Commit 3ff03278 authored by Paolo Bonzini's avatar Paolo Bonzini

Merge tag 'kvm-ppc-next-5.9-1' of...

Merge tag 'kvm-ppc-next-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-next-5.6

PPC KVM update for 5.9

- Improvements and bug-fixes for secure VM support, giving reduced startup
  time and memory hotplug support.
- Locking fixes in nested KVM code
- Increase number of guests supported by HV KVM to 4094
- Preliminary POWER10 support
parents 43bd9ef4 81ab595d
......@@ -895,6 +895,7 @@ Return values
One of the following values:
* H_SUCCESS on success.
* H_STATE if the VM is not in a position to switch to secure.
Description
~~~~~~~~~~~
......@@ -933,6 +934,8 @@ Return values
* H_UNSUPPORTED if called from the wrong context (e.g.
from an SVM or before an H_SVM_INIT_START
hypercall).
* H_STATE if the hypervisor could not successfully
transition the VM to Secure VM.
Description
~~~~~~~~~~~
......
......@@ -23,6 +23,10 @@ int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn);
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm);
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
struct kvm *kvm, bool skip_page_out);
int kvmppc_uvmem_memslot_create(struct kvm *kvm,
const struct kvm_memory_slot *new);
void kvmppc_uvmem_memslot_delete(struct kvm *kvm,
const struct kvm_memory_slot *old);
#else
static inline int kvmppc_uvmem_init(void)
{
......@@ -82,5 +86,15 @@ static inline int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
static inline void
kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
struct kvm *kvm, bool skip_page_out) { }
static inline int kvmppc_uvmem_memslot_create(struct kvm *kvm,
const struct kvm_memory_slot *new)
{
return H_UNSUPPORTED;
}
static inline void kvmppc_uvmem_memslot_delete(struct kvm *kvm,
const struct kvm_memory_slot *old) { }
#endif /* CONFIG_PPC_UV */
#endif /* __ASM_KVM_BOOK3S_UVMEM_H__ */
......@@ -59,7 +59,7 @@ enum xlate_readwrite {
};
extern int kvmppc_vcpu_run(struct kvm_vcpu *vcpu);
extern int __kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
extern int __kvmppc_vcpu_run(struct kvm_vcpu *vcpu);
extern void kvmppc_handler_highmem(void);
extern void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu);
......
......@@ -474,7 +474,8 @@
#ifndef SPRN_LPID
#define SPRN_LPID 0x13F /* Logical Partition Identifier */
#endif
#define LPID_RSVD 0x3ff /* Reserved LPID for partn switching */
#define LPID_RSVD_POWER7 0x3ff /* Reserved LPID for partn switching */
#define LPID_RSVD 0xfff /* Reserved LPID for partn switching */
#define SPRN_HMER 0x150 /* Hypervisor maintenance exception reg */
#define HMER_DEBUG_TRIG (1ul << (63 - 17)) /* Debug trigger */
#define SPRN_HMEER 0x151 /* Hyp maintenance exception enable reg */
......@@ -1362,6 +1363,7 @@
#define PVR_ARCH_206p 0x0f100003
#define PVR_ARCH_207 0x0f000004
#define PVR_ARCH_300 0x0f000005
#define PVR_ARCH_31 0x0f000006
/* Macros for setting and retrieving special purpose registers */
#ifndef __ASSEMBLY__
......
......@@ -260,11 +260,15 @@ int kvmppc_mmu_hv_init(void)
if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
return -EINVAL;
/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
host_lpid = 0;
if (cpu_has_feature(CPU_FTR_HVMODE))
host_lpid = mfspr(SPRN_LPID);
rsvd_lpid = LPID_RSVD;
/* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
if (cpu_has_feature(CPU_FTR_ARCH_207S))
rsvd_lpid = LPID_RSVD;
else
rsvd_lpid = LPID_RSVD_POWER7;
kvmppc_init_lpid(rsvd_lpid + 1);
......
......@@ -161,7 +161,9 @@ int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
return -EINVAL;
/* Read the entry from guest memory */
addr = base + (index * sizeof(rpte));
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
if (ret) {
if (pte_ret_p)
*pte_ret_p = addr;
......@@ -237,7 +239,9 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
/* Read the table to find the root of the radix tree */
ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
if (ret)
return ret;
......
......@@ -343,13 +343,18 @@ static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
vcpu->arch.pvr = pvr;
}
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
struct kvmppc_vcore *vc = vcpu->arch.vcore;
/* We can (emulate) our own architecture version and anything older */
if (cpu_has_feature(CPU_FTR_ARCH_300))
if (cpu_has_feature(CPU_FTR_ARCH_31))
host_pcr_bit = PCR_ARCH_31;
else if (cpu_has_feature(CPU_FTR_ARCH_300))
host_pcr_bit = PCR_ARCH_300;
else if (cpu_has_feature(CPU_FTR_ARCH_207S))
host_pcr_bit = PCR_ARCH_207;
......@@ -375,6 +380,9 @@ static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
case PVR_ARCH_300:
guest_pcr_bit = PCR_ARCH_300;
break;
case PVR_ARCH_31:
guest_pcr_bit = PCR_ARCH_31;
break;
default:
return -EINVAL;
}
......@@ -2355,7 +2363,7 @@ static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
* to trap and then we emulate them.
*/
vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
if (cpu_has_feature(CPU_FTR_HVMODE)) {
vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
......@@ -4552,16 +4560,14 @@ static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
switch (change) {
case KVM_MR_CREATE:
if (kvmppc_uvmem_slot_init(kvm, new))
return;
uv_register_mem_slot(kvm->arch.lpid,
new->base_gfn << PAGE_SHIFT,
new->npages * PAGE_SIZE,
0, new->id);
/*
* @TODO kvmppc_uvmem_memslot_create() can fail and
* return error. Fix this.
*/
kvmppc_uvmem_memslot_create(kvm, new);
break;
case KVM_MR_DELETE:
uv_unregister_mem_slot(kvm->arch.lpid, old->id);
kvmppc_uvmem_slot_free(kvm, old);
kvmppc_uvmem_memslot_delete(kvm, old);
break;
default:
/* TODO: Handle KVM_MR_MOVE */
......
......@@ -233,20 +233,21 @@ long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
/* copy parameters in */
hv_ptr = kvmppc_get_gpr(vcpu, 4);
regs_ptr = kvmppc_get_gpr(vcpu, 5);
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
err = kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv,
sizeof(struct hv_guest_state));
sizeof(struct hv_guest_state)) ||
kvm_vcpu_read_guest(vcpu, regs_ptr, &l2_regs,
sizeof(struct pt_regs));
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (err)
return H_PARAMETER;
if (kvmppc_need_byteswap(vcpu))
byteswap_hv_regs(&l2_hv);
if (l2_hv.version != HV_GUEST_STATE_VERSION)
return H_P2;
regs_ptr = kvmppc_get_gpr(vcpu, 5);
err = kvm_vcpu_read_guest(vcpu, regs_ptr, &l2_regs,
sizeof(struct pt_regs));
if (err)
return H_PARAMETER;
if (kvmppc_need_byteswap(vcpu))
byteswap_pt_regs(&l2_regs);
if (l2_hv.vcpu_token >= NR_CPUS)
......@@ -323,12 +324,12 @@ long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
byteswap_hv_regs(&l2_hv);
byteswap_pt_regs(&l2_regs);
}
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
err = kvm_vcpu_write_guest(vcpu, hv_ptr, &l2_hv,
sizeof(struct hv_guest_state));
if (err)
return H_AUTHORITY;
err = kvm_vcpu_write_guest(vcpu, regs_ptr, &l2_regs,
sizeof(struct hv_guest_state)) ||
kvm_vcpu_write_guest(vcpu, regs_ptr, &l2_regs,
sizeof(struct pt_regs));
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (err)
return H_AUTHORITY;
......@@ -508,12 +509,16 @@ long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
goto not_found;
/* Write what was loaded into our buffer back to the L1 guest */
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (rc)
goto not_found;
} else {
/* Load the data to be stored from the L1 guest into our buf */
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (rc)
goto not_found;
......@@ -548,9 +553,12 @@ static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
ret = -EFAULT;
ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8)))
if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
int srcu_idx = srcu_read_lock(&kvm->srcu);
ret = kvm_read_guest(kvm, ptbl_addr,
&ptbl_entry, sizeof(ptbl_entry));
srcu_read_unlock(&kvm->srcu, srcu_idx);
}
if (ret) {
gp->l1_gr_to_hr = 0;
gp->process_table = 0;
......
......@@ -93,12 +93,133 @@
#include <asm/ultravisor.h>
#include <asm/mman.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s_uvmem.h>
static struct dev_pagemap kvmppc_uvmem_pgmap;
static unsigned long *kvmppc_uvmem_bitmap;
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
#define KVMPPC_UVMEM_PFN (1UL << 63)
/*
* States of a GFN
* ---------------
* The GFN can be in one of the following states.
*
* (a) Secure - The GFN is secure. The GFN is associated with
* a Secure VM, the contents of the GFN is not accessible
* to the Hypervisor. This GFN can be backed by a secure-PFN,
* or can be backed by a normal-PFN with contents encrypted.
* The former is true when the GFN is paged-in into the
* ultravisor. The latter is true when the GFN is paged-out
* of the ultravisor.
*
* (b) Shared - The GFN is shared. The GFN is associated with a
* a secure VM. The contents of the GFN is accessible to
* Hypervisor. This GFN is backed by a normal-PFN and its
* content is un-encrypted.
*
* (c) Normal - The GFN is a normal. The GFN is associated with
* a normal VM. The contents of the GFN is accesible to
* the Hypervisor. Its content is never encrypted.
*
* States of a VM.
* ---------------
*
* Normal VM: A VM whose contents are always accessible to
* the hypervisor. All its GFNs are normal-GFNs.
*
* Secure VM: A VM whose contents are not accessible to the
* hypervisor without the VM's consent. Its GFNs are
* either Shared-GFN or Secure-GFNs.
*
* Transient VM: A Normal VM that is transitioning to secure VM.
* The transition starts on successful return of
* H_SVM_INIT_START, and ends on successful return
* of H_SVM_INIT_DONE. This transient VM, can have GFNs
* in any of the three states; i.e Secure-GFN, Shared-GFN,
* and Normal-GFN. The VM never executes in this state
* in supervisor-mode.
*
* Memory slot State.
* -----------------------------
* The state of a memory slot mirrors the state of the
* VM the memory slot is associated with.
*
* VM State transition.
* --------------------
*
* A VM always starts in Normal Mode.
*
* H_SVM_INIT_START moves the VM into transient state. During this
* time the Ultravisor may request some of its GFNs to be shared or
* secured. So its GFNs can be in one of the three GFN states.
*
* H_SVM_INIT_DONE moves the VM entirely from transient state to
* secure-state. At this point any left-over normal-GFNs are
* transitioned to Secure-GFN.
*
* H_SVM_INIT_ABORT moves the transient VM back to normal VM.
* All its GFNs are moved to Normal-GFNs.
*
* UV_TERMINATE transitions the secure-VM back to normal-VM. All
* the secure-GFN and shared-GFNs are tranistioned to normal-GFN
* Note: The contents of the normal-GFN is undefined at this point.
*
* GFN state implementation:
* -------------------------
*
* Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
* when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
* set, and contains the value of the secure-PFN.
* It is associated with a normal-PFN; also called mem_pfn, when
* the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
* The value of the normal-PFN is not tracked.
*
* Shared GFN is associated with a normal-PFN. Its pfn[] has
* KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
* is not tracked.
*
* Normal GFN is associated with normal-PFN. Its pfn[] has
* no flag set. The value of the normal-PFN is not tracked.
*
* Life cycle of a GFN
* --------------------
*
* --------------------------------------------------------------
* | | Share | Unshare | SVM |H_SVM_INIT_DONE|
* | |operation |operation | abort/ | |
* | | | | terminate | |
* -------------------------------------------------------------
* | | | | | |
* | Secure | Shared | Secure |Normal |Secure |
* | | | | | |
* | Shared | Shared | Secure |Normal |Shared |
* | | | | | |
* | Normal | Shared | Secure |Normal |Secure |
* --------------------------------------------------------------
*
* Life cycle of a VM
* --------------------
*
* --------------------------------------------------------------------
* | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
* | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
* | | | | | | |
* --------- ----------------------------------------------------------
* | | | | | | |
* | Normal | Normal | Transient|Error |Error |Normal |
* | | | | | | |
* | Secure | Error | Error |Error |Error |Normal |
* | | | | | | |
* |Transient| N/A | Error |Secure |Normal |Normal |
* --------------------------------------------------------------------
*/
#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
#define KVMPPC_GFN_MEM_PFN (1UL << 62)
#define KVMPPC_GFN_SHARED (1UL << 61)
#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
struct kvmppc_uvmem_slot {
struct list_head list;
......@@ -106,11 +227,11 @@ struct kvmppc_uvmem_slot {
unsigned long base_pfn;
unsigned long *pfns;
};
struct kvmppc_uvmem_page_pvt {
struct kvm *kvm;
unsigned long gpa;
bool skip_page_out;
bool remove_gfn;
};
bool kvmppc_uvmem_available(void)
......@@ -163,8 +284,8 @@ void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
mutex_unlock(&kvm->arch.uvmem_lock);
}
static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
struct kvm *kvm)
static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
unsigned long flag, unsigned long uvmem_pfn)
{
struct kvmppc_uvmem_slot *p;
......@@ -172,24 +293,41 @@ static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
unsigned long index = gfn - p->base_pfn;
p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN;
if (flag == KVMPPC_GFN_UVMEM_PFN)
p->pfns[index] = uvmem_pfn | flag;
else
p->pfns[index] = flag;
return;
}
}
}
static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm)
/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
unsigned long uvmem_pfn, struct kvm *kvm)
{
struct kvmppc_uvmem_slot *p;
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
}
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
p->pfns[gfn - p->base_pfn] = 0;
return;
}
}
/* mark the GFN as secure-GFN associated with a memory-PFN. */
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
}
/* mark the GFN as a shared GFN. */
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
}
/* mark the GFN as a non-existent GFN. */
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, 0, 0);
}
/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
unsigned long *uvmem_pfn)
{
......@@ -199,10 +337,10 @@ static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
unsigned long index = gfn - p->base_pfn;
if (p->pfns[index] & KVMPPC_UVMEM_PFN) {
if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
if (uvmem_pfn)
*uvmem_pfn = p->pfns[index] &
~KVMPPC_UVMEM_PFN;
KVMPPC_GFN_PFN_MASK;
return true;
} else
return false;
......@@ -211,10 +349,114 @@ static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
return false;
}
/*
* starting from *gfn search for the next available GFN that is not yet
* transitioned to a secure GFN. return the value of that GFN in *gfn. If a
* GFN is found, return true, else return false
*
* Must be called with kvm->arch.uvmem_lock held.
*/
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
struct kvm *kvm, unsigned long *gfn)
{
struct kvmppc_uvmem_slot *p;
bool ret = false;
unsigned long i;
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
break;
if (!p)
return ret;
/*
* The code below assumes, one to one correspondence between
* kvmppc_uvmem_slot and memslot.
*/
for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
unsigned long index = i - p->base_pfn;
if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
*gfn = i;
ret = true;
break;
}
}
return ret;
}
static int kvmppc_memslot_page_merge(struct kvm *kvm,
const struct kvm_memory_slot *memslot, bool merge)
{
unsigned long gfn = memslot->base_gfn;
unsigned long end, start = gfn_to_hva(kvm, gfn);
int ret = 0;
struct vm_area_struct *vma;
int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
if (kvm_is_error_hva(start))
return H_STATE;
end = start + (memslot->npages << PAGE_SHIFT);
mmap_write_lock(kvm->mm);
do {
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma) {
ret = H_STATE;
break;
}
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
merge_flag, &vma->vm_flags);
if (ret) {
ret = H_STATE;
break;
}
start = vma->vm_end;
} while (end > vma->vm_end);
mmap_write_unlock(kvm->mm);
return ret;
}
static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
kvmppc_uvmem_slot_free(kvm, memslot);
kvmppc_memslot_page_merge(kvm, memslot, true);
}
static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
int ret = H_PARAMETER;
if (kvmppc_memslot_page_merge(kvm, memslot, false))
return ret;
if (kvmppc_uvmem_slot_init(kvm, memslot))
goto out1;
ret = uv_register_mem_slot(kvm->arch.lpid,
memslot->base_gfn << PAGE_SHIFT,
memslot->npages * PAGE_SIZE,
0, memslot->id);
if (ret < 0) {
ret = H_PARAMETER;
goto out;
}
return 0;
out:
kvmppc_uvmem_slot_free(kvm, memslot);
out1:
kvmppc_memslot_page_merge(kvm, memslot, true);
return ret;
}
unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot *memslot, *m;
int ret = H_SUCCESS;
int srcu_idx;
......@@ -232,35 +474,117 @@ unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
return H_AUTHORITY;
srcu_idx = srcu_read_lock(&kvm->srcu);
/* register the memslot */
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
if (kvmppc_uvmem_slot_init(kvm, memslot)) {
ret = H_PARAMETER;
goto out;
}
ret = uv_register_mem_slot(kvm->arch.lpid,
memslot->base_gfn << PAGE_SHIFT,
memslot->npages * PAGE_SIZE,
0, memslot->id);
if (ret < 0) {
kvmppc_uvmem_slot_free(kvm, memslot);
ret = H_PARAMETER;
goto out;
ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
if (ret)
break;
}
if (ret) {
slots = kvm_memslots(kvm);
kvm_for_each_memslot(m, slots) {
if (m == memslot)
break;
__kvmppc_uvmem_memslot_delete(kvm, memslot);
}
}
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
/*
* Provision a new page on HV side and copy over the contents
* from secure memory using UV_PAGE_OUT uvcall.
* Caller must held kvm->arch.uvmem_lock.
*/
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
unsigned long start,
unsigned long end, unsigned long page_shift,
struct kvm *kvm, unsigned long gpa)
{
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
struct page *dpage, *spage;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn;
int ret = U_SUCCESS;
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
pr_info("LPID %d went secure\n", kvm->arch.lpid);
return H_SUCCESS;
memset(&mig, 0, sizeof(mig));
mig.vma = vma;
mig.start = start;
mig.end = end;
mig.src = &src_pfn;
mig.dst = &dst_pfn;
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
/* The requested page is already paged-out, nothing to do */
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
return ret;
ret = migrate_vma_setup(&mig);
if (ret)
return -1;
spage = migrate_pfn_to_page(*mig.src);
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
goto out_finalize;
if (!is_zone_device_page(spage))
goto out_finalize;
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
if (!dpage) {
ret = -1;
goto out_finalize;
}
lock_page(dpage);
pvt = spage->zone_device_data;
pfn = page_to_pfn(dpage);
/*
* This function is used in two cases:
* - When HV touches a secure page, for which we do UV_PAGE_OUT
* - When a secure page is converted to shared page, we *get*
* the page to essentially unmap the device page. In this
* case we skip page-out.
*/
if (!pvt->skip_page_out)
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
gpa, 0, page_shift);
if (ret == U_SUCCESS)
*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
else {
unlock_page(dpage);
__free_page(dpage);
goto out_finalize;
}
migrate_vma_pages(&mig);
out_finalize:
migrate_vma_finalize(&mig);
return ret;
}
static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
unsigned long page_shift,
struct kvm *kvm, unsigned long gpa)
{
int ret;
mutex_lock(&kvm->arch.uvmem_lock);
ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
mutex_unlock(&kvm->arch.uvmem_lock);
return ret;
}
/*
......@@ -271,33 +595,53 @@ unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
* fault on them, do fault time migration to replace the device PTEs in
* QEMU page table with normal PTEs from newly allocated pages.
*/
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
struct kvm *kvm, bool skip_page_out)
{
int i;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn, uvmem_pfn;
unsigned long gfn = free->base_gfn;
struct page *uvmem_page;
struct vm_area_struct *vma = NULL;
unsigned long uvmem_pfn, gfn;
unsigned long addr;
for (i = free->npages; i; --i, ++gfn) {
struct page *uvmem_page;
mmap_read_lock(kvm->mm);
addr = slot->userspace_addr;
gfn = slot->base_gfn;
for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
/* Fetch the VMA if addr is not in the latest fetched one */
if (!vma || addr >= vma->vm_end) {
vma = find_vma_intersection(kvm->mm, addr, addr+1);
if (!vma) {
pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
break;
}
}
mutex_lock(&kvm->arch.uvmem_lock);
if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
mutex_unlock(&kvm->arch.uvmem_lock);
continue;
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = skip_page_out;
pvt->remove_gfn = true;
if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
PAGE_SHIFT, kvm, pvt->gpa))
pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
pvt->gpa, addr);
} else {
/* Remove the shared flag if any */
kvmppc_gfn_remove(gfn, kvm);
}
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = skip_page_out;
mutex_unlock(&kvm->arch.uvmem_lock);
pfn = gfn_to_pfn(kvm, gfn);
if (is_error_noslot_pfn(pfn))
continue;
kvm_release_pfn_clean(pfn);
}
mmap_read_unlock(kvm->mm);
}
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
......@@ -360,7 +704,7 @@ static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
goto out_clear;
uvmem_pfn = bit + pfn_first;
kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
pvt->gpa = gpa;
pvt->kvm = kvm;
......@@ -379,13 +723,14 @@ static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
}
/*
* Alloc a PFN from private device memory pool and copy page from normal
* memory to secure memory using UV_PAGE_IN uvcall.
* Alloc a PFN from private device memory pool. If @pagein is true,
* copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
*/
static int
kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long gpa, struct kvm *kvm,
unsigned long page_shift, bool *downgrade)
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
unsigned long start,
unsigned long end, unsigned long gpa, struct kvm *kvm,
unsigned long page_shift,
bool pagein)
{
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
......@@ -402,18 +747,6 @@ kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
mig.dst = &dst_pfn;
mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
/*
* We come here with mmap_lock write lock held just for
* ksm_madvise(), otherwise we only need read mmap_lock.
* Hence downgrade to read lock once ksm_madvise() is done.
*/
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
MADV_UNMERGEABLE, &vma->vm_flags);
mmap_write_downgrade(kvm->mm);
*downgrade = true;
if (ret)
return ret;
ret = migrate_vma_setup(&mig);
if (ret)
return ret;
......@@ -429,11 +762,16 @@ kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
goto out_finalize;
}
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
spage = migrate_pfn_to_page(*mig.src);
if (spage)
uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
page_shift);
if (pagein) {
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
spage = migrate_pfn_to_page(*mig.src);
if (spage) {
ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
gpa, 0, page_shift);
if (ret)
goto out_finalize;
}
}
*mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
migrate_vma_pages(&mig);
......@@ -442,6 +780,80 @@ kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
return ret;
}
static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
unsigned long gfn = memslot->base_gfn;
struct vm_area_struct *vma;
unsigned long start, end;
int ret = 0;
mmap_read_lock(kvm->mm);
mutex_lock(&kvm->arch.uvmem_lock);
while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
ret = H_STATE;
start = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(start))
break;
end = start + (1UL << PAGE_SHIFT);
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma || vma->vm_start > start || vma->vm_end < end)
break;
ret = kvmppc_svm_page_in(vma, start, end,
(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
if (ret) {
ret = H_STATE;
break;
}
/* relinquish the cpu if needed */
cond_resched();
}
mutex_unlock(&kvm->arch.uvmem_lock);
mmap_read_unlock(kvm->mm);
return ret;
}
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int srcu_idx;
long ret = H_SUCCESS;
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
/* migrate any unmoved normal pfn to device pfns*/
srcu_idx = srcu_read_lock(&kvm->srcu);
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
if (ret) {
/*
* The pages will remain transitioned.
* Its the callers responsibility to
* terminate the VM, which will undo
* all state of the VM. Till then
* this VM is in a erroneous state.
* Its KVMPPC_SECURE_INIT_DONE will
* remain unset.
*/
ret = H_STATE;
goto out;
}
}
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
pr_info("LPID %d went secure\n", kvm->arch.lpid);
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
/*
* Shares the page with HV, thus making it a normal page.
*
......@@ -451,8 +863,8 @@ kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
* In the former case, uses dev_pagemap_ops.migrate_to_ram handler
* to unmap the device page from QEMU's page tables.
*/
static unsigned long
kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
unsigned long page_shift)
{
int ret = H_PARAMETER;
......@@ -469,6 +881,11 @@ kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = true;
/*
* do not drop the GFN. It is a valid GFN
* that is transitioned to a shared GFN.
*/
pvt->remove_gfn = false;
}
retry:
......@@ -482,12 +899,16 @@ kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = true;
pvt->remove_gfn = false; /* it continues to be a valid GFN */
kvm_release_pfn_clean(pfn);
goto retry;
}
if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
page_shift)) {
kvmppc_gfn_shared(gfn, kvm);
ret = H_SUCCESS;
}
kvm_release_pfn_clean(pfn);
mutex_unlock(&kvm->arch.uvmem_lock);
out:
......@@ -501,11 +922,10 @@ kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
* H_PAGE_IN_SHARED flag makes the page shared which means that the same
* memory in is visible from both UV and HV.
*/
unsigned long
kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
unsigned long flags, unsigned long page_shift)
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
unsigned long flags,
unsigned long page_shift)
{
bool downgrade = false;
unsigned long start, end;
struct vm_area_struct *vma;
int srcu_idx;
......@@ -526,7 +946,7 @@ kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
ret = H_PARAMETER;
srcu_idx = srcu_read_lock(&kvm->srcu);
mmap_write_lock(kvm->mm);
mmap_read_lock(kvm->mm);
start = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(start))
......@@ -542,97 +962,20 @@ kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
if (!vma || vma->vm_start > start || vma->vm_end < end)
goto out_unlock;
if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
&downgrade))
ret = H_SUCCESS;
if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
true))
goto out_unlock;
ret = H_SUCCESS;
out_unlock:
mutex_unlock(&kvm->arch.uvmem_lock);
out:
if (downgrade)
mmap_read_unlock(kvm->mm);
else
mmap_write_unlock(kvm->mm);
mmap_read_unlock(kvm->mm);
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
/*
* Provision a new page on HV side and copy over the contents
* from secure memory using UV_PAGE_OUT uvcall.
*/
static int
kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long page_shift,
struct kvm *kvm, unsigned long gpa)
{
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
struct page *dpage, *spage;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn;
int ret = U_SUCCESS;
memset(&mig, 0, sizeof(mig));
mig.vma = vma;
mig.start = start;
mig.end = end;
mig.src = &src_pfn;
mig.dst = &dst_pfn;
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
mutex_lock(&kvm->arch.uvmem_lock);
/* The requested page is already paged-out, nothing to do */
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
goto out;
ret = migrate_vma_setup(&mig);
if (ret)
goto out;
spage = migrate_pfn_to_page(*mig.src);
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
goto out_finalize;
if (!is_zone_device_page(spage))
goto out_finalize;
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
if (!dpage) {
ret = -1;
goto out_finalize;
}
lock_page(dpage);
pvt = spage->zone_device_data;
pfn = page_to_pfn(dpage);
/*
* This function is used in two cases:
* - When HV touches a secure page, for which we do UV_PAGE_OUT
* - When a secure page is converted to shared page, we *get*
* the page to essentially unmap the device page. In this
* case we skip page-out.
*/
if (!pvt->skip_page_out)
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
gpa, 0, page_shift);
if (ret == U_SUCCESS)
*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
else {
unlock_page(dpage);
__free_page(dpage);
goto out_finalize;
}
migrate_vma_pages(&mig);
out_finalize:
migrate_vma_finalize(&mig);
out:
mutex_unlock(&kvm->arch.uvmem_lock);
return ret;
}
/*
* Fault handler callback that gets called when HV touches any page that
......@@ -657,7 +1000,8 @@ static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
/*
* Release the device PFN back to the pool
*
* Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT.
* Gets called when secure GFN tranistions from a secure-PFN
* to a normal PFN during H_SVM_PAGE_OUT.
* Gets called with kvm->arch.uvmem_lock held.
*/
static void kvmppc_uvmem_page_free(struct page *page)
......@@ -672,7 +1016,10 @@ static void kvmppc_uvmem_page_free(struct page *page)
pvt = page->zone_device_data;
page->zone_device_data = NULL;
kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
if (pvt->remove_gfn)
kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
else
kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
kfree(pvt);
}
......@@ -744,6 +1091,21 @@ int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
}
int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
{
int ret = __kvmppc_uvmem_memslot_create(kvm, new);
if (!ret)
ret = kvmppc_uv_migrate_mem_slot(kvm, new);
return ret;
}
void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
{
__kvmppc_uvmem_memslot_delete(kvm, old);
}
static u64 kvmppc_get_secmem_size(void)
{
struct device_node *np;
......
......@@ -55,8 +55,7 @@
****************************************************************************/
/* Registers:
* r3: kvm_run pointer
* r4: vcpu pointer
* r3: vcpu pointer
*/
_GLOBAL(__kvmppc_vcpu_run)
......@@ -68,8 +67,8 @@ kvm_start_entry:
/* Save host state to the stack */
PPC_STLU r1, -SWITCH_FRAME_SIZE(r1)
/* Save r3 (kvm_run) and r4 (vcpu) */
SAVE_2GPRS(3, r1)
/* Save r3 (vcpu) */
SAVE_GPR(3, r1)
/* Save non-volatile registers (r14 - r31) */
SAVE_NVGPRS(r1)
......@@ -82,47 +81,46 @@ kvm_start_entry:
PPC_STL r0, _LINK(r1)
/* Load non-volatile guest state from the vcpu */
VCPU_LOAD_NVGPRS(r4)
VCPU_LOAD_NVGPRS(r3)
kvm_start_lightweight:
/* Copy registers into shadow vcpu so we can access them in real mode */
mr r3, r4
bl FUNC(kvmppc_copy_to_svcpu)
nop
REST_GPR(4, r1)
REST_GPR(3, r1)
#ifdef CONFIG_PPC_BOOK3S_64
/* Get the dcbz32 flag */
PPC_LL r3, VCPU_HFLAGS(r4)
rldicl r3, r3, 0, 63 /* r3 &= 1 */
stb r3, HSTATE_RESTORE_HID5(r13)
PPC_LL r0, VCPU_HFLAGS(r3)
rldicl r0, r0, 0, 63 /* r3 &= 1 */
stb r0, HSTATE_RESTORE_HID5(r13)
/* Load up guest SPRG3 value, since it's user readable */
lwz r3, VCPU_SHAREDBE(r4)
cmpwi r3, 0
ld r5, VCPU_SHARED(r4)
lbz r4, VCPU_SHAREDBE(r3)
cmpwi r4, 0
ld r5, VCPU_SHARED(r3)
beq sprg3_little_endian
sprg3_big_endian:
#ifdef __BIG_ENDIAN__
ld r3, VCPU_SHARED_SPRG3(r5)
ld r4, VCPU_SHARED_SPRG3(r5)
#else
addi r5, r5, VCPU_SHARED_SPRG3
ldbrx r3, 0, r5
ldbrx r4, 0, r5
#endif
b after_sprg3_load
sprg3_little_endian:
#ifdef __LITTLE_ENDIAN__
ld r3, VCPU_SHARED_SPRG3(r5)
ld r4, VCPU_SHARED_SPRG3(r5)
#else
addi r5, r5, VCPU_SHARED_SPRG3
ldbrx r3, 0, r5
ldbrx r4, 0, r5
#endif
after_sprg3_load:
mtspr SPRN_SPRG3, r3
mtspr SPRN_SPRG3, r4
#endif /* CONFIG_PPC_BOOK3S_64 */
PPC_LL r4, VCPU_SHADOW_MSR(r4) /* get shadow_msr */
PPC_LL r4, VCPU_SHADOW_MSR(r3) /* get shadow_msr */
/* Jump to segment patching handler and into our guest */
bl FUNC(kvmppc_entry_trampoline)
......@@ -146,7 +144,7 @@ after_sprg3_load:
*
*/
PPC_LL r3, GPR4(r1) /* vcpu pointer */
PPC_LL r3, GPR3(r1) /* vcpu pointer */
/*
* kvmppc_copy_from_svcpu can clobber volatile registers, save
......@@ -169,7 +167,7 @@ after_sprg3_load:
#endif /* CONFIG_PPC_BOOK3S_64 */
/* R7 = vcpu */
PPC_LL r7, GPR4(r1)
PPC_LL r7, GPR3(r1)
PPC_STL r14, VCPU_GPR(R14)(r7)
PPC_STL r15, VCPU_GPR(R15)(r7)
......@@ -190,11 +188,11 @@ after_sprg3_load:
PPC_STL r30, VCPU_GPR(R30)(r7)
PPC_STL r31, VCPU_GPR(R31)(r7)
/* Pass the exit number as 3rd argument to kvmppc_handle_exit */
lwz r5, VCPU_TRAP(r7)
/* Pass the exit number as 2nd argument to kvmppc_handle_exit */
lwz r4, VCPU_TRAP(r7)
/* Restore r3 (kvm_run) and r4 (vcpu) */
REST_2GPRS(3, r1)
/* Restore r3 (vcpu) */
REST_GPR(3, r1)
bl FUNC(kvmppc_handle_exit_pr)
/* If RESUME_GUEST, get back in the loop */
......@@ -223,11 +221,11 @@ kvm_loop_heavyweight:
PPC_LL r4, _LINK(r1)
PPC_STL r4, (PPC_LR_STKOFF + SWITCH_FRAME_SIZE)(r1)
/* Load vcpu and cpu_run */
REST_2GPRS(3, r1)
/* Load vcpu */
REST_GPR(3, r1)
/* Load non-volatile guest state from the vcpu */
VCPU_LOAD_NVGPRS(r4)
VCPU_LOAD_NVGPRS(r3)
/* Jump back into the beginning of this function */
b kvm_start_lightweight
......@@ -235,7 +233,7 @@ kvm_loop_heavyweight:
kvm_loop_lightweight:
/* We'll need the vcpu pointer */
REST_GPR(4, r1)
REST_GPR(3, r1)
/* Jump back into the beginning of this function */
b kvm_start_lightweight
......@@ -1151,9 +1151,9 @@ static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
return r;
}
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
struct kvm_run *run = vcpu->run;
int r = RESUME_HOST;
int s;
......@@ -1826,12 +1826,11 @@ static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
int ret;
/* Check if we can run the vcpu at all */
if (!vcpu->arch.sane) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = -EINVAL;
goto out;
}
......@@ -1858,7 +1857,7 @@ static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
kvmppc_fix_ee_before_entry();
ret = __kvmppc_vcpu_run(run, vcpu);
ret = __kvmppc_vcpu_run(vcpu);
kvmppc_clear_debug(vcpu);
......
......@@ -229,7 +229,9 @@ int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu)
*/
args_phys = kvmppc_get_gpr(vcpu, 4) & KVM_PAM;
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
rc = kvm_read_guest(vcpu->kvm, args_phys, &args, sizeof(args));
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (rc)
goto fail;
......
......@@ -731,12 +731,11 @@ int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
int kvmppc_vcpu_run(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
int ret, s;
struct debug_reg debug;
if (!vcpu->arch.sane) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
......@@ -778,7 +777,7 @@ int kvmppc_vcpu_run(struct kvm_vcpu *vcpu)
vcpu->arch.pgdir = vcpu->kvm->mm->pgd;
kvmppc_fix_ee_before_entry();
ret = __kvmppc_vcpu_run(run, vcpu);
ret = __kvmppc_vcpu_run(vcpu);
/* No need for guest_exit. It's done in handle_exit.
We also get here with interrupts enabled. */
......@@ -982,9 +981,9 @@ static int kvmppc_resume_inst_load(struct kvm_vcpu *vcpu,
*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
int kvmppc_handle_exit(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
struct kvm_run *run = vcpu->run;
int r = RESUME_HOST;
int s;
int idx;
......
......@@ -237,7 +237,7 @@ _GLOBAL(kvmppc_resume_host)
/* Switch to kernel stack and jump to handler. */
LOAD_REG_ADDR(r3, kvmppc_handle_exit)
mtctr r3
lwz r3, HOST_RUN(r1)
mr r3, r4
lwz r2, HOST_R2(r1)
mr r14, r4 /* Save vcpu pointer. */
......@@ -337,15 +337,14 @@ heavyweight_exit:
/* Registers:
* r3: kvm_run pointer
* r4: vcpu pointer
* r3: vcpu pointer
*/
_GLOBAL(__kvmppc_vcpu_run)
stwu r1, -HOST_STACK_SIZE(r1)
stw r1, VCPU_HOST_STACK(r4) /* Save stack pointer to vcpu. */
stw r1, VCPU_HOST_STACK(r3) /* Save stack pointer to vcpu. */
/* Save host state to stack. */
stw r3, HOST_RUN(r1)
mr r4, r3
mflr r3
stw r3, HOST_STACK_LR(r1)
mfcr r5
......
......@@ -434,9 +434,10 @@ _GLOBAL(kvmppc_resume_host)
#endif
/* Switch to kernel stack and jump to handler. */
PPC_LL r3, HOST_RUN(r1)
mr r3, r4
mr r5, r14 /* intno */
mr r14, r4 /* Save vcpu pointer. */
mr r4, r5
bl kvmppc_handle_exit
/* Restore vcpu pointer and the nonvolatiles we used. */
......@@ -525,15 +526,14 @@ heavyweight_exit:
blr
/* Registers:
* r3: kvm_run pointer
* r4: vcpu pointer
* r3: vcpu pointer
*/
_GLOBAL(__kvmppc_vcpu_run)
stwu r1, -HOST_STACK_SIZE(r1)
PPC_STL r1, VCPU_HOST_STACK(r4) /* Save stack pointer to vcpu. */
PPC_STL r1, VCPU_HOST_STACK(r3) /* Save stack pointer to vcpu. */
/* Save host state to stack. */
PPC_STL r3, HOST_RUN(r1)
mr r4, r3
mflr r3
mfcr r5
PPC_STL r3, HOST_STACK_LR(r1)
......
......@@ -403,7 +403,10 @@ int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
return EMULATE_DONE;
}
if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
if (rc)
return EMULATE_DO_MMIO;
return EMULATE_DONE;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment