Commit 3d4864b3 authored by David S. Miller's avatar David S. Miller

Merge branch 'octeontx2-pf-Add-network-driver-for-physical-function'

Sunil Goutham says:

====================
octeontx2-pf: Add network driver for physical function

OcteonTX2 SOC's resource virtualization unit (RVU) supports
multiple physical and virtual functions. Each of the PF's
functionality is determined by what kind of resources are attached
to it. If NPA and NIX blocks are attached to a PF it can function
as a highly capable network device.

This patch series add a network driver for the PF. Initial set of
patches adds mailbox communication with admin function (RVU AF)
and configuration of queues. Followed by Rx and tx pkts NAPI
handler and then support for HW offloads like RSS, TSO, Rxhash etc.
Ethtool support to extract stats, config RSS, queue sizes, queue
count is also added.

Added documentation to give a high level overview of HW and
different drivers which will be upstreamed and how they interact.

Changes from v5:
   * Fixed otx2_atomic64_add() non ARM64 fallback definition.
     - Suggested by David Miller

Changes from v4:
   * Replaced pci_set_dma_mask and pci_set_consistent_dma_mask
     fn()s with dma_set_mask_and_coherent().
   * Some additonal code cleanup.
   * Fixed receive buffer segmnetation logic in otx2_alloc_rbuf()
   * Removed all unused BIG_ENDIAN structure definitions.
   * Removed unnecessary memory barriers
     - Sugested by Jakub Kicinski
   * Fixed mailbox initalization failure handling
   * Removed unused function parameter in otx2_skb_add_frag()
     - Suggested by Maciej Fijalkowski

Changes from v3:
   * Fixed receive side scaling reinitialization during interface
     DOWN and UP to retain user configured settings, if any.
   * Removed driver version from ethtool.
   * Fixed otx2_set_rss_hash_opts() to return error incase RSS is
     not enabled.
     - Sugested by Jakub Kicinski

Changes from v2:
   * Removed frames, bytes, dropped packet stats from ethtool to avoid
     duplication of same stats in netlink and ethtool.
     - Sugested by Jakub Kicinski
   * Removed number of channels and ringparam upper bound checking
     in ethtool support.
   * Fixed RSS hash option setting to reject unsupported config.
     - Suggested by Michal Kubecek

Changes from v1:
   * Made driver dependent on 64bit, to fix build errors related to
     non availability of writeq/readq APIs for 32bit platforms.
     - Reported by kbuild test robot
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 9e0703a2 688b3e82
...@@ -22,6 +22,7 @@ Contents: ...@@ -22,6 +22,7 @@ Contents:
intel/iavf intel/iavf
intel/ice intel/ice
google/gve google/gve
marvell/octeontx2
mellanox/mlx5 mellanox/mlx5
netronome/nfp netronome/nfp
pensando/ionic pensando/ionic
......
.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
====================================
Marvell OcteonTx2 RVU Kernel Drivers
====================================
Copyright (c) 2020 Marvell International Ltd.
Contents
========
- `Overview`_
- `Drivers`_
- `Basic packet flow`_
Overview
========
Resource virtualization unit (RVU) on Marvell's OcteonTX2 SOC maps HW
resources from the network, crypto and other functional blocks into
PCI-compatible physical and virtual functions. Each functional block
again has multiple local functions (LFs) for provisioning to PCI devices.
RVU supports multiple PCIe SRIOV physical functions (PFs) and virtual
functions (VFs). PF0 is called the administrative / admin function (AF)
and has privileges to provision RVU functional block's LFs to each of the
PF/VF.
RVU managed networking functional blocks
- Network pool or buffer allocator (NPA)
- Network interface controller (NIX)
- Network parser CAM (NPC)
- Schedule/Synchronize/Order unit (SSO)
- Loopback interface (LBK)
RVU managed non-networking functional blocks
- Crypto accelerator (CPT)
- Scheduled timers unit (TIM)
- Schedule/Synchronize/Order unit (SSO)
Used for both networking and non networking usecases
Resource provisioning examples
- A PF/VF with NIX-LF & NPA-LF resources works as a pure network device
- A PF/VF with CPT-LF resource works as a pure crypto offload device.
RVU functional blocks are highly configurable as per software requirements.
Firmware setups following stuff before kernel boots
- Enables required number of RVU PFs based on number of physical links.
- Number of VFs per PF are either static or configurable at compile time.
Based on config, firmware assigns VFs to each of the PFs.
- Also assigns MSIX vectors to each of PF and VFs.
- These are not changed after kernel boot.
Drivers
=======
Linux kernel will have multiple drivers registering to different PF and VFs
of RVU. Wrt networking there will be 3 flavours of drivers.
Admin Function driver
---------------------
As mentioned above RVU PF0 is called the admin function (AF), this driver
supports resource provisioning and configuration of functional blocks.
Doesn't handle any I/O. It sets up few basic stuff but most of the
funcionality is achieved via configuration requests from PFs and VFs.
PF/VFs communicates with AF via a shared memory region (mailbox). Upon
receiving requests AF does resource provisioning and other HW configuration.
AF is always attached to host kernel, but PFs and their VFs may be used by host
kernel itself, or attached to VMs or to userspace applications like
DPDK etc. So AF has to handle provisioning/configuration requests sent
by any device from any domain.
AF driver also interacts with underlying firmware to
- Manage physical ethernet links ie CGX LMACs.
- Retrieve information like speed, duplex, autoneg etc
- Retrieve PHY EEPROM and stats.
- Configure FEC, PAM modes
- etc
From pure networking side AF driver supports following functionality.
- Map a physical link to a RVU PF to which a netdev is registered.
- Attach NIX and NPA block LFs to RVU PF/VF which provide buffer pools, RQs, SQs
for regular networking functionality.
- Flow control (pause frames) enable/disable/config.
- HW PTP timestamping related config.
- NPC parser profile config, basically how to parse pkt and what info to extract.
- NPC extract profile config, what to extract from the pkt to match data in MCAM entries.
- Manage NPC MCAM entries, upon request can frame and install requested packet forwarding rules.
- Defines receive side scaling (RSS) algorithms.
- Defines segmentation offload algorithms (eg TSO)
- VLAN stripping, capture and insertion config.
- SSO and TIM blocks config which provide packet scheduling support.
- Debugfs support, to check current resource provising, current status of
NPA pools, NIX RQ, SQ and CQs, various stats etc which helps in debugging issues.
- And many more.
Physical Function driver
------------------------
This RVU PF handles IO, is mapped to a physical ethernet link and this
driver registers a netdev. This supports SR-IOV. As said above this driver
communicates with AF with a mailbox. To retrieve information from physical
links this driver talks to AF and AF gets that info from firmware and responds
back ie cannot talk to firmware directly.
Supports ethtool for configuring links, RSS, queue count, queue size,
flow control, ntuple filters, dump PHY EEPROM, config FEC etc.
Virtual Function driver
-----------------------
There are two types VFs, VFs that share the physical link with their parent
SR-IOV PF and the VFs which work in pairs using internal HW loopback channels (LBK).
Type1:
- These VFs and their parent PF share a physical link and used for outside communication.
- VFs cannot communicate with AF directly, they send mbox message to PF and PF
forwards that to AF. AF after processing, responds back to PF and PF forwards
the reply to VF.
- From functionality point of view there is no difference between PF and VF as same type
HW resources are attached to both. But user would be able to configure few stuff only
from PF as PF is treated as owner/admin of the link.
Type2:
- RVU PF0 ie admin function creates these VFs and maps them to loopback block's channels.
- A set of two VFs (VF0 & VF1, VF2 & VF3 .. so on) works as a pair ie pkts sent out of
VF0 will be received by VF1 and viceversa.
- These VFs can be used by applications or virtual machines to communicate between them
without sending traffic outside. There is no switch present in HW, hence the support
for loopback VFs.
- These communicate directly with AF (PF0) via mbox.
Except for the IO channels or links used for packet reception and transmission there is
no other difference between these VF types. AF driver takes care of IO channel mapping,
hence same VF driver works for both types of devices.
Basic packet flow
=================
Ingress
-------
1. CGX LMAC receives packet.
2. Forwards the packet to the NIX block.
3. Then submitted to NPC block for parsing and then MCAM lookup to get the destination RVU device.
4. NIX LF attached to the destination RVU device allocates a buffer from RQ mapped buffer pool of NPA block LF.
5. RQ may be selected by RSS or by configuring MCAM rule with a RQ number.
6. Packet is DMA'ed and driver is notified.
Egress
------
1. Driver prepares a send descriptor and submits to SQ for transmission.
2. The SQ is already configured (by AF) to transmit on a specific link/channel.
3. The SQ descriptor ring is maintained in buffers allocated from SQ mapped pool of NPA block LF.
4. NIX block transmits the pkt on the designated channel.
5. NPC MCAM entries can be installed to divert pkt onto a different channel.
...@@ -10000,6 +10000,16 @@ M: Jerin Jacob <jerinj@marvell.com> ...@@ -10000,6 +10000,16 @@ M: Jerin Jacob <jerinj@marvell.com>
L: netdev@vger.kernel.org L: netdev@vger.kernel.org
S: Supported S: Supported
F: drivers/net/ethernet/marvell/octeontx2/af/ F: drivers/net/ethernet/marvell/octeontx2/af/
F: Documentation/networking/device_drivers/marvell/octeontx2.rst
MARVELL OCTEONTX2 PHYSICAL FUNCTION DRIVER
M: Sunil Goutham <sgoutham@marvell.com>
M: Geetha sowjanya <gakula@marvell.com>
M: Subbaraya Sundeep <sbhatta@marvell.com>
M: hariprasad <hkelam@marvell.com>
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/marvell/octeontx2/nic/
MATROX FRAMEBUFFER DRIVER MATROX FRAMEBUFFER DRIVER
L: linux-fbdev@vger.kernel.org L: linux-fbdev@vger.kernel.org
......
...@@ -25,3 +25,11 @@ config NDC_DIS_DYNAMIC_CACHING ...@@ -25,3 +25,11 @@ config NDC_DIS_DYNAMIC_CACHING
This config option disables caching of dynamic entries such as NIX SQEs This config option disables caching of dynamic entries such as NIX SQEs
, NPA stack pages etc in NDC. Also locks down NIX SQ/CQ/RQ/RSS and , NPA stack pages etc in NDC. Also locks down NIX SQ/CQ/RQ/RSS and
NPA Aura/Pool contexts. NPA Aura/Pool contexts.
config OCTEONTX2_PF
tristate "Marvell OcteonTX2 NIC Physical Function driver"
select OCTEONTX2_MBOX
depends on (64BIT && COMPILE_TEST) || ARM64
depends on PCI
help
This driver supports Marvell's OcteonTX2 NIC physical function.
...@@ -3,4 +3,6 @@ ...@@ -3,4 +3,6 @@
# Makefile for Marvell OcteonTX2 device drivers. # Makefile for Marvell OcteonTX2 device drivers.
# #
obj-$(CONFIG_OCTEONTX2_MBOX) += af/
obj-$(CONFIG_OCTEONTX2_AF) += af/ obj-$(CONFIG_OCTEONTX2_AF) += af/
obj-$(CONFIG_OCTEONTX2_PF) += nic/
...@@ -143,8 +143,13 @@ enum nix_scheduler { ...@@ -143,8 +143,13 @@ enum nix_scheduler {
NIX_TXSCH_LVL_CNT = 0x5, NIX_TXSCH_LVL_CNT = 0x5,
}; };
#define TXSCH_TL1_DFLT_RR_QTM ((1 << 24) - 1) #define TXSCH_RR_QTM_MAX ((1 << 24) - 1)
#define TXSCH_TL1_DFLT_RR_QTM TXSCH_RR_QTM_MAX
#define TXSCH_TL1_DFLT_RR_PRIO (0x1ull) #define TXSCH_TL1_DFLT_RR_PRIO (0x1ull)
#define MAX_SCHED_WEIGHT 0xFF
#define DFLT_RR_WEIGHT 71
#define DFLT_RR_QTM ((DFLT_RR_WEIGHT * TXSCH_RR_QTM_MAX) \
/ MAX_SCHED_WEIGHT)
/* Min/Max packet sizes, excluding FCS */ /* Min/Max packet sizes, excluding FCS */
#define NIC_HW_MIN_FRS 40 #define NIC_HW_MIN_FRS 40
......
...@@ -210,7 +210,8 @@ M(NIX_SET_RX_CFG, 0x8010, nix_set_rx_cfg, nix_rx_cfg, msg_rsp) \ ...@@ -210,7 +210,8 @@ M(NIX_SET_RX_CFG, 0x8010, nix_set_rx_cfg, nix_rx_cfg, msg_rsp) \
M(NIX_LSO_FORMAT_CFG, 0x8011, nix_lso_format_cfg, \ M(NIX_LSO_FORMAT_CFG, 0x8011, nix_lso_format_cfg, \
nix_lso_format_cfg, \ nix_lso_format_cfg, \
nix_lso_format_cfg_rsp) \ nix_lso_format_cfg_rsp) \
M(NIX_RXVLAN_ALLOC, 0x8012, nix_rxvlan_alloc, msg_req, msg_rsp) M(NIX_RXVLAN_ALLOC, 0x8012, nix_rxvlan_alloc, msg_req, msg_rsp) \
M(NIX_GET_MAC_ADDR, 0x8018, nix_get_mac_addr, msg_req, nix_get_mac_addr_rsp) \
/* Messages initiated by AF (range 0xC00 - 0xDFF) */ /* Messages initiated by AF (range 0xC00 - 0xDFF) */
#define MBOX_UP_CGX_MESSAGES \ #define MBOX_UP_CGX_MESSAGES \
...@@ -618,6 +619,11 @@ struct nix_set_mac_addr { ...@@ -618,6 +619,11 @@ struct nix_set_mac_addr {
u8 mac_addr[ETH_ALEN]; /* MAC address to be set for this pcifunc */ u8 mac_addr[ETH_ALEN]; /* MAC address to be set for this pcifunc */
}; };
struct nix_get_mac_addr_rsp {
struct mbox_msghdr hdr;
u8 mac_addr[ETH_ALEN];
};
struct nix_mark_format_cfg { struct nix_mark_format_cfg {
struct mbox_msghdr hdr; struct mbox_msghdr hdr;
u8 offset; u8 offset;
......
...@@ -2546,6 +2546,23 @@ int rvu_mbox_handler_nix_set_mac_addr(struct rvu *rvu, ...@@ -2546,6 +2546,23 @@ int rvu_mbox_handler_nix_set_mac_addr(struct rvu *rvu,
return 0; return 0;
} }
int rvu_mbox_handler_nix_get_mac_addr(struct rvu *rvu,
struct msg_req *req,
struct nix_get_mac_addr_rsp *rsp)
{
u16 pcifunc = req->hdr.pcifunc;
struct rvu_pfvf *pfvf;
if (!is_nixlf_attached(rvu, pcifunc))
return NIX_AF_ERR_AF_LF_INVALID;
pfvf = rvu_get_pfvf(rvu, pcifunc);
ether_addr_copy(rsp->mac_addr, pfvf->mac_addr);
return 0;
}
int rvu_mbox_handler_nix_set_rx_mode(struct rvu *rvu, struct nix_rx_mode *req, int rvu_mbox_handler_nix_set_rx_mode(struct rvu *rvu, struct nix_rx_mode *req,
struct msg_rsp *rsp) struct msg_rsp *rsp)
{ {
......
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for Marvell's OcteonTX2 ethernet device drivers
#
obj-$(CONFIG_OCTEONTX2_PF) += octeontx2_nicpf.o
octeontx2_nicpf-y := otx2_pf.o otx2_common.o otx2_txrx.o otx2_ethtool.o
ccflags-y += -I$(srctree)/drivers/net/ethernet/marvell/octeontx2/af
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
/* SPDX-License-Identifier: GPL-2.0 */
/* Marvell OcteonTx2 RVU Ethernet driver
*
* Copyright (C) 2020 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef OTX2_REG_H
#define OTX2_REG_H
#include <rvu_struct.h>
/* RVU PF registers */
#define RVU_PF_VFX_PFVF_MBOX0 (0x00000)
#define RVU_PF_VFX_PFVF_MBOX1 (0x00008)
#define RVU_PF_VFX_PFVF_MBOXX(a, b) (0x0 | (a) << 12 | (b) << 3)
#define RVU_PF_VF_BAR4_ADDR (0x10)
#define RVU_PF_BLOCK_ADDRX_DISC(a) (0x200 | (a) << 3)
#define RVU_PF_VFME_STATUSX(a) (0x800 | (a) << 3)
#define RVU_PF_VFTRPENDX(a) (0x820 | (a) << 3)
#define RVU_PF_VFTRPEND_W1SX(a) (0x840 | (a) << 3)
#define RVU_PF_VFPF_MBOX_INTX(a) (0x880 | (a) << 3)
#define RVU_PF_VFPF_MBOX_INT_W1SX(a) (0x8A0 | (a) << 3)
#define RVU_PF_VFPF_MBOX_INT_ENA_W1SX(a) (0x8C0 | (a) << 3)
#define RVU_PF_VFPF_MBOX_INT_ENA_W1CX(a) (0x8E0 | (a) << 3)
#define RVU_PF_VFFLR_INTX(a) (0x900 | (a) << 3)
#define RVU_PF_VFFLR_INT_W1SX(a) (0x920 | (a) << 3)
#define RVU_PF_VFFLR_INT_ENA_W1SX(a) (0x940 | (a) << 3)
#define RVU_PF_VFFLR_INT_ENA_W1CX(a) (0x960 | (a) << 3)
#define RVU_PF_VFME_INTX(a) (0x980 | (a) << 3)
#define RVU_PF_VFME_INT_W1SX(a) (0x9A0 | (a) << 3)
#define RVU_PF_VFME_INT_ENA_W1SX(a) (0x9C0 | (a) << 3)
#define RVU_PF_VFME_INT_ENA_W1CX(a) (0x9E0 | (a) << 3)
#define RVU_PF_PFAF_MBOX0 (0xC00)
#define RVU_PF_PFAF_MBOX1 (0xC08)
#define RVU_PF_PFAF_MBOXX(a) (0xC00 | (a) << 3)
#define RVU_PF_INT (0xc20)
#define RVU_PF_INT_W1S (0xc28)
#define RVU_PF_INT_ENA_W1S (0xc30)
#define RVU_PF_INT_ENA_W1C (0xc38)
#define RVU_PF_MSIX_VECX_ADDR(a) (0x000 | (a) << 4)
#define RVU_PF_MSIX_VECX_CTL(a) (0x008 | (a) << 4)
#define RVU_PF_MSIX_PBAX(a) (0xF0000 | (a) << 3)
#define RVU_FUNC_BLKADDR_SHIFT 20
#define RVU_FUNC_BLKADDR_MASK 0x1FULL
/* NPA LF registers */
#define NPA_LFBASE (BLKTYPE_NPA << RVU_FUNC_BLKADDR_SHIFT)
#define NPA_LF_AURA_OP_ALLOCX(a) (NPA_LFBASE | 0x10 | (a) << 3)
#define NPA_LF_AURA_OP_FREE0 (NPA_LFBASE | 0x20)
#define NPA_LF_AURA_OP_FREE1 (NPA_LFBASE | 0x28)
#define NPA_LF_AURA_OP_CNT (NPA_LFBASE | 0x30)
#define NPA_LF_AURA_OP_LIMIT (NPA_LFBASE | 0x50)
#define NPA_LF_AURA_OP_INT (NPA_LFBASE | 0x60)
#define NPA_LF_AURA_OP_THRESH (NPA_LFBASE | 0x70)
#define NPA_LF_POOL_OP_PC (NPA_LFBASE | 0x100)
#define NPA_LF_POOL_OP_AVAILABLE (NPA_LFBASE | 0x110)
#define NPA_LF_POOL_OP_PTR_START0 (NPA_LFBASE | 0x120)
#define NPA_LF_POOL_OP_PTR_START1 (NPA_LFBASE | 0x128)
#define NPA_LF_POOL_OP_PTR_END0 (NPA_LFBASE | 0x130)
#define NPA_LF_POOL_OP_PTR_END1 (NPA_LFBASE | 0x138)
#define NPA_LF_POOL_OP_INT (NPA_LFBASE | 0x160)
#define NPA_LF_POOL_OP_THRESH (NPA_LFBASE | 0x170)
#define NPA_LF_ERR_INT (NPA_LFBASE | 0x200)
#define NPA_LF_ERR_INT_W1S (NPA_LFBASE | 0x208)
#define NPA_LF_ERR_INT_ENA_W1C (NPA_LFBASE | 0x210)
#define NPA_LF_ERR_INT_ENA_W1S (NPA_LFBASE | 0x218)
#define NPA_LF_RAS (NPA_LFBASE | 0x220)
#define NPA_LF_RAS_W1S (NPA_LFBASE | 0x228)
#define NPA_LF_RAS_ENA_W1C (NPA_LFBASE | 0x230)
#define NPA_LF_RAS_ENA_W1S (NPA_LFBASE | 0x238)
#define NPA_LF_QINTX_CNT(a) (NPA_LFBASE | 0x300 | (a) << 12)
#define NPA_LF_QINTX_INT(a) (NPA_LFBASE | 0x310 | (a) << 12)
#define NPA_LF_QINTX_INT_W1S(a) (NPA_LFBASE | 0x318 | (a) << 12)
#define NPA_LF_QINTX_ENA_W1S(a) (NPA_LFBASE | 0x320 | (a) << 12)
#define NPA_LF_QINTX_ENA_W1C(a) (NPA_LFBASE | 0x330 | (a) << 12)
/* NIX LF registers */
#define NIX_LFBASE (BLKTYPE_NIX << RVU_FUNC_BLKADDR_SHIFT)
#define NIX_LF_RX_SECRETX(a) (NIX_LFBASE | 0x0 | (a) << 3)
#define NIX_LF_CFG (NIX_LFBASE | 0x100)
#define NIX_LF_GINT (NIX_LFBASE | 0x200)
#define NIX_LF_GINT_W1S (NIX_LFBASE | 0x208)
#define NIX_LF_GINT_ENA_W1C (NIX_LFBASE | 0x210)
#define NIX_LF_GINT_ENA_W1S (NIX_LFBASE | 0x218)
#define NIX_LF_ERR_INT (NIX_LFBASE | 0x220)
#define NIX_LF_ERR_INT_W1S (NIX_LFBASE | 0x228)
#define NIX_LF_ERR_INT_ENA_W1C (NIX_LFBASE | 0x230)
#define NIX_LF_ERR_INT_ENA_W1S (NIX_LFBASE | 0x238)
#define NIX_LF_RAS (NIX_LFBASE | 0x240)
#define NIX_LF_RAS_W1S (NIX_LFBASE | 0x248)
#define NIX_LF_RAS_ENA_W1C (NIX_LFBASE | 0x250)
#define NIX_LF_RAS_ENA_W1S (NIX_LFBASE | 0x258)
#define NIX_LF_SQ_OP_ERR_DBG (NIX_LFBASE | 0x260)
#define NIX_LF_MNQ_ERR_DBG (NIX_LFBASE | 0x270)
#define NIX_LF_SEND_ERR_DBG (NIX_LFBASE | 0x280)
#define NIX_LF_TX_STATX(a) (NIX_LFBASE | 0x300 | (a) << 3)
#define NIX_LF_RX_STATX(a) (NIX_LFBASE | 0x400 | (a) << 3)
#define NIX_LF_OP_SENDX(a) (NIX_LFBASE | 0x800 | (a) << 3)
#define NIX_LF_RQ_OP_INT (NIX_LFBASE | 0x900)
#define NIX_LF_RQ_OP_OCTS (NIX_LFBASE | 0x910)
#define NIX_LF_RQ_OP_PKTS (NIX_LFBASE | 0x920)
#define NIX_LF_OP_IPSEC_DYNO_CN (NIX_LFBASE | 0x980)
#define NIX_LF_SQ_OP_INT (NIX_LFBASE | 0xa00)
#define NIX_LF_SQ_OP_OCTS (NIX_LFBASE | 0xa10)
#define NIX_LF_SQ_OP_PKTS (NIX_LFBASE | 0xa20)
#define NIX_LF_SQ_OP_STATUS (NIX_LFBASE | 0xa30)
#define NIX_LF_CQ_OP_INT (NIX_LFBASE | 0xb00)
#define NIX_LF_CQ_OP_DOOR (NIX_LFBASE | 0xb30)
#define NIX_LF_CQ_OP_STATUS (NIX_LFBASE | 0xb40)
#define NIX_LF_QINTX_CNT(a) (NIX_LFBASE | 0xC00 | (a) << 12)
#define NIX_LF_QINTX_INT(a) (NIX_LFBASE | 0xC10 | (a) << 12)
#define NIX_LF_QINTX_INT_W1S(a) (NIX_LFBASE | 0xC18 | (a) << 12)
#define NIX_LF_QINTX_ENA_W1S(a) (NIX_LFBASE | 0xC20 | (a) << 12)
#define NIX_LF_QINTX_ENA_W1C(a) (NIX_LFBASE | 0xC30 | (a) << 12)
#define NIX_LF_CINTX_CNT(a) (NIX_LFBASE | 0xD00 | (a) << 12)
#define NIX_LF_CINTX_WAIT(a) (NIX_LFBASE | 0xD10 | (a) << 12)
#define NIX_LF_CINTX_INT(a) (NIX_LFBASE | 0xD20 | (a) << 12)
#define NIX_LF_CINTX_INT_W1S(a) (NIX_LFBASE | 0xD30 | (a) << 12)
#define NIX_LF_CINTX_ENA_W1S(a) (NIX_LFBASE | 0xD40 | (a) << 12)
#define NIX_LF_CINTX_ENA_W1C(a) (NIX_LFBASE | 0xD50 | (a) << 12)
/* NIX AF transmit scheduler registers */
#define NIX_AF_SMQX_CFG(a) (0x700 | (a) << 16)
#define NIX_AF_TL1X_SCHEDULE(a) (0xC00 | (a) << 16)
#define NIX_AF_TL1X_CIR(a) (0xC20 | (a) << 16)
#define NIX_AF_TL1X_TOPOLOGY(a) (0xC80 | (a) << 16)
#define NIX_AF_TL2X_PARENT(a) (0xE88 | (a) << 16)
#define NIX_AF_TL2X_SCHEDULE(a) (0xE00 | (a) << 16)
#define NIX_AF_TL3X_PARENT(a) (0x1088 | (a) << 16)
#define NIX_AF_TL3X_SCHEDULE(a) (0x1000 | (a) << 16)
#define NIX_AF_TL4X_PARENT(a) (0x1288 | (a) << 16)
#define NIX_AF_TL4X_SCHEDULE(a) (0x1200 | (a) << 16)
#define NIX_AF_MDQX_SCHEDULE(a) (0x1400 | (a) << 16)
#define NIX_AF_MDQX_PARENT(a) (0x1480 | (a) << 16)
#define NIX_AF_TL3_TL2X_LINKX_CFG(a, b) (0x1700 | (a) << 16 | (b) << 3)
/* LMT LF registers */
#define LMT_LFBASE BIT_ULL(RVU_FUNC_BLKADDR_SHIFT)
#define LMT_LF_LMTLINEX(a) (LMT_LFBASE | 0x000 | (a) << 12)
#define LMT_LF_LMTCANCEL (LMT_LFBASE | 0x400)
#endif /* OTX2_REG_H */
/* SPDX-License-Identifier: GPL-2.0 */
/* Marvell OcteonTx2 RVU Ethernet driver
*
* Copyright (C) 2020 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef OTX2_STRUCT_H
#define OTX2_STRUCT_H
/* NIX WQE/CQE size 128 byte or 512 byte */
enum nix_cqesz_e {
NIX_XQESZ_W64 = 0x0,
NIX_XQESZ_W16 = 0x1,
};
enum nix_sqes_e {
NIX_SQESZ_W16 = 0x0,
NIX_SQESZ_W8 = 0x1,
};
enum nix_send_ldtype {
NIX_SEND_LDTYPE_LDD = 0x0,
NIX_SEND_LDTYPE_LDT = 0x1,
NIX_SEND_LDTYPE_LDWB = 0x2,
};
/* CSUM offload */
enum nix_sendl3type {
NIX_SENDL3TYPE_NONE = 0x0,
NIX_SENDL3TYPE_IP4 = 0x2,
NIX_SENDL3TYPE_IP4_CKSUM = 0x3,
NIX_SENDL3TYPE_IP6 = 0x4,
};
enum nix_sendl4type {
NIX_SENDL4TYPE_NONE,
NIX_SENDL4TYPE_TCP_CKSUM,
NIX_SENDL4TYPE_SCTP_CKSUM,
NIX_SENDL4TYPE_UDP_CKSUM,
};
/* NIX wqe/cqe types */
enum nix_xqe_type {
NIX_XQE_TYPE_INVALID = 0x0,
NIX_XQE_TYPE_RX = 0x1,
NIX_XQE_TYPE_RX_IPSECS = 0x2,
NIX_XQE_TYPE_RX_IPSECH = 0x3,
NIX_XQE_TYPE_RX_IPSECD = 0x4,
NIX_XQE_TYPE_SEND = 0x8,
};
/* NIX CQE/SQE subdescriptor types */
enum nix_subdc {
NIX_SUBDC_NOP = 0x0,
NIX_SUBDC_EXT = 0x1,
NIX_SUBDC_CRC = 0x2,
NIX_SUBDC_IMM = 0x3,
NIX_SUBDC_SG = 0x4,
NIX_SUBDC_MEM = 0x5,
NIX_SUBDC_JUMP = 0x6,
NIX_SUBDC_WORK = 0x7,
NIX_SUBDC_SOD = 0xf,
};
/* Algorithm for nix_sqe_mem_s header (value of the `alg` field) */
enum nix_sendmemalg {
NIX_SENDMEMALG_E_SET = 0x0,
NIX_SENDMEMALG_E_SETTSTMP = 0x1,
NIX_SENDMEMALG_E_SETRSLT = 0x2,
NIX_SENDMEMALG_E_ADD = 0x8,
NIX_SENDMEMALG_E_SUB = 0x9,
NIX_SENDMEMALG_E_ADDLEN = 0xa,
NIX_SENDMEMALG_E_SUBLEN = 0xb,
NIX_SENDMEMALG_E_ADDMBUF = 0xc,
NIX_SENDMEMALG_E_SUBMBUF = 0xd,
NIX_SENDMEMALG_E_ENUM_LAST = 0xe,
};
/* NIX CQE header structure */
struct nix_cqe_hdr_s {
u64 flow_tag : 32;
u64 q : 20;
u64 reserved_52_57 : 6;
u64 node : 2;
u64 cqe_type : 4;
};
/* NIX CQE RX parse structure */
struct nix_rx_parse_s {
u64 chan : 12;
u64 desc_sizem1 : 5;
u64 rsvd_17 : 1;
u64 express : 1;
u64 wqwd : 1;
u64 errlev : 4;
u64 errcode : 8;
u64 latype : 4;
u64 lbtype : 4;
u64 lctype : 4;
u64 ldtype : 4;
u64 letype : 4;
u64 lftype : 4;
u64 lgtype : 4;
u64 lhtype : 4;
u64 pkt_lenm1 : 16; /* W1 */
u64 l2m : 1;
u64 l2b : 1;
u64 l3m : 1;
u64 l3b : 1;
u64 vtag0_valid : 1;
u64 vtag0_gone : 1;
u64 vtag1_valid : 1;
u64 vtag1_gone : 1;
u64 pkind : 6;
u64 rsvd_95_94 : 2;
u64 vtag0_tci : 16;
u64 vtag1_tci : 16;
u64 laflags : 8; /* W2 */
u64 lbflags : 8;
u64 lcflags : 8;
u64 ldflags : 8;
u64 leflags : 8;
u64 lfflags : 8;
u64 lgflags : 8;
u64 lhflags : 8;
u64 eoh_ptr : 8; /* W3 */
u64 wqe_aura : 20;
u64 pb_aura : 20;
u64 match_id : 16;
u64 laptr : 8; /* W4 */
u64 lbptr : 8;
u64 lcptr : 8;
u64 ldptr : 8;
u64 leptr : 8;
u64 lfptr : 8;
u64 lgptr : 8;
u64 lhptr : 8;
u64 vtag0_ptr : 8; /* W5 */
u64 vtag1_ptr : 8;
u64 flow_key_alg : 5;
u64 rsvd_383_341 : 43;
u64 rsvd_447_384; /* W6 */
};
/* NIX CQE RX scatter/gather subdescriptor structure */
struct nix_rx_sg_s {
u64 seg_size : 16; /* W0 */
u64 seg2_size : 16;
u64 seg3_size : 16;
u64 segs : 2;
u64 rsvd_59_50 : 10;
u64 subdc : 4;
u64 seg_addr;
u64 seg2_addr;
u64 seg3_addr;
};
struct nix_send_comp_s {
u64 status : 8;
u64 sqe_id : 16;
u64 rsvd_24_63 : 40;
};
struct nix_cqe_rx_s {
struct nix_cqe_hdr_s hdr;
struct nix_rx_parse_s parse;
struct nix_rx_sg_s sg;
};
struct nix_cqe_tx_s {
struct nix_cqe_hdr_s hdr;
struct nix_send_comp_s comp;
};
/* NIX SQE header structure */
struct nix_sqe_hdr_s {
u64 total : 18; /* W0 */
u64 reserved_18 : 1;
u64 df : 1;
u64 aura : 20;
u64 sizem1 : 3;
u64 pnc : 1;
u64 sq : 20;
u64 ol3ptr : 8; /* W1 */
u64 ol4ptr : 8;
u64 il3ptr : 8;
u64 il4ptr : 8;
u64 ol3type : 4;
u64 ol4type : 4;
u64 il3type : 4;
u64 il4type : 4;
u64 sqe_id : 16;
};
/* NIX send extended header subdescriptor structure */
struct nix_sqe_ext_s {
u64 lso_mps : 14; /* W0 */
u64 lso : 1;
u64 tstmp : 1;
u64 lso_sb : 8;
u64 lso_format : 5;
u64 rsvd_31_29 : 3;
u64 shp_chg : 9;
u64 shp_dis : 1;
u64 shp_ra : 2;
u64 markptr : 8;
u64 markform : 7;
u64 mark_en : 1;
u64 subdc : 4;
u64 vlan0_ins_ptr : 8; /* W1 */
u64 vlan0_ins_tci : 16;
u64 vlan1_ins_ptr : 8;
u64 vlan1_ins_tci : 16;
u64 vlan0_ins_ena : 1;
u64 vlan1_ins_ena : 1;
u64 rsvd_127_114 : 14;
};
struct nix_sqe_sg_s {
u64 seg1_size : 16;
u64 seg2_size : 16;
u64 seg3_size : 16;
u64 segs : 2;
u64 rsvd_54_50 : 5;
u64 i1 : 1;
u64 i2 : 1;
u64 i3 : 1;
u64 ld_type : 2;
u64 subdc : 4;
};
/* NIX send memory subdescriptor structure */
struct nix_sqe_mem_s {
u64 offset : 16; /* W0 */
u64 rsvd_52_16 : 37;
u64 wmem : 1;
u64 dsz : 2;
u64 alg : 4;
u64 subdc : 4;
u64 addr; /* W1 */
};
enum nix_cqerrint_e {
NIX_CQERRINT_DOOR_ERR = 0,
NIX_CQERRINT_WR_FULL = 1,
NIX_CQERRINT_CQE_FAULT = 2,
};
#define NIX_CQERRINT_BITS (BIT_ULL(NIX_CQERRINT_DOOR_ERR) | \
BIT_ULL(NIX_CQERRINT_CQE_FAULT))
enum nix_rqint_e {
NIX_RQINT_DROP = 0,
NIX_RQINT_RED = 1,
};
#define NIX_RQINT_BITS (BIT_ULL(NIX_RQINT_DROP) | BIT_ULL(NIX_RQINT_RED))
enum nix_sqint_e {
NIX_SQINT_LMT_ERR = 0,
NIX_SQINT_MNQ_ERR = 1,
NIX_SQINT_SEND_ERR = 2,
NIX_SQINT_SQB_ALLOC_FAIL = 3,
};
#define NIX_SQINT_BITS (BIT_ULL(NIX_SQINT_LMT_ERR) | \
BIT_ULL(NIX_SQINT_MNQ_ERR) | \
BIT_ULL(NIX_SQINT_SEND_ERR) | \
BIT_ULL(NIX_SQINT_SQB_ALLOC_FAIL))
#endif /* OTX2_STRUCT_H */
This diff is collapsed.
/* SPDX-License-Identifier: GPL-2.0 */
/* Marvell OcteonTx2 RVU Ethernet driver
*
* Copyright (C) 2020 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef OTX2_TXRX_H
#define OTX2_TXRX_H
#include <linux/etherdevice.h>
#include <linux/iommu.h>
#include <linux/if_vlan.h>
#define LBK_CHAN_BASE 0x000
#define SDP_CHAN_BASE 0x700
#define CGX_CHAN_BASE 0x800
#define OTX2_DATA_ALIGN(X) ALIGN(X, OTX2_ALIGN)
#define OTX2_HEAD_ROOM OTX2_ALIGN
#define OTX2_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN)
#define OTX2_MIN_MTU 64
#define OTX2_MAX_MTU (9212 - OTX2_ETH_HLEN)
#define OTX2_MAX_GSO_SEGS 255
#define OTX2_MAX_FRAGS_IN_SQE 9
/* Rx buffer size should be in multiples of 128bytes */
#define RCV_FRAG_LEN1(x) \
((OTX2_HEAD_ROOM + OTX2_DATA_ALIGN(x)) + \
OTX2_DATA_ALIGN(sizeof(struct skb_shared_info)))
/* Prefer 2048 byte buffers for better last level cache
* utilization or data distribution across regions.
*/
#define RCV_FRAG_LEN(x) \
((RCV_FRAG_LEN1(x) < 2048) ? 2048 : RCV_FRAG_LEN1(x))
#define DMA_BUFFER_LEN(x) \
((x) - OTX2_HEAD_ROOM - \
OTX2_DATA_ALIGN(sizeof(struct skb_shared_info)))
/* IRQ triggered when NIX_LF_CINTX_CNT[ECOUNT]
* is equal to this value.
*/
#define CQ_CQE_THRESH_DEFAULT 10
/* IRQ triggered when NIX_LF_CINTX_CNT[ECOUNT]
* is nonzero and this much time elapses after that.
*/
#define CQ_TIMER_THRESH_DEFAULT 1 /* 1 usec */
#define CQ_TIMER_THRESH_MAX 25 /* 25 usec */
/* Min number of CQs (of the ones mapped to this CINT)
* with valid CQEs.
*/
#define CQ_QCOUNT_DEFAULT 1
struct queue_stats {
u64 bytes;
u64 pkts;
};
struct otx2_rcv_queue {
struct queue_stats stats;
};
struct sg_list {
u16 num_segs;
u64 skb;
u64 size[OTX2_MAX_FRAGS_IN_SQE];
u64 dma_addr[OTX2_MAX_FRAGS_IN_SQE];
};
struct otx2_snd_queue {
u8 aura_id;
u16 head;
u16 sqe_size;
u32 sqe_cnt;
u16 num_sqbs;
u16 sqe_thresh;
u8 sqe_per_sqb;
u64 io_addr;
u64 *aura_fc_addr;
u64 *lmt_addr;
void *sqe_base;
struct qmem *sqe;
struct qmem *tso_hdrs;
struct sg_list *sg;
struct queue_stats stats;
u16 sqb_count;
u64 *sqb_ptrs;
} ____cacheline_aligned_in_smp;
enum cq_type {
CQ_RX,
CQ_TX,
CQS_PER_CINT = 2, /* RQ + SQ */
};
struct otx2_cq_poll {
void *dev;
#define CINT_INVALID_CQ 255
u8 cint_idx;
u8 cq_ids[CQS_PER_CINT];
struct napi_struct napi;
};
struct otx2_pool {
struct qmem *stack;
struct qmem *fc_addr;
u8 rbpage_order;
u16 rbsize;
u32 page_offset;
u16 pageref;
struct page *page;
};
struct otx2_cq_queue {
u8 cq_idx;
u8 cq_type;
u8 cint_idx; /* CQ interrupt id */
u8 refill_task_sched;
u16 cqe_size;
u16 pool_ptrs;
u32 cqe_cnt;
u32 cq_head;
void *cqe_base;
struct qmem *cqe;
struct otx2_pool *rbpool;
} ____cacheline_aligned_in_smp;
struct otx2_qset {
u32 rqe_cnt;
u32 sqe_cnt; /* Keep these two at top */
#define OTX2_MAX_CQ_CNT 64
u16 cq_cnt;
u16 xqe_size;
struct otx2_pool *pool;
struct otx2_cq_poll *napi;
struct otx2_cq_queue *cq;
struct otx2_snd_queue *sq;
struct otx2_rcv_queue *rq;
};
/* Translate IOVA to physical address */
static inline u64 otx2_iova_to_phys(void *iommu_domain, dma_addr_t dma_addr)
{
/* Translation is installed only when IOMMU is present */
if (likely(iommu_domain))
return iommu_iova_to_phys(iommu_domain, dma_addr);
return dma_addr;
}
int otx2_napi_handler(struct napi_struct *napi, int budget);
bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
struct sk_buff *skb, u16 qidx);
#endif /* OTX2_TXRX_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment