (A - x3) */
vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
/* t4 = B * (A - x3) - y1^4 = y3 */
vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
vli_set(x1, z1, ndigits);
vli_set(z1, y1, ndigits);
vli_set(y1, t4, ndigits);
}
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
unsigned int ndigits)
{
u64 t1[ndigits];
vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */
vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */
vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
u64 *p_initial_z, u64 *curve_prime,
unsigned int ndigits)
{
u64 z[ndigits];
vli_set(x2, x1, ndigits);
vli_set(y2, y1, ndigits);
vli_clear(z, ndigits);
z[0] = 1;
if (p_initial_z)
vli_set(z, p_initial_z, ndigits);
apply_z(x1, y1, z, curve_prime, ndigits);
ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
apply_z(x2, y2, z, curve_prime, ndigits);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
* Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
* or P => P', Q => P + Q
*/
static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
unsigned int ndigits)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5[ndigits];
/* t5 = x2 - x1 */
vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
/* t5 = (x2 - x1)^2 = A */
vli_mod_square_fast(t5, t5, curve_prime, ndigits);
/* t1 = x1*A = B */
vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
/* t3 = x2*A = C */
vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
/* t4 = y2 - y1 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
/* t5 = (y2 - y1)^2 = D */
vli_mod_square_fast(t5, y2, curve_prime, ndigits);
/* t5 = D - B */
vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
/* t5 = D - B - C = x3 */
vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
/* t3 = C - B */
vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
/* t2 = y1*(C - B) */
vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
/* t3 = B - x3 */
vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
/* t4 = (y2 - y1)*(B - x3) */
vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
/* t4 = y3 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
vli_set(x2, t5, ndigits);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
* Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
* or P => P - Q, Q => P + Q
*/
static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
unsigned int ndigits)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5[ndigits];
u64 t6[ndigits];
u64 t7[ndigits];
/* t5 = x2 - x1 */
vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
/* t5 = (x2 - x1)^2 = A */
vli_mod_square_fast(t5, t5, curve_prime, ndigits);
/* t1 = x1*A = B */
vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
/* t3 = x2*A = C */
vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
/* t4 = y2 + y1 */
vli_mod_add(t5, y2, y1, curve_prime, ndigits);
/* t4 = y2 - y1 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
/* t6 = C - B */
vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
/* t2 = y1 * (C - B) */
vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
/* t6 = B + C */
vli_mod_add(t6, x1, x2, curve_prime, ndigits);
/* t3 = (y2 - y1)^2 */
vli_mod_square_fast(x2, y2, curve_prime, ndigits);
/* t3 = x3 */
vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
/* t7 = B - x3 */
vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
/* t4 = (y2 - y1)*(B - x3) */
vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
/* t4 = y3 */
vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
/* t7 = (y2 + y1)^2 = F */
vli_mod_square_fast(t7, t5, curve_prime, ndigits);
/* t7 = x3' */
vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
/* t6 = x3' - B */
vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
/* t6 = (y2 + y1)*(x3' - B) */
vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
/* t2 = y3' */
vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
vli_set(x1, t7, ndigits);
}
static void ecc_point_mult(struct ecc_point *result,
const struct ecc_point *point, const u64 *scalar,
u64 *initial_z, u64 *curve_prime,
unsigned int ndigits)
{
/* R0 and R1 */
u64 rx[2][ndigits];
u64 ry[2][ndigits];
u64 z[ndigits];
int i, nb;
int num_bits = vli_num_bits(scalar, ndigits);
vli_set(rx[1], point->x, ndigits);
vli_set(ry[1], point->y, ndigits);
xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
ndigits);
for (i = num_bits - 2; i > 0; i--) {
nb = !vli_test_bit(scalar, i);
xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
ndigits);
xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
ndigits);
}
nb = !vli_test_bit(scalar, 0);
xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
ndigits);
/* Find final 1/Z value. */
/* X1 - X0 */
vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
/* Yb * (X1 - X0) */
vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
/* xP * Yb * (X1 - X0) */
vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
/* 1 / (xP * Yb * (X1 - X0)) */
vli_mod_inv(z, z, curve_prime, point->ndigits);
/* yP / (xP * Yb * (X1 - X0)) */
vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
/* Xb * yP / (xP * Yb * (X1 - X0)) */
vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
/* End 1/Z calculation */
xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
apply_z(rx[0], ry[0], z, curve_prime, ndigits);
vli_set(result->x, rx[0], ndigits);
vli_set(result->y, ry[0], ndigits);
}
static inline void ecc_swap_digits(const u64 *in, u64 *out,
unsigned int ndigits)
{
int i;
for (i = 0; i < ndigits; i++)
out[i] = __swab64(in[ndigits - 1 - i]);
}
int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len)
{
int nbytes;
const struct ecc_curve *curve = ecc_get_curve(curve_id);
if (!private_key)
return -EINVAL;
nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
if (private_key_len != nbytes)
return -EINVAL;
if (vli_is_zero((const u64 *)&private_key[0], ndigits))
return -EINVAL;
/* Make sure the private key is in the range [1, n-1]. */
if (vli_cmp(curve->n, (const u64 *)&private_key[0], ndigits) != 1)
return -EINVAL;
return 0;
}
int ecdh_make_pub_key(unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len,
u8 *public_key, unsigned int public_key_len)
{
int ret = 0;
struct ecc_point *pk;
u64 priv[ndigits];
unsigned int nbytes;
const struct ecc_curve *curve = ecc_get_curve(curve_id);
if (!private_key || !curve) {
ret = -EINVAL;
goto out;
}
ecc_swap_digits((const u64 *)private_key, priv, ndigits);
pk = ecc_alloc_point(ndigits);
if (!pk) {
ret = -ENOMEM;
goto out;
}
ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits);
if (ecc_point_is_zero(pk)) {
ret = -EAGAIN;
goto err_free_point;
}
nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
ecc_swap_digits(pk->x, (u64 *)public_key, ndigits);
ecc_swap_digits(pk->y, (u64 *)&public_key[nbytes], ndigits);
err_free_point:
ecc_free_point(pk);
out:
return ret;
}
int ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len,
const u8 *public_key, unsigned int public_key_len,
u8 *secret, unsigned int secret_len)
{
int ret = 0;
struct ecc_point *product, *pk;
u64 priv[ndigits];
u64 rand_z[ndigits];
unsigned int nbytes;
const struct ecc_curve *curve = ecc_get_curve(curve_id);
if (!private_key || !public_key || !curve) {
ret = -EINVAL;
goto out;
}
nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
get_random_bytes(rand_z, nbytes);
pk = ecc_alloc_point(ndigits);
if (!pk) {
ret = -ENOMEM;
goto out;
}
product = ecc_alloc_point(ndigits);
if (!product) {
ret = -ENOMEM;
goto err_alloc_product;
}
ecc_swap_digits((const u64 *)public_key, pk->x, ndigits);
ecc_swap_digits((const u64 *)&public_key[nbytes], pk->y, ndigits);
ecc_swap_digits((const u64 *)private_key, priv, ndigits);
ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits);
ecc_swap_digits(product->x, (u64 *)secret, ndigits);
if (ecc_point_is_zero(product))
ret = -EFAULT;
ecc_free_point(product);
err_alloc_product:
ecc_free_point(pk);
out:
return ret;
}
/*
* Copyright (c) 2013, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _CRYPTO_ECC_H
#define _CRYPTO_ECC_H
#define ECC_MAX_DIGITS 4 /* 256 */
#define ECC_DIGITS_TO_BYTES_SHIFT 3
/**
* ecc_is_key_valid() - Validate a given ECDH private key
*
* @curve_id: id representing the curve to use
* @ndigits: curve number of digits
* @private_key: private key to be used for the given curve
* @private_key_len: private key len
*
* Returns 0 if the key is acceptable, a negative value otherwise
*/
int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len);
/**
* ecdh_make_pub_key() - Compute an ECC public key
*
* @curve_id: id representing the curve to use
* @private_key: pregenerated private key for the given curve
* @private_key_len: length of private_key
* @public_key: buffer for storing the public key generated
* @public_key_len: length of the public_key buffer
*
* Returns 0 if the public key was generated successfully, a negative value
* if an error occurred.
*/
int ecdh_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len,
u8 *public_key, unsigned int public_key_len);
/**
* ecdh_shared_secret() - Compute a shared secret
*
* @curve_id: id representing the curve to use
* @private_key: private key of part A
* @private_key_len: length of private_key
* @public_key: public key of counterpart B
* @public_key_len: length of public_key
* @secret: buffer for storing the calculated shared secret
* @secret_len: length of the secret buffer
*
* Note: It is recommended that you hash the result of ecdh_shared_secret
* before using it for symmetric encryption or HMAC.
*
* Returns 0 if the shared secret was generated successfully, a negative value
* if an error occurred.
*/
int ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
const u8 *private_key, unsigned int private_key_len,
const u8 *public_key, unsigned int public_key_len,
u8 *secret, unsigned int secret_len);
#endif
#ifndef _CRYTO_ECC_CURVE_DEFS_H
#define _CRYTO_ECC_CURVE_DEFS_H
struct ecc_point {
u64 *x;
u64 *y;
u8 ndigits;
};
struct ecc_curve {
char *name;
struct ecc_point g;
u64 *p;
u64 *n;
};
/* NIST P-192 */
static u64 nist_p192_g_x[] = { 0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull,
0x188DA80EB03090F6ull };
static u64 nist_p192_g_y[] = { 0x73F977A11E794811ull, 0x631011ED6B24CDD5ull,
0x07192B95FFC8DA78ull };
static u64 nist_p192_p[] = { 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull,
0xFFFFFFFFFFFFFFFFull };
static u64 nist_p192_n[] = { 0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull,
0xFFFFFFFFFFFFFFFFull };
static struct ecc_curve nist_p192 = {
.name = "nist_192",
.g = {
.x = nist_p192_g_x,
.y = nist_p192_g_y,
.ndigits = 3,
},
.p = nist_p192_p,
.n = nist_p192_n
};
/* NIST P-256 */
static u64 nist_p256_g_x[] = { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull,
0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull };
static u64 nist_p256_g_y[] = { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull,
0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull };
static u64 nist_p256_p[] = { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull,
0x0000000000000000ull, 0xFFFFFFFF00000001ull };
static u64 nist_p256_n[] = { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull,
0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull };
static struct ecc_curve nist_p256 = {
.name = "nist_256",
.g = {
.x = nist_p256_g_x,
.y = nist_p256_g_y,
.ndigits = 4,
},
.p = nist_p256_p,
.n = nist_p256_n
};
#endif
/* ECDH key-agreement protocol
*
* Copyright (c) 2016, Intel Corporation
* Authors: Salvator Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/module.h>
#include <crypto/internal/kpp.h>
#include <crypto/kpp.h>
#include <crypto/ecdh.h>
#include <linux/scatterlist.h>
#include "ecc.h"
struct ecdh_ctx {
unsigned int curve_id;
unsigned int ndigits;
u64 private_key[ECC_MAX_DIGITS];
u64 public_key[2 * ECC_MAX_DIGITS];
u64 shared_secret[ECC_MAX_DIGITS];
};
static inline struct ecdh_ctx *ecdh_get_ctx(struct crypto_kpp *tfm)
{
return kpp_tfm_ctx(tfm);
}
static unsigned int ecdh_supported_curve(unsigned int curve_id)
{
switch (curve_id) {
case ECC_CURVE_NIST_P192: return 3;
case ECC_CURVE_NIST_P256: return 4;
default: return 0;
}
}
static int ecdh_set_secret(struct crypto_kpp *tfm, void *buf, unsigned int len)
{
struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
struct ecdh params;
unsigned int ndigits;
if (crypto_ecdh_decode_key(buf, len, &params) < 0)
return -EINVAL;
ndigits = ecdh_supported_curve(params.curve_id);
if (!ndigits)
return -EINVAL;
ctx->curve_id = params.curve_id;
ctx->ndigits = ndigits;
if (ecc_is_key_valid(ctx->curve_id, ctx->ndigits,
(const u8 *)params.key, params.key_size) < 0)
return -EINVAL;
memcpy(ctx->private_key, params.key, params.key_size);
return 0;
}
static int ecdh_compute_value(struct kpp_request *req)
{
int ret = 0;
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
size_t copied, nbytes;
void *buf;
nbytes = ctx->ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
if (req->src) {
copied = sg_copy_to_buffer(req->src, 1, ctx->public_key,
2 * nbytes);
if (copied != 2 * nbytes)
return -EINVAL;
ret = ecdh_shared_secret(ctx->curve_id, ctx->ndigits,
(const u8 *)ctx->private_key, nbytes,
(const u8 *)ctx->public_key, 2 * nbytes,
(u8 *)ctx->shared_secret, nbytes);
buf = ctx->shared_secret;
} else {
ret = ecdh_make_pub_key(ctx->curve_id, ctx->ndigits,
(const u8 *)ctx->private_key, nbytes,
(u8 *)ctx->public_key,
sizeof(ctx->public_key));
buf = ctx->public_key;
/* Public part is a point thus it has both coordinates */
nbytes *= 2;
}
if (ret < 0)
return ret;
copied = sg_copy_from_buffer(req->dst, 1, buf, nbytes);
if (copied != nbytes)
return -EINVAL;
return ret;
}
static int ecdh_max_size(struct crypto_kpp *tfm)
{
struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
int nbytes = ctx->ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
/* Public key is made of two coordinates */
return 2 * nbytes;
}
static void no_exit_tfm(struct crypto_kpp *tfm)
{
return;
}
static struct kpp_alg ecdh = {
.set_secret = ecdh_set_secret,
.generate_public_key = ecdh_compute_value,
.compute_shared_secret = ecdh_compute_value,
.max_size = ecdh_max_size,
.exit = no_exit_tfm,
.base = {
.cra_name = "ecdh",
.cra_driver_name = "ecdh-generic",
.cra_priority = 100,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct ecdh_ctx),
},
};
static int ecdh_init(void)
{
return crypto_register_kpp(&ecdh);
}
static void ecdh_exit(void)
{
crypto_unregister_kpp(&ecdh);
}
module_init(ecdh_init);
module_exit(ecdh_exit);
MODULE_ALIAS_CRYPTO("ecdh");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ECDH generic algorithm");
/*
* Copyright (c) 2016, Intel Corporation
* Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/string.h>
#include <crypto/ecdh.h>
#include <crypto/kpp.h>
#define ECDH_KPP_SECRET_MIN_SIZE (sizeof(struct kpp_secret) + 2 * sizeof(short))
static inline u8 *ecdh_pack_data(void *dst, const void *src, size_t sz)
{
memcpy(dst, src, sz);
return dst + sz;
}
static inline const u8 *ecdh_unpack_data(void *dst, const void *src, size_t sz)
{
memcpy(dst, src, sz);
return src + sz;
}
int crypto_ecdh_key_len(const struct ecdh *params)
{
return ECDH_KPP_SECRET_MIN_SIZE + params->key_size;
}
EXPORT_SYMBOL_GPL(crypto_ecdh_key_len);
int crypto_ecdh_encode_key(char *buf, unsigned int len,
const struct ecdh *params)
{
u8 *ptr = buf;
struct kpp_secret secret = {
.type = CRYPTO_KPP_SECRET_TYPE_ECDH,
.len = len
};
if (unlikely(!buf))
return -EINVAL;
if (len != crypto_ecdh_key_len(params))
return -EINVAL;
ptr = ecdh_pack_data(ptr, &secret, sizeof(secret));
ptr = ecdh_pack_data(ptr, &params->curve_id, sizeof(params->curve_id));
ptr = ecdh_pack_data(ptr, &params->key_size, sizeof(params->key_size));
ecdh_pack_data(ptr, params->key, params->key_size);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_ecdh_encode_key);
int crypto_ecdh_decode_key(const char *buf, unsigned int len,
struct ecdh *params)
{
const u8 *ptr = buf;
struct kpp_secret secret;
if (unlikely(!buf || len < ECDH_KPP_SECRET_MIN_SIZE))
return -EINVAL;
ptr = ecdh_unpack_data(&secret, ptr, sizeof(secret));
if (secret.type != CRYPTO_KPP_SECRET_TYPE_ECDH)
return -EINVAL;
ptr = ecdh_unpack_data(&params->curve_id, ptr, sizeof(params->curve_id));
ptr = ecdh_unpack_data(&params->key_size, ptr, sizeof(params->key_size));
if (secret.len != crypto_ecdh_key_len(params))
return -EINVAL;
/* Don't allocate memory. Set pointer to data
* within the given buffer
*/
params->key = (void *)ptr;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_ecdh_decode_key);
...@@ -3300,6 +3300,16 @@ static const struct alg_test_desc alg_test_descs[] = { ...@@ -3300,6 +3300,16 @@ static const struct alg_test_desc alg_test_descs[] = {
} }
} }
} }
}, {
.alg = "ecdh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = {
.vecs = ecdh_tv_template,
.count = ECDH_TEST_VECTORS
}
}
}, { }, {
.alg = "gcm(aes)", .alg = "gcm(aes)",
.test = alg_test_aead, .test = alg_test_aead,
......
...@@ -560,6 +560,99 @@ struct kpp_testvec dh_tv_template[] = { ...@@ -560,6 +560,99 @@ struct kpp_testvec dh_tv_template[] = {
} }
}; };
#ifdef CONFIG_CRYPTO_FIPS
#define ECDH_TEST_VECTORS 1
#else
#define ECDH_TEST_VECTORS 2
#endif
struct kpp_testvec ecdh_tv_template[] = {
{
#ifndef CONFIG_CRYPTO_FIPS
.secret =
#ifdef __LITTLE_ENDIAN
"\x02\x00" /* type */
"\x20\x00" /* len */
"\x01\x00" /* curve_id */
"\x18\x00" /* key_size */
#else
"\x00\x02" /* type */
"\x00\x20" /* len */
"\x00\x01" /* curve_id */
"\x00\x18" /* key_size */
#endif
"\xb5\x05\xb1\x71\x1e\xbf\x8c\xda"
"\x4e\x19\x1e\x62\x1f\x23\x23\x31"
"\x36\x1e\xd3\x84\x2f\xcc\x21\x72",
.b_public =
"\xc3\xba\x67\x4b\x71\xec\xd0\x76"
"\x7a\x99\x75\x64\x36\x13\x9a\x94"
"\x5d\x8b\xdc\x60\x90\x91\xfd\x3f"
"\xb0\x1f\x8a\x0a\x68\xc6\x88\x6e"
"\x83\x87\xdd\x67\x09\xf8\x8d\x96"
"\x07\xd6\xbd\x1c\xe6\x8d\x9d\x67",
.expected_a_public =
"\x1a\x04\xdb\xa5\xe1\xdd\x4e\x79"
"\xa3\xe6\xef\x0e\x5c\x80\x49\x85"
"\xfa\x78\xb4\xef\x49\xbd\x4c\x7c"
"\x22\x90\x21\x02\xf9\x1b\x81\x5d"
"\x0c\x8a\xa8\x98\xd6\x27\x69\x88"
"\x5e\xbc\x94\xd8\x15\x9e\x21\xce",
.expected_ss =
"\xf4\x57\xcc\x4f\x1f\x4e\x31\xcc"
"\xe3\x40\x60\xc8\x06\x93\xc6\x2e"
"\x99\x80\x81\x28\xaf\xc5\x51\x74",
.secret_size = 32,
.b_public_size = 48,
.expected_a_public_size = 48,
.expected_ss_size = 24
}, {
#endif
.secret =
#ifdef __LITTLE_ENDIAN
"\x02\x00" /* type */
"\x28\x00" /* len */
"\x02\x00" /* curve_id */
"\x20\x00" /* key_size */
#else
"\x00\x02" /* type */
"\x00\x28" /* len */
"\x00\x02" /* curve_id */
"\x00\x20" /* key_size */
#endif
"\x24\xd1\x21\xeb\xe5\xcf\x2d\x83"
"\xf6\x62\x1b\x6e\x43\x84\x3a\xa3"
"\x8b\xe0\x86\xc3\x20\x19\xda\x92"
"\x50\x53\x03\xe1\xc0\xea\xb8\x82",
.expected_a_public =
"\x1a\x7f\xeb\x52\x00\xbd\x3c\x31"
"\x7d\xb6\x70\xc1\x86\xa6\xc7\xc4"
"\x3b\xc5\x5f\x6c\x6f\x58\x3c\xf5"
"\xb6\x63\x82\x77\x33\x24\xa1\x5f"
"\x6a\xca\x43\x6f\xf7\x7e\xff\x02"
"\x37\x08\xcc\x40\x5e\x7a\xfd\x6a"
"\x6a\x02\x6e\x41\x87\x68\x38\x77"
"\xfa\xa9\x44\x43\x2d\xef\x09\xdf",
.expected_ss =
"\xea\x17\x6f\x7e\x6e\x57\x26\x38"
"\x8b\xfb\x41\xeb\xba\xc8\x6d\xa5"
"\xa8\x72\xd1\xff\xc9\x47\x3d\xaa"
"\x58\x43\x9f\x34\x0f\x8c\xf3\xc9",
.b_public =
"\xcc\xb4\xda\x74\xb1\x47\x3f\xea"
"\x6c\x70\x9e\x38\x2d\xc7\xaa\xb7"
"\x29\xb2\x47\x03\x19\xab\xdd\x34"
"\xbd\xa8\x2c\x93\xe1\xa4\x74\xd9"
"\x64\x63\xf7\x70\x20\x2f\xa4\xe6"
"\x9f\x4a\x38\xcc\xc0\x2c\x49\x2f"
"\xb1\x32\xbb\xaf\x22\x61\xda\xcb"
"\x6f\xdb\xa9\xaa\xfc\x77\x81\xf3",
.secret_size = 40,
.b_public_size = 64,
.expected_a_public_size = 64,
.expected_ss_size = 32
}
};
/* /*
* MD4 test vectors from RFC1320 * MD4 test vectors from RFC1320
*/ */
/*
* ECDH params to be used with kpp API
*
* Copyright (c) 2016, Intel Corporation
* Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#ifndef _CRYPTO_ECDH_
#define _CRYPTO_ECDH_
/* Curves IDs */
#define ECC_CURVE_NIST_P192 0x0001
#define ECC_CURVE_NIST_P256 0x0002
struct ecdh {
unsigned short curve_id;
char *key;
unsigned short key_size;
};
int crypto_ecdh_key_len(const struct ecdh *params);
int crypto_ecdh_encode_key(char *buf, unsigned int len, const struct ecdh *p);
int crypto_ecdh_decode_key(const char *buf, unsigned int len, struct ecdh *p);
#endif
...@@ -243,6 +243,7 @@ static inline void kpp_request_set_output(struct kpp_request *req, ...@@ -243,6 +243,7 @@ static inline void kpp_request_set_output(struct kpp_request *req,
enum { enum {
CRYPTO_KPP_SECRET_TYPE_UNKNOWN, CRYPTO_KPP_SECRET_TYPE_UNKNOWN,
CRYPTO_KPP_SECRET_TYPE_DH, CRYPTO_KPP_SECRET_TYPE_DH,
CRYPTO_KPP_SECRET_TYPE_ECDH,
}; };
/** /**
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment