Commit 3e1e21c7 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-4.5/nvme' of git://git.kernel.dk/linux-block

Pull NVMe updates from Jens Axboe:
 "Last branch for this series is the nvme changes.  It's in a separate
  branch to avoid splitting too much between core and NVMe changes,
  since NVMe is still helping drive some blk-mq changes.  That said, not
  a huge amount of core changes in here.  The grunt of the work is the
  continued split of the code"

* 'for-4.5/nvme' of git://git.kernel.dk/linux-block: (67 commits)
  uapi: update install list after nvme.h rename
  NVMe: Export NVMe attributes to sysfs group
  NVMe: Shutdown controller only for power-off
  NVMe: IO queue deletion re-write
  NVMe: Remove queue freezing on resets
  NVMe: Use a retryable error code on reset
  NVMe: Fix admin queue ring wrap
  nvme: make SG_IO support optional
  nvme: fixes for NVME_IOCTL_IO_CMD on the char device
  nvme: synchronize access to ctrl->namespaces
  nvme: Move nvme_freeze/unfreeze_queues to nvme core
  PCI/AER: include header file
  NVMe: Export namespace attributes to sysfs
  NVMe: Add pci error handlers
  block: remove REQ_NO_TIMEOUT flag
  nvme: merge iod and cmd_info
  nvme: meta_sg doesn't have to be an array
  nvme: properly free resources for cancelled command
  nvme: simplify completion handling
  nvme: special case AEN requests
  ...
parents 0a13daed a9cf8284
......@@ -66,7 +66,7 @@ struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
}
if (unlikely(!bip))
return NULL;
return ERR_PTR(-ENOMEM);
memset(bip, 0, sizeof(*bip));
......@@ -89,7 +89,7 @@ struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
return bip;
err:
mempool_free(bip, bs->bio_integrity_pool);
return NULL;
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(bio_integrity_alloc);
......@@ -298,10 +298,10 @@ int bio_integrity_prep(struct bio *bio)
/* Allocate bio integrity payload and integrity vectors */
bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
if (unlikely(bip == NULL)) {
if (IS_ERR(bip)) {
printk(KERN_ERR "could not allocate data integrity bioset\n");
kfree(buf);
return -EIO;
return PTR_ERR(bip);
}
bip->bip_flags |= BIP_BLOCK_INTEGRITY;
......@@ -465,9 +465,8 @@ int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
BUG_ON(bip_src == NULL);
bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
if (bip == NULL)
return -EIO;
if (IS_ERR(bip))
return PTR_ERR(bip);
memcpy(bip->bip_vec, bip_src->bip_vec,
bip_src->bip_vcnt * sizeof(struct bio_vec));
......
......@@ -680,6 +680,13 @@ static void blk_queue_usage_counter_release(struct percpu_ref *ref)
wake_up_all(&q->mq_freeze_wq);
}
static void blk_rq_timed_out_timer(unsigned long data)
{
struct request_queue *q = (struct request_queue *)data;
kblockd_schedule_work(&q->timeout_work);
}
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
struct request_queue *q;
......@@ -841,6 +848,7 @@ blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
goto fail;
INIT_WORK(&q->timeout_work, blk_timeout_work);
q->request_fn = rfn;
q->prep_rq_fn = NULL;
q->unprep_rq_fn = NULL;
......
......@@ -603,8 +603,6 @@ static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
blk_mq_complete_request(rq, -EIO);
return;
}
if (rq->cmd_flags & REQ_NO_TIMEOUT)
return;
if (time_after_eq(jiffies, rq->deadline)) {
if (!blk_mark_rq_complete(rq))
......@@ -615,15 +613,19 @@ static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
}
}
static void blk_mq_rq_timer(unsigned long priv)
static void blk_mq_timeout_work(struct work_struct *work)
{
struct request_queue *q = (struct request_queue *)priv;
struct request_queue *q =
container_of(work, struct request_queue, timeout_work);
struct blk_mq_timeout_data data = {
.next = 0,
.next_set = 0,
};
int i;
if (blk_queue_enter(q, true))
return;
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
if (data.next_set) {
......@@ -638,6 +640,7 @@ static void blk_mq_rq_timer(unsigned long priv)
blk_mq_tag_idle(hctx);
}
}
blk_queue_exit(q);
}
/*
......@@ -2008,7 +2011,7 @@ struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
hctxs[i]->queue_num = i;
}
setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
q->nr_queues = nr_cpu_ids;
......
......@@ -127,13 +127,16 @@ static void blk_rq_check_expired(struct request *rq, unsigned long *next_timeout
}
}
void blk_rq_timed_out_timer(unsigned long data)
void blk_timeout_work(struct work_struct *work)
{
struct request_queue *q = (struct request_queue *) data;
struct request_queue *q =
container_of(work, struct request_queue, timeout_work);
unsigned long flags, next = 0;
struct request *rq, *tmp;
int next_set = 0;
if (blk_queue_enter(q, true))
return;
spin_lock_irqsave(q->queue_lock, flags);
list_for_each_entry_safe(rq, tmp, &q->timeout_list, timeout_list)
......@@ -143,6 +146,7 @@ void blk_rq_timed_out_timer(unsigned long data)
mod_timer(&q->timeout, round_jiffies_up(next));
spin_unlock_irqrestore(q->queue_lock, flags);
blk_queue_exit(q);
}
/**
......@@ -193,9 +197,6 @@ void blk_add_timer(struct request *req)
struct request_queue *q = req->q;
unsigned long expiry;
if (req->cmd_flags & REQ_NO_TIMEOUT)
return;
/* blk-mq has its own handler, so we don't need ->rq_timed_out_fn */
if (!q->mq_ops && !q->rq_timed_out_fn)
return;
......
......@@ -93,7 +93,7 @@ static inline void blk_flush_integrity(void)
}
#endif
void blk_rq_timed_out_timer(unsigned long data);
void blk_timeout_work(struct work_struct *work);
unsigned long blk_rq_timeout(unsigned long timeout);
void blk_add_timer(struct request *req);
void blk_delete_timer(struct request *);
......
......@@ -8,3 +8,14 @@ config BLK_DEV_NVME
To compile this driver as a module, choose M here: the
module will be called nvme.
config BLK_DEV_NVME_SCSI
bool "SCSI emulation for NVMe device nodes"
depends on BLK_DEV_NVME
---help---
This adds support for the SG_IO ioctl on the NVMe character
and block devices nodes, as well a a translation for a small
number of selected SCSI commands to NVMe commands to the NVMe
driver. If you don't know what this means you probably want
to say N here, and if you know what it means you probably
want to say N as well.
......@@ -2,4 +2,5 @@
obj-$(CONFIG_BLK_DEV_NVME) += nvme.o
lightnvm-$(CONFIG_NVM) := lightnvm.o
nvme-y += pci.o scsi.o $(lightnvm-y)
nvme-y += core.o pci.o $(lightnvm-y)
nvme-$(CONFIG_BLK_DEV_NVME_SCSI) += scsi.o
/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list_sort.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
#include "nvme.h"
#define NVME_MINORS (1U << MINORBITS)
static int nvme_major;
module_param(nvme_major, int, 0);
static int nvme_char_major;
module_param(nvme_char_major, int, 0);
static LIST_HEAD(nvme_ctrl_list);
DEFINE_SPINLOCK(dev_list_lock);
static struct class *nvme_class;
static void nvme_free_ns(struct kref *kref)
{
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
if (ns->type == NVME_NS_LIGHTNVM)
nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
nvme_put_ctrl(ns->ctrl);
put_disk(ns->disk);
kfree(ns);
}
static void nvme_put_ns(struct nvme_ns *ns)
{
kref_put(&ns->kref, nvme_free_ns);
}
static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = disk->private_data;
if (ns && !kref_get_unless_zero(&ns->kref))
ns = NULL;
spin_unlock(&dev_list_lock);
return ns;
}
void nvme_requeue_req(struct request *req)
{
unsigned long flags;
blk_mq_requeue_request(req);
spin_lock_irqsave(req->q->queue_lock, flags);
if (!blk_queue_stopped(req->q))
blk_mq_kick_requeue_list(req->q);
spin_unlock_irqrestore(req->q->queue_lock, flags);
}
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, unsigned int flags)
{
bool write = cmd->common.opcode & 1;
struct request *req;
req = blk_mq_alloc_request(q, write, flags);
if (IS_ERR(req))
return req;
req->cmd_type = REQ_TYPE_DRV_PRIV;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
req->__data_len = 0;
req->__sector = (sector_t) -1;
req->bio = req->biotail = NULL;
req->cmd = (unsigned char *)cmd;
req->cmd_len = sizeof(struct nvme_command);
req->special = (void *)0;
return req;
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
{
struct request *req;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
if (ret)
goto out;
}
blk_execute_rq(req->q, NULL, req, 0);
if (result)
*result = (u32)(uintptr_t)req->special;
ret = req->errors;
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
}
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen,
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
u32 *result, unsigned timeout)
{
bool write = cmd->common.opcode & 1;
struct nvme_ns *ns = q->queuedata;
struct gendisk *disk = ns ? ns->disk : NULL;
struct request *req;
struct bio *bio = NULL;
void *meta = NULL;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
GFP_KERNEL);
if (ret)
goto out;
bio = req->bio;
if (!disk)
goto submit;
bio->bi_bdev = bdget_disk(disk, 0);
if (!bio->bi_bdev) {
ret = -ENODEV;
goto out_unmap;
}
if (meta_buffer) {
struct bio_integrity_payload *bip;
meta = kmalloc(meta_len, GFP_KERNEL);
if (!meta) {
ret = -ENOMEM;
goto out_unmap;
}
if (write) {
if (copy_from_user(meta, meta_buffer,
meta_len)) {
ret = -EFAULT;
goto out_free_meta;
}
}
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
if (IS_ERR(bip)) {
ret = PTR_ERR(bip);
goto out_free_meta;
}
bip->bip_iter.bi_size = meta_len;
bip->bip_iter.bi_sector = meta_seed;
ret = bio_integrity_add_page(bio, virt_to_page(meta),
meta_len, offset_in_page(meta));
if (ret != meta_len) {
ret = -ENOMEM;
goto out_free_meta;
}
}
}
submit:
blk_execute_rq(req->q, disk, req, 0);
ret = req->errors;
if (result)
*result = (u32)(uintptr_t)req->special;
if (meta && !ret && !write) {
if (copy_to_user(meta_buffer, meta, meta_len))
ret = -EFAULT;
}
out_free_meta:
kfree(meta);
out_unmap:
if (bio) {
if (disk && bio->bi_bdev)
bdput(bio->bi_bdev);
blk_rq_unmap_user(bio);
}
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen, u32 *result,
unsigned timeout)
{
return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
result, timeout);
}
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(1);
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
struct nvme_command c = { };
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(2);
c.identify.nsid = cpu_to_le32(nsid);
return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
struct nvme_id_ns **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify,
c.identify.nsid = cpu_to_le32(nsid),
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ns));
if (error)
kfree(*id);
return error;
}
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
{
struct nvme_command c = { };
int error;
c.common.opcode = nvme_admin_get_log_page,
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
c.common.cdw10[0] = cpu_to_le32(
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
NVME_LOG_SMART),
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
if (!*log)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
sizeof(struct nvme_smart_log));
if (error)
kfree(*log);
return error;
}
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
u32 q_count = (*count - 1) | ((*count - 1) << 16);
u32 result;
int status, nr_io_queues;
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
&result);
if (status)
return status;
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
*count = min(*count, nr_io_queues);
return 0;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
break;
default:
return -EINVAL;
}
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
metadata = (void __user *)(uintptr_t)io.metadata;
if (ns->ext) {
length += meta_len;
meta_len = 0;
} else if (meta_len) {
if ((io.metadata & 3) || !io.metadata)
return -EINVAL;
}
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
return __nvme_submit_user_cmd(ns->queue, &c,
(void __user *)(uintptr_t)io.addr, length,
metadata, meta_len, io.slba, NULL, 0);
}
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
&cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
#ifdef CONFIG_BLK_DEV_NVME_SCSI
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
#endif
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
nvme_put_ns(disk->private_data);
}
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
return 0;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
struct blk_integrity integrity;
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity.profile = &t10_pi_type3_crc;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity.profile = &t10_pi_type1_crc;
break;
default:
integrity.profile = NULL;
break;
}
integrity.tuple_size = ns->ms;
blk_integrity_register(ns->disk, &integrity);
blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
static int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_id_ns *id;
u8 lbaf, pi_type;
u16 old_ms;
unsigned short bs;
if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
__func__, ns->ctrl->instance, ns->ns_id);
return -ENODEV;
}
if (id->ncap == 0) {
kfree(id);
return -ENODEV;
}
if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
if (nvme_nvm_register(ns->queue, disk->disk_name)) {
dev_warn(ns->ctrl->dev,
"%s: LightNVM init failure\n", __func__);
kfree(id);
return -ENODEV;
}
ns->type = NVME_NS_LIGHTNVM;
}
if (ns->ctrl->vs >= NVME_VS(1, 1))
memcpy(ns->eui, id->eui64, sizeof(ns->eui));
if (ns->ctrl->vs >= NVME_VS(1, 2))
memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
old_ms = ns->ms;
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
/*
* If identify namespace failed, use default 512 byte block size so
* block layer can use before failing read/write for 0 capacity.
*/
if (ns->lba_shift == 0)
ns->lba_shift = 9;
bs = 1 << ns->lba_shift;
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
id->dps & NVME_NS_DPS_PI_MASK : 0;
blk_mq_freeze_queue(disk->queue);
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
ns->ms != old_ms ||
bs != queue_logical_block_size(disk->queue) ||
(ns->ms && ns->ext)))
blk_integrity_unregister(disk);
ns->pi_type = pi_type;
blk_queue_logical_block_size(ns->queue, bs);
if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
nvme_init_integrity(ns);
if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
blk_mq_unfreeze_queue(disk->queue);
kfree(id);
return 0;
}
static char nvme_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 1;
case PR_EXCLUSIVE_ACCESS:
return 2;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 3;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 4;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 5;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 6;
default:
return 0;
}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
struct nvme_command c;
u8 data[16] = { 0, };
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c));
c.common.opcode = op;
c.common.nsid = cpu_to_le32(ns->ns_id);
c.common.cdw10[0] = cpu_to_le32(cdw10);
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
};
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
.pr_ops = &nvme_pr_ops,
};
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
unsigned long timeout =
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
int ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_RDY) == bit)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return ret;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, false);
}
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
/*
* Default to a 4K page size, with the intention to update this
* path in the future to accomodate architectures with differing
* kernel and IO page sizes.
*/
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
int ret;
if (page_shift < dev_page_min) {
dev_err(ctrl->dev,
"Minimum device page size %u too large for host (%u)\n",
1 << dev_page_min, 1 << page_shift);
return -ENODEV;
}
ctrl->page_size = 1 << page_shift;
ctrl->ctrl_config = NVME_CC_CSS_NVM;
ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
ctrl->ctrl_config |= NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, true);
}
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
u32 csts;
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return ret;
}
/*
* Initialize the cached copies of the Identify data and various controller
* register in our nvme_ctrl structure. This should be called as soon as
* the admin queue is fully up and running.
*/
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
u64 cap;
int ret, page_shift;
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
if (ret) {
dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
return ret;
}
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
if (ret) {
dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
return ret;
}
page_shift = NVME_CAP_MPSMIN(cap) + 12;
if (ctrl->vs >= NVME_VS(1, 1))
ctrl->subsystem = NVME_CAP_NSSRC(cap);
ret = nvme_identify_ctrl(ctrl, &id);
if (ret) {
dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
return -EIO;
}
ctrl->oncs = le16_to_cpup(&id->oncs);
atomic_set(&ctrl->abort_limit, id->acl + 1);
ctrl->vwc = id->vwc;
memcpy(ctrl->serial, id->sn, sizeof(id->sn));
memcpy(ctrl->model, id->mn, sizeof(id->mn));
memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
if (id->mdts)
ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
else
ctrl->max_hw_sectors = UINT_MAX;
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
unsigned int max_hw_sectors;
ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
if (ctrl->max_hw_sectors) {
ctrl->max_hw_sectors = min(max_hw_sectors,
ctrl->max_hw_sectors);
} else {
ctrl->max_hw_sectors = max_hw_sectors;
}
}
kfree(id);
return 0;
}
static int nvme_dev_open(struct inode *inode, struct file *file)
{
struct nvme_ctrl *ctrl;
int instance = iminor(inode);
int ret = -ENODEV;
spin_lock(&dev_list_lock);
list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
if (ctrl->instance != instance)
continue;
if (!ctrl->admin_q) {
ret = -EWOULDBLOCK;
break;
}
if (!kref_get_unless_zero(&ctrl->kref))
break;
file->private_data = ctrl;
ret = 0;
break;
}
spin_unlock(&dev_list_lock);
return ret;
}
static int nvme_dev_release(struct inode *inode, struct file *file)
{
nvme_put_ctrl(file->private_data);
return 0;
}
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
struct nvme_ns *ns;
int ret;
mutex_lock(&ctrl->namespaces_mutex);
if (list_empty(&ctrl->namespaces)) {
ret = -ENOTTY;
goto out_unlock;
}
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
dev_warn(ctrl->dev,
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
ret = -EINVAL;
goto out_unlock;
}
dev_warn(ctrl->dev,
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
kref_get(&ns->kref);
mutex_unlock(&ctrl->namespaces_mutex);
ret = nvme_user_cmd(ctrl, ns, argp);
nvme_put_ns(ns);
return ret;
out_unlock:
mutex_unlock(&ctrl->namespaces_mutex);
return ret;
}
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct nvme_ctrl *ctrl = file->private_data;
void __user *argp = (void __user *)arg;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ctrl, NULL, argp);
case NVME_IOCTL_IO_CMD:
return nvme_dev_user_cmd(ctrl, argp);
case NVME_IOCTL_RESET:
dev_warn(ctrl->dev, "resetting controller\n");
return ctrl->ops->reset_ctrl(ctrl);
case NVME_IOCTL_SUBSYS_RESET:
return nvme_reset_subsystem(ctrl);
default:
return -ENOTTY;
}
}
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = nvme_dev_ioctl,
};
static ssize_t nvme_sysfs_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
int ret;
ret = ctrl->ops->reset_ctrl(ctrl);
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
static struct attribute *nvme_ns_attrs[] = {
&dev_attr_uuid.attr,
&dev_attr_eui.attr,
&dev_attr_nsid.attr,
NULL,
};
static umode_t nvme_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
if (a == &dev_attr_uuid.attr) {
if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
return 0;
}
if (a == &dev_attr_eui.attr) {
if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
return 0;
}
return a->mode;
}
static const struct attribute_group nvme_ns_attr_group = {
.attrs = nvme_ns_attrs,
.is_visible = nvme_attrs_are_visible,
};
#define nvme_show_function(field) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_function(model);
nvme_show_function(serial);
nvme_show_function(firmware_rev);
static struct attribute *nvme_dev_attrs[] = {
&dev_attr_reset_controller.attr,
&dev_attr_model.attr,
&dev_attr_serial.attr,
&dev_attr_firmware_rev.attr,
NULL
};
static struct attribute_group nvme_dev_attrs_group = {
.attrs = nvme_dev_attrs,
};
static const struct attribute_group *nvme_dev_attr_groups[] = {
&nvme_dev_attrs_group,
NULL,
};
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
return nsa->ns_id - nsb->ns_id;
}
static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
lockdep_assert_held(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
if (ns->ns_id == nsid)
return ns;
if (ns->ns_id > nsid)
break;
}
return NULL;
}
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
struct gendisk *disk;
int node = dev_to_node(ctrl->dev);
lockdep_assert_held(&ctrl->namespaces_mutex);
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
return;
ns->queue = blk_mq_init_queue(ctrl->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
ns->queue->queuedata = ns;
ns->ctrl = ctrl;
disk = alloc_disk_node(0, node);
if (!disk)
goto out_free_queue;
kref_init(&ns->kref);
ns->ns_id = nsid;
ns->disk = disk;
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
if (ctrl->max_hw_sectors) {
blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
blk_queue_max_segments(ns->queue,
(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
}
if (ctrl->stripe_size)
blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
disk->major = nvme_major;
disk->first_minor = 0;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->driverfs_dev = ctrl->device;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
if (nvme_revalidate_disk(ns->disk))
goto out_free_disk;
list_add_tail(&ns->list, &ctrl->namespaces);
kref_get(&ctrl->kref);
if (ns->type == NVME_NS_LIGHTNVM)
return;
add_disk(ns->disk);
if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
&nvme_ns_attr_group))
pr_warn("%s: failed to create sysfs group for identification\n",
ns->disk->disk_name);
return;
out_free_disk:
kfree(disk);
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
}
static void nvme_ns_remove(struct nvme_ns *ns)
{
bool kill = nvme_io_incapable(ns->ctrl) &&
!blk_queue_dying(ns->queue);
lockdep_assert_held(&ns->ctrl->namespaces_mutex);
if (kill) {
blk_set_queue_dying(ns->queue);
/*
* The controller was shutdown first if we got here through
* device removal. The shutdown may requeue outstanding
* requests. These need to be aborted immediately so
* del_gendisk doesn't block indefinitely for their completion.
*/
blk_mq_abort_requeue_list(ns->queue);
}
if (ns->disk->flags & GENHD_FL_UP) {
if (blk_get_integrity(ns->disk))
blk_integrity_unregister(ns->disk);
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
&nvme_ns_attr_group);
del_gendisk(ns->disk);
}
if (kill || !blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
list_del_init(&ns->list);
nvme_put_ns(ns);
}
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns;
ns = nvme_find_ns(ctrl, nsid);
if (ns) {
if (revalidate_disk(ns->disk))
nvme_ns_remove(ns);
} else
nvme_alloc_ns(ctrl, nsid);
}
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
struct nvme_ns *ns;
__le32 *ns_list;
unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
int ret = 0;
ns_list = kzalloc(0x1000, GFP_KERNEL);
if (!ns_list)
return -ENOMEM;
for (i = 0; i < num_lists; i++) {
ret = nvme_identify_ns_list(ctrl, prev, ns_list);
if (ret)
goto out;
for (j = 0; j < min(nn, 1024U); j++) {
nsid = le32_to_cpu(ns_list[j]);
if (!nsid)
goto out;
nvme_validate_ns(ctrl, nsid);
while (++prev < nsid) {
ns = nvme_find_ns(ctrl, prev);
if (ns)
nvme_ns_remove(ns);
}
}
nn -= j;
}
out:
kfree(ns_list);
return ret;
}
static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
{
struct nvme_ns *ns, *next;
unsigned i;
lockdep_assert_held(&ctrl->namespaces_mutex);
for (i = 1; i <= nn; i++)
nvme_validate_ns(ctrl, i);
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
if (ns->ns_id > nn)
nvme_ns_remove(ns);
}
}
void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
unsigned nn;
if (nvme_identify_ctrl(ctrl, &id))
return;
mutex_lock(&ctrl->namespaces_mutex);
nn = le32_to_cpu(id->nn);
if (ctrl->vs >= NVME_VS(1, 1) &&
!(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
if (!nvme_scan_ns_list(ctrl, nn))
goto done;
}
__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
done:
list_sort(NULL, &ctrl->namespaces, ns_cmp);
mutex_unlock(&ctrl->namespaces_mutex);
kfree(id);
}
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns, *next;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
nvme_ns_remove(ns);
mutex_unlock(&ctrl->namespaces_mutex);
}
static DEFINE_IDA(nvme_instance_ida);
static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
int instance, error;
do {
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
return -ENODEV;
spin_lock(&dev_list_lock);
error = ida_get_new(&nvme_instance_ida, &instance);
spin_unlock(&dev_list_lock);
} while (error == -EAGAIN);
if (error)
return -ENODEV;
ctrl->instance = instance;
return 0;
}
static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
spin_lock(&dev_list_lock);
ida_remove(&nvme_instance_ida, ctrl->instance);
spin_unlock(&dev_list_lock);
}
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
{
device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
spin_lock(&dev_list_lock);
list_del(&ctrl->node);
spin_unlock(&dev_list_lock);
}
static void nvme_free_ctrl(struct kref *kref)
{
struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
put_device(ctrl->device);
nvme_release_instance(ctrl);
ctrl->ops->free_ctrl(ctrl);
}
void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
kref_put(&ctrl->kref, nvme_free_ctrl);
}
/*
* Initialize a NVMe controller structures. This needs to be called during
* earliest initialization so that we have the initialized structured around
* during probing.
*/
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
int ret;
INIT_LIST_HEAD(&ctrl->namespaces);
mutex_init(&ctrl->namespaces_mutex);
kref_init(&ctrl->kref);
ctrl->dev = dev;
ctrl->ops = ops;
ctrl->quirks = quirks;
ret = nvme_set_instance(ctrl);
if (ret)
goto out;
ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
MKDEV(nvme_char_major, ctrl->instance),
dev, nvme_dev_attr_groups,
"nvme%d", ctrl->instance);
if (IS_ERR(ctrl->device)) {
ret = PTR_ERR(ctrl->device);
goto out_release_instance;
}
get_device(ctrl->device);
dev_set_drvdata(ctrl->device, ctrl);
spin_lock(&dev_list_lock);
list_add_tail(&ctrl->node, &nvme_ctrl_list);
spin_unlock(&dev_list_lock);
return 0;
out_release_instance:
nvme_release_instance(ctrl);
out:
return ret;
}
void nvme_stop_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
spin_lock_irq(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock_irq(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
}
mutex_unlock(&ctrl->namespaces_mutex);
}
void nvme_start_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
mutex_lock(&ctrl->namespaces_mutex);
list_for_each_entry(ns, &ctrl->namespaces, list) {
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
blk_mq_start_stopped_hw_queues(ns->queue, true);
blk_mq_kick_requeue_list(ns->queue);
}
mutex_unlock(&ctrl->namespaces_mutex);
}
int __init nvme_core_init(void)
{
int result;
result = register_blkdev(nvme_major, "nvme");
if (result < 0)
return result;
else if (result > 0)
nvme_major = result;
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
&nvme_dev_fops);
if (result < 0)
goto unregister_blkdev;
else if (result > 0)
nvme_char_major = result;
nvme_class = class_create(THIS_MODULE, "nvme");
if (IS_ERR(nvme_class)) {
result = PTR_ERR(nvme_class);
goto unregister_chrdev;
}
return 0;
unregister_chrdev:
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
unregister_blkdev:
unregister_blkdev(nvme_major, "nvme");
return result;
}
void nvme_core_exit(void)
{
unregister_blkdev(nvme_major, "nvme");
class_destroy(nvme_class);
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
}
......@@ -294,7 +294,6 @@ static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_dev *dev = ns->dev;
struct nvme_nvm_id *nvme_nvm_id;
struct nvme_nvm_command c = {};
int ret;
......@@ -307,7 +306,7 @@ static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
if (!nvme_nvm_id)
return -ENOMEM;
ret = nvme_submit_sync_cmd(dev->admin_q, (struct nvme_command *)&c,
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
nvme_nvm_id, sizeof(struct nvme_nvm_id));
if (ret) {
ret = -EIO;
......@@ -332,9 +331,8 @@ static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
nvm_l2p_update_fn *update_l2p, void *priv)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_dev *dev = ns->dev;
struct nvme_nvm_command c = {};
u32 len = queue_max_hw_sectors(dev->admin_q) << 9;
u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9;
u32 nlb_pr_rq = len / sizeof(u64);
u64 cmd_slba = slba;
void *entries;
......@@ -352,10 +350,10 @@ static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
c.l2p.slba = cpu_to_le64(cmd_slba);
c.l2p.nlb = cpu_to_le32(cmd_nlb);
ret = nvme_submit_sync_cmd(dev->admin_q,
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q,
(struct nvme_command *)&c, entries, len);
if (ret) {
dev_err(dev->dev, "L2P table transfer failed (%d)\n",
dev_err(ns->ctrl->dev, "L2P table transfer failed (%d)\n",
ret);
ret = -EIO;
goto out;
......@@ -381,7 +379,7 @@ static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
{
struct request_queue *q = nvmdev->q;
struct nvme_ns *ns = q->queuedata;
struct nvme_dev *dev = ns->dev;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_nvm_command c = {};
struct nvme_nvm_bb_tbl *bb_tbl;
int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blocks;
......@@ -395,30 +393,30 @@ static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
if (!bb_tbl)
return -ENOMEM;
ret = nvme_submit_sync_cmd(dev->admin_q, (struct nvme_command *)&c,
ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
bb_tbl, tblsz);
if (ret) {
dev_err(dev->dev, "get bad block table failed (%d)\n", ret);
dev_err(ctrl->dev, "get bad block table failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
dev_err(dev->dev, "bbt format mismatch\n");
dev_err(ctrl->dev, "bbt format mismatch\n");
ret = -EINVAL;
goto out;
}
if (le16_to_cpu(bb_tbl->verid) != 1) {
ret = -EINVAL;
dev_err(dev->dev, "bbt version not supported\n");
dev_err(ctrl->dev, "bbt version not supported\n");
goto out;
}
if (le32_to_cpu(bb_tbl->tblks) != nr_blocks) {
ret = -EINVAL;
dev_err(dev->dev, "bbt unsuspected blocks returned (%u!=%u)",
dev_err(ctrl->dev, "bbt unsuspected blocks returned (%u!=%u)",
le32_to_cpu(bb_tbl->tblks), nr_blocks);
goto out;
}
......@@ -434,7 +432,6 @@ static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct nvm_rq *rqd,
int type)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_dev *dev = ns->dev;
struct nvme_nvm_command c = {};
int ret = 0;
......@@ -444,10 +441,10 @@ static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct nvm_rq *rqd,
c.set_bb.nlb = cpu_to_le16(rqd->nr_pages - 1);
c.set_bb.value = type;
ret = nvme_submit_sync_cmd(dev->admin_q, (struct nvme_command *)&c,
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
NULL, 0);
if (ret)
dev_err(dev->dev, "set bad block table failed (%d)\n", ret);
dev_err(ns->ctrl->dev, "set bad block table failed (%d)\n", ret);
return ret;
}
......@@ -532,9 +529,8 @@ static int nvme_nvm_erase_block(struct nvm_dev *dev, struct nvm_rq *rqd)
static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_dev *dev = ns->dev;
return dma_pool_create(name, dev->dev, PAGE_SIZE, PAGE_SIZE, 0);
return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
}
static void nvme_nvm_destroy_dma_pool(void *pool)
......@@ -592,8 +588,9 @@ void nvme_nvm_unregister(struct request_queue *q, char *disk_name)
int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
{
struct nvme_dev *dev = ns->dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
struct nvme_ctrl *ctrl = ns->ctrl;
/* XXX: this is poking into PCI structures from generic code! */
struct pci_dev *pdev = to_pci_dev(ctrl->dev);
/* QEMU NVMe simulator - PCI ID + Vendor specific bit */
if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
......
......@@ -19,58 +19,77 @@
#include <linux/kref.h>
#include <linux/blk-mq.h>
enum {
/*
* Driver internal status code for commands that were cancelled due
* to timeouts or controller shutdown. The value is negative so
* that it a) doesn't overlap with the unsigned hardware error codes,
* and b) can easily be tested for.
*/
NVME_SC_CANCELLED = -EINTR,
};
extern unsigned char nvme_io_timeout;
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
extern unsigned char admin_timeout;
#define ADMIN_TIMEOUT (admin_timeout * HZ)
extern unsigned char shutdown_timeout;
#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
enum {
NVME_NS_LBA = 0,
NVME_NS_LIGHTNVM = 1,
};
/*
* Represents an NVM Express device. Each nvme_dev is a PCI function.
* List of workarounds for devices that required behavior not specified in
* the standard.
*/
struct nvme_dev {
struct list_head node;
struct nvme_queue **queues;
enum nvme_quirks {
/*
* Prefers I/O aligned to a stripe size specified in a vendor
* specific Identify field.
*/
NVME_QUIRK_STRIPE_SIZE = (1 << 0),
/*
* The controller doesn't handle Identify value others than 0 or 1
* correctly.
*/
NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
};
struct nvme_ctrl {
const struct nvme_ctrl_ops *ops;
struct request_queue *admin_q;
struct blk_mq_tag_set tagset;
struct blk_mq_tag_set admin_tagset;
u32 __iomem *dbs;
struct device *dev;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
struct kref kref;
int instance;
unsigned queue_count;
unsigned online_queues;
unsigned max_qid;
int q_depth;
u32 db_stride;
u32 ctrl_config;
struct msix_entry *entry;
struct nvme_bar __iomem *bar;
struct blk_mq_tag_set *tagset;
struct list_head namespaces;
struct kref kref;
struct device *device;
struct work_struct reset_work;
struct work_struct probe_work;
struct work_struct scan_work;
struct mutex namespaces_mutex;
struct device *device; /* char device */
struct list_head node;
char name[12];
char serial[20];
char model[40];
char firmware_rev[8];
bool subsystem;
u32 ctrl_config;
u32 page_size;
u32 max_hw_sectors;
u32 stripe_size;
u32 page_size;
void __iomem *cmb;
dma_addr_t cmb_dma_addr;
u64 cmb_size;
u32 cmbsz;
u16 oncs;
u16 abort_limit;
atomic_t abort_limit;
u8 event_limit;
u8 vwc;
u32 vs;
bool subsystem;
unsigned long quirks;
};
/*
......@@ -79,11 +98,14 @@ struct nvme_dev {
struct nvme_ns {
struct list_head list;
struct nvme_dev *dev;
struct nvme_ctrl *ctrl;
struct request_queue *queue;
struct gendisk *disk;
struct kref kref;
u8 eui[8];
u8 uuid[16];
unsigned ns_id;
int lba_shift;
u16 ms;
......@@ -94,41 +116,156 @@ struct nvme_ns {
u32 mode_select_block_len;
};
/*
* The nvme_iod describes the data in an I/O, including the list of PRP
* entries. You can't see it in this data structure because C doesn't let
* me express that. Use nvme_alloc_iod to ensure there's enough space
* allocated to store the PRP list.
*/
struct nvme_iod {
unsigned long private; /* For the use of the submitter of the I/O */
int npages; /* In the PRP list. 0 means small pool in use */
int offset; /* Of PRP list */
int nents; /* Used in scatterlist */
int length; /* Of data, in bytes */
dma_addr_t first_dma;
struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
struct scatterlist sg[0];
struct nvme_ctrl_ops {
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
bool (*io_incapable)(struct nvme_ctrl *ctrl);
int (*reset_ctrl)(struct nvme_ctrl *ctrl);
void (*free_ctrl)(struct nvme_ctrl *ctrl);
};
static inline bool nvme_ctrl_ready(struct nvme_ctrl *ctrl)
{
u32 val = 0;
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &val))
return false;
return val & NVME_CSTS_RDY;
}
static inline bool nvme_io_incapable(struct nvme_ctrl *ctrl)
{
u32 val = 0;
if (ctrl->ops->io_incapable(ctrl))
return false;
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &val))
return false;
return val & NVME_CSTS_CFS;
}
static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
{
if (!ctrl->subsystem)
return -ENOTTY;
return ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
}
static inline u64 nvme_block_nr(struct nvme_ns *ns, sector_t sector)
{
return (sector >> (ns->lba_shift - 9));
}
static inline void nvme_setup_flush(struct nvme_ns *ns,
struct nvme_command *cmnd)
{
memset(cmnd, 0, sizeof(*cmnd));
cmnd->common.opcode = nvme_cmd_flush;
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}
static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmnd)
{
u16 control = 0;
u32 dsmgmt = 0;
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
memset(cmnd, 0, sizeof(*cmnd));
cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
cmnd->rw.command_id = req->tag;
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
if (ns->ms) {
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
control |= NVME_RW_PRINFO_PRCHK_GUARD;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
control |= NVME_RW_PRINFO_PRCHK_GUARD |
NVME_RW_PRINFO_PRCHK_REF;
cmnd->rw.reftag = cpu_to_le32(
nvme_block_nr(ns, blk_rq_pos(req)));
break;
}
if (!blk_integrity_rq(req))
control |= NVME_RW_PRINFO_PRACT;
}
cmnd->rw.control = cpu_to_le16(control);
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}
static inline int nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return 0;
case NVME_SC_CAP_EXCEEDED:
return -ENOSPC;
default:
return -EIO;
}
}
static inline bool nvme_req_needs_retry(struct request *req, u16 status)
{
return !(status & NVME_SC_DNR || blk_noretry_request(req)) &&
(jiffies - req->start_time) < req->timeout;
}
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
void nvme_put_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_identify(struct nvme_ctrl *ctrl);
void nvme_scan_namespaces(struct nvme_ctrl *ctrl);
void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
void nvme_stop_queues(struct nvme_ctrl *ctrl);
void nvme_start_queues(struct nvme_ctrl *ctrl);
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, unsigned int flags);
void nvme_requeue_req(struct request *req);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, void __user *ubuffer, unsigned bufflen,
void *buffer, unsigned bufflen, u32 *result, unsigned timeout);
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen, u32 *result,
unsigned timeout);
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen,
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
u32 *result, unsigned timeout);
int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id);
int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id);
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
struct nvme_id_ns **id);
int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log);
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log);
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result);
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
extern spinlock_t dev_list_lock;
struct sg_io_hdr;
......@@ -154,4 +291,7 @@ static inline int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *i
}
#endif /* CONFIG_NVM */
int __init nvme_core_init(void);
void nvme_core_exit(void);
#endif /* _NVME_H */
......@@ -12,6 +12,7 @@
* more details.
*/
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
......@@ -28,10 +29,10 @@
#include <linux/kdev_t.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/list_sort.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/ptrace.h>
......@@ -39,23 +40,24 @@
#include <linux/slab.h>
#include <linux/t10-pi.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <scsi/sg.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/unaligned.h>
#include <uapi/linux/nvme_ioctl.h>
#include "nvme.h"
#define NVME_MINORS (1U << MINORBITS)
#define NVME_Q_DEPTH 1024
#define NVME_AQ_DEPTH 256
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT (admin_timeout * HZ)
#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
static unsigned char admin_timeout = 60;
/*
* We handle AEN commands ourselves and don't even let the
* block layer know about them.
*/
#define NVME_NR_AEN_COMMANDS 1
#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
......@@ -63,16 +65,10 @@ unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
static unsigned char shutdown_timeout = 5;
unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static int nvme_major;
module_param(nvme_major, int, 0);
static int nvme_char_major;
module_param(nvme_char_major, int, 0);
static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);
......@@ -80,28 +76,60 @@ static bool use_cmb_sqes = true;
module_param(use_cmb_sqes, bool, 0644);
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
static DEFINE_SPINLOCK(dev_list_lock);
static LIST_HEAD(dev_list);
static struct task_struct *nvme_thread;
static struct workqueue_struct *nvme_workq;
static wait_queue_head_t nvme_kthread_wait;
static struct class *nvme_class;
struct nvme_dev;
struct nvme_queue;
static int __nvme_reset(struct nvme_dev *dev);
static int nvme_reset(struct nvme_dev *dev);
static void nvme_process_cq(struct nvme_queue *nvmeq);
static void nvme_dead_ctrl(struct nvme_dev *dev);
static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
struct async_cmd_info {
struct kthread_work work;
struct kthread_worker *worker;
struct request *req;
u32 result;
int status;
void *ctx;
/*
* Represents an NVM Express device. Each nvme_dev is a PCI function.
*/
struct nvme_dev {
struct list_head node;
struct nvme_queue **queues;
struct blk_mq_tag_set tagset;
struct blk_mq_tag_set admin_tagset;
u32 __iomem *dbs;
struct device *dev;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
unsigned queue_count;
unsigned online_queues;
unsigned max_qid;
int q_depth;
u32 db_stride;
struct msix_entry *entry;
void __iomem *bar;
struct work_struct reset_work;
struct work_struct scan_work;
struct work_struct remove_work;
struct mutex shutdown_lock;
bool subsystem;
void __iomem *cmb;
dma_addr_t cmb_dma_addr;
u64 cmb_size;
u32 cmbsz;
unsigned long flags;
#define NVME_CTRL_RESETTING 0
struct nvme_ctrl ctrl;
struct completion ioq_wait;
};
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_dev, ctrl);
}
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
......@@ -126,7 +154,24 @@ struct nvme_queue {
u16 qid;
u8 cq_phase;
u8 cqe_seen;
struct async_cmd_info cmdinfo;
};
/*
* The nvme_iod describes the data in an I/O, including the list of PRP
* entries. You can't see it in this data structure because C doesn't let
* me express that. Use nvme_init_iod to ensure there's enough space
* allocated to store the PRP list.
*/
struct nvme_iod {
struct nvme_queue *nvmeq;
int aborted;
int npages; /* In the PRP list. 0 means small pool in use */
int nents; /* Used in scatterlist */
int length; /* Of data, in bytes */
dma_addr_t first_dma;
struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
struct scatterlist *sg;
struct scatterlist inline_sg[0];
};
/*
......@@ -148,23 +193,11 @@ static inline void _nvme_check_size(void)
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
}
typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
struct nvme_completion *);
struct nvme_cmd_info {
nvme_completion_fn fn;
void *ctx;
int aborted;
struct nvme_queue *nvmeq;
struct nvme_iod iod[0];
};
/*
* Max size of iod being embedded in the request payload
*/
#define NVME_INT_PAGES 2
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
#define NVME_INT_MASK 0x01
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
/*
* Will slightly overestimate the number of pages needed. This is OK
......@@ -173,19 +206,22 @@ struct nvme_cmd_info {
*/
static int nvme_npages(unsigned size, struct nvme_dev *dev)
{
unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
dev->ctrl.page_size);
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
}
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
unsigned int size, unsigned int nseg)
{
unsigned int ret = sizeof(struct nvme_cmd_info);
ret += sizeof(struct nvme_iod);
ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
return sizeof(__le64 *) * nvme_npages(size, dev) +
sizeof(struct scatterlist) * nseg;
}
return ret;
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
{
return sizeof(struct nvme_iod) +
nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
}
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
......@@ -215,11 +251,11 @@ static int nvme_admin_init_request(void *data, struct request *req,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[0];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
iod->nvmeq = nvmeq;
return 0;
}
......@@ -242,148 +278,36 @@ static int nvme_init_request(void *data, struct request *req,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
iod->nvmeq = nvmeq;
return 0;
}
static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
nvme_completion_fn handler)
{
cmd->fn = handler;
cmd->ctx = ctx;
cmd->aborted = 0;
blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
}
static void *iod_get_private(struct nvme_iod *iod)
{
return (void *) (iod->private & ~0x1UL);
}
/*
* If bit 0 is set, the iod is embedded in the request payload.
*/
static bool iod_should_kfree(struct nvme_iod *iod)
{
return (iod->private & NVME_INT_MASK) == 0;
}
/* Special values must be less than 0x1000 */
#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
static void special_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
if (ctx == CMD_CTX_CANCELLED)
return;
if (ctx == CMD_CTX_COMPLETED) {
dev_warn(nvmeq->q_dmadev,
"completed id %d twice on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
if (ctx == CMD_CTX_INVALID) {
dev_warn(nvmeq->q_dmadev,
"invalid id %d completed on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
}
static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
{
void *ctx;
if (fn)
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_CANCELLED;
return ctx;
}
static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
static void nvme_complete_async_event(struct nvme_dev *dev,
struct nvme_completion *cqe)
{
u32 result = le32_to_cpup(&cqe->result);
u16 status = le16_to_cpup(&cqe->status) >> 1;
u16 status = le16_to_cpu(cqe->status) >> 1;
u32 result = le32_to_cpu(cqe->result);
if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
++nvmeq->dev->event_limit;
++dev->ctrl.event_limit;
if (status != NVME_SC_SUCCESS)
return;
switch (result & 0xff07) {
case NVME_AER_NOTICE_NS_CHANGED:
dev_info(nvmeq->q_dmadev, "rescanning\n");
schedule_work(&nvmeq->dev->scan_work);
dev_info(dev->dev, "rescanning\n");
queue_work(nvme_workq, &dev->scan_work);
default:
dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
}
}
static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct request *req = ctx;
u16 status = le16_to_cpup(&cqe->status) >> 1;
u32 result = le32_to_cpup(&cqe->result);
blk_mq_free_request(req);
dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
++nvmeq->dev->abort_limit;
}
static void async_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct async_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
blk_mq_free_request(cmdinfo->req);
}
static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
unsigned int tag)
{
struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
return blk_mq_rq_to_pdu(req);
}
/*
* Called with local interrupts disabled and the q_lock held. May not sleep.
*/
static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
nvme_completion_fn *fn)
{
struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
void *ctx;
if (tag >= nvmeq->q_depth) {
*fn = special_completion;
return CMD_CTX_INVALID;
dev_warn(dev->dev, "async event result %08x\n", result);
}
if (fn)
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_COMPLETED;
return ctx;
}
/**
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
......@@ -405,69 +329,44 @@ static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
nvmeq->sq_tail = tail;
}
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
unsigned long flags;
spin_lock_irqsave(&nvmeq->q_lock, flags);
__nvme_submit_cmd(nvmeq, cmd);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
}
static __le64 **iod_list(struct nvme_iod *iod)
{
return ((void *)iod) + iod->offset;
}
static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
unsigned nseg, unsigned long private)
{
iod->private = private;
iod->offset = offsetof(struct nvme_iod, sg[nseg]);
iod->npages = -1;
iod->length = nbytes;
iod->nents = 0;
}
static struct nvme_iod *
__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
unsigned long priv, gfp_t gfp)
static __le64 **iod_list(struct request *req)
{
struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
sizeof(__le64 *) * nvme_npages(bytes, dev) +
sizeof(struct scatterlist) * nseg, gfp);
if (iod)
iod_init(iod, bytes, nseg, priv);
return iod;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
return (__le64 **)(iod->sg + req->nr_phys_segments);
}
static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
gfp_t gfp)
static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
{
unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
sizeof(struct nvme_dsm_range);
struct nvme_iod *iod;
struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
int nseg = rq->nr_phys_segments;
unsigned size;
if (rq->nr_phys_segments <= NVME_INT_PAGES &&
size <= NVME_INT_BYTES(dev)) {
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
if (rq->cmd_flags & REQ_DISCARD)
size = sizeof(struct nvme_dsm_range);
else
size = blk_rq_bytes(rq);
iod = cmd->iod;
iod_init(iod, size, rq->nr_phys_segments,
(unsigned long) rq | NVME_INT_MASK);
return iod;
if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
if (!iod->sg)
return BLK_MQ_RQ_QUEUE_BUSY;
} else {
iod->sg = iod->inline_sg;
}
return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
(unsigned long) rq, gfp);
iod->aborted = 0;
iod->npages = -1;
iod->nents = 0;
iod->length = size;
return 0;
}
static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
{
const int last_prp = dev->page_size / 8 - 1;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
const int last_prp = dev->ctrl.page_size / 8 - 1;
int i;
__le64 **list = iod_list(iod);
__le64 **list = iod_list(req);
dma_addr_t prp_dma = iod->first_dma;
if (iod->npages == 0)
......@@ -479,20 +378,8 @@ static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
prp_dma = next_prp_dma;
}
if (iod_should_kfree(iod))
kfree(iod);
}
static int nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return 0;
case NVME_SC_CAP_EXCEEDED:
return -ENOSPC;
default:
return -EIO;
}
if (iod->sg != iod->inline_sg)
kfree(iod->sg);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
......@@ -549,27 +436,6 @@ static void nvme_dif_remap(struct request *req,
}
kunmap_atomic(pmap);
}
static void nvme_init_integrity(struct nvme_ns *ns)
{
struct blk_integrity integrity;
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity.profile = &t10_pi_type3_crc;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity.profile = &t10_pi_type1_crc;
break;
default:
integrity.profile = NULL;
break;
}
integrity.tuple_size = ns->ms;
blk_integrity_register(ns->disk, &integrity);
blk_queue_max_integrity_segments(ns->queue, 1);
}
#else /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
......@@ -581,91 +447,27 @@ static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
}
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif
static void req_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct nvme_iod *iod = ctx;
struct request *req = iod_get_private(iod);
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
u16 status = le16_to_cpup(&cqe->status) >> 1;
bool requeue = false;
int error = 0;
if (unlikely(status)) {
if (!(status & NVME_SC_DNR || blk_noretry_request(req))
&& (jiffies - req->start_time) < req->timeout) {
unsigned long flags;
requeue = true;
blk_mq_requeue_request(req);
spin_lock_irqsave(req->q->queue_lock, flags);
if (!blk_queue_stopped(req->q))
blk_mq_kick_requeue_list(req->q);
spin_unlock_irqrestore(req->q->queue_lock, flags);
goto release_iod;
}
if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
if (cmd_rq->ctx == CMD_CTX_CANCELLED)
error = -EINTR;
else
error = status;
} else {
error = nvme_error_status(status);
}
}
if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
u32 result = le32_to_cpup(&cqe->result);
req->special = (void *)(uintptr_t)result;
}
if (cmd_rq->aborted)
dev_warn(nvmeq->dev->dev,
"completing aborted command with status:%04x\n",
error);
release_iod:
if (iod->nents) {
dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
}
}
nvme_free_iod(nvmeq->dev, iod);
if (likely(!requeue))
blk_mq_complete_request(req, error);
}
/* length is in bytes. gfp flags indicates whether we may sleep. */
static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
int total_len, gfp_t gfp)
static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
int total_len)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct dma_pool *pool;
int length = total_len;
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
u32 page_size = dev->page_size;
u32 page_size = dev->ctrl.page_size;
int offset = dma_addr & (page_size - 1);
__le64 *prp_list;
__le64 **list = iod_list(iod);
__le64 **list = iod_list(req);
dma_addr_t prp_dma;
int nprps, i;
length -= (page_size - offset);
if (length <= 0)
return total_len;
return true;
dma_len -= (page_size - offset);
if (dma_len) {
......@@ -678,7 +480,7 @@ static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
if (length <= page_size) {
iod->first_dma = dma_addr;
return total_len;
return true;
}
nprps = DIV_ROUND_UP(length, page_size);
......@@ -690,11 +492,11 @@ static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return (total_len - length) + page_size;
return false;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
......@@ -702,9 +504,9 @@ static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
for (;;) {
if (i == page_size >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list)
return total_len - length;
return false;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
......@@ -724,115 +526,105 @@ static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
dma_len = sg_dma_len(sg);
}
return total_len;
return true;
}
static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
struct nvme_iod *iod)
static int nvme_map_data(struct nvme_dev *dev, struct request *req,
struct nvme_command *cmnd)
{
struct nvme_command cmnd;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct request_queue *q = req->q;
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
int ret = BLK_MQ_RQ_QUEUE_ERROR;
memcpy(&cmnd, req->cmd, sizeof(cmnd));
cmnd.rw.command_id = req->tag;
if (req->nr_phys_segments) {
cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
}
sg_init_table(iod->sg, req->nr_phys_segments);
iod->nents = blk_rq_map_sg(q, req, iod->sg);
if (!iod->nents)
goto out;
__nvme_submit_cmd(nvmeq, &cmnd);
}
ret = BLK_MQ_RQ_QUEUE_BUSY;
if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
goto out;
/*
* We reuse the small pool to allocate the 16-byte range here as it is not
* worth having a special pool for these or additional cases to handle freeing
* the iod.
*/
static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
struct request *req, struct nvme_iod *iod)
{
struct nvme_dsm_range *range =
(struct nvme_dsm_range *)iod_list(iod)[0];
struct nvme_command cmnd;
if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
goto out_unmap;
range->cattr = cpu_to_le32(0);
range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
ret = BLK_MQ_RQ_QUEUE_ERROR;
if (blk_integrity_rq(req)) {
if (blk_rq_count_integrity_sg(q, req->bio) != 1)
goto out_unmap;
memset(&cmnd, 0, sizeof(cmnd));
cmnd.dsm.opcode = nvme_cmd_dsm;
cmnd.dsm.command_id = req->tag;
cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
cmnd.dsm.nr = 0;
cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
sg_init_table(&iod->meta_sg, 1);
if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
goto out_unmap;
__nvme_submit_cmd(nvmeq, &cmnd);
}
if (rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_prep);
static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
int cmdid)
{
struct nvme_command cmnd;
if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
goto out_unmap;
}
memset(&cmnd, 0, sizeof(cmnd));
cmnd.common.opcode = nvme_cmd_flush;
cmnd.common.command_id = cmdid;
cmnd.common.nsid = cpu_to_le32(ns->ns_id);
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
if (blk_integrity_rq(req))
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
return BLK_MQ_RQ_QUEUE_OK;
__nvme_submit_cmd(nvmeq, &cmnd);
out_unmap:
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
out:
return ret;
}
static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
struct nvme_ns *ns)
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
{
struct request *req = iod_get_private(iod);
struct nvme_command cmnd;
u16 control = 0;
u32 dsmgmt = 0;
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
memset(&cmnd, 0, sizeof(cmnd));
cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
cmnd.rw.command_id = req->tag;
cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
if (ns->ms) {
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
control |= NVME_RW_PRINFO_PRCHK_GUARD;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
control |= NVME_RW_PRINFO_PRCHK_GUARD |
NVME_RW_PRINFO_PRCHK_REF;
cmnd.rw.reftag = cpu_to_le32(
nvme_block_nr(ns, blk_rq_pos(req)));
break;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
if (iod->nents) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
}
if (blk_integrity_rq(req))
cmnd.rw.metadata =
cpu_to_le64(sg_dma_address(iod->meta_sg));
else
control |= NVME_RW_PRINFO_PRACT;
}
cmnd.rw.control = cpu_to_le16(control);
cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
nvme_free_iod(dev, req);
}
__nvme_submit_cmd(nvmeq, &cmnd);
/*
* We reuse the small pool to allocate the 16-byte range here as it is not
* worth having a special pool for these or additional cases to handle freeing
* the iod.
*/
static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
struct request *req, struct nvme_command *cmnd)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_dsm_range *range;
return 0;
range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
&iod->first_dma);
if (!range)
return BLK_MQ_RQ_QUEUE_BUSY;
iod_list(req)[0] = (__le64 *)range;
iod->npages = 0;
range->cattr = cpu_to_le32(0);
range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
memset(cmnd, 0, sizeof(*cmnd));
cmnd->dsm.opcode = nvme_cmd_dsm;
cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
cmnd->dsm.nr = 0;
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
return BLK_MQ_RQ_QUEUE_OK;
}
/*
......@@ -845,9 +637,8 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
struct nvme_queue *nvmeq = hctx->driver_data;
struct nvme_dev *dev = nvmeq->dev;
struct request *req = bd->rq;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod;
enum dma_data_direction dma_dir;
struct nvme_command cmnd;
int ret = BLK_MQ_RQ_QUEUE_OK;
/*
* If formated with metadata, require the block layer provide a buffer
......@@ -857,115 +648,123 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
if (ns && ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8) &&
req->cmd_type != REQ_TYPE_DRV_PRIV) {
blk_mq_complete_request(req, -EFAULT);
blk_mq_end_request(req, -EFAULT);
return BLK_MQ_RQ_QUEUE_OK;
}
}
iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
if (!iod)
return BLK_MQ_RQ_QUEUE_BUSY;
ret = nvme_init_iod(req, dev);
if (ret)
return ret;
if (req->cmd_flags & REQ_DISCARD) {
void *range;
/*
* We reuse the small pool to allocate the 16-byte range here
* as it is not worth having a special pool for these or
* additional cases to handle freeing the iod.
*/
range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
&iod->first_dma);
if (!range)
goto retry_cmd;
iod_list(iod)[0] = (__le64 *)range;
iod->npages = 0;
} else if (req->nr_phys_segments) {
dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
sg_init_table(iod->sg, req->nr_phys_segments);
iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
if (!iod->nents)
goto error_cmd;
if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
goto retry_cmd;
if (blk_rq_bytes(req) !=
nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
goto retry_cmd;
}
if (blk_integrity_rq(req)) {
if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents,
dma_dir);
goto error_cmd;
}
ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
} else {
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
memcpy(&cmnd, req->cmd, sizeof(cmnd));
else if (req->cmd_flags & REQ_FLUSH)
nvme_setup_flush(ns, &cmnd);
else
nvme_setup_rw(ns, req, &cmnd);
sg_init_table(iod->meta_sg, 1);
if (blk_rq_map_integrity_sg(
req->q, req->bio, iod->meta_sg) != 1) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents,
dma_dir);
goto error_cmd;
if (req->nr_phys_segments)
ret = nvme_map_data(dev, req, &cmnd);
}
if (rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_prep);
if (ret)
goto out;
if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents,
dma_dir);
goto error_cmd;
}
}
}
cmnd.common.command_id = req->tag;
blk_mq_start_request(req);
nvme_set_info(cmd, iod, req_completion);
spin_lock_irq(&nvmeq->q_lock);
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
nvme_submit_priv(nvmeq, req, iod);
else if (req->cmd_flags & REQ_DISCARD)
nvme_submit_discard(nvmeq, ns, req, iod);
else if (req->cmd_flags & REQ_FLUSH)
nvme_submit_flush(nvmeq, ns, req->tag);
else
nvme_submit_iod(nvmeq, iod, ns);
__nvme_submit_cmd(nvmeq, &cmnd);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
return BLK_MQ_RQ_QUEUE_OK;
error_cmd:
nvme_free_iod(dev, iod);
return BLK_MQ_RQ_QUEUE_ERROR;
retry_cmd:
nvme_free_iod(dev, iod);
return BLK_MQ_RQ_QUEUE_BUSY;
out:
nvme_free_iod(dev, req);
return ret;
}
static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
static void nvme_complete_rq(struct request *req)
{
u16 head, phase;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_dev *dev = iod->nvmeq->dev;
int error = 0;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
nvme_unmap_data(dev, req);
if (unlikely(req->errors)) {
if (nvme_req_needs_retry(req, req->errors)) {
nvme_requeue_req(req);
return;
}
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
error = req->errors;
else
error = nvme_error_status(req->errors);
}
if (unlikely(iod->aborted)) {
dev_warn(dev->dev,
"completing aborted command with status: %04x\n",
req->errors);
}
blk_mq_end_request(req, error);
}
static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
{
u16 head, phase;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
for (;;) {
void *ctx;
nvme_completion_fn fn;
struct nvme_completion cqe = nvmeq->cqes[head];
if ((le16_to_cpu(cqe.status) & 1) != phase)
u16 status = le16_to_cpu(cqe.status);
struct request *req;
if ((status & 1) != phase)
break;
nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
if (tag && *tag == cqe.command_id)
*tag = -1;
ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
fn(nvmeq, ctx, &cqe);
if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
dev_warn(nvmeq->q_dmadev,
"invalid id %d completed on queue %d\n",
cqe.command_id, le16_to_cpu(cqe.sq_id));
continue;
}
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvmeq->qid == 0 &&
cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
nvme_complete_async_event(nvmeq->dev, &cqe);
continue;
}
req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
u32 result = le32_to_cpu(cqe.result);
req->special = (void *)(uintptr_t)result;
}
blk_mq_complete_request(req, status >> 1);
}
/* If the controller ignores the cq head doorbell and continuously
......@@ -1028,112 +827,15 @@ static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
return 0;
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, void __user *ubuffer, unsigned bufflen,
u32 *result, unsigned timeout)
static void nvme_submit_async_event(struct nvme_dev *dev)
{
bool write = cmd->common.opcode & 1;
struct bio *bio = NULL;
struct request *req;
int ret;
req = blk_mq_alloc_request(q, write, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->cmd_type = REQ_TYPE_DRV_PRIV;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
req->__data_len = 0;
req->__sector = (sector_t) -1;
req->bio = req->biotail = NULL;
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
req->cmd = (unsigned char *)cmd;
req->cmd_len = sizeof(struct nvme_command);
req->special = (void *)0;
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen,
__GFP_DIRECT_RECLAIM);
if (ret)
goto out;
} else if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
__GFP_DIRECT_RECLAIM);
if (ret)
goto out;
bio = req->bio;
}
blk_execute_rq(req->q, NULL, req, 0);
if (bio)
blk_rq_unmap_user(bio);
if (result)
*result = (u32)(uintptr_t)req->special;
ret = req->errors;
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
}
static int nvme_submit_async_admin_req(struct nvme_dev *dev)
{
struct nvme_queue *nvmeq = dev->queues[0];
struct nvme_command c;
struct nvme_cmd_info *cmd_info;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE,
BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
if (IS_ERR(req))
return PTR_ERR(req);
req->cmd_flags |= REQ_NO_TIMEOUT;
cmd_info = blk_mq_rq_to_pdu(req);
nvme_set_info(cmd_info, NULL, async_req_completion);
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_async_event;
c.common.command_id = req->tag;
blk_mq_free_request(req);
__nvme_submit_cmd(nvmeq, &c);
return 0;
}
static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
struct nvme_command *cmd,
struct async_cmd_info *cmdinfo, unsigned timeout)
{
struct nvme_queue *nvmeq = dev->queues[0];
struct request *req;
struct nvme_cmd_info *cmd_rq;
c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
req = blk_mq_alloc_request(dev->admin_q, WRITE, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout;
cmd_rq = blk_mq_rq_to_pdu(req);
cmdinfo->req = req;
nvme_set_info(cmd_rq, cmdinfo, async_completion);
cmdinfo->status = -EINTR;
cmd->common.command_id = req->tag;
nvme_submit_cmd(nvmeq, cmd);
return 0;
__nvme_submit_cmd(dev->queues[0], &c);
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
......@@ -1144,7 +846,7 @@ static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
......@@ -1165,7 +867,7 @@ static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
......@@ -1186,7 +888,7 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
......@@ -1199,195 +901,111 @@ static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(1);
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
struct nvme_id_ns **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify,
c.identify.nsid = cpu_to_le32(nsid),
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ns));
if (error)
kfree(*id);
return error;
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
result, 0);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
result, 0);
}
int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
static void abort_endio(struct request *req, int error)
{
struct nvme_command c = { };
int error;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
u32 result = (u32)(uintptr_t)req->special;
u16 status = req->errors;
c.common.opcode = nvme_admin_get_log_page,
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
c.common.cdw10[0] = cpu_to_le32(
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
NVME_LOG_SMART),
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
if (!*log)
return -ENOMEM;
dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
sizeof(struct nvme_smart_log));
if (error)
kfree(*log);
return error;
blk_mq_free_request(req);
}
/**
* nvme_abort_req - Attempt aborting a request
*
* Schedule controller reset if the command was already aborted once before and
* still hasn't been returned to the driver, or if this is the admin queue.
*/
static void nvme_abort_req(struct request *req)
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
struct nvme_dev *dev = nvmeq->dev;
struct request *abort_req;
struct nvme_cmd_info *abort_cmd;
struct nvme_command cmd;
if (!nvmeq->qid || cmd_rq->aborted) {
spin_lock(&dev_list_lock);
if (!__nvme_reset(dev)) {
/*
* Shutdown immediately if controller times out while starting. The
* reset work will see the pci device disabled when it gets the forced
* cancellation error. All outstanding requests are completed on
* shutdown, so we return BLK_EH_HANDLED.
*/
if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
dev_warn(dev->dev,
"I/O %d QID %d timeout, reset controller\n",
"I/O %d QID %d timeout, disable controller\n",
req->tag, nvmeq->qid);
}
spin_unlock(&dev_list_lock);
return;
nvme_dev_disable(dev, false);
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
if (!dev->abort_limit)
return;
/*
* Shutdown the controller immediately and schedule a reset if the
* command was already aborted once before and still hasn't been
* returned to the driver, or if this is the admin queue.
*/
if (!nvmeq->qid || iod->aborted) {
dev_warn(dev->dev,
"I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
nvme_dev_disable(dev, false);
queue_work(nvme_workq, &dev->reset_work);
abort_req = blk_mq_alloc_request(dev->admin_q, WRITE,
BLK_MQ_REQ_NOWAIT);
if (IS_ERR(abort_req))
return;
/*
* Mark the request as handled, since the inline shutdown
* forces all outstanding requests to complete.
*/
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
abort_cmd = blk_mq_rq_to_pdu(abort_req);
nvme_set_info(abort_cmd, abort_req, abort_completion);
iod->aborted = 1;
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
memset(&cmd, 0, sizeof(cmd));
cmd.abort.opcode = nvme_admin_abort_cmd;
cmd.abort.cid = req->tag;
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
cmd.abort.command_id = abort_req->tag;
--dev->abort_limit;
cmd_rq->aborted = 1;
dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
req->tag, nvmeq->qid);
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
BLK_MQ_REQ_NOWAIT);
if (IS_ERR(abort_req)) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
abort_req->timeout = ADMIN_TIMEOUT;
abort_req->end_io_data = NULL;
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
nvmeq->qid);
nvme_submit_cmd(dev->queues[0], &cmd);
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
return BLK_EH_RESET_TIMER;
}
static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
{
struct nvme_queue *nvmeq = data;
void *ctx;
nvme_completion_fn fn;
struct nvme_cmd_info *cmd;
struct nvme_completion cqe;
int status;
if (!blk_mq_request_started(req))
return;
cmd = blk_mq_rq_to_pdu(req);
if (cmd->ctx == CMD_CTX_CANCELLED)
return;
dev_warn(nvmeq->q_dmadev,
"Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
status = NVME_SC_ABORT_REQ;
if (blk_queue_dying(req->q))
cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
else
cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
req->tag, nvmeq->qid);
ctx = cancel_cmd_info(cmd, &fn);
fn(nvmeq, ctx, &cqe);
}
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd->nvmeq;
dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
nvmeq->qid);
spin_lock_irq(&nvmeq->q_lock);
nvme_abort_req(req);
spin_unlock_irq(&nvmeq->q_lock);
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
return BLK_EH_RESET_TIMER;
status |= NVME_SC_DNR;
blk_mq_complete_request(req, status);
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
......@@ -1430,8 +1048,8 @@ static int nvme_suspend_queue(struct nvme_queue *nvmeq)
nvmeq->cq_vector = -1;
spin_unlock_irq(&nvmeq->q_lock);
if (!nvmeq->qid && nvmeq->dev->admin_q)
blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
irq_set_affinity_hint(vector, NULL);
free_irq(vector, nvmeq);
......@@ -1447,21 +1065,20 @@ static void nvme_clear_queue(struct nvme_queue *nvmeq)
spin_unlock_irq(&nvmeq->q_lock);
}
static void nvme_disable_queue(struct nvme_dev *dev, int qid)
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
{
struct nvme_queue *nvmeq = dev->queues[qid];
struct nvme_queue *nvmeq = dev->queues[0];
if (!nvmeq)
return;
if (nvme_suspend_queue(nvmeq))
return;
/* Don't tell the adapter to delete the admin queue.
* Don't tell a removed adapter to delete IO queues. */
if (qid && readl(&dev->bar->csts) != -1) {
adapter_delete_sq(dev, qid);
adapter_delete_cq(dev, qid);
}
if (shutdown)
nvme_shutdown_ctrl(&dev->ctrl);
else
nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
dev->bar + NVME_REG_CAP));
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
......@@ -1472,11 +1089,12 @@ static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
int entry_size)
{
int q_depth = dev->q_depth;
unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
unsigned q_size_aligned = roundup(q_depth * entry_size,
dev->ctrl.page_size);
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
mem_per_q = round_down(mem_per_q, dev->page_size);
mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
q_depth = div_u64(mem_per_q, entry_size);
/*
......@@ -1495,8 +1113,8 @@ static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
int qid, int depth)
{
if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
unsigned offset = (qid - 1) *
roundup(SQ_SIZE(depth), dev->page_size);
unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
dev->ctrl.page_size);
nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
nvmeq->sq_cmds_io = dev->cmb + offset;
} else {
......@@ -1527,7 +1145,7 @@ static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
nvmeq->q_dmadev = dev->dev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->instance, qid);
dev->ctrl.instance, qid);
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
......@@ -1604,79 +1222,9 @@ static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
return result;
}
static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
{
unsigned long timeout;
u32 bit = enabled ? NVME_CSTS_RDY : 0;
timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(dev->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return 0;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config &= ~NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, false);
}
static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, true);
}
static int nvme_shutdown_ctrl(struct nvme_dev *dev)
{
unsigned long timeout;
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_SHN_NORMAL;
writel(dev->ctrl_config, &dev->bar->cc);
timeout = SHUTDOWN_TIMEOUT + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
NVME_CSTS_SHST_CMPLT) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(dev->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return 0;
}
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_admin_exit_hctx,
......@@ -1686,6 +1234,7 @@ static struct blk_mq_ops nvme_mq_admin_ops = {
static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.init_request = nvme_init_request,
......@@ -1695,19 +1244,23 @@ static struct blk_mq_ops nvme_mq_ops = {
static void nvme_dev_remove_admin(struct nvme_dev *dev)
{
if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
blk_cleanup_queue(dev->admin_q);
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
blk_cleanup_queue(dev->ctrl.admin_q);
blk_mq_free_tag_set(&dev->admin_tagset);
}
}
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
{
if (!dev->admin_q) {
if (!dev->ctrl.admin_q) {
dev->admin_tagset.ops = &nvme_mq_admin_ops;
dev->admin_tagset.nr_hw_queues = 1;
dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
dev->admin_tagset.reserved_tags = 1;
/*
* Subtract one to leave an empty queue entry for 'Full Queue'
* condition. See NVM-Express 1.2 specification, section 4.1.2.
*/
dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
......@@ -1716,18 +1269,18 @@ static int nvme_alloc_admin_tags(struct nvme_dev *dev)
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
return -ENOMEM;
dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->admin_q)) {
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->ctrl.admin_q)) {
blk_mq_free_tag_set(&dev->admin_tagset);
return -ENOMEM;
}
if (!blk_get_queue(dev->admin_q)) {
if (!blk_get_queue(dev->ctrl.admin_q)) {
nvme_dev_remove_admin(dev);
dev->admin_q = NULL;
dev->ctrl.admin_q = NULL;
return -ENODEV;
}
} else
blk_mq_unfreeze_queue(dev->admin_q);
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
return 0;
}
......@@ -1736,31 +1289,17 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = lo_hi_readq(&dev->bar->cap);
u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
struct nvme_queue *nvmeq;
/*
* default to a 4K page size, with the intention to update this
* path in the future to accomodate architectures with differing
* kernel and IO page sizes.
*/
unsigned page_shift = 12;
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
if (page_shift < dev_page_min) {
dev_err(dev->dev,
"Minimum device page size (%u) too large for "
"host (%u)\n", 1 << dev_page_min,
1 << page_shift);
return -ENODEV;
}
dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
NVME_CAP_NSSRC(cap) : 0;
if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
writel(NVME_CSTS_NSSRO, &dev->bar->csts);
if (dev->subsystem &&
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
result = nvme_disable_ctrl(dev, cap);
result = nvme_disable_ctrl(&dev->ctrl, cap);
if (result < 0)
return result;
......@@ -1774,18 +1313,11 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
dev->page_size = 1 << page_shift;
writel(aqa, dev->bar + NVME_REG_AQA);
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
dev->ctrl_config = NVME_CC_CSS_NVM;
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
writel(aqa, &dev->bar->aqa);
lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
result = nvme_enable_ctrl(dev, cap);
result = nvme_enable_ctrl(&dev->ctrl, cap);
if (result)
goto free_nvmeq;
......@@ -1803,406 +1335,6 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
return result;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_dev *dev = ns->dev;
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
int status, write;
dma_addr_t meta_dma = 0;
void *meta = NULL;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
break;
default:
return -EINVAL;
}
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
metadata = (void __user *)(uintptr_t)io.metadata;
write = io.opcode & 1;
if (ns->ext) {
length += meta_len;
meta_len = 0;
}
if (meta_len) {
if (((io.metadata & 3) || !io.metadata) && !ns->ext)
return -EINVAL;
meta = dma_alloc_coherent(dev->dev, meta_len,
&meta_dma, GFP_KERNEL);
if (!meta) {
status = -ENOMEM;
goto unmap;
}
if (write) {
if (copy_from_user(meta, metadata, meta_len)) {
status = -EFAULT;
goto unmap;
}
}
}
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
c.rw.metadata = cpu_to_le64(meta_dma);
status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
(void __user *)(uintptr_t)io.addr, length, NULL, 0);
unmap:
if (meta) {
if (status == NVME_SC_SUCCESS && !write) {
if (copy_to_user(metadata, meta, meta_len))
status = -EFAULT;
}
dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
}
return status;
}
static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
&cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
return status;
}
static int nvme_subsys_reset(struct nvme_dev *dev)
{
if (!dev->subsystem)
return -ENOTTY;
writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
return 0;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static void nvme_free_dev(struct kref *kref);
static void nvme_free_ns(struct kref *kref)
{
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
if (ns->type == NVME_NS_LIGHTNVM)
nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
kref_put(&ns->dev->kref, nvme_free_dev);
put_disk(ns->disk);
kfree(ns);
}
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
int ret = 0;
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = bdev->bd_disk->private_data;
if (!ns)
ret = -ENXIO;
else if (!kref_get_unless_zero(&ns->kref))
ret = -ENXIO;
spin_unlock(&dev_list_lock);
return ret;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
struct nvme_ns *ns = disk->private_data;
kref_put(&ns->kref, nvme_free_ns);
}
static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bd->bd_disk) >> 11;
return 0;
}
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
static int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id;
u8 lbaf, pi_type;
u16 old_ms;
unsigned short bs;
if (nvme_identify_ns(dev, ns->ns_id, &id)) {
dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
dev->instance, ns->ns_id);
return -ENODEV;
}
if (id->ncap == 0) {
kfree(id);
return -ENODEV;
}
if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
if (nvme_nvm_register(ns->queue, disk->disk_name)) {
dev_warn(dev->dev,
"%s: LightNVM init failure\n", __func__);
kfree(id);
return -ENODEV;
}
ns->type = NVME_NS_LIGHTNVM;
}
old_ms = ns->ms;
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
/*
* If identify namespace failed, use default 512 byte block size so
* block layer can use before failing read/write for 0 capacity.
*/
if (ns->lba_shift == 0)
ns->lba_shift = 9;
bs = 1 << ns->lba_shift;
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
id->dps & NVME_NS_DPS_PI_MASK : 0;
blk_mq_freeze_queue(disk->queue);
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
ns->ms != old_ms ||
bs != queue_logical_block_size(disk->queue) ||
(ns->ms && ns->ext)))
blk_integrity_unregister(disk);
ns->pi_type = pi_type;
blk_queue_logical_block_size(ns->queue, bs);
if (ns->ms && !ns->ext)
nvme_init_integrity(ns);
if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
!blk_get_integrity(disk)) ||
ns->type == NVME_NS_LIGHTNVM)
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (dev->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
blk_mq_unfreeze_queue(disk->queue);
kfree(id);
return 0;
}
static char nvme_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 1;
case PR_EXCLUSIVE_ACCESS:
return 2;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 3;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 4;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 5;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 6;
default:
return 0;
}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
struct nvme_command c;
u8 data[16] = { 0, };
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c));
c.common.opcode = op;
c.common.nsid = cpu_to_le32(ns->ns_id);
c.common.cdw10[0] = cpu_to_le32(cdw10);
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
};
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
.pr_ops = &nvme_pr_ops,
};
static int nvme_kthread(void *data)
{
struct nvme_dev *dev, *next;
......@@ -2212,14 +1344,20 @@ static int nvme_kthread(void *data)
spin_lock(&dev_list_lock);
list_for_each_entry_safe(dev, next, &dev_list, node) {
int i;
u32 csts = readl(&dev->bar->csts);
u32 csts = readl(dev->bar + NVME_REG_CSTS);
/*
* Skip controllers currently under reset.
*/
if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
continue;
if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
csts & NVME_CSTS_CFS) {
if (!__nvme_reset(dev)) {
if (queue_work(nvme_workq, &dev->reset_work)) {
dev_warn(dev->dev,
"Failed status: %x, reset controller\n",
readl(&dev->bar->csts));
readl(dev->bar + NVME_REG_CSTS));
}
continue;
}
......@@ -2230,11 +1368,8 @@ static int nvme_kthread(void *data)
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
while ((i == 0) && (dev->event_limit > 0)) {
if (nvme_submit_async_admin_req(dev))
break;
dev->event_limit--;
}
while (i == 0 && dev->ctrl.event_limit > 0)
nvme_submit_async_event(dev);
spin_unlock_irq(&nvmeq->q_lock);
}
}
......@@ -2244,127 +1379,33 @@ static int nvme_kthread(void *data)
return 0;
}
static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
{
struct nvme_ns *ns;
struct gendisk *disk;
int node = dev_to_node(dev->dev);
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
return;
ns->queue = blk_mq_init_queue(&dev->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
ns->dev = dev;
ns->queue->queuedata = ns;
disk = alloc_disk_node(0, node);
if (!disk)
goto out_free_queue;
kref_init(&ns->kref);
ns->ns_id = nsid;
ns->disk = disk;
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
list_add_tail(&ns->list, &dev->namespaces);
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
if (dev->max_hw_sectors) {
blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
blk_queue_max_segments(ns->queue,
(dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
}
if (dev->stripe_size)
blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
if (dev->vwc & NVME_CTRL_VWC_PRESENT)
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
disk->major = nvme_major;
disk->first_minor = 0;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->driverfs_dev = dev->device;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
/*
* Initialize capacity to 0 until we establish the namespace format and
* setup integrity extentions if necessary. The revalidate_disk after
* add_disk allows the driver to register with integrity if the format
* requires it.
*/
set_capacity(disk, 0);
if (nvme_revalidate_disk(ns->disk))
goto out_free_disk;
kref_get(&dev->kref);
if (ns->type != NVME_NS_LIGHTNVM) {
add_disk(ns->disk);
if (ns->ms) {
struct block_device *bd = bdget_disk(ns->disk, 0);
if (!bd)
return;
if (blkdev_get(bd, FMODE_READ, NULL)) {
bdput(bd);
return;
}
blkdev_reread_part(bd);
blkdev_put(bd, FMODE_READ);
}
}
return;
out_free_disk:
kfree(disk);
list_del(&ns->list);
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
}
/*
* Create I/O queues. Failing to create an I/O queue is not an issue,
* we can continue with less than the desired amount of queues, and
* even a controller without I/O queues an still be used to issue
* admin commands. This might be useful to upgrade a buggy firmware
* for example.
*/
static void nvme_create_io_queues(struct nvme_dev *dev)
static int nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned i;
int ret = 0;
for (i = dev->queue_count; i <= dev->max_qid; i++)
if (!nvme_alloc_queue(dev, i, dev->q_depth))
for (i = dev->queue_count; i <= dev->max_qid; i++) {
if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
ret = -ENOMEM;
break;
}
}
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
if (nvme_create_queue(dev->queues[i], i)) {
for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
ret = nvme_create_queue(dev->queues[i], i);
if (ret) {
nvme_free_queues(dev, i);
break;
}
}
static int set_queue_count(struct nvme_dev *dev, int count)
{
int status;
u32 result;
u32 q_count = (count - 1) | ((count - 1) << 16);
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
&result);
if (status < 0)
return status;
if (status > 0) {
dev_err(dev->dev, "Could not set queue count (%d)\n", status);
return 0;
}
return min(result & 0xffff, result >> 16) + 1;
/*
* Ignore failing Create SQ/CQ commands, we can continue with less
* than the desired aount of queues, and even a controller without
* I/O queues an still be used to issue admin commands. This might
* be useful to upgrade a buggy firmware for example.
*/
return ret >= 0 ? 0 : ret;
}
static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
......@@ -2379,11 +1420,11 @@ static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
if (!use_cmb_sqes)
return NULL;
dev->cmbsz = readl(&dev->bar->cmbsz);
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
if (!(NVME_CMB_SZ(dev->cmbsz)))
return NULL;
cmbloc = readl(&dev->bar->cmbloc);
cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
size = szu * NVME_CMB_SZ(dev->cmbsz);
......@@ -2431,11 +1472,20 @@ static int nvme_setup_io_queues(struct nvme_dev *dev)
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_possible_cpus();
result = set_queue_count(dev, nr_io_queues);
if (result <= 0)
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
if (result < 0)
return result;
if (result < nr_io_queues)
nr_io_queues = result;
/*
* Degraded controllers might return an error when setting the queue
* count. We still want to be able to bring them online and offer
* access to the admin queue, as that might be only way to fix them up.
*/
if (result > 0) {
dev_err(dev->dev, "Could not set queue count (%d)\n", result);
nr_io_queues = 0;
result = 0;
}
if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
result = nvme_cmb_qdepth(dev, nr_io_queues,
......@@ -2457,7 +1507,7 @@ static int nvme_setup_io_queues(struct nvme_dev *dev)
return -ENOMEM;
size = db_bar_size(dev, nr_io_queues);
} while (1);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
dev->dbs = dev->bar + 4096;
adminq->q_db = dev->dbs;
}
......@@ -2501,115 +1551,115 @@ static int nvme_setup_io_queues(struct nvme_dev *dev)
/* Free previously allocated queues that are no longer usable */
nvme_free_queues(dev, nr_io_queues + 1);
nvme_create_io_queues(dev);
return 0;
return nvme_create_io_queues(dev);
free_queues:
nvme_free_queues(dev, 1);
return result;
}
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
static void nvme_set_irq_hints(struct nvme_dev *dev)
{
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
struct nvme_queue *nvmeq;
int i;
return nsa->ns_id - nsb->ns_id;
}
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
{
struct nvme_ns *ns;
if (!nvmeq->tags || !(*nvmeq->tags))
continue;
list_for_each_entry(ns, &dev->namespaces, list) {
if (ns->ns_id == nsid)
return ns;
if (ns->ns_id > nsid)
break;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
blk_mq_tags_cpumask(*nvmeq->tags));
}
return NULL;
}
static inline bool nvme_io_incapable(struct nvme_dev *dev)
static void nvme_dev_scan(struct work_struct *work)
{
return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
dev->online_queues < 2);
struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
if (!dev->tagset.tags)
return;
nvme_scan_namespaces(&dev->ctrl);
nvme_set_irq_hints(dev);
}
static void nvme_ns_remove(struct nvme_ns *ns)
static void nvme_del_queue_end(struct request *req, int error)
{
bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
if (kill) {
blk_set_queue_dying(ns->queue);
struct nvme_queue *nvmeq = req->end_io_data;
/*
* The controller was shutdown first if we got here through
* device removal. The shutdown may requeue outstanding
* requests. These need to be aborted immediately so
* del_gendisk doesn't block indefinitely for their completion.
*/
blk_mq_abort_requeue_list(ns->queue);
}
if (ns->disk->flags & GENHD_FL_UP)
del_gendisk(ns->disk);
if (kill || !blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
list_del_init(&ns->list);
kref_put(&ns->kref, nvme_free_ns);
blk_mq_free_request(req);
complete(&nvmeq->dev->ioq_wait);
}
static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
static void nvme_del_cq_end(struct request *req, int error)
{
struct nvme_ns *ns, *next;
unsigned i;
struct nvme_queue *nvmeq = req->end_io_data;
for (i = 1; i <= nn; i++) {
ns = nvme_find_ns(dev, i);
if (ns) {
if (revalidate_disk(ns->disk))
nvme_ns_remove(ns);
} else
nvme_alloc_ns(dev, i);
}
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
if (ns->ns_id > nn)
nvme_ns_remove(ns);
if (!error) {
unsigned long flags;
spin_lock_irqsave(&nvmeq->q_lock, flags);
nvme_process_cq(nvmeq);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
}
list_sort(NULL, &dev->namespaces, ns_cmp);
nvme_del_queue_end(req, error);
}
static void nvme_set_irq_hints(struct nvme_dev *dev)
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
{
struct nvme_queue *nvmeq;
int i;
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
struct request *req;
struct nvme_command cmd;
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
memset(&cmd, 0, sizeof(cmd));
cmd.delete_queue.opcode = opcode;
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
if (IS_ERR(req))
return PTR_ERR(req);
if (!nvmeq->tags || !(*nvmeq->tags))
continue;
req->timeout = ADMIN_TIMEOUT;
req->end_io_data = nvmeq;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
blk_mq_tags_cpumask(*nvmeq->tags));
}
blk_execute_rq_nowait(q, NULL, req, false,
opcode == nvme_admin_delete_cq ?
nvme_del_cq_end : nvme_del_queue_end);
return 0;
}
static void nvme_dev_scan(struct work_struct *work)
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
struct nvme_id_ctrl *ctrl;
int pass;
unsigned long timeout;
u8 opcode = nvme_admin_delete_sq;
if (!dev->tagset.tags)
return;
if (nvme_identify_ctrl(dev, &ctrl))
for (pass = 0; pass < 2; pass++) {
int sent = 0, i = dev->queue_count - 1;
reinit_completion(&dev->ioq_wait);
retry:
timeout = ADMIN_TIMEOUT;
for (; i > 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
if (!pass)
nvme_suspend_queue(nvmeq);
if (nvme_delete_queue(nvmeq, opcode))
break;
++sent;
}
while (sent--) {
timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
if (timeout == 0)
return;
nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
kfree(ctrl);
nvme_set_irq_hints(dev);
if (i)
goto retry;
}
opcode = nvme_admin_delete_cq;
}
}
/*
......@@ -2620,42 +1670,7 @@ static void nvme_dev_scan(struct work_struct *work)
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
int res;
struct nvme_id_ctrl *ctrl;
int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12;
res = nvme_identify_ctrl(dev, &ctrl);
if (res) {
dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
return -EIO;
}
dev->oncs = le16_to_cpup(&ctrl->oncs);
dev->abort_limit = ctrl->acl + 1;
dev->vwc = ctrl->vwc;
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
if (ctrl->mdts)
dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
else
dev->max_hw_sectors = UINT_MAX;
if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
(pdev->device == 0x0953) && ctrl->vs[3]) {
unsigned int max_hw_sectors;
dev->stripe_size = 1 << (ctrl->vs[3] + shift);
max_hw_sectors = dev->stripe_size >> (shift - 9);
if (dev->max_hw_sectors) {
dev->max_hw_sectors = min(max_hw_sectors,
dev->max_hw_sectors);
} else
dev->max_hw_sectors = max_hw_sectors;
}
kfree(ctrl);
if (!dev->tagset.tags) {
if (!dev->ctrl.tagset) {
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
......@@ -2668,8 +1683,9 @@ static int nvme_dev_add(struct nvme_dev *dev)
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
dev->ctrl.tagset = &dev->tagset;
}
schedule_work(&dev->scan_work);
queue_work(nvme_workq, &dev->scan_work);
return 0;
}
......@@ -2699,7 +1715,7 @@ static int nvme_dev_map(struct nvme_dev *dev)
if (!dev->bar)
goto disable;
if (readl(&dev->bar->csts) == -1) {
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
result = -ENODEV;
goto unmap;
}
......@@ -2714,10 +1730,11 @@ static int nvme_dev_map(struct nvme_dev *dev)
goto unmap;
}
cap = lo_hi_readq(&dev->bar->cap);
cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
dev->dbs = dev->bar + 4096;
/*
* Temporary fix for the Apple controller found in the MacBook8,1 and
......@@ -2730,9 +1747,11 @@ static int nvme_dev_map(struct nvme_dev *dev)
dev->q_depth);
}
if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
dev->cmb = nvme_map_cmb(dev);
pci_enable_pcie_error_reporting(pdev);
pci_save_state(pdev);
return 0;
unmap:
......@@ -2760,152 +1779,34 @@ static void nvme_dev_unmap(struct nvme_dev *dev)
pci_release_regions(pdev);
}
if (pci_is_enabled(pdev))
if (pci_is_enabled(pdev)) {
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
struct nvme_delq_ctx {
struct task_struct *waiter;
struct kthread_worker *worker;
atomic_t refcount;
};
static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
{
dq->waiter = current;
mb();
for (;;) {
set_current_state(TASK_KILLABLE);
if (!atomic_read(&dq->refcount))
break;
if (!schedule_timeout(ADMIN_TIMEOUT) ||
fatal_signal_pending(current)) {
/*
* Disable the controller first since we can't trust it
* at this point, but leave the admin queue enabled
* until all queue deletion requests are flushed.
* FIXME: This may take a while if there are more h/w
* queues than admin tags.
*/
set_current_state(TASK_RUNNING);
nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap));
nvme_clear_queue(dev->queues[0]);
flush_kthread_worker(dq->worker);
nvme_disable_queue(dev, 0);
return;
}
}
set_current_state(TASK_RUNNING);
}
static void nvme_put_dq(struct nvme_delq_ctx *dq)
{
atomic_dec(&dq->refcount);
if (dq->waiter)
wake_up_process(dq->waiter);
}
static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
{
atomic_inc(&dq->refcount);
return dq;
}
static void nvme_del_queue_end(struct nvme_queue *nvmeq)
{
struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
nvme_put_dq(dq);
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
kthread_work_func_t fn)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
init_kthread_work(&nvmeq->cmdinfo.work, fn);
return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
ADMIN_TIMEOUT);
}
static void nvme_del_cq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_cq(struct nvme_queue *nvmeq)
static int nvme_dev_list_add(struct nvme_dev *dev)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
nvme_del_cq_work_handler);
}
static void nvme_del_sq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
int status = nvmeq->cmdinfo.status;
if (!status)
status = nvme_delete_cq(nvmeq);
if (status)
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_sq(struct nvme_queue *nvmeq)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
nvme_del_sq_work_handler);
}
static void nvme_del_queue_start(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
if (nvme_delete_sq(nvmeq))
nvme_del_queue_end(nvmeq);
}
bool start_thread = false;
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
int i;
DEFINE_KTHREAD_WORKER_ONSTACK(worker);
struct nvme_delq_ctx dq;
struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
&worker, "nvme%d", dev->instance);
if (IS_ERR(kworker_task)) {
dev_err(dev->dev,
"Failed to create queue del task\n");
for (i = dev->queue_count - 1; i > 0; i--)
nvme_disable_queue(dev, i);
return;
spin_lock(&dev_list_lock);
if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
start_thread = true;
nvme_thread = NULL;
}
list_add(&dev->node, &dev_list);
spin_unlock(&dev_list_lock);
dq.waiter = NULL;
atomic_set(&dq.refcount, 0);
dq.worker = &worker;
for (i = dev->queue_count - 1; i > 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
if (start_thread) {
nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
wake_up_all(&nvme_kthread_wait);
} else
wait_event_killable(nvme_kthread_wait, nvme_thread);
if (nvme_suspend_queue(nvmeq))
continue;
nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
nvmeq->cmdinfo.worker = dq.worker;
init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
}
nvme_wait_dq(&dq, dev);
kthread_stop(kworker_task);
if (IS_ERR_OR_NULL(nvme_thread))
return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
return 0;
}
/*
......@@ -2928,44 +1829,17 @@ static void nvme_dev_list_remove(struct nvme_dev *dev)
kthread_stop(tmp);
}
static void nvme_freeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
blk_mq_freeze_queue_start(ns->queue);
spin_lock_irq(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock_irq(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
}
}
static void nvme_unfreeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
blk_mq_unfreeze_queue(ns->queue);
blk_mq_start_stopped_hw_queues(ns->queue, true);
blk_mq_kick_requeue_list(ns->queue);
}
}
static void nvme_dev_shutdown(struct nvme_dev *dev)
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
{
int i;
u32 csts = -1;
nvme_dev_list_remove(dev);
mutex_lock(&dev->shutdown_lock);
if (dev->bar) {
nvme_freeze_queues(dev);
csts = readl(&dev->bar->csts);
nvme_stop_queues(&dev->ctrl);
csts = readl(dev->bar + NVME_REG_CSTS);
}
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
for (i = dev->queue_count - 1; i >= 0; i--) {
......@@ -2974,30 +1848,13 @@ static void nvme_dev_shutdown(struct nvme_dev *dev)
}
} else {
nvme_disable_io_queues(dev);
nvme_shutdown_ctrl(dev);
nvme_disable_queue(dev, 0);
nvme_disable_admin_queue(dev, shutdown);
}
nvme_dev_unmap(dev);
for (i = dev->queue_count - 1; i >= 0; i--)
nvme_clear_queue(dev->queues[i]);
}
static void nvme_dev_remove(struct nvme_dev *dev)
{
struct nvme_ns *ns, *next;
if (nvme_io_incapable(dev)) {
/*
* If the device is not capable of IO (surprise hot-removal,
* for example), we need to quiesce prior to deleting the
* namespaces. This will end outstanding requests and prevent
* attempts to sync dirty data.
*/
nvme_dev_shutdown(dev);
}
list_for_each_entry_safe(ns, next, &dev->namespaces, list)
nvme_ns_remove(ns);
mutex_unlock(&dev->shutdown_lock);
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
......@@ -3023,119 +1880,36 @@ static void nvme_release_prp_pools(struct nvme_dev *dev)
dma_pool_destroy(dev->prp_small_pool);
}
static DEFINE_IDA(nvme_instance_ida);
static int nvme_set_instance(struct nvme_dev *dev)
{
int instance, error;
do {
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
return -ENODEV;
spin_lock(&dev_list_lock);
error = ida_get_new(&nvme_instance_ida, &instance);
spin_unlock(&dev_list_lock);
} while (error == -EAGAIN);
if (error)
return -ENODEV;
dev->instance = instance;
return 0;
}
static void nvme_release_instance(struct nvme_dev *dev)
{
spin_lock(&dev_list_lock);
ida_remove(&nvme_instance_ida, dev->instance);
spin_unlock(&dev_list_lock);
}
static void nvme_free_dev(struct kref *kref)
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
struct nvme_dev *dev = to_nvme_dev(ctrl);
put_device(dev->dev);
put_device(dev->device);
nvme_release_instance(dev);
if (dev->tagset.tags)
blk_mq_free_tag_set(&dev->tagset);
if (dev->admin_q)
blk_put_queue(dev->admin_q);
if (dev->ctrl.admin_q)
blk_put_queue(dev->ctrl.admin_q);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
static int nvme_dev_open(struct inode *inode, struct file *f)
{
struct nvme_dev *dev;
int instance = iminor(inode);
int ret = -ENODEV;
spin_lock(&dev_list_lock);
list_for_each_entry(dev, &dev_list, node) {
if (dev->instance == instance) {
if (!dev->admin_q) {
ret = -EWOULDBLOCK;
break;
}
if (!kref_get_unless_zero(&dev->kref))
break;
f->private_data = dev;
ret = 0;
break;
}
}
spin_unlock(&dev_list_lock);
return ret;
}
static int nvme_dev_release(struct inode *inode, struct file *f)
static void nvme_reset_work(struct work_struct *work)
{
struct nvme_dev *dev = f->private_data;
kref_put(&dev->kref, nvme_free_dev);
return 0;
}
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
int result;
static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
struct nvme_dev *dev = f->private_data;
struct nvme_ns *ns;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
if (list_empty(&dev->namespaces))
return -ENOTTY;
ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
return nvme_user_cmd(dev, ns, (void __user *)arg);
case NVME_IOCTL_RESET:
dev_warn(dev->dev, "resetting controller\n");
return nvme_reset(dev);
case NVME_IOCTL_SUBSYS_RESET:
return nvme_subsys_reset(dev);
default:
return -ENOTTY;
}
}
if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
goto out;
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = nvme_dev_ioctl,
};
/*
* If we're called to reset a live controller first shut it down before
* moving on.
*/
if (dev->bar)
nvme_dev_disable(dev, false);
static void nvme_probe_work(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
bool start_thread = false;
int result;
set_bit(NVME_CTRL_RESETTING, &dev->flags);
result = nvme_dev_map(dev);
if (result)
......@@ -3145,35 +1919,24 @@ static void nvme_probe_work(struct work_struct *work)
if (result)
goto unmap;
spin_lock(&dev_list_lock);
if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
start_thread = true;
nvme_thread = NULL;
}
list_add(&dev->node, &dev_list);
spin_unlock(&dev_list_lock);
if (start_thread) {
nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
wake_up_all(&nvme_kthread_wait);
} else
wait_event_killable(nvme_kthread_wait, nvme_thread);
if (IS_ERR_OR_NULL(nvme_thread)) {
result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
goto disable;
}
nvme_init_queue(dev->queues[0], 0);
result = nvme_alloc_admin_tags(dev);
if (result)
goto disable;
result = nvme_init_identify(&dev->ctrl);
if (result)
goto free_tags;
result = nvme_setup_io_queues(dev);
if (result)
goto free_tags;
dev->event_limit = 1;
dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
result = nvme_dev_list_add(dev);
if (result)
goto remove;
/*
* Keep the controller around but remove all namespaces if we don't have
......@@ -3181,117 +1944,98 @@ static void nvme_probe_work(struct work_struct *work)
*/
if (dev->online_queues < 2) {
dev_warn(dev->dev, "IO queues not created\n");
nvme_dev_remove(dev);
nvme_remove_namespaces(&dev->ctrl);
} else {
nvme_unfreeze_queues(dev);
nvme_start_queues(&dev->ctrl);
nvme_dev_add(dev);
}
clear_bit(NVME_CTRL_RESETTING, &dev->flags);
return;
remove:
nvme_dev_list_remove(dev);
free_tags:
nvme_dev_remove_admin(dev);
blk_put_queue(dev->admin_q);
dev->admin_q = NULL;
blk_put_queue(dev->ctrl.admin_q);
dev->ctrl.admin_q = NULL;
dev->queues[0]->tags = NULL;
disable:
nvme_disable_queue(dev, 0);
nvme_dev_list_remove(dev);
nvme_disable_admin_queue(dev, false);
unmap:
nvme_dev_unmap(dev);
out:
if (!work_busy(&dev->reset_work))
nvme_dead_ctrl(dev);
nvme_remove_dead_ctrl(dev);
}
static int nvme_remove_dead_ctrl(void *arg)
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
{
struct nvme_dev *dev = (struct nvme_dev *)arg;
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_get_drvdata(pdev))
pci_stop_and_remove_bus_device_locked(pdev);
kref_put(&dev->kref, nvme_free_dev);
return 0;
nvme_put_ctrl(&dev->ctrl);
}
static void nvme_dead_ctrl(struct nvme_dev *dev)
static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
{
dev_warn(dev->dev, "Device failed to resume\n");
kref_get(&dev->kref);
if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
dev->instance))) {
dev_err(dev->dev,
"Failed to start controller remove task\n");
kref_put(&dev->kref, nvme_free_dev);
}
dev_warn(dev->dev, "Removing after probe failure\n");
kref_get(&dev->ctrl.kref);
if (!schedule_work(&dev->remove_work))
nvme_put_ctrl(&dev->ctrl);
}
static void nvme_reset_work(struct work_struct *ws)
static int nvme_reset(struct nvme_dev *dev)
{
struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
bool in_probe = work_busy(&dev->probe_work);
nvme_dev_shutdown(dev);
if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
return -ENODEV;
/* Synchronize with device probe so that work will see failure status
* and exit gracefully without trying to schedule another reset */
flush_work(&dev->probe_work);
if (!queue_work(nvme_workq, &dev->reset_work))
return -EBUSY;
/* Fail this device if reset occured during probe to avoid
* infinite initialization loops. */
if (in_probe) {
nvme_dead_ctrl(dev);
return;
}
/* Schedule device resume asynchronously so the reset work is available
* to cleanup errors that may occur during reinitialization */
schedule_work(&dev->probe_work);
flush_work(&dev->reset_work);
return 0;
}
static int __nvme_reset(struct nvme_dev *dev)
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
if (work_pending(&dev->reset_work))
return -EBUSY;
list_del_init(&dev->node);
queue_work(nvme_workq, &dev->reset_work);
*val = readl(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_reset(struct nvme_dev *dev)
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
int ret;
if (!dev->admin_q || blk_queue_dying(dev->admin_q))
return -ENODEV;
spin_lock(&dev_list_lock);
ret = __nvme_reset(dev);
spin_unlock(&dev_list_lock);
if (!ret) {
flush_work(&dev->reset_work);
flush_work(&dev->probe_work);
writel(val, to_nvme_dev(ctrl)->bar + off);
return 0;
}
}
return ret;
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
*val = readq(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static ssize_t nvme_sysfs_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
{
struct nvme_dev *ndev = dev_get_drvdata(dev);
int ret;
struct nvme_dev *dev = to_nvme_dev(ctrl);
ret = nvme_reset(ndev);
if (ret < 0)
return ret;
return !dev->bar || dev->online_queues < 2;
}
return count;
static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
{
return nvme_reset(to_nvme_dev(ctrl));
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
.reg_read32 = nvme_pci_reg_read32,
.reg_write32 = nvme_pci_reg_write32,
.reg_read64 = nvme_pci_reg_read64,
.io_incapable = nvme_pci_io_incapable,
.reset_ctrl = nvme_pci_reset_ctrl,
.free_ctrl = nvme_pci_free_ctrl,
};
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
......@@ -3314,46 +2058,30 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
if (!dev->queues)
goto free;
INIT_LIST_HEAD(&dev->namespaces);
INIT_WORK(&dev->reset_work, nvme_reset_work);
dev->dev = get_device(&pdev->dev);
pci_set_drvdata(pdev, dev);
result = nvme_set_instance(dev);
if (result)
goto put_pci;
INIT_LIST_HEAD(&dev->node);
INIT_WORK(&dev->scan_work, nvme_dev_scan);
INIT_WORK(&dev->reset_work, nvme_reset_work);
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
mutex_init(&dev->shutdown_lock);
init_completion(&dev->ioq_wait);
result = nvme_setup_prp_pools(dev);
if (result)
goto release;
kref_init(&dev->kref);
dev->device = device_create(nvme_class, &pdev->dev,
MKDEV(nvme_char_major, dev->instance),
dev, "nvme%d", dev->instance);
if (IS_ERR(dev->device)) {
result = PTR_ERR(dev->device);
goto release_pools;
}
get_device(dev->device);
dev_set_drvdata(dev->device, dev);
goto put_pci;
result = device_create_file(dev->device, &dev_attr_reset_controller);
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
id->driver_data);
if (result)
goto put_dev;
goto release_pools;
INIT_LIST_HEAD(&dev->node);
INIT_WORK(&dev->scan_work, nvme_dev_scan);
INIT_WORK(&dev->probe_work, nvme_probe_work);
schedule_work(&dev->probe_work);
queue_work(nvme_workq, &dev->reset_work);
return 0;
put_dev:
device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
put_device(dev->device);
release_pools:
nvme_release_prp_pools(dev);
release:
nvme_release_instance(dev);
put_pci:
put_device(dev->dev);
free:
......@@ -3368,15 +2096,15 @@ static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
struct nvme_dev *dev = pci_get_drvdata(pdev);
if (prepare)
nvme_dev_shutdown(dev);
nvme_dev_disable(dev, false);
else
schedule_work(&dev->probe_work);
queue_work(nvme_workq, &dev->reset_work);
}
static void nvme_shutdown(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_shutdown(dev);
nvme_dev_disable(dev, true);
}
static void nvme_remove(struct pci_dev *pdev)
......@@ -3388,34 +2116,25 @@ static void nvme_remove(struct pci_dev *pdev)
spin_unlock(&dev_list_lock);
pci_set_drvdata(pdev, NULL);
flush_work(&dev->probe_work);
flush_work(&dev->reset_work);
flush_work(&dev->scan_work);
device_remove_file(dev->device, &dev_attr_reset_controller);
nvme_dev_remove(dev);
nvme_dev_shutdown(dev);
nvme_remove_namespaces(&dev->ctrl);
nvme_uninit_ctrl(&dev->ctrl);
nvme_dev_disable(dev, true);
nvme_dev_remove_admin(dev);
device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
nvme_free_queues(dev, 0);
nvme_release_cmb(dev);
nvme_release_prp_pools(dev);
kref_put(&dev->kref, nvme_free_dev);
nvme_put_ctrl(&dev->ctrl);
}
/* These functions are yet to be implemented */
#define nvme_error_detected NULL
#define nvme_dump_registers NULL
#define nvme_link_reset NULL
#define nvme_slot_reset NULL
#define nvme_error_resume NULL
#ifdef CONFIG_PM_SLEEP
static int nvme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
nvme_dev_shutdown(ndev);
nvme_dev_disable(ndev, true);
return 0;
}
......@@ -3424,17 +2143,53 @@ static int nvme_resume(struct device *dev)
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
schedule_work(&ndev->probe_work);
queue_work(nvme_workq, &ndev->reset_work);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
/*
* A frozen channel requires a reset. When detected, this method will
* shutdown the controller to quiesce. The controller will be restarted
* after the slot reset through driver's slot_reset callback.
*/
dev_warn(&pdev->dev, "error detected: state:%d\n", state);
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
nvme_dev_disable(dev, false);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "restart after slot reset\n");
pci_restore_state(pdev);
queue_work(nvme_workq, &dev->reset_work);
return PCI_ERS_RESULT_RECOVERED;
}
static void nvme_error_resume(struct pci_dev *pdev)
{
pci_cleanup_aer_uncorrect_error_status(pdev);
}
static const struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.mmio_enabled = nvme_dump_registers,
.link_reset = nvme_link_reset,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
.reset_notify = nvme_reset_notify,
......@@ -3444,6 +2199,10 @@ static const struct pci_error_handlers nvme_err_handler = {
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static const struct pci_device_id nvme_id_table[] = {
{ PCI_VDEVICE(INTEL, 0x0953),
.driver_data = NVME_QUIRK_STRIPE_SIZE, },
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
{ 0, }
......@@ -3468,40 +2227,21 @@ static int __init nvme_init(void)
init_waitqueue_head(&nvme_kthread_wait);
nvme_workq = create_singlethread_workqueue("nvme");
nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
if (!nvme_workq)
return -ENOMEM;
result = register_blkdev(nvme_major, "nvme");
result = nvme_core_init();
if (result < 0)
goto kill_workq;
else if (result > 0)
nvme_major = result;
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
&nvme_dev_fops);
if (result < 0)
goto unregister_blkdev;
else if (result > 0)
nvme_char_major = result;
nvme_class = class_create(THIS_MODULE, "nvme");
if (IS_ERR(nvme_class)) {
result = PTR_ERR(nvme_class);
goto unregister_chrdev;
}
result = pci_register_driver(&nvme_driver);
if (result)
goto destroy_class;
goto core_exit;
return 0;
destroy_class:
class_destroy(nvme_class);
unregister_chrdev:
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
unregister_blkdev:
unregister_blkdev(nvme_major, "nvme");
core_exit:
nvme_core_exit();
kill_workq:
destroy_workqueue(nvme_workq);
return result;
......@@ -3510,10 +2250,8 @@ static int __init nvme_init(void)
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
unregister_blkdev(nvme_major, "nvme");
nvme_core_exit();
destroy_workqueue(nvme_workq);
class_destroy(nvme_class);
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
_nvme_check_size();
}
......
......@@ -524,7 +524,7 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *inq_response,
int alloc_len)
{
struct nvme_dev *dev = ns->dev;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_id_ns *id_ns;
int res;
int nvme_sc;
......@@ -532,10 +532,10 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
u8 resp_data_format = 0x02;
u8 protect;
u8 cmdque = 0x01 << 1;
u8 fw_offset = sizeof(dev->firmware_rev);
u8 fw_offset = sizeof(ctrl->firmware_rev);
/* nvme ns identify - use DPS value for PROTECT field */
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -553,12 +553,12 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
inq_response[5] = protect; /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
inq_response[7] = cmdque; /* wbus16=0 | sync=0 | vs=0 */
strncpy(&inq_response[8], "NVMe ", 8);
strncpy(&inq_response[16], dev->model, 16);
strncpy(&inq_response[16], ctrl->model, 16);
while (dev->firmware_rev[fw_offset - 1] == ' ' && fw_offset > 4)
while (ctrl->firmware_rev[fw_offset - 1] == ' ' && fw_offset > 4)
fw_offset--;
fw_offset -= 4;
strncpy(&inq_response[32], dev->firmware_rev + fw_offset, 4);
strncpy(&inq_response[32], ctrl->firmware_rev + fw_offset, 4);
xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
......@@ -588,82 +588,113 @@ static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *inq_response,
int alloc_len)
{
struct nvme_dev *dev = ns->dev;
int xfer_len;
memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
inq_response[3] = INQ_SERIAL_NUMBER_LENGTH; /* Page Length */
strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
strncpy(&inq_response[4], ns->ctrl->serial, INQ_SERIAL_NUMBER_LENGTH);
xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
}
static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_fill_device_id_eui64(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *inq_response, int alloc_len)
{
struct nvme_dev *dev = ns->dev;
int res;
int nvme_sc;
int xfer_len;
__be32 tmp_id = cpu_to_be32(ns->ns_id);
memset(inq_response, 0, alloc_len);
inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */
if (readl(&dev->bar->vs) >= NVME_VS(1, 1)) {
struct nvme_id_ns *id_ns;
int nvme_sc, res;
size_t len;
void *eui;
int len;
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ns->ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
eui = id_ns->eui64;
len = sizeof(id_ns->eui64);
if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) {
if (ns->ctrl->vs >= NVME_VS(1, 2)) {
if (bitmap_empty(eui, len * 8)) {
eui = id_ns->nguid;
len = sizeof(id_ns->nguid);
}
}
if (bitmap_empty(eui, len * 8)) {
kfree(id_ns);
goto scsi_string;
res = -EOPNOTSUPP;
goto out_free_id;
}
memset(inq_response, 0, alloc_len);
inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE;
inq_response[3] = 4 + len; /* Page Length */
/* Designation Descriptor start */
inq_response[4] = 0x01; /* Proto ID=0h | Code set=1h */
inq_response[5] = 0x02; /* PIV=0b | Asso=00b | Designator Type=2h */
inq_response[6] = 0x00; /* Rsvd */
inq_response[7] = len; /* Designator Length */
memcpy(&inq_response[8], eui, len);
res = nvme_trans_copy_to_user(hdr, inq_response, alloc_len);
out_free_id:
kfree(id_ns);
} else {
scsi_string:
return res;
}
static int nvme_fill_device_id_scsi_string(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *inq_response, int alloc_len)
{
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_id_ctrl *id_ctrl;
int nvme_sc, res;
if (alloc_len < 72) {
return nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
}
nvme_sc = nvme_identify_ctrl(ctrl, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
memset(inq_response, 0, alloc_len);
inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE;
inq_response[3] = 0x48; /* Page Length */
/* Designation Descriptor start */
inq_response[4] = 0x03; /* Proto ID=0h | Code set=3h */
inq_response[5] = 0x08; /* PIV=0b | Asso=00b | Designator Type=8h */
inq_response[6] = 0x00; /* Rsvd */
inq_response[7] = 0x44; /* Designator Length */
sprintf(&inq_response[8], "%04x", to_pci_dev(dev->dev)->vendor);
memcpy(&inq_response[12], dev->model, sizeof(dev->model));
sprintf(&inq_response[52], "%04x", tmp_id);
memcpy(&inq_response[56], dev->serial, sizeof(dev->serial));
sprintf(&inq_response[8], "%04x", le16_to_cpu(id_ctrl->vid));
memcpy(&inq_response[12], ctrl->model, sizeof(ctrl->model));
sprintf(&inq_response[52], "%04x", cpu_to_be32(ns->ns_id));
memcpy(&inq_response[56], ctrl->serial, sizeof(ctrl->serial));
res = nvme_trans_copy_to_user(hdr, inq_response, alloc_len);
kfree(id_ctrl);
return res;
}
static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *resp, int alloc_len)
{
int res;
if (ns->ctrl->vs >= NVME_VS(1, 1)) {
res = nvme_fill_device_id_eui64(ns, hdr, resp, alloc_len);
if (res != -EOPNOTSUPP)
return res;
}
xfer_len = alloc_len;
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
return nvme_fill_device_id_scsi_string(ns, hdr, resp, alloc_len);
}
static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
......@@ -672,7 +703,7 @@ static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *inq_response;
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_id_ctrl *id_ctrl;
struct nvme_id_ns *id_ns;
int xfer_len;
......@@ -688,7 +719,7 @@ static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
if (inq_response == NULL)
return -ENOMEM;
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_free_inq;
......@@ -704,7 +735,7 @@ static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
app_chk = protect << 1;
ref_chk = protect;
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
nvme_sc = nvme_identify_ctrl(ctrl, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_free_inq;
......@@ -815,7 +846,6 @@ static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
int res;
int xfer_len;
u8 *log_response;
struct nvme_dev *dev = ns->dev;
struct nvme_smart_log *smart_log;
u8 temp_c;
u16 temp_k;
......@@ -824,7 +854,7 @@ static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
if (log_response == NULL)
return -ENOMEM;
res = nvme_get_log_page(dev, &smart_log);
res = nvme_get_log_page(ns->ctrl, &smart_log);
if (res < 0)
goto out_free_response;
......@@ -862,7 +892,6 @@ static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int res;
int xfer_len;
u8 *log_response;
struct nvme_dev *dev = ns->dev;
struct nvme_smart_log *smart_log;
u32 feature_resp;
u8 temp_c_cur, temp_c_thresh;
......@@ -872,7 +901,7 @@ static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
if (log_response == NULL)
return -ENOMEM;
res = nvme_get_log_page(dev, &smart_log);
res = nvme_get_log_page(ns->ctrl, &smart_log);
if (res < 0)
goto out_free_response;
......@@ -886,7 +915,7 @@ static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
kfree(smart_log);
/* Get Features for Temp Threshold */
res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
res = nvme_get_features(ns->ctrl, NVME_FEAT_TEMP_THRESH, 0, 0,
&feature_resp);
if (res != NVME_SC_SUCCESS)
temp_c_thresh = LOG_TEMP_UNKNOWN;
......@@ -948,7 +977,6 @@ static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
{
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id_ns;
u8 flbas;
u32 lba_length;
......@@ -958,7 +986,7 @@ static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
return -EINVAL;
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ns->ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -1014,14 +1042,13 @@ static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
{
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
u32 feature_resp;
u8 vwc;
if (len < MODE_PAGE_CACHING_LEN)
return -EINVAL;
nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
nvme_sc = nvme_get_features(ns->ctrl, NVME_FEAT_VOLATILE_WC, 0, 0,
&feature_resp);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
......@@ -1207,12 +1234,11 @@ static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
{
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ctrl *id_ctrl;
int lowest_pow_st; /* max npss = lowest power consumption */
unsigned ps_desired = 0;
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
nvme_sc = nvme_identify_ctrl(ns->ctrl, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -1256,7 +1282,7 @@ static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
break;
}
nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
nvme_sc = nvme_set_features(ns->ctrl, NVME_FEAT_POWER_MGMT, ps_desired, 0,
NULL);
return nvme_trans_status_code(hdr, nvme_sc);
}
......@@ -1280,7 +1306,6 @@ static int nvme_trans_send_download_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr
u8 buffer_id)
{
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_command c;
if (hdr->iovec_count > 0) {
......@@ -1297,7 +1322,7 @@ static int nvme_trans_send_download_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr
c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
nvme_sc = __nvme_submit_sync_cmd(dev->admin_q, &c, NULL,
nvme_sc = nvme_submit_user_cmd(ns->ctrl->admin_q, &c,
hdr->dxferp, tot_len, NULL, 0);
return nvme_trans_status_code(hdr, nvme_sc);
}
......@@ -1364,14 +1389,13 @@ static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
{
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
unsigned dword11;
switch (page_code) {
case MODE_PAGE_CACHING:
dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
0, NULL);
nvme_sc = nvme_set_features(ns->ctrl, NVME_FEAT_VOLATILE_WC,
dword11, 0, NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
break;
case MODE_PAGE_CONTROL:
......@@ -1473,7 +1497,6 @@ static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
{
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
u8 flbas;
/*
......@@ -1486,7 +1509,7 @@ static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
struct nvme_id_ns *id_ns;
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ns->ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -1570,7 +1593,6 @@ static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
{
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id_ns;
u8 i;
u8 flbas, nlbaf;
......@@ -1579,7 +1601,7 @@ static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
struct nvme_command c;
/* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ns->ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -1611,7 +1633,7 @@ static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
c.format.nsid = cpu_to_le32(ns->ns_id);
c.format.cdw10 = cpu_to_le32(cdw10);
nvme_sc = nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
nvme_sc = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, NULL, 0);
res = nvme_trans_status_code(hdr, nvme_sc);
kfree(id_ns);
......@@ -1704,7 +1726,7 @@ static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
nvme_sc = NVME_SC_LBA_RANGE;
break;
}
nvme_sc = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
nvme_sc = nvme_submit_user_cmd(ns->queue, &c,
next_mapping_addr, unit_len, NULL, 0);
if (nvme_sc)
break;
......@@ -2040,7 +2062,6 @@ static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u32 alloc_len;
u32 resp_size;
u32 xfer_len;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id_ns;
u8 *response;
......@@ -2052,7 +2073,7 @@ static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
resp_size = READ_CAP_10_RESP_SIZE;
}
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
nvme_sc = nvme_identify_ns(ns->ctrl, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -2080,7 +2101,6 @@ static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int nvme_sc;
u32 alloc_len, xfer_len, resp_size;
u8 *response;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ctrl *id_ctrl;
u32 ll_length, lun_id;
u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
......@@ -2094,7 +2114,7 @@ static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
case ALL_LUNS_RETURNED:
case ALL_WELL_KNOWN_LUNS_RETURNED:
case RESTRICTED_LUNS_RETURNED:
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
nvme_sc = nvme_identify_ctrl(ns->ctrl, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
return res;
......@@ -2295,9 +2315,7 @@ static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
struct sg_io_hdr *hdr,
u8 *cmd)
{
struct nvme_dev *dev = ns->dev;
if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
if (nvme_ctrl_ready(ns->ctrl))
return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
NOT_READY, SCSI_ASC_LUN_NOT_READY,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
......
......@@ -615,9 +615,9 @@ iblock_alloc_bip(struct se_cmd *cmd, struct bio *bio)
}
bip = bio_integrity_alloc(bio, GFP_NOIO, cmd->t_prot_nents);
if (!bip) {
if (IS_ERR(bip)) {
pr_err("Unable to allocate bio_integrity_payload\n");
return -ENOMEM;
return PTR_ERR(bip);
}
bip->bip_iter.bi_size = (cmd->data_length / dev->dev_attrib.block_size) *
......
......@@ -7,6 +7,7 @@
#ifndef _AER_H_
#define _AER_H_
#include <linux/errno.h>
#include <linux/types.h>
#define AER_NONFATAL 0
......
......@@ -318,16 +318,6 @@ enum bip_flags {
BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */
};
#if defined(CONFIG_BLK_DEV_INTEGRITY)
static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
{
if (bio->bi_rw & REQ_INTEGRITY)
return bio->bi_integrity;
return NULL;
}
/*
* bio integrity payload
*/
......@@ -349,6 +339,16 @@ struct bio_integrity_payload {
struct bio_vec bip_inline_vecs[0];/* embedded bvec array */
};
#if defined(CONFIG_BLK_DEV_INTEGRITY)
static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
{
if (bio->bi_rw & REQ_INTEGRITY)
return bio->bi_integrity;
return NULL;
}
static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
{
struct bio_integrity_payload *bip = bio_integrity(bio);
......@@ -795,6 +795,18 @@ static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
return false;
}
static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
unsigned int nr)
{
return ERR_PTR(-EINVAL);
}
static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
{
return 0;
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
#endif /* CONFIG_BLOCK */
......
......@@ -188,7 +188,6 @@ enum rq_flag_bits {
__REQ_PM, /* runtime pm request */
__REQ_HASHED, /* on IO scheduler merge hash */
__REQ_MQ_INFLIGHT, /* track inflight for MQ */
__REQ_NO_TIMEOUT, /* requests may never expire */
__REQ_NR_BITS, /* stops here */
};
......@@ -242,7 +241,6 @@ enum rq_flag_bits {
#define REQ_PM (1ULL << __REQ_PM)
#define REQ_HASHED (1ULL << __REQ_HASHED)
#define REQ_MQ_INFLIGHT (1ULL << __REQ_MQ_INFLIGHT)
#define REQ_NO_TIMEOUT (1ULL << __REQ_NO_TIMEOUT)
typedef unsigned int blk_qc_t;
#define BLK_QC_T_NONE -1U
......
......@@ -409,6 +409,7 @@ struct request_queue {
unsigned int rq_timeout;
struct timer_list timeout;
struct work_struct timeout_work;
struct list_head timeout_list;
struct list_head icq_list;
......
......@@ -17,20 +17,19 @@
#include <linux/types.h>
struct nvme_bar {
__u64 cap; /* Controller Capabilities */
__u32 vs; /* Version */
__u32 intms; /* Interrupt Mask Set */
__u32 intmc; /* Interrupt Mask Clear */
__u32 cc; /* Controller Configuration */
__u32 rsvd1; /* Reserved */
__u32 csts; /* Controller Status */
__u32 nssr; /* Subsystem Reset */
__u32 aqa; /* Admin Queue Attributes */
__u64 asq; /* Admin SQ Base Address */
__u64 acq; /* Admin CQ Base Address */
__u32 cmbloc; /* Controller Memory Buffer Location */
__u32 cmbsz; /* Controller Memory Buffer Size */
enum {
NVME_REG_CAP = 0x0000, /* Controller Capabilities */
NVME_REG_VS = 0x0008, /* Version */
NVME_REG_INTMS = 0x000c, /* Interrupt Mask Set */
NVME_REG_INTMC = 0x0010, /* Interrupt Mask Set */
NVME_REG_CC = 0x0014, /* Controller Configuration */
NVME_REG_CSTS = 0x001c, /* Controller Status */
NVME_REG_NSSR = 0x0020, /* NVM Subsystem Reset */
NVME_REG_AQA = 0x0024, /* Admin Queue Attributes */
NVME_REG_ASQ = 0x0028, /* Admin SQ Base Address */
NVME_REG_ACQ = 0x0030, /* Admin SQ Base Address */
NVME_REG_CMBLOC = 0x0038, /* Controller Memory Buffer Location */
NVME_REG_CMBSZ = 0x003c, /* Controller Memory Buffer Size */
};
#define NVME_CAP_MQES(cap) ((cap) & 0xffff)
......
......@@ -307,7 +307,7 @@ header-y += nfs_mount.h
header-y += nl80211.h
header-y += n_r3964.h
header-y += nubus.h
header-y += nvme.h
header-y += nvme_ioctl.h
header-y += nvram.h
header-y += omap3isp.h
header-y += omapfb.h
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment