Commit 3fbef2f9 authored by Arnd Bergmann's avatar Arnd Bergmann

Merge tag 'arm-soc/for-4.15/drivers' of http://github.com/Broadcom/stblinux into next/drivers

Pull "Broadcom drivers changes for 4.15" from Florian Fainelli:

This pull requests contains Broadcom SoCs drivers updates for 4.15, please pull
the following:

- Markus adds support for the Broadcom STB DDR PHY frontend which supports
  dynamic firmware loading and offers the ability to respond with DRAM refresh
  rates. He also adds a proper documentation binding document for that
  peripheral

- Brian adds support for S2/S3/S5 system suspend/resume modes on ARM-based SoCs
  which is not new but had been lingering for a long time.

- Justin adds S2/S3 system suspend/resume modes on MIPS-based SoCs which is a
  bit new newer and builds on top of the ARM-based support.

- Florian adds Device Tree binding documents for both ARM and MIPS based systems
  describing the necessary nodes for S2/S3/S5 on these SoCs.

(This pull request somehow missed the 4.14 merge window and is now being sent again
for 4.15 along with build fixes from Arnd).

* tag 'arm-soc/for-4.15/drivers' of http://github.com/Broadcom/stblinux:
  soc bcm: brcmstb: Add support for S2/S3/S5 suspend states (MIPS)
  dt-bindings: Document MIPS Broadcom STB power management nodes
  soc: bcm: brcmstb: Add support for S2/S3/S5 suspend states (ARM)
  dt-bindings: ARM: brcmstb: Update Broadcom STB Power Management binding
  memory: brcmstb: Add driver for DPFE
  dt-bindings: Add bindings for Broadcom STB DRAM Sensors
parents 8a5776a5 0e9b1141
......@@ -164,6 +164,8 @@ Control registers for this memory controller's DDR PHY.
Required properties:
- compatible : should contain one of these
"brcm,brcmstb-ddr-phy-v71.1"
"brcm,brcmstb-ddr-phy-v72.0"
"brcm,brcmstb-ddr-phy-v225.1"
"brcm,brcmstb-ddr-phy-v240.1"
"brcm,brcmstb-ddr-phy-v240.2"
......@@ -184,7 +186,9 @@ Sequencer DRAM parameters and control registers. Used for Self-Refresh
Power-Down (SRPD), among other things.
Required properties:
- compatible : should contain "brcm,brcmstb-memc-ddr"
- compatible : should contain one of these
"brcm,brcmstb-memc-ddr-rev-b.2.2"
"brcm,brcmstb-memc-ddr"
- reg : the MEMC DDR register range
Example:
......
DDR PHY Front End (DPFE) for Broadcom STB
=========================================
DPFE and the DPFE firmware provide an interface for the host CPU to
communicate with the DCPU, which resides inside the DDR PHY.
There are three memory regions for interacting with the DCPU. These are
specified in a single reg property.
Required properties:
- compatible: must be "brcm,bcm7271-dpfe-cpu", "brcm,bcm7268-dpfe-cpu"
or "brcm,dpfe-cpu"
- reg: must reference three register ranges
- start address and length of the DCPU register space
- start address and length of the DCPU data memory space
- start address and length of the DCPU instruction memory space
- reg-names: must contain "dpfe-cpu", "dpfe-dmem", and "dpfe-imem";
they must be in the same order as the register declarations
Example:
dpfe_cpu0: dpfe-cpu@f1132000 {
compatible = "brcm,bcm7271-dpfe-cpu", "brcm,dpfe-cpu";
reg = <0xf1132000 0x180
0xf1134000 0x1000
0xf1138000 0x4000>;
reg-names = "dpfe-cpu", "dpfe-dmem", "dpfe-imem";
};
......@@ -11,3 +11,156 @@ Required properties:
The experimental -viper variants are for running Linux on the 3384's
BMIPS4355 cable modem CPU instead of the BMIPS5000 application processor.
Power management
----------------
For power management (particularly, S2/S3/S5 system suspend), the following SoC
components are needed:
= Always-On control block (AON CTRL)
This hardware provides control registers for the "always-on" (even in low-power
modes) hardware, such as the Power Management State Machine (PMSM).
Required properties:
- compatible : should be one of
"brcm,bcm7425-aon-ctrl"
"brcm,bcm7429-aon-ctrl"
"brcm,bcm7435-aon-ctrl" and
"brcm,brcmstb-aon-ctrl"
- reg : the register start and length for the AON CTRL block
Example:
syscon@410000 {
compatible = "brcm,bcm7425-aon-ctrl", "brcm,brcmstb-aon-ctrl";
reg = <0x410000 0x400>;
};
= Memory controllers
A Broadcom STB SoC typically has a number of independent memory controllers,
each of which may have several associated hardware blocks, which are versioned
independently (control registers, DDR PHYs, etc.). One might consider
describing these controllers as a parent "memory controllers" block, which
contains N sub-nodes (one for each controller in the system), each of which is
associated with a number of hardware register resources (e.g., its PHY.
== MEMC (MEMory Controller)
Represents a single memory controller instance.
Required properties:
- compatible : should contain "brcm,brcmstb-memc" and "simple-bus"
- ranges : should contain the child address in the parent address
space, must be 0 here, and the register start and length of
the entire memory controller (including all sub nodes: DDR PHY,
arbiter, etc.)
- #address-cells : must be 1
- #size-cells : must be 1
Example:
memory-controller@0 {
compatible = "brcm,brcmstb-memc", "simple-bus";
ranges = <0x0 0x0 0xa000>;
#address-cells = <1>;
#size-cells = <1>;
memc-arb@1000 {
...
};
memc-ddr@2000 {
...
};
ddr-phy@6000 {
...
};
};
Should contain subnodes for any of the following relevant hardware resources:
== DDR PHY control
Control registers for this memory controller's DDR PHY.
Required properties:
- compatible : should contain one of these
"brcm,brcmstb-ddr-phy-v64.5"
"brcm,brcmstb-ddr-phy"
- reg : the DDR PHY register range and length
Example:
ddr-phy@6000 {
compatible = "brcm,brcmstb-ddr-phy-v64.5";
reg = <0x6000 0xc8>;
};
== DDR memory controller sequencer
Control registers for this memory controller's DDR memory sequencer
Required properties:
- compatible : should contain one of these
"brcm,bcm7425-memc-ddr"
"brcm,bcm7429-memc-ddr"
"brcm,bcm7435-memc-ddr" and
"brcm,brcmstb-memc-ddr"
- reg : the DDR sequencer register range and length
Example:
memc-ddr@2000 {
compatible = "brcm,bcm7425-memc-ddr", "brcm,brcmstb-memc-ddr";
reg = <0x2000 0x300>;
};
== MEMC Arbiter
The memory controller arbiter is responsible for memory clients allocation
(bandwidth, priorities etc.) and needs to have its contents restored during
deep sleep states (S3).
Required properties:
- compatible : should contain one of these
"brcm,brcmstb-memc-arb-v10.0.0.0"
"brcm,brcmstb-memc-arb"
- reg : the DDR Arbiter register range and length
Example:
memc-arb@1000 {
compatible = "brcm,brcmstb-memc-arb-v10.0.0.0";
reg = <0x1000 0x248>;
};
== Timers
The Broadcom STB chips contain a timer block with several general purpose
timers that can be used.
Required properties:
- compatible : should contain one of:
"brcm,bcm7425-timers"
"brcm,bcm7429-timers"
"brcm,bcm7435-timers and
"brcm,brcmstb-timers"
- reg : the timers register range
- interrupts : the interrupt line for this timer block
Example:
timers: timer@4067c0 {
compatible = "brcm,bcm7425-timers", "brcm,brcmstb-timers";
reg = <0x4067c0 0x40>;
interrupts = <&periph_intc 19>;
};
......@@ -2974,6 +2974,14 @@ L: bcm-kernel-feedback-list@broadcom.com
S: Maintained
F: drivers/mtd/nand/brcmnand/
BROADCOM STB DPFE DRIVER
M: Markus Mayer <mmayer@broadcom.com>
M: bcm-kernel-feedback-list@broadcom.com
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: Documentation/devicetree/bindings/memory-controllers/brcm,dpfe-cpu.txt
F: drivers/memory/brcmstb_dpfe.c
BROADCOM SYSTEMPORT ETHERNET DRIVER
M: Florian Fainelli <f.fainelli@gmail.com>
L: netdev@vger.kernel.org
......
......@@ -8,6 +8,7 @@ endif
obj-$(CONFIG_ARM_PL172_MPMC) += pl172.o
obj-$(CONFIG_ATMEL_SDRAMC) += atmel-sdramc.o
obj-$(CONFIG_ATMEL_EBI) += atmel-ebi.o
obj-$(CONFIG_ARCH_BRCMSTB) += brcmstb_dpfe.o
obj-$(CONFIG_TI_AEMIF) += ti-aemif.o
obj-$(CONFIG_TI_EMIF) += emif.o
obj-$(CONFIG_OMAP_GPMC) += omap-gpmc.o
......
/*
* DDR PHY Front End (DPFE) driver for Broadcom set top box SoCs
*
* Copyright (c) 2017 Broadcom
*
* Released under the GPLv2 only.
* SPDX-License-Identifier: GPL-2.0
*/
/*
* This driver provides access to the DPFE interface of Broadcom STB SoCs.
* The firmware running on the DCPU inside the DDR PHY can provide current
* information about the system's RAM, for instance the DRAM refresh rate.
* This can be used as an indirect indicator for the DRAM's temperature.
* Slower refresh rate means cooler RAM, higher refresh rate means hotter
* RAM.
*
* Throughout the driver, we use readl_relaxed() and writel_relaxed(), which
* already contain the appropriate le32_to_cpu()/cpu_to_le32() calls.
*
* Note regarding the loading of the firmware image: we use be32_to_cpu()
* and le_32_to_cpu(), so we can support the following four cases:
* - LE kernel + LE firmware image (the most common case)
* - LE kernel + BE firmware image
* - BE kernel + LE firmware image
* - BE kernel + BE firmware image
*
* The DPCU always runs in big endian mode. The firwmare image, however, can
* be in either format. Also, communication between host CPU and DCPU is
* always in little endian.
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#define DRVNAME "brcmstb-dpfe"
#define FIRMWARE_NAME "dpfe.bin"
/* DCPU register offsets */
#define REG_DCPU_RESET 0x0
#define REG_TO_DCPU_MBOX 0x10
#define REG_TO_HOST_MBOX 0x14
/* Message RAM */
#define DCPU_MSG_RAM(x) (0x100 + (x) * sizeof(u32))
/* DRAM Info Offsets & Masks */
#define DRAM_INFO_INTERVAL 0x0
#define DRAM_INFO_MR4 0x4
#define DRAM_INFO_ERROR 0x8
#define DRAM_INFO_MR4_MASK 0xff
/* DRAM MR4 Offsets & Masks */
#define DRAM_MR4_REFRESH 0x0 /* Refresh rate */
#define DRAM_MR4_SR_ABORT 0x3 /* Self Refresh Abort */
#define DRAM_MR4_PPRE 0x4 /* Post-package repair entry/exit */
#define DRAM_MR4_TH_OFFS 0x5 /* Thermal Offset; vendor specific */
#define DRAM_MR4_TUF 0x7 /* Temperature Update Flag */
#define DRAM_MR4_REFRESH_MASK 0x7
#define DRAM_MR4_SR_ABORT_MASK 0x1
#define DRAM_MR4_PPRE_MASK 0x1
#define DRAM_MR4_TH_OFFS_MASK 0x3
#define DRAM_MR4_TUF_MASK 0x1
/* DRAM Vendor Offsets & Masks */
#define DRAM_VENDOR_MR5 0x0
#define DRAM_VENDOR_MR6 0x4
#define DRAM_VENDOR_MR7 0x8
#define DRAM_VENDOR_MR8 0xc
#define DRAM_VENDOR_ERROR 0x10
#define DRAM_VENDOR_MASK 0xff
/* Reset register bits & masks */
#define DCPU_RESET_SHIFT 0x0
#define DCPU_RESET_MASK 0x1
#define DCPU_CLK_DISABLE_SHIFT 0x2
/* DCPU return codes */
#define DCPU_RET_ERROR_BIT BIT(31)
#define DCPU_RET_SUCCESS 0x1
#define DCPU_RET_ERR_HEADER (DCPU_RET_ERROR_BIT | BIT(0))
#define DCPU_RET_ERR_INVAL (DCPU_RET_ERROR_BIT | BIT(1))
#define DCPU_RET_ERR_CHKSUM (DCPU_RET_ERROR_BIT | BIT(2))
#define DCPU_RET_ERR_COMMAND (DCPU_RET_ERROR_BIT | BIT(3))
/* This error code is not firmware defined and only used in the driver. */
#define DCPU_RET_ERR_TIMEDOUT (DCPU_RET_ERROR_BIT | BIT(4))
/* Firmware magic */
#define DPFE_BE_MAGIC 0xfe1010fe
#define DPFE_LE_MAGIC 0xfe0101fe
/* Error codes */
#define ERR_INVALID_MAGIC -1
#define ERR_INVALID_SIZE -2
#define ERR_INVALID_CHKSUM -3
/* Message types */
#define DPFE_MSG_TYPE_COMMAND 1
#define DPFE_MSG_TYPE_RESPONSE 2
#define DELAY_LOOP_MAX 200000
enum dpfe_msg_fields {
MSG_HEADER,
MSG_COMMAND,
MSG_ARG_COUNT,
MSG_ARG0,
MSG_CHKSUM,
MSG_FIELD_MAX /* Last entry */
};
enum dpfe_commands {
DPFE_CMD_GET_INFO,
DPFE_CMD_GET_REFRESH,
DPFE_CMD_GET_VENDOR,
DPFE_CMD_MAX /* Last entry */
};
struct dpfe_msg {
u32 header;
u32 command;
u32 arg_count;
u32 arg0;
u32 chksum; /* This is the sum of all other entries. */
};
/*
* Format of the binary firmware file:
*
* entry
* 0 header
* value: 0xfe0101fe <== little endian
* 0xfe1010fe <== big endian
* 1 sequence:
* [31:16] total segments on this build
* [15:0] this segment sequence.
* 2 FW version
* 3 IMEM byte size
* 4 DMEM byte size
* IMEM
* DMEM
* last checksum ==> sum of everything
*/
struct dpfe_firmware_header {
u32 magic;
u32 sequence;
u32 version;
u32 imem_size;
u32 dmem_size;
};
/* Things we only need during initialization. */
struct init_data {
unsigned int dmem_len;
unsigned int imem_len;
unsigned int chksum;
bool is_big_endian;
};
/* Things we need for as long as we are active. */
struct private_data {
void __iomem *regs;
void __iomem *dmem;
void __iomem *imem;
struct device *dev;
unsigned int index;
struct mutex lock;
};
static const char *error_text[] = {
"Success", "Header code incorrect", "Unknown command or argument",
"Incorrect checksum", "Malformed command", "Timed out",
};
/* List of supported firmware commands */
static const u32 dpfe_commands[DPFE_CMD_MAX][MSG_FIELD_MAX] = {
[DPFE_CMD_GET_INFO] = {
[MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
[MSG_COMMAND] = 1,
[MSG_ARG_COUNT] = 1,
[MSG_ARG0] = 1,
[MSG_CHKSUM] = 4,
},
[DPFE_CMD_GET_REFRESH] = {
[MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
[MSG_COMMAND] = 2,
[MSG_ARG_COUNT] = 1,
[MSG_ARG0] = 1,
[MSG_CHKSUM] = 5,
},
[DPFE_CMD_GET_VENDOR] = {
[MSG_HEADER] = DPFE_MSG_TYPE_COMMAND,
[MSG_COMMAND] = 2,
[MSG_ARG_COUNT] = 1,
[MSG_ARG0] = 2,
[MSG_CHKSUM] = 6,
},
};
static void __disable_dcpu(void __iomem *regs)
{
u32 val;
/* Check if DCPU is running */
val = readl_relaxed(regs + REG_DCPU_RESET);
if (!(val & DCPU_RESET_MASK)) {
/* Put DCPU in reset */
val |= (1 << DCPU_RESET_SHIFT);
writel_relaxed(val, regs + REG_DCPU_RESET);
}
}
static void __enable_dcpu(void __iomem *regs)
{
u32 val;
/* Clear mailbox registers. */
writel_relaxed(0, regs + REG_TO_DCPU_MBOX);
writel_relaxed(0, regs + REG_TO_HOST_MBOX);
/* Disable DCPU clock gating */
val = readl_relaxed(regs + REG_DCPU_RESET);
val &= ~(1 << DCPU_CLK_DISABLE_SHIFT);
writel_relaxed(val, regs + REG_DCPU_RESET);
/* Take DCPU out of reset */
val = readl_relaxed(regs + REG_DCPU_RESET);
val &= ~(1 << DCPU_RESET_SHIFT);
writel_relaxed(val, regs + REG_DCPU_RESET);
}
static unsigned int get_msg_chksum(const u32 msg[])
{
unsigned int sum = 0;
unsigned int i;
/* Don't include the last field in the checksum. */
for (i = 0; i < MSG_FIELD_MAX - 1; i++)
sum += msg[i];
return sum;
}
static int __send_command(struct private_data *priv, unsigned int cmd,
u32 result[])
{
const u32 *msg = dpfe_commands[cmd];
void __iomem *regs = priv->regs;
unsigned int i, chksum;
int ret = 0;
u32 resp;
if (cmd >= DPFE_CMD_MAX)
return -1;
mutex_lock(&priv->lock);
/* Write command and arguments to message area */
for (i = 0; i < MSG_FIELD_MAX; i++)
writel_relaxed(msg[i], regs + DCPU_MSG_RAM(i));
/* Tell DCPU there is a command waiting */
writel_relaxed(1, regs + REG_TO_DCPU_MBOX);
/* Wait for DCPU to process the command */
for (i = 0; i < DELAY_LOOP_MAX; i++) {
/* Read response code */
resp = readl_relaxed(regs + REG_TO_HOST_MBOX);
if (resp > 0)
break;
udelay(5);
}
if (i == DELAY_LOOP_MAX) {
resp = (DCPU_RET_ERR_TIMEDOUT & ~DCPU_RET_ERROR_BIT);
ret = -ffs(resp);
} else {
/* Read response data */
for (i = 0; i < MSG_FIELD_MAX; i++)
result[i] = readl_relaxed(regs + DCPU_MSG_RAM(i));
}
/* Tell DCPU we are done */
writel_relaxed(0, regs + REG_TO_HOST_MBOX);
mutex_unlock(&priv->lock);
if (ret)
return ret;
/* Verify response */
chksum = get_msg_chksum(result);
if (chksum != result[MSG_CHKSUM])
resp = DCPU_RET_ERR_CHKSUM;
if (resp != DCPU_RET_SUCCESS) {
resp &= ~DCPU_RET_ERROR_BIT;
ret = -ffs(resp);
}
return ret;
}
/* Ensure that the firmware file loaded meets all the requirements. */
static int __verify_firmware(struct init_data *init,
const struct firmware *fw)
{
const struct dpfe_firmware_header *header = (void *)fw->data;
unsigned int dmem_size, imem_size, total_size;
bool is_big_endian = false;
const u32 *chksum_ptr;
if (header->magic == DPFE_BE_MAGIC)
is_big_endian = true;
else if (header->magic != DPFE_LE_MAGIC)
return ERR_INVALID_MAGIC;
if (is_big_endian) {
dmem_size = be32_to_cpu(header->dmem_size);
imem_size = be32_to_cpu(header->imem_size);
} else {
dmem_size = le32_to_cpu(header->dmem_size);
imem_size = le32_to_cpu(header->imem_size);
}
/* Data and instruction sections are 32 bit words. */
if ((dmem_size % sizeof(u32)) != 0 || (imem_size % sizeof(u32)) != 0)
return ERR_INVALID_SIZE;
/*
* The header + the data section + the instruction section + the
* checksum must be equal to the total firmware size.
*/
total_size = dmem_size + imem_size + sizeof(*header) +
sizeof(*chksum_ptr);
if (total_size != fw->size)
return ERR_INVALID_SIZE;
/* The checksum comes at the very end. */
chksum_ptr = (void *)fw->data + sizeof(*header) + dmem_size + imem_size;
init->is_big_endian = is_big_endian;
init->dmem_len = dmem_size;
init->imem_len = imem_size;
init->chksum = (is_big_endian)
? be32_to_cpu(*chksum_ptr) : le32_to_cpu(*chksum_ptr);
return 0;
}
/* Verify checksum by reading back the firmware from co-processor RAM. */
static int __verify_fw_checksum(struct init_data *init,
struct private_data *priv,
const struct dpfe_firmware_header *header,
u32 checksum)
{
u32 magic, sequence, version, sum;
u32 __iomem *dmem = priv->dmem;
u32 __iomem *imem = priv->imem;
unsigned int i;
if (init->is_big_endian) {
magic = be32_to_cpu(header->magic);
sequence = be32_to_cpu(header->sequence);
version = be32_to_cpu(header->version);
} else {
magic = le32_to_cpu(header->magic);
sequence = le32_to_cpu(header->sequence);
version = le32_to_cpu(header->version);
}
sum = magic + sequence + version + init->dmem_len + init->imem_len;
for (i = 0; i < init->dmem_len / sizeof(u32); i++)
sum += readl_relaxed(dmem + i);
for (i = 0; i < init->imem_len / sizeof(u32); i++)
sum += readl_relaxed(imem + i);
return (sum == checksum) ? 0 : -1;
}
static int __write_firmware(u32 __iomem *mem, const u32 *fw,
unsigned int size, bool is_big_endian)
{
unsigned int i;
/* Convert size to 32-bit words. */
size /= sizeof(u32);
/* It is recommended to clear the firmware area first. */
for (i = 0; i < size; i++)
writel_relaxed(0, mem + i);
/* Now copy it. */
if (is_big_endian) {
for (i = 0; i < size; i++)
writel_relaxed(be32_to_cpu(fw[i]), mem + i);
} else {
for (i = 0; i < size; i++)
writel_relaxed(le32_to_cpu(fw[i]), mem + i);
}
return 0;
}
static int brcmstb_dpfe_download_firmware(struct platform_device *pdev,
struct init_data *init)
{
const struct dpfe_firmware_header *header;
unsigned int dmem_size, imem_size;
struct device *dev = &pdev->dev;
bool is_big_endian = false;
struct private_data *priv;
const struct firmware *fw;
const u32 *dmem, *imem;
const void *fw_blob;
int ret;
ret = request_firmware(&fw, FIRMWARE_NAME, dev);
/* request_firmware() prints its own error messages. */
if (ret)
return ret;
priv = platform_get_drvdata(pdev);
ret = __verify_firmware(init, fw);
if (ret)
return -EFAULT;
__disable_dcpu(priv->regs);
is_big_endian = init->is_big_endian;
dmem_size = init->dmem_len;
imem_size = init->imem_len;
/* At the beginning of the firmware blob is a header. */
header = (struct dpfe_firmware_header *)fw->data;
/* Void pointer to the beginning of the actual firmware. */
fw_blob = fw->data + sizeof(*header);
/* IMEM comes right after the header. */
imem = fw_blob;
/* DMEM follows after IMEM. */
dmem = fw_blob + imem_size;
ret = __write_firmware(priv->dmem, dmem, dmem_size, is_big_endian);
if (ret)
return ret;
ret = __write_firmware(priv->imem, imem, imem_size, is_big_endian);
if (ret)
return ret;
ret = __verify_fw_checksum(init, priv, header, init->chksum);
if (ret)
return ret;
__enable_dcpu(priv->regs);
return 0;
}
static ssize_t generic_show(unsigned int command, u32 response[],
struct device *dev, char *buf)
{
struct private_data *priv;
int ret;
priv = dev_get_drvdata(dev);
if (!priv)
return sprintf(buf, "ERROR: driver private data not set\n");
ret = __send_command(priv, command, response);
if (ret < 0)
return sprintf(buf, "ERROR: %s\n", error_text[-ret]);
return 0;
}
static ssize_t show_info(struct device *dev, struct device_attribute *devattr,
char *buf)
{
u32 response[MSG_FIELD_MAX];
unsigned int info;
int ret;
ret = generic_show(DPFE_CMD_GET_INFO, response, dev, buf);
if (ret)
return ret;
info = response[MSG_ARG0];
return sprintf(buf, "%u.%u.%u.%u\n",
(info >> 24) & 0xff,
(info >> 16) & 0xff,
(info >> 8) & 0xff,
info & 0xff);
}
static ssize_t show_refresh(struct device *dev,
struct device_attribute *devattr, char *buf)
{
u32 response[MSG_FIELD_MAX];
void __iomem *info;
struct private_data *priv;
unsigned int offset;
u8 refresh, sr_abort, ppre, thermal_offs, tuf;
u32 mr4;
int ret;
ret = generic_show(DPFE_CMD_GET_REFRESH, response, dev, buf);
if (ret)
return ret;
priv = dev_get_drvdata(dev);
offset = response[MSG_ARG0];
info = priv->dmem + offset;
mr4 = readl_relaxed(info + DRAM_INFO_MR4) & DRAM_INFO_MR4_MASK;
refresh = (mr4 >> DRAM_MR4_REFRESH) & DRAM_MR4_REFRESH_MASK;
sr_abort = (mr4 >> DRAM_MR4_SR_ABORT) & DRAM_MR4_SR_ABORT_MASK;
ppre = (mr4 >> DRAM_MR4_PPRE) & DRAM_MR4_PPRE_MASK;
thermal_offs = (mr4 >> DRAM_MR4_TH_OFFS) & DRAM_MR4_TH_OFFS_MASK;
tuf = (mr4 >> DRAM_MR4_TUF) & DRAM_MR4_TUF_MASK;
return sprintf(buf, "%#x %#x %#x %#x %#x %#x %#x\n",
readl_relaxed(info + DRAM_INFO_INTERVAL),
refresh, sr_abort, ppre, thermal_offs, tuf,
readl_relaxed(info + DRAM_INFO_ERROR));
}
static ssize_t store_refresh(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u32 response[MSG_FIELD_MAX];
struct private_data *priv;
void __iomem *info;
unsigned int offset;
unsigned long val;
int ret;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
priv = dev_get_drvdata(dev);
ret = __send_command(priv, DPFE_CMD_GET_REFRESH, response);
if (ret)
return ret;
offset = response[MSG_ARG0];
info = priv->dmem + offset;
writel_relaxed(val, info + DRAM_INFO_INTERVAL);
return count;
}
static ssize_t show_vendor(struct device *dev, struct device_attribute *devattr,
char *buf)
{
u32 response[MSG_FIELD_MAX];
struct private_data *priv;
void __iomem *info;
unsigned int offset;
int ret;
ret = generic_show(DPFE_CMD_GET_VENDOR, response, dev, buf);
if (ret)
return ret;
offset = response[MSG_ARG0];
priv = dev_get_drvdata(dev);
info = priv->dmem + offset;
return sprintf(buf, "%#x %#x %#x %#x %#x\n",
readl_relaxed(info + DRAM_VENDOR_MR5) & DRAM_VENDOR_MASK,
readl_relaxed(info + DRAM_VENDOR_MR6) & DRAM_VENDOR_MASK,
readl_relaxed(info + DRAM_VENDOR_MR7) & DRAM_VENDOR_MASK,
readl_relaxed(info + DRAM_VENDOR_MR8) & DRAM_VENDOR_MASK,
readl_relaxed(info + DRAM_VENDOR_ERROR));
}
static int brcmstb_dpfe_resume(struct platform_device *pdev)
{
struct init_data init;
return brcmstb_dpfe_download_firmware(pdev, &init);
}
static DEVICE_ATTR(dpfe_info, 0444, show_info, NULL);
static DEVICE_ATTR(dpfe_refresh, 0644, show_refresh, store_refresh);
static DEVICE_ATTR(dpfe_vendor, 0444, show_vendor, NULL);
static struct attribute *dpfe_attrs[] = {
&dev_attr_dpfe_info.attr,
&dev_attr_dpfe_refresh.attr,
&dev_attr_dpfe_vendor.attr,
NULL
};
ATTRIBUTE_GROUPS(dpfe);
static int brcmstb_dpfe_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct private_data *priv;
struct device *dpfe_dev;
struct init_data init;
struct resource *res;
u32 index;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->lock);
platform_set_drvdata(pdev, priv);
/* Cell index is optional; default to 0 if not present. */
ret = of_property_read_u32(dev->of_node, "cell-index", &index);
if (ret)
index = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-cpu");
priv->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->regs)) {
dev_err(dev, "couldn't map DCPU registers\n");
return -ENODEV;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-dmem");
priv->dmem = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dmem)) {
dev_err(dev, "Couldn't map DCPU data memory\n");
return -ENOENT;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpfe-imem");
priv->imem = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->imem)) {
dev_err(dev, "Couldn't map DCPU instruction memory\n");
return -ENOENT;
}
ret = brcmstb_dpfe_download_firmware(pdev, &init);
if (ret)
goto err;
dpfe_dev = devm_kzalloc(dev, sizeof(*dpfe_dev), GFP_KERNEL);
if (!dpfe_dev) {
ret = -ENOMEM;
goto err;
}
priv->dev = dpfe_dev;
priv->index = index;
dpfe_dev->parent = dev;
dpfe_dev->groups = dpfe_groups;
dpfe_dev->of_node = dev->of_node;
dev_set_drvdata(dpfe_dev, priv);
dev_set_name(dpfe_dev, "dpfe%u", index);
ret = device_register(dpfe_dev);
if (ret)
goto err;
dev_info(dev, "registered.\n");
return 0;
err:
dev_err(dev, "failed to initialize -- error %d\n", ret);
return ret;
}
static const struct of_device_id brcmstb_dpfe_of_match[] = {
{ .compatible = "brcm,dpfe-cpu", },
{}
};
MODULE_DEVICE_TABLE(of, brcmstb_dpfe_of_match);
static struct platform_driver brcmstb_dpfe_driver = {
.driver = {
.name = DRVNAME,
.of_match_table = brcmstb_dpfe_of_match,
},
.probe = brcmstb_dpfe_probe,
.resume = brcmstb_dpfe_resume,
};
module_platform_driver(brcmstb_dpfe_driver);
MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
MODULE_DESCRIPTION("BRCMSTB DDR PHY Front End Driver");
MODULE_LICENSE("GPL");
......@@ -20,4 +20,6 @@ config SOC_BRCMSTB
If unsure, say N.
source "drivers/soc/bcm/brcmstb/Kconfig"
endmenu
if SOC_BRCMSTB
config BRCMSTB_PM
bool "Support suspend/resume for STB platforms"
default y
depends on PM
depends on ARCH_BRCMSTB || BMIPS_GENERIC
select ARM_CPU_SUSPEND if ARM
endif # SOC_BRCMSTB
obj-y += common.o biuctrl.o
obj-$(CONFIG_BRCMSTB_PM) += pm/
obj-$(CONFIG_ARM) += s2-arm.o pm-arm.o
AFLAGS_s2-arm.o := -march=armv7-a
obj-$(CONFIG_BMIPS_GENERIC) += s2-mips.o s3-mips.o pm-mips.o
/*
* Always ON (AON) register interface between bootloader and Linux
*
* Copyright © 2014-2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __BRCMSTB_AON_DEFS_H__
#define __BRCMSTB_AON_DEFS_H__
#include <linux/compiler.h>
/* Magic number in upper 16-bits */
#define BRCMSTB_S3_MAGIC_MASK 0xffff0000
#define BRCMSTB_S3_MAGIC_SHORT 0x5AFE0000
enum {
/* Restore random key for AES memory verification (off = fixed key) */
S3_FLAG_LOAD_RANDKEY = (1 << 0),
/* Scratch buffer page table is present */
S3_FLAG_SCRATCH_BUFFER_TABLE = (1 << 1),
/* Skip all memory verification */
S3_FLAG_NO_MEM_VERIFY = (1 << 2),
/*
* Modification of this bit reserved for bootloader only.
* 1=PSCI started Linux, 0=Direct jump to Linux.
*/
S3_FLAG_PSCI_BOOT = (1 << 3),
/*
* Modification of this bit reserved for bootloader only.
* 1=64 bit boot, 0=32 bit boot.
*/
S3_FLAG_BOOTED64 = (1 << 4),
};
#define BRCMSTB_HASH_LEN (128 / 8) /* 128-bit hash */
#define AON_REG_MAGIC_FLAGS 0x00
#define AON_REG_CONTROL_LOW 0x04
#define AON_REG_CONTROL_HIGH 0x08
#define AON_REG_S3_HASH 0x0c /* hash of S3 params */
#define AON_REG_CONTROL_HASH_LEN 0x1c
#define AON_REG_PANIC 0x20
#define BRCMSTB_S3_MAGIC 0x5AFEB007
#define BRCMSTB_PANIC_MAGIC 0x512E115E
#define BOOTLOADER_SCRATCH_SIZE 64
#define BRCMSTB_DTU_STATE_MAP_ENTRIES (8*1024)
#define BRCMSTB_DTU_CONFIG_ENTRIES (512)
#define BRCMSTB_DTU_COUNT (2)
#define IMAGE_DESCRIPTORS_BUFSIZE (2 * 1024)
#define S3_BOOTLOADER_RESERVED (S3_FLAG_PSCI_BOOT | S3_FLAG_BOOTED64)
struct brcmstb_bootloader_dtu_table {
uint32_t dtu_state_map[BRCMSTB_DTU_STATE_MAP_ENTRIES];
uint32_t dtu_config[BRCMSTB_DTU_CONFIG_ENTRIES];
};
/*
* Bootloader utilizes a custom parameter block left in DRAM for handling S3
* warm resume
*/
struct brcmstb_s3_params {
/* scratch memory for bootloader */
uint8_t scratch[BOOTLOADER_SCRATCH_SIZE];
uint32_t magic; /* BRCMSTB_S3_MAGIC */
uint64_t reentry; /* PA */
/* descriptors */
uint32_t hash[BRCMSTB_HASH_LEN / 4];
/*
* If 0, then ignore this parameter (there is only one set of
* descriptors)
*
* If non-0, then a second set of descriptors is stored at:
*
* descriptors + desc_offset_2
*
* The MAC result of both descriptors is XOR'd and stored in @hash
*/
uint32_t desc_offset_2;
/*
* (Physical) address of a brcmstb_bootloader_scratch_table, for
* providing a large DRAM buffer to the bootloader
*/
uint64_t buffer_table;
uint32_t spare[70];
uint8_t descriptors[IMAGE_DESCRIPTORS_BUFSIZE];
/*
* Must be last member of struct. See brcmstb_pm_s3_finish() for reason.
*/
struct brcmstb_bootloader_dtu_table dtu[BRCMSTB_DTU_COUNT];
} __packed;
#endif /* __BRCMSTB_AON_DEFS_H__ */
/*
* ARM-specific support for Broadcom STB S2/S3/S5 power management
*
* S2: clock gate CPUs and as many peripherals as possible
* S3: power off all of the chip except the Always ON (AON) island; keep DDR is
* self-refresh
* S5: (a.k.a. S3 cold boot) much like S3, except DDR is powered down, so we
* treat this mode like a soft power-off, with wakeup allowed from AON
*
* Copyright © 2014-2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "brcmstb-pm: " fmt
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/printk.h>
#include <linux/proc_fs.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/suspend.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/soc/brcmstb/brcmstb.h>
#include <asm/fncpy.h>
#include <asm/setup.h>
#include <asm/suspend.h>
#include "pm.h"
#include "aon_defs.h"
#define SHIMPHY_DDR_PAD_CNTRL 0x8c
/* Method #0 */
#define SHIMPHY_PAD_PLL_SEQUENCE BIT(8)
#define SHIMPHY_PAD_GATE_PLL_S3 BIT(9)
/* Method #1 */
#define PWRDWN_SEQ_NO_SEQUENCING 0
#define PWRDWN_SEQ_HOLD_CHANNEL 1
#define PWRDWN_SEQ_RESET_PLL 2
#define PWRDWN_SEQ_POWERDOWN_PLL 3
#define SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK 0x00f00000
#define SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT 20
#define DDR_FORCE_CKE_RST_N BIT(3)
#define DDR_PHY_RST_N BIT(2)
#define DDR_PHY_CKE BIT(1)
#define DDR_PHY_NO_CHANNEL 0xffffffff
#define MAX_NUM_MEMC 3
struct brcmstb_memc {
void __iomem *ddr_phy_base;
void __iomem *ddr_shimphy_base;
void __iomem *ddr_ctrl;
};
struct brcmstb_pm_control {
void __iomem *aon_ctrl_base;
void __iomem *aon_sram;
struct brcmstb_memc memcs[MAX_NUM_MEMC];
void __iomem *boot_sram;
size_t boot_sram_len;
bool support_warm_boot;
size_t pll_status_offset;
int num_memc;
struct brcmstb_s3_params *s3_params;
dma_addr_t s3_params_pa;
int s3entry_method;
u32 warm_boot_offset;
u32 phy_a_standby_ctrl_offs;
u32 phy_b_standby_ctrl_offs;
bool needs_ddr_pad;
struct platform_device *pdev;
};
enum bsp_initiate_command {
BSP_CLOCK_STOP = 0x00,
BSP_GEN_RANDOM_KEY = 0x4A,
BSP_RESTORE_RANDOM_KEY = 0x55,
BSP_GEN_FIXED_KEY = 0x63,
};
#define PM_INITIATE 0x01
#define PM_INITIATE_SUCCESS 0x00
#define PM_INITIATE_FAIL 0xfe
static struct brcmstb_pm_control ctrl;
static int (*brcmstb_pm_do_s2_sram)(void __iomem *aon_ctrl_base,
void __iomem *ddr_phy_pll_status);
static int brcmstb_init_sram(struct device_node *dn)
{
void __iomem *sram;
struct resource res;
int ret;
ret = of_address_to_resource(dn, 0, &res);
if (ret)
return ret;
/* Uncached, executable remapping of SRAM */
sram = __arm_ioremap_exec(res.start, resource_size(&res), false);
if (!sram)
return -ENOMEM;
ctrl.boot_sram = sram;
ctrl.boot_sram_len = resource_size(&res);
return 0;
}
static const struct of_device_id sram_dt_ids[] = {
{ .compatible = "mmio-sram" },
{ /* sentinel */ }
};
static int do_bsp_initiate_command(enum bsp_initiate_command cmd)
{
void __iomem *base = ctrl.aon_ctrl_base;
int ret;
int timeo = 1000 * 1000; /* 1 second */
writel_relaxed(0, base + AON_CTRL_PM_INITIATE);
(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
/* Go! */
writel_relaxed((cmd << 1) | PM_INITIATE, base + AON_CTRL_PM_INITIATE);
/*
* If firmware doesn't support the 'ack', then just assume it's done
* after 10ms. Note that this only works for command 0, BSP_CLOCK_STOP
*/
if (of_machine_is_compatible("brcm,bcm74371a0")) {
(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
mdelay(10);
return 0;
}
for (;;) {
ret = readl_relaxed(base + AON_CTRL_PM_INITIATE);
if (!(ret & PM_INITIATE))
break;
if (timeo <= 0) {
pr_err("error: timeout waiting for BSP (%x)\n", ret);
break;
}
timeo -= 50;
udelay(50);
}
return (ret & 0xff) != PM_INITIATE_SUCCESS;
}
static int brcmstb_pm_handshake(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
u32 tmp;
int ret;
/* BSP power handshake, v1 */
tmp = readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
tmp &= ~1UL;
writel_relaxed(tmp, base + AON_CTRL_HOST_MISC_CMDS);
(void)readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
ret = do_bsp_initiate_command(BSP_CLOCK_STOP);
if (ret)
pr_err("BSP handshake failed\n");
/*
* HACK: BSP may have internal race on the CLOCK_STOP command.
* Avoid touching the BSP for a few milliseconds.
*/
mdelay(3);
return ret;
}
static inline void shimphy_set(u32 value, u32 mask)
{
int i;
if (!ctrl.needs_ddr_pad)
return;
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
tmp = readl_relaxed(ctrl.memcs[i].ddr_shimphy_base +
SHIMPHY_DDR_PAD_CNTRL);
tmp = value | (tmp & mask);
writel_relaxed(tmp, ctrl.memcs[i].ddr_shimphy_base +
SHIMPHY_DDR_PAD_CNTRL);
}
wmb(); /* Complete sequence in order. */
}
static inline void ddr_ctrl_set(bool warmboot)
{
int i;
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
tmp = readl_relaxed(ctrl.memcs[i].ddr_ctrl +
ctrl.warm_boot_offset);
if (warmboot)
tmp |= 1;
else
tmp &= ~1; /* Cold boot */
writel_relaxed(tmp, ctrl.memcs[i].ddr_ctrl +
ctrl.warm_boot_offset);
}
/* Complete sequence in order */
wmb();
}
static inline void s3entry_method0(void)
{
shimphy_set(SHIMPHY_PAD_GATE_PLL_S3 | SHIMPHY_PAD_PLL_SEQUENCE,
0xffffffff);
}
static inline void s3entry_method1(void)
{
/*
* S3 Entry Sequence
* -----------------
* Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
* Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 1
*/
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(true);
}
static inline void s5entry_method1(void)
{
int i;
/*
* S5 Entry Sequence
* -----------------
* Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
* Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 0
* Step 3: DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ CKE ] = 0
* DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ RST_N ] = 0
*/
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
/* Step 3: Channel A (RST_N = CKE = 0) */
tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
ctrl.phy_a_standby_ctrl_offs);
tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
ctrl.phy_a_standby_ctrl_offs);
/* Step 3: Channel B? */
if (ctrl.phy_b_standby_ctrl_offs != DDR_PHY_NO_CHANNEL) {
tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
ctrl.phy_b_standby_ctrl_offs);
tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
ctrl.phy_b_standby_ctrl_offs);
}
}
/* Must complete */
wmb();
}
/*
* Run a Power Management State Machine (PMSM) shutdown command and put the CPU
* into a low-power mode
*/
static void brcmstb_do_pmsm_power_down(unsigned long base_cmd, bool onewrite)
{
void __iomem *base = ctrl.aon_ctrl_base;
if ((ctrl.s3entry_method == 1) && (base_cmd == PM_COLD_CONFIG))
s5entry_method1();
/* pm_start_pwrdn transition 0->1 */
writel_relaxed(base_cmd, base + AON_CTRL_PM_CTRL);
if (!onewrite) {
(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
writel_relaxed(base_cmd | PM_PWR_DOWN, base + AON_CTRL_PM_CTRL);
(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
}
wfi();
}
/* Support S5 cold boot out of "poweroff" */
static void brcmstb_pm_poweroff(void)
{
brcmstb_pm_handshake();
/* Clear magic S3 warm-boot value */
writel_relaxed(0, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
(void)readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
/* Skip wait-for-interrupt signal; just use a countdown */
writel_relaxed(0x10, ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
(void)readl_relaxed(ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
if (ctrl.s3entry_method == 1) {
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
brcmstb_do_pmsm_power_down(M1_PM_COLD_CONFIG, true);
return; /* We should never actually get here */
}
brcmstb_do_pmsm_power_down(PM_COLD_CONFIG, false);
}
static void *brcmstb_pm_copy_to_sram(void *fn, size_t len)
{
unsigned int size = ALIGN(len, FNCPY_ALIGN);
if (ctrl.boot_sram_len < size) {
pr_err("standby code will not fit in SRAM\n");
return NULL;
}
return fncpy(ctrl.boot_sram, fn, size);
}
/*
* S2 suspend/resume picks up where we left off, so we must execute carefully
* from SRAM, in order to allow DDR to come back up safely before we continue.
*/
static int brcmstb_pm_s2(void)
{
/* A previous S3 can set a value hazardous to S2, so make sure. */
if (ctrl.s3entry_method == 1) {
shimphy_set((PWRDWN_SEQ_NO_SEQUENCING <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
}
brcmstb_pm_do_s2_sram = brcmstb_pm_copy_to_sram(&brcmstb_pm_do_s2,
brcmstb_pm_do_s2_sz);
if (!brcmstb_pm_do_s2_sram)
return -EINVAL;
return brcmstb_pm_do_s2_sram(ctrl.aon_ctrl_base,
ctrl.memcs[0].ddr_phy_base +
ctrl.pll_status_offset);
}
/*
* This function is called on a new stack, so don't allow inlining (which will
* generate stack references on the old stack). It cannot be made static because
* it is referenced from brcmstb_pm_s3()
*/
noinline int brcmstb_pm_s3_finish(void)
{
struct brcmstb_s3_params *params = ctrl.s3_params;
dma_addr_t params_pa = ctrl.s3_params_pa;
phys_addr_t reentry = virt_to_phys(&cpu_resume);
enum bsp_initiate_command cmd;
u32 flags;
/*
* Clear parameter structure, but not DTU area, which has already been
* filled in. We know DTU is a the end, so we can just subtract its
* size.
*/
memset(params, 0, sizeof(*params) - sizeof(params->dtu));
flags = readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
flags &= S3_BOOTLOADER_RESERVED;
flags |= S3_FLAG_NO_MEM_VERIFY;
flags |= S3_FLAG_LOAD_RANDKEY;
/* Load random / fixed key */
if (flags & S3_FLAG_LOAD_RANDKEY)
cmd = BSP_GEN_RANDOM_KEY;
else
cmd = BSP_GEN_FIXED_KEY;
if (do_bsp_initiate_command(cmd)) {
pr_info("key loading failed\n");
return -EIO;
}
params->magic = BRCMSTB_S3_MAGIC;
params->reentry = reentry;
/* No more writes to DRAM */
flush_cache_all();
flags |= BRCMSTB_S3_MAGIC_SHORT;
writel_relaxed(flags, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
writel_relaxed(lower_32_bits(params_pa),
ctrl.aon_sram + AON_REG_CONTROL_LOW);
writel_relaxed(upper_32_bits(params_pa),
ctrl.aon_sram + AON_REG_CONTROL_HIGH);
switch (ctrl.s3entry_method) {
case 0:
s3entry_method0();
brcmstb_do_pmsm_power_down(PM_WARM_CONFIG, false);
break;
case 1:
s3entry_method1();
brcmstb_do_pmsm_power_down(M1_PM_WARM_CONFIG, true);
break;
default:
return -EINVAL;
}
/* Must have been interrupted from wfi()? */
return -EINTR;
}
static int brcmstb_pm_do_s3(unsigned long sp)
{
unsigned long save_sp;
int ret;
asm volatile (
"mov %[save], sp\n"
"mov sp, %[new]\n"
"bl brcmstb_pm_s3_finish\n"
"mov %[ret], r0\n"
"mov %[new], sp\n"
"mov sp, %[save]\n"
: [save] "=&r" (save_sp), [ret] "=&r" (ret)
: [new] "r" (sp)
);
return ret;
}
static int brcmstb_pm_s3(void)
{
void __iomem *sp = ctrl.boot_sram + ctrl.boot_sram_len;
return cpu_suspend((unsigned long)sp, brcmstb_pm_do_s3);
}
static int brcmstb_pm_standby(bool deep_standby)
{
int ret;
if (brcmstb_pm_handshake())
return -EIO;
if (deep_standby)
ret = brcmstb_pm_s3();
else
ret = brcmstb_pm_s2();
if (ret)
pr_err("%s: standby failed\n", __func__);
return ret;
}
static int brcmstb_pm_enter(suspend_state_t state)
{
int ret = -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
ret = brcmstb_pm_standby(false);
break;
case PM_SUSPEND_MEM:
ret = brcmstb_pm_standby(true);
break;
}
return ret;
}
static int brcmstb_pm_valid(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_STANDBY:
return true;
case PM_SUSPEND_MEM:
return ctrl.support_warm_boot;
default:
return false;
}
}
static const struct platform_suspend_ops brcmstb_pm_ops = {
.enter = brcmstb_pm_enter,
.valid = brcmstb_pm_valid,
};
static const struct of_device_id aon_ctrl_dt_ids[] = {
{ .compatible = "brcm,brcmstb-aon-ctrl" },
{}
};
struct ddr_phy_ofdata {
bool supports_warm_boot;
size_t pll_status_offset;
int s3entry_method;
u32 warm_boot_offset;
u32 phy_a_standby_ctrl_offs;
u32 phy_b_standby_ctrl_offs;
};
static struct ddr_phy_ofdata ddr_phy_71_1 = {
.supports_warm_boot = true,
.pll_status_offset = 0x0c,
.s3entry_method = 1,
.warm_boot_offset = 0x2c,
.phy_a_standby_ctrl_offs = 0x198,
.phy_b_standby_ctrl_offs = DDR_PHY_NO_CHANNEL
};
static struct ddr_phy_ofdata ddr_phy_72_0 = {
.supports_warm_boot = true,
.pll_status_offset = 0x10,
.s3entry_method = 1,
.warm_boot_offset = 0x40,
.phy_a_standby_ctrl_offs = 0x2a4,
.phy_b_standby_ctrl_offs = 0x8a4
};
static struct ddr_phy_ofdata ddr_phy_225_1 = {
.supports_warm_boot = false,
.pll_status_offset = 0x4,
.s3entry_method = 0
};
static struct ddr_phy_ofdata ddr_phy_240_1 = {
.supports_warm_boot = true,
.pll_status_offset = 0x4,
.s3entry_method = 0
};
static const struct of_device_id ddr_phy_dt_ids[] = {
{
.compatible = "brcm,brcmstb-ddr-phy-v71.1",
.data = &ddr_phy_71_1,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v72.0",
.data = &ddr_phy_72_0,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v225.1",
.data = &ddr_phy_225_1,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v240.1",
.data = &ddr_phy_240_1,
},
{
/* Same as v240.1, for the registers we care about */
.compatible = "brcm,brcmstb-ddr-phy-v240.2",
.data = &ddr_phy_240_1,
},
{}
};
struct ddr_seq_ofdata {
bool needs_ddr_pad;
u32 warm_boot_offset;
};
static const struct ddr_seq_ofdata ddr_seq_b22 = {
.needs_ddr_pad = false,
.warm_boot_offset = 0x2c,
};
static const struct ddr_seq_ofdata ddr_seq = {
.needs_ddr_pad = true,
};
static const struct of_device_id ddr_shimphy_dt_ids[] = {
{ .compatible = "brcm,brcmstb-ddr-shimphy-v1.0" },
{}
};
static const struct of_device_id brcmstb_memc_of_match[] = {
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.2",
.data = &ddr_seq_b22,
},
{
.compatible = "brcm,brcmstb-memc-ddr",
.data = &ddr_seq,
},
{},
};
static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
int index, const void **ofdata)
{
struct device_node *dn;
const struct of_device_id *match;
dn = of_find_matching_node_and_match(NULL, matches, &match);
if (!dn)
return ERR_PTR(-EINVAL);
if (ofdata)
*ofdata = match->data;
return of_io_request_and_map(dn, index, dn->full_name);
}
static int brcmstb_pm_panic_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
writel_relaxed(BRCMSTB_PANIC_MAGIC, ctrl.aon_sram + AON_REG_PANIC);
return NOTIFY_DONE;
}
static struct notifier_block brcmstb_pm_panic_nb = {
.notifier_call = brcmstb_pm_panic_notify,
};
static int brcmstb_pm_probe(struct platform_device *pdev)
{
const struct ddr_phy_ofdata *ddr_phy_data;
const struct ddr_seq_ofdata *ddr_seq_data;
const struct of_device_id *of_id = NULL;
struct device_node *dn;
void __iomem *base;
int ret, i;
/* AON ctrl registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_CTRL\n");
return PTR_ERR(base);
}
ctrl.aon_ctrl_base = base;
/* AON SRAM registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
if (IS_ERR(base)) {
/* Assume standard offset */
ctrl.aon_sram = ctrl.aon_ctrl_base +
AON_CTRL_SYSTEM_DATA_RAM_OFS;
} else {
ctrl.aon_sram = base;
}
writel_relaxed(0, ctrl.aon_sram + AON_REG_PANIC);
/* DDR PHY registers */
base = brcmstb_ioremap_match(ddr_phy_dt_ids, 0,
(const void **)&ddr_phy_data);
if (IS_ERR(base)) {
pr_err("error mapping DDR PHY\n");
return PTR_ERR(base);
}
ctrl.support_warm_boot = ddr_phy_data->supports_warm_boot;
ctrl.pll_status_offset = ddr_phy_data->pll_status_offset;
/* Only need DDR PHY 0 for now? */
ctrl.memcs[0].ddr_phy_base = base;
ctrl.s3entry_method = ddr_phy_data->s3entry_method;
ctrl.phy_a_standby_ctrl_offs = ddr_phy_data->phy_a_standby_ctrl_offs;
ctrl.phy_b_standby_ctrl_offs = ddr_phy_data->phy_b_standby_ctrl_offs;
/*
* Slightly grosss to use the phy ver to get a memc,
* offset but that is the only versioned things so far
* we can test for.
*/
ctrl.warm_boot_offset = ddr_phy_data->warm_boot_offset;
/* DDR SHIM-PHY registers */
for_each_matching_node(dn, ddr_shimphy_dt_ids) {
i = ctrl.num_memc;
if (i >= MAX_NUM_MEMC) {
pr_warn("too many MEMCs (max %d)\n", MAX_NUM_MEMC);
break;
}
base = of_io_request_and_map(dn, 0, dn->full_name);
if (IS_ERR(base)) {
if (!ctrl.support_warm_boot)
break;
pr_err("error mapping DDR SHIMPHY %d\n", i);
return PTR_ERR(base);
}
ctrl.memcs[i].ddr_shimphy_base = base;
ctrl.num_memc++;
}
/* Sequencer DRAM Param and Control Registers */
i = 0;
for_each_matching_node(dn, brcmstb_memc_of_match) {
base = of_iomap(dn, 0);
if (!base) {
pr_err("error mapping DDR Sequencer %d\n", i);
return -ENOMEM;
}
of_id = of_match_node(brcmstb_memc_of_match, dn);
if (!of_id) {
iounmap(base);
return -EINVAL;
}
ddr_seq_data = of_id->data;
ctrl.needs_ddr_pad = ddr_seq_data->needs_ddr_pad;
/* Adjust warm boot offset based on the DDR sequencer */
if (ddr_seq_data->warm_boot_offset)
ctrl.warm_boot_offset = ddr_seq_data->warm_boot_offset;
ctrl.memcs[i].ddr_ctrl = base;
i++;
}
pr_debug("PM: supports warm boot:%d, method:%d, wboffs:%x\n",
ctrl.support_warm_boot, ctrl.s3entry_method,
ctrl.warm_boot_offset);
dn = of_find_matching_node(NULL, sram_dt_ids);
if (!dn) {
pr_err("SRAM not found\n");
return -EINVAL;
}
ret = brcmstb_init_sram(dn);
if (ret) {
pr_err("error setting up SRAM for PM\n");
return ret;
}
ctrl.pdev = pdev;
ctrl.s3_params = kmalloc(sizeof(*ctrl.s3_params), GFP_KERNEL);
if (!ctrl.s3_params)
return -ENOMEM;
ctrl.s3_params_pa = dma_map_single(&pdev->dev, ctrl.s3_params,
sizeof(*ctrl.s3_params),
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, ctrl.s3_params_pa)) {
pr_err("error mapping DMA memory\n");
ret = -ENOMEM;
goto out;
}
atomic_notifier_chain_register(&panic_notifier_list,
&brcmstb_pm_panic_nb);
pm_power_off = brcmstb_pm_poweroff;
suspend_set_ops(&brcmstb_pm_ops);
return 0;
out:
kfree(ctrl.s3_params);
pr_warn("PM: initialization failed with code %d\n", ret);
return ret;
}
static struct platform_driver brcmstb_pm_driver = {
.driver = {
.name = "brcmstb-pm",
.of_match_table = aon_ctrl_dt_ids,
},
};
static int __init brcmstb_pm_init(void)
{
return platform_driver_probe(&brcmstb_pm_driver,
brcmstb_pm_probe);
}
module_init(brcmstb_pm_init);
/*
* MIPS-specific support for Broadcom STB S2/S3/S5 power management
*
* Copyright (C) 2016-2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
#include <linux/suspend.h>
#include <asm/bmips.h>
#include <asm/tlbflush.h>
#include "pm.h"
#define S2_NUM_PARAMS 6
#define MAX_NUM_MEMC 3
/* S3 constants */
#define MAX_GP_REGS 16
#define MAX_CP0_REGS 32
#define NUM_MEMC_CLIENTS 128
#define AON_CTRL_RAM_SIZE 128
#define BRCMSTB_S3_MAGIC 0x5AFEB007
#define CLEAR_RESET_MASK 0x01
/* Index each CP0 register that needs to be saved */
#define CONTEXT 0
#define USER_LOCAL 1
#define PGMK 2
#define HWRENA 3
#define COMPARE 4
#define STATUS 5
#define CONFIG 6
#define MODE 7
#define EDSP 8
#define BOOT_VEC 9
#define EBASE 10
struct brcmstb_memc {
void __iomem *ddr_phy_base;
void __iomem *arb_base;
};
struct brcmstb_pm_control {
void __iomem *aon_ctrl_base;
void __iomem *aon_sram_base;
void __iomem *timers_base;
struct brcmstb_memc memcs[MAX_NUM_MEMC];
int num_memc;
};
struct brcm_pm_s3_context {
u32 cp0_regs[MAX_CP0_REGS];
u32 memc0_rts[NUM_MEMC_CLIENTS];
u32 sc_boot_vec;
};
struct brcmstb_mem_transfer;
struct brcmstb_mem_transfer {
struct brcmstb_mem_transfer *next;
void *src;
void *dst;
dma_addr_t pa_src;
dma_addr_t pa_dst;
u32 len;
u8 key;
u8 mode;
u8 src_remapped;
u8 dst_remapped;
u8 src_dst_remapped;
};
#define AON_SAVE_SRAM(base, idx, val) \
__raw_writel(val, base + (idx << 2))
/* Used for saving registers in asm */
u32 gp_regs[MAX_GP_REGS];
#define BSP_CLOCK_STOP 0x00
#define PM_INITIATE 0x01
static struct brcmstb_pm_control ctrl;
static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx)
{
/* Generic MIPS */
ctx->cp0_regs[CONTEXT] = read_c0_context();
ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal();
ctx->cp0_regs[PGMK] = read_c0_pagemask();
ctx->cp0_regs[HWRENA] = read_c0_cache();
ctx->cp0_regs[COMPARE] = read_c0_compare();
ctx->cp0_regs[STATUS] = read_c0_status();
/* Broadcom specific */
ctx->cp0_regs[CONFIG] = read_c0_brcm_config();
ctx->cp0_regs[MODE] = read_c0_brcm_mode();
ctx->cp0_regs[EDSP] = read_c0_brcm_edsp();
ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec();
ctx->cp0_regs[EBASE] = read_c0_ebase();
ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0);
}
static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx)
{
/* Restore cp0 state */
bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec);
/* Generic MIPS */
write_c0_context(ctx->cp0_regs[CONTEXT]);
write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]);
write_c0_pagemask(ctx->cp0_regs[PGMK]);
write_c0_cache(ctx->cp0_regs[HWRENA]);
write_c0_compare(ctx->cp0_regs[COMPARE]);
write_c0_status(ctx->cp0_regs[STATUS]);
/* Broadcom specific */
write_c0_brcm_config(ctx->cp0_regs[CONFIG]);
write_c0_brcm_mode(ctx->cp0_regs[MODE]);
write_c0_brcm_edsp(ctx->cp0_regs[EDSP]);
write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]);
write_c0_ebase(ctx->cp0_regs[EBASE]);
}
static void brcmstb_pm_handshake(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
u32 tmp;
/* BSP power handshake, v1 */
tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
tmp &= ~1UL;
__raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS);
(void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS);
__raw_writel(0, base + AON_CTRL_PM_INITIATE);
(void)__raw_readl(base + AON_CTRL_PM_INITIATE);
__raw_writel(BSP_CLOCK_STOP | PM_INITIATE,
base + AON_CTRL_PM_INITIATE);
/*
* HACK: BSP may have internal race on the CLOCK_STOP command.
* Avoid touching the BSP for a few milliseconds.
*/
mdelay(3);
}
static void brcmstb_pm_s5(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
brcmstb_pm_handshake();
/* Clear magic s3 warm-boot value */
AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0);
/* Set the countdown */
__raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT);
(void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT);
/* Prepare to S5 cold boot */
__raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL);
(void)__raw_readl(base + AON_CTRL_PM_CTRL);
__raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base +
AON_CTRL_PM_CTRL);
(void)__raw_readl(base + AON_CTRL_PM_CTRL);
__asm__ __volatile__(
" wait\n"
: : : "memory");
}
static int brcmstb_pm_s3(void)
{
struct brcm_pm_s3_context s3_context;
void __iomem *memc_arb_base;
unsigned long flags;
u32 tmp;
int i;
/* Prepare for s3 */
AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC);
AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry);
AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0);
/* Clear RESET_HISTORY */
tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
tmp &= ~CLEAR_RESET_MASK;
__raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL);
local_irq_save(flags);
/* Inhibit DDR_RSTb pulse for both MMCs*/
for (i = 0; i < ctrl.num_memc; i++) {
tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
tmp &= ~0x0f;
__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
tmp |= (0x05 | BIT(5));
__raw_writel(tmp, ctrl.memcs[i].ddr_phy_base +
DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL);
}
/* Save CP0 context */
brcm_pm_save_cp0_context(&s3_context);
/* Save RTS(skip debug register) */
memc_arb_base = ctrl.memcs[0].arb_base + 4;
for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
s3_context.memc0_rts[i] = __raw_readl(memc_arb_base);
memc_arb_base += 4;
}
/* Save I/O context */
local_flush_tlb_all();
_dma_cache_wback_inv(0, ~0);
brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz);
/* CPU reconfiguration */
local_flush_tlb_all();
bmips_cpu_setup();
cpumask_clear(&bmips_booted_mask);
/* Restore RTS (skip debug register) */
memc_arb_base = ctrl.memcs[0].arb_base + 4;
for (i = 0; i < NUM_MEMC_CLIENTS; i++) {
__raw_writel(s3_context.memc0_rts[i], memc_arb_base);
memc_arb_base += 4;
}
/* restore CP0 context */
brcm_pm_restore_cp0_context(&s3_context);
local_irq_restore(flags);
return 0;
}
static int brcmstb_pm_s2(void)
{
/*
* We need to pass 6 arguments to an assembly function. Lets avoid the
* stack and pass arguments in a explicit 4 byte array. The assembly
* code assumes all arguments are 4 bytes and arguments are ordered
* like so:
*
* 0: AON_CTRl base register
* 1: DDR_PHY base register
* 2: TIMERS base resgister
* 3: I-Cache line size
* 4: Restart vector address
* 5: Restart vector size
*/
u32 s2_params[6];
/* Prepare s2 parameters */
s2_params[0] = (u32)ctrl.aon_ctrl_base;
s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base;
s2_params[2] = (u32)ctrl.timers_base;
s2_params[3] = (u32)current_cpu_data.icache.linesz;
s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC;
s2_params[5] = (u32)(bmips_smp_int_vec_end -
bmips_smp_int_vec);
/* Drop to standby */
brcm_pm_do_s2(s2_params);
return 0;
}
static int brcmstb_pm_standby(bool deep_standby)
{
brcmstb_pm_handshake();
/* Send IRQs to BMIPS_WARM_RESTART_VEC */
clear_c0_cause(CAUSEF_IV);
irq_disable_hazard();
set_c0_status(ST0_BEV);
irq_disable_hazard();
if (deep_standby)
brcmstb_pm_s3();
else
brcmstb_pm_s2();
/* Send IRQs to normal runtime vectors */
clear_c0_status(ST0_BEV);
irq_disable_hazard();
set_c0_cause(CAUSEF_IV);
irq_disable_hazard();
return 0;
}
static int brcmstb_pm_enter(suspend_state_t state)
{
int ret = -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
ret = brcmstb_pm_standby(false);
break;
case PM_SUSPEND_MEM:
ret = brcmstb_pm_standby(true);
break;
}
return ret;
}
static int brcmstb_pm_valid(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_STANDBY:
return true;
case PM_SUSPEND_MEM:
return true;
default:
return false;
}
}
static const struct platform_suspend_ops brcmstb_pm_ops = {
.enter = brcmstb_pm_enter,
.valid = brcmstb_pm_valid,
};
static const struct of_device_id aon_ctrl_dt_ids[] = {
{ .compatible = "brcm,brcmstb-aon-ctrl" },
{ /* sentinel */ }
};
static const struct of_device_id ddr_phy_dt_ids[] = {
{ .compatible = "brcm,brcmstb-ddr-phy" },
{ /* sentinel */ }
};
static const struct of_device_id arb_dt_ids[] = {
{ .compatible = "brcm,brcmstb-memc-arb" },
{ /* sentinel */ }
};
static const struct of_device_id timers_ids[] = {
{ .compatible = "brcm,brcmstb-timers" },
{ /* sentinel */ }
};
static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn,
int index)
{
return of_io_request_and_map(dn, index, dn->full_name);
}
static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
int index, const void **ofdata)
{
struct device_node *dn;
const struct of_device_id *match;
dn = of_find_matching_node_and_match(NULL, matches, &match);
if (!dn)
return ERR_PTR(-EINVAL);
if (ofdata)
*ofdata = match->data;
return brcmstb_ioremap_node(dn, index);
}
static int brcmstb_pm_init(void)
{
struct device_node *dn;
void __iomem *base;
int i;
/* AON ctrl registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_CTRL\n");
goto aon_err;
}
ctrl.aon_ctrl_base = base;
/* AON SRAM registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_SRAM\n");
goto sram_err;
}
ctrl.aon_sram_base = base;
ctrl.num_memc = 0;
/* Map MEMC DDR PHY registers */
for_each_matching_node(dn, ddr_phy_dt_ids) {
i = ctrl.num_memc;
if (i >= MAX_NUM_MEMC) {
pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC);
break;
}
base = brcmstb_ioremap_node(dn, 0);
if (IS_ERR(base))
goto ddr_err;
ctrl.memcs[i].ddr_phy_base = base;
ctrl.num_memc++;
}
/* MEMC ARB registers */
base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping MEMC ARB\n");
goto ddr_err;
}
ctrl.memcs[0].arb_base = base;
/* Timer registers */
base = brcmstb_ioremap_match(timers_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping timers\n");
goto tmr_err;
}
ctrl.timers_base = base;
/* s3 cold boot aka s5 */
pm_power_off = brcmstb_pm_s5;
suspend_set_ops(&brcmstb_pm_ops);
return 0;
tmr_err:
iounmap(ctrl.memcs[0].arb_base);
ddr_err:
for (i = 0; i < ctrl.num_memc; i++)
iounmap(ctrl.memcs[i].ddr_phy_base);
iounmap(ctrl.aon_sram_base);
sram_err:
iounmap(ctrl.aon_ctrl_base);
aon_err:
return PTR_ERR(base);
}
arch_initcall(brcmstb_pm_init);
/*
* Definitions for Broadcom STB power management / Always ON (AON) block
*
* Copyright © 2016-2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __BRCMSTB_PM_H__
#define __BRCMSTB_PM_H__
#define AON_CTRL_RESET_CTRL 0x00
#define AON_CTRL_PM_CTRL 0x04
#define AON_CTRL_PM_STATUS 0x08
#define AON_CTRL_PM_CPU_WAIT_COUNT 0x10
#define AON_CTRL_PM_INITIATE 0x88
#define AON_CTRL_HOST_MISC_CMDS 0x8c
#define AON_CTRL_SYSTEM_DATA_RAM_OFS 0x200
/* MIPS PM constants */
/* MEMC0 offsets */
#define DDR40_PHY_CONTROL_REGS_0_PLL_STATUS 0x10
#define DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL 0xa4
/* TIMER offsets */
#define TIMER_TIMER1_CTRL 0x0c
#define TIMER_TIMER1_STAT 0x1c
/* TIMER defines */
#define RESET_TIMER 0x0
#define START_TIMER 0xbfffffff
#define TIMER_MASK 0x3fffffff
/* PM_CTRL bitfield (Method #0) */
#define PM_FAST_PWRDOWN (1 << 6)
#define PM_WARM_BOOT (1 << 5)
#define PM_DEEP_STANDBY (1 << 4)
#define PM_CPU_PWR (1 << 3)
#define PM_USE_CPU_RDY (1 << 2)
#define PM_PLL_PWRDOWN (1 << 1)
#define PM_PWR_DOWN (1 << 0)
/* PM_CTRL bitfield (Method #1) */
#define PM_DPHY_STANDBY_CLEAR (1 << 20)
#define PM_MIN_S3_WIDTH_TIMER_BYPASS (1 << 7)
#define PM_S2_COMMAND (PM_PLL_PWRDOWN | PM_USE_CPU_RDY | PM_PWR_DOWN)
/* Method 0 bitmasks */
#define PM_COLD_CONFIG (PM_PLL_PWRDOWN | PM_DEEP_STANDBY)
#define PM_WARM_CONFIG (PM_COLD_CONFIG | PM_USE_CPU_RDY | PM_WARM_BOOT)
/* Method 1 bitmask */
#define M1_PM_WARM_CONFIG (PM_DPHY_STANDBY_CLEAR | \
PM_MIN_S3_WIDTH_TIMER_BYPASS | \
PM_WARM_BOOT | PM_DEEP_STANDBY | \
PM_PLL_PWRDOWN | PM_PWR_DOWN)
#define M1_PM_COLD_CONFIG (PM_DPHY_STANDBY_CLEAR | \
PM_MIN_S3_WIDTH_TIMER_BYPASS | \
PM_DEEP_STANDBY | \
PM_PLL_PWRDOWN | PM_PWR_DOWN)
#ifndef __ASSEMBLY__
#ifndef CONFIG_MIPS
extern const unsigned long brcmstb_pm_do_s2_sz;
extern asmlinkage int brcmstb_pm_do_s2(void __iomem *aon_ctrl_base,
void __iomem *ddr_phy_pll_status);
#else
/* s2 asm */
extern asmlinkage int brcm_pm_do_s2(u32 *s2_params);
/* s3 asm */
extern asmlinkage int brcm_pm_do_s3(void __iomem *aon_ctrl_base,
int dcache_linesz);
extern int s3_reentry;
#endif /* CONFIG_MIPS */
#endif
#endif /* __BRCMSTB_PM_H__ */
/*
* Copyright © 2014-2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/linkage.h>
#include <asm/assembler.h>
#include "pm.h"
.text
.align 3
#define AON_CTRL_REG r10
#define DDR_PHY_STATUS_REG r11
/*
* r0: AON_CTRL base address
* r1: DDRY PHY PLL status register address
*/
ENTRY(brcmstb_pm_do_s2)
stmfd sp!, {r4-r11, lr}
mov AON_CTRL_REG, r0
mov DDR_PHY_STATUS_REG, r1
/* Flush memory transactions */
dsb
/* Cache DDR_PHY_STATUS_REG translation */
ldr r0, [DDR_PHY_STATUS_REG]
/* power down request */
ldr r0, =PM_S2_COMMAND
ldr r1, =0
str r1, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
ldr r1, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
str r0, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
ldr r0, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
/* Wait for interrupt */
wfi
nop
/* Bring MEMC back up */
1: ldr r0, [DDR_PHY_STATUS_REG]
ands r0, #1
beq 1b
/* Power-up handshake */
ldr r0, =1
str r0, [AON_CTRL_REG, #AON_CTRL_HOST_MISC_CMDS]
ldr r0, [AON_CTRL_REG, #AON_CTRL_HOST_MISC_CMDS]
ldr r0, =0
str r0, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
ldr r0, [AON_CTRL_REG, #AON_CTRL_PM_CTRL]
/* Return to caller */
ldr r0, =0
ldmfd sp!, {r4-r11, pc}
ENDPROC(brcmstb_pm_do_s2)
/* Place literal pool here */
.ltorg
ENTRY(brcmstb_pm_do_s2_sz)
.word . - brcmstb_pm_do_s2
/*
* Copyright (C) 2016 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <asm/asm.h>
#include <asm/regdef.h>
#include <asm/mipsregs.h>
#include <asm/stackframe.h>
#include "pm.h"
.text
.set noreorder
.align 5
/*
* a0: u32 params array
*/
LEAF(brcm_pm_do_s2)
subu sp, 64
sw ra, 0(sp)
sw s0, 4(sp)
sw s1, 8(sp)
sw s2, 12(sp)
sw s3, 16(sp)
sw s4, 20(sp)
sw s5, 24(sp)
sw s6, 28(sp)
sw s7, 32(sp)
/*
* Dereference the params array
* s0: AON_CTRL base register
* s1: DDR_PHY base register
* s2: TIMERS base register
* s3: I-Cache line size
* s4: Restart vector address
* s5: Restart vector size
*/
move t0, a0
lw s0, 0(t0)
lw s1, 4(t0)
lw s2, 8(t0)
lw s3, 12(t0)
lw s4, 16(t0)
lw s5, 20(t0)
/* Lock this asm section into the I-cache */
addiu t1, s3, -1
not t1
la t0, brcm_pm_do_s2
and t0, t1
la t2, asm_end
and t2, t1
1: cache 0x1c, 0(t0)
bne t0, t2, 1b
addu t0, s3
/* Lock the interrupt vector into the I-cache */
move t0, zero
2: move t1, s4
cache 0x1c, 0(t1)
addu t1, s3
addu t0, s3
ble t0, s5, 2b
nop
sync
/* Power down request */
li t0, PM_S2_COMMAND
sw zero, AON_CTRL_PM_CTRL(s0)
lw zero, AON_CTRL_PM_CTRL(s0)
sw t0, AON_CTRL_PM_CTRL(s0)
lw t0, AON_CTRL_PM_CTRL(s0)
/* Enable CP0 interrupt 2 and wait for interrupt */
mfc0 t0, CP0_STATUS
/* Save cp0 sr for restoring later */
move s6, t0
li t1, ~(ST0_IM | ST0_IE)
and t0, t1
ori t0, STATUSF_IP2
mtc0 t0, CP0_STATUS
nop
nop
nop
ori t0, ST0_IE
mtc0 t0, CP0_STATUS
/* Wait for interrupt */
wait
nop
/* Wait for memc0 */
1: lw t0, DDR40_PHY_CONTROL_REGS_0_PLL_STATUS(s1)
andi t0, 1
beqz t0, 1b
nop
/* 1ms delay needed for stable recovery */
/* Use TIMER1 to count 1 ms */
li t0, RESET_TIMER
sw t0, TIMER_TIMER1_CTRL(s2)
lw t0, TIMER_TIMER1_CTRL(s2)
li t0, START_TIMER
sw t0, TIMER_TIMER1_CTRL(s2)
lw t0, TIMER_TIMER1_CTRL(s2)
/* Prepare delay */
li t0, TIMER_MASK
lw t1, TIMER_TIMER1_STAT(s2)
and t1, t0
/* 1ms delay */
addi t1, 27000
/* Wait for the timer value to exceed t1 */
1: lw t0, TIMER_TIMER1_STAT(s2)
sgtu t2, t1, t0
bnez t2, 1b
nop
/* Power back up */
li t1, 1
sw t1, AON_CTRL_HOST_MISC_CMDS(s0)
lw t1, AON_CTRL_HOST_MISC_CMDS(s0)
sw zero, AON_CTRL_PM_CTRL(s0)
lw zero, AON_CTRL_PM_CTRL(s0)
/* Unlock I-cache */
addiu t1, s3, -1
not t1
la t0, brcm_pm_do_s2
and t0, t1
la t2, asm_end
and t2, t1
1: cache 0x00, 0(t0)
bne t0, t2, 1b
addu t0, s3
/* Unlock interrupt vector */
move t0, zero
2: move t1, s4
cache 0x00, 0(t1)
addu t1, s3
addu t0, s3
ble t0, s5, 2b
nop
/* Restore cp0 sr */
sync
nop
mtc0 s6, CP0_STATUS
nop
/* Set return value to success */
li v0, 0
/* Return to caller */
lw s7, 32(sp)
lw s6, 28(sp)
lw s5, 24(sp)
lw s4, 20(sp)
lw s3, 16(sp)
lw s2, 12(sp)
lw s1, 8(sp)
lw s0, 4(sp)
lw ra, 0(sp)
addiu sp, 64
jr ra
nop
END(brcm_pm_do_s2)
.globl asm_end
asm_end:
nop
/*
* Copyright (C) 2016 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <asm/asm.h>
#include <asm/regdef.h>
#include <asm/mipsregs.h>
#include <asm/bmips.h>
#include "pm.h"
.text
.set noreorder
.align 5
.global s3_reentry
/*
* a0: AON_CTRL base register
* a1: D-Cache line size
*/
LEAF(brcm_pm_do_s3)
/* Get the address of s3_context */
la t0, gp_regs
sw ra, 0(t0)
sw s0, 4(t0)
sw s1, 8(t0)
sw s2, 12(t0)
sw s3, 16(t0)
sw s4, 20(t0)
sw s5, 24(t0)
sw s6, 28(t0)
sw s7, 32(t0)
sw gp, 36(t0)
sw sp, 40(t0)
sw fp, 44(t0)
/* Save CP0 Status */
mfc0 t1, CP0_STATUS
sw t1, 48(t0)
/* Write-back gp registers - cache will be gone */
addiu t1, a1, -1
not t1
and t0, t1
/* Flush at least 64 bytes */
addiu t2, t0, 64
and t2, t1
1: cache 0x17, 0(t0)
bne t0, t2, 1b
addu t0, a1
/* Drop to deep standby */
li t1, PM_WARM_CONFIG
sw zero, AON_CTRL_PM_CTRL(a0)
lw zero, AON_CTRL_PM_CTRL(a0)
sw t1, AON_CTRL_PM_CTRL(a0)
lw t1, AON_CTRL_PM_CTRL(a0)
li t1, (PM_WARM_CONFIG | PM_PWR_DOWN)
sw t1, AON_CTRL_PM_CTRL(a0)
lw t1, AON_CTRL_PM_CTRL(a0)
/* Enable CP0 interrupt 2 and wait for interrupt */
mfc0 t0, CP0_STATUS
li t1, ~(ST0_IM | ST0_IE)
and t0, t1
ori t0, STATUSF_IP2
mtc0 t0, CP0_STATUS
nop
nop
nop
ori t0, ST0_IE
mtc0 t0, CP0_STATUS
/* Wait for interrupt */
wait
nop
s3_reentry:
/* Clear call/return stack */
li t0, (0x06 << 16)
mtc0 t0, $22, 2
ssnop
ssnop
ssnop
/* Clear jump target buffer */
li t0, (0x04 << 16)
mtc0 t0, $22, 2
ssnop
ssnop
ssnop
sync
nop
/* Setup mmu defaults */
mtc0 zero, CP0_WIRED
mtc0 zero, CP0_ENTRYHI
li k0, PM_DEFAULT_MASK
mtc0 k0, CP0_PAGEMASK
li sp, BMIPS_WARM_RESTART_VEC
la k0, plat_wired_tlb_setup
jalr k0
nop
/* Restore general purpose registers */
la t0, gp_regs
lw fp, 44(t0)
lw sp, 40(t0)
lw gp, 36(t0)
lw s7, 32(t0)
lw s6, 28(t0)
lw s5, 24(t0)
lw s4, 20(t0)
lw s3, 16(t0)
lw s2, 12(t0)
lw s1, 8(t0)
lw s0, 4(t0)
lw ra, 0(t0)
/* Restore CP0 status */
lw t1, 48(t0)
mtc0 t1, CP0_STATUS
/* Return to caller */
li v0, 0
jr ra
nop
END(brcm_pm_do_s3)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment