Commit 4992eb41 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 -  x86 bugfixes

 - Documentation fixes

 - Avoid performance regression due to SEV-ES patches

 - ARM:
     - Don't allow tagged pointers to point to memslots
     - Filter out ARMv8.1+ PMU events on v8.0 hardware
     - Hide PMU registers from userspace when no PMU is configured
     - More PMU cleanups
     - Don't try to handle broken PSCI firmware
     - More sys_reg() to reg_to_encoding() conversions

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: allow KVM_REQ_GET_NESTED_STATE_PAGES outside guest mode for VMX
  KVM: x86: Revert "KVM: x86: Mark GPRs dirty when written"
  KVM: SVM: Unconditionally sync GPRs to GHCB on VMRUN of SEV-ES guest
  KVM: nVMX: Sync unsync'd vmcs02 state to vmcs12 on migration
  kvm: tracing: Fix unmatched kvm_entry and kvm_exit events
  KVM: Documentation: Update description of KVM_{GET,CLEAR}_DIRTY_LOG
  KVM: x86: get smi pending status correctly
  KVM: x86/pmu: Fix HW_REF_CPU_CYCLES event pseudo-encoding in intel_arch_events[]
  KVM: x86/pmu: Fix UBSAN shift-out-of-bounds warning in intel_pmu_refresh()
  KVM: x86: Add more protection against undefined behavior in rsvd_bits()
  KVM: Documentation: Fix spec for KVM_CAP_ENABLE_CAP_VM
  KVM: Forbid the use of tagged userspace addresses for memslots
  KVM: arm64: Filter out v8.1+ events on v8.0 HW
  KVM: arm64: Compute TPIDR_EL2 ignoring MTE tag
  KVM: arm64: Use the reg_to_encoding() macro instead of sys_reg()
  KVM: arm64: Allow PSCI SYSTEM_OFF/RESET to return
  KVM: arm64: Simplify handling of absent PMU system registers
  KVM: arm64: Hide PMU registers from userspace when not available
parents c7230a48 9a78e158
...@@ -360,10 +360,9 @@ since the last call to this ioctl. Bit 0 is the first page in the ...@@ -360,10 +360,9 @@ since the last call to this ioctl. Bit 0 is the first page in the
memory slot. Ensure the entire structure is cleared to avoid padding memory slot. Ensure the entire structure is cleared to avoid padding
issues. issues.
If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies
the address space for which you want to return the dirty bitmap. the address space for which you want to return the dirty bitmap. See
They must be less than the value that KVM_CHECK_EXTENSION returns for KVM_SET_USER_MEMORY_REGION for details on the usage of slot field.
the KVM_CAP_MULTI_ADDRESS_SPACE capability.
The bits in the dirty bitmap are cleared before the ioctl returns, unless The bits in the dirty bitmap are cleared before the ioctl returns, unless
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information,
...@@ -1281,6 +1280,9 @@ field userspace_addr, which must point at user addressable memory for ...@@ -1281,6 +1280,9 @@ field userspace_addr, which must point at user addressable memory for
the entire memory slot size. Any object may back this memory, including the entire memory slot size. Any object may back this memory, including
anonymous memory, ordinary files, and hugetlbfs. anonymous memory, ordinary files, and hugetlbfs.
On architectures that support a form of address tagging, userspace_addr must
be an untagged address.
It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
be identical. This allows large pages in the guest to be backed by large be identical. This allows large pages in the guest to be backed by large
pages in the host. pages in the host.
...@@ -1333,7 +1335,7 @@ documentation when it pops into existence). ...@@ -1333,7 +1335,7 @@ documentation when it pops into existence).
:Capability: KVM_CAP_ENABLE_CAP_VM :Capability: KVM_CAP_ENABLE_CAP_VM
:Architectures: all :Architectures: all
:Type: vcpu ioctl :Type: vm ioctl
:Parameters: struct kvm_enable_cap (in) :Parameters: struct kvm_enable_cap (in)
:Returns: 0 on success; -1 on error :Returns: 0 on success; -1 on error
...@@ -4432,7 +4434,7 @@ to I/O ports. ...@@ -4432,7 +4434,7 @@ to I/O ports.
:Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
:Architectures: x86, arm, arm64, mips :Architectures: x86, arm, arm64, mips
:Type: vm ioctl :Type: vm ioctl
:Parameters: struct kvm_dirty_log (in) :Parameters: struct kvm_clear_dirty_log (in)
:Returns: 0 on success, -1 on error :Returns: 0 on success, -1 on error
:: ::
...@@ -4459,10 +4461,9 @@ in KVM's dirty bitmap, and dirty tracking is re-enabled for that page ...@@ -4459,10 +4461,9 @@ in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
(for example via write-protection, or by clearing the dirty bit in (for example via write-protection, or by clearing the dirty bit in
a page table entry). a page table entry).
If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies
the address space for which you want to return the dirty bitmap. the address space for which you want to clear the dirty status. See
They must be less than the value that KVM_CHECK_EXTENSION returns for KVM_SET_USER_MEMORY_REGION for details on the usage of slot field.
the KVM_CAP_MULTI_ADDRESS_SPACE capability.
This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
is enabled; for more information, see the description of the capability. is enabled; for more information, see the description of the capability.
......
...@@ -1396,8 +1396,9 @@ static void cpu_init_hyp_mode(void) ...@@ -1396,8 +1396,9 @@ static void cpu_init_hyp_mode(void)
* Calculate the raw per-cpu offset without a translation from the * Calculate the raw per-cpu offset without a translation from the
* kernel's mapping to the linear mapping, and store it in tpidr_el2 * kernel's mapping to the linear mapping, and store it in tpidr_el2
* so that we can use adr_l to access per-cpu variables in EL2. * so that we can use adr_l to access per-cpu variables in EL2.
* Also drop the KASAN tag which gets in the way...
*/ */
params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) - params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
params->mair_el2 = read_sysreg(mair_el1); params->mair_el2 = read_sysreg(mair_el1);
......
...@@ -77,12 +77,6 @@ static unsigned long psci_forward(struct kvm_cpu_context *host_ctxt) ...@@ -77,12 +77,6 @@ static unsigned long psci_forward(struct kvm_cpu_context *host_ctxt)
cpu_reg(host_ctxt, 2), cpu_reg(host_ctxt, 3)); cpu_reg(host_ctxt, 2), cpu_reg(host_ctxt, 3));
} }
static __noreturn unsigned long psci_forward_noreturn(struct kvm_cpu_context *host_ctxt)
{
psci_forward(host_ctxt);
hyp_panic(); /* unreachable */
}
static unsigned int find_cpu_id(u64 mpidr) static unsigned int find_cpu_id(u64 mpidr)
{ {
unsigned int i; unsigned int i;
...@@ -251,10 +245,13 @@ static unsigned long psci_0_2_handler(u64 func_id, struct kvm_cpu_context *host_ ...@@ -251,10 +245,13 @@ static unsigned long psci_0_2_handler(u64 func_id, struct kvm_cpu_context *host_
case PSCI_0_2_FN_MIGRATE_INFO_TYPE: case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU: case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU:
return psci_forward(host_ctxt); return psci_forward(host_ctxt);
/*
* SYSTEM_OFF/RESET should not return according to the spec.
* Allow it so as to stay robust to broken firmware.
*/
case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_OFF:
case PSCI_0_2_FN_SYSTEM_RESET: case PSCI_0_2_FN_SYSTEM_RESET:
psci_forward_noreturn(host_ctxt); return psci_forward(host_ctxt);
unreachable();
case PSCI_0_2_FN64_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND:
return psci_cpu_suspend(func_id, host_ctxt); return psci_cpu_suspend(func_id, host_ctxt);
case PSCI_0_2_FN64_CPU_ON: case PSCI_0_2_FN64_CPU_ON:
......
...@@ -788,7 +788,7 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) ...@@ -788,7 +788,7 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
{ {
unsigned long *bmap = vcpu->kvm->arch.pmu_filter; unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
u64 val, mask = 0; u64 val, mask = 0;
int base, i; int base, i, nr_events;
if (!pmceid1) { if (!pmceid1) {
val = read_sysreg(pmceid0_el0); val = read_sysreg(pmceid0_el0);
...@@ -801,14 +801,18 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) ...@@ -801,14 +801,18 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
if (!bmap) if (!bmap)
return val; return val;
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
for (i = 0; i < 32; i += 8) { for (i = 0; i < 32; i += 8) {
u64 byte; u64 byte;
byte = bitmap_get_value8(bmap, base + i); byte = bitmap_get_value8(bmap, base + i);
mask |= byte << i; mask |= byte << i;
if (nr_events >= (0x4000 + base + 32)) {
byte = bitmap_get_value8(bmap, 0x4000 + base + i); byte = bitmap_get_value8(bmap, 0x4000 + base + i);
mask |= byte << (32 + i); mask |= byte << (32 + i);
} }
}
return val & mask; return val & mask;
} }
......
...@@ -43,6 +43,10 @@ ...@@ -43,6 +43,10 @@
* 64bit interface. * 64bit interface.
*/ */
#define reg_to_encoding(x) \
sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
static bool read_from_write_only(struct kvm_vcpu *vcpu, static bool read_from_write_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params, struct sys_reg_params *params,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
...@@ -273,8 +277,7 @@ static bool trap_loregion(struct kvm_vcpu *vcpu, ...@@ -273,8 +277,7 @@ static bool trap_loregion(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1, u32 sr = reg_to_encoding(r);
(u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) { if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
kvm_inject_undefined(vcpu); kvm_inject_undefined(vcpu);
...@@ -590,6 +593,15 @@ static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -590,6 +593,15 @@ static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
} }
static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
{
if (kvm_vcpu_has_pmu(vcpu))
return 0;
return REG_HIDDEN;
}
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 pmcr, val; u64 pmcr, val;
...@@ -613,9 +625,8 @@ static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -613,9 +625,8 @@ static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{ {
u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
bool enabled = kvm_vcpu_has_pmu(vcpu); bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
if (!enabled) if (!enabled)
kvm_inject_undefined(vcpu); kvm_inject_undefined(vcpu);
...@@ -900,11 +911,6 @@ static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -900,11 +911,6 @@ static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
if (!kvm_vcpu_has_pmu(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
if (p->is_write) { if (p->is_write) {
if (!vcpu_mode_priv(vcpu)) { if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu); kvm_inject_undefined(vcpu);
...@@ -921,10 +927,6 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -921,10 +927,6 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
return true; return true;
} }
#define reg_to_encoding(x) \
sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
...@@ -936,15 +938,18 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -936,15 +938,18 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
#define PMU_SYS_REG(r) \
SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
/* Macro to expand the PMEVCNTRn_EL0 register */ /* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \ #define PMU_PMEVCNTR_EL0(n) \
{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \ { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), } .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */ /* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \ #define PMU_PMEVTYPER_EL0(n) \
{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \ { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), } .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
...@@ -1020,8 +1025,7 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu, ...@@ -1020,8 +1025,7 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu,
static u64 read_id_reg(const struct kvm_vcpu *vcpu, static u64 read_id_reg(const struct kvm_vcpu *vcpu,
struct sys_reg_desc const *r, bool raz) struct sys_reg_desc const *r, bool raz)
{ {
u32 id = sys_reg((u32)r->Op0, (u32)r->Op1, u32 id = reg_to_encoding(r);
(u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
u64 val = raz ? 0 : read_sanitised_ftr_reg(id); u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
if (id == SYS_ID_AA64PFR0_EL1) { if (id == SYS_ID_AA64PFR0_EL1) {
...@@ -1062,8 +1066,7 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, ...@@ -1062,8 +1066,7 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu,
static unsigned int id_visibility(const struct kvm_vcpu *vcpu, static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
u32 id = sys_reg((u32)r->Op0, (u32)r->Op1, u32 id = reg_to_encoding(r);
(u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
switch (id) { switch (id) {
case SYS_ID_AA64ZFR0_EL1: case SYS_ID_AA64ZFR0_EL1:
...@@ -1486,8 +1489,10 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1486,8 +1489,10 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 }, { PMU_SYS_REG(SYS_PMINTENSET_EL1),
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 }, .access = access_pminten, .reg = PMINTENSET_EL1 },
{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
.access = access_pminten, .reg = PMINTENSET_EL1 },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
...@@ -1526,23 +1531,36 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1526,23 +1531,36 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
{ SYS_DESC(SYS_CTR_EL0), access_ctr }, { SYS_DESC(SYS_CTR_EL0), access_ctr },
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 }, { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 }, .reset = reset_pmcr, .reg = PMCR_EL0 },
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 }, { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 }, .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 }, { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 }, .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid }, { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid }, .access = access_pmovs, .reg = PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 }, { PMU_SYS_REG(SYS_PMSWINC_EL0),
{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper }, .access = access_pmswinc, .reg = PMSWINC_EL0 },
{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr }, { PMU_SYS_REG(SYS_PMSELR_EL0),
.access = access_pmselr, .reg = PMSELR_EL0 },
{ PMU_SYS_REG(SYS_PMCEID0_EL0),
.access = access_pmceid, .reset = NULL },
{ PMU_SYS_REG(SYS_PMCEID1_EL0),
.access = access_pmceid, .reset = NULL },
{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
.access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
.access = access_pmu_evtyper, .reset = NULL },
{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
.access = access_pmu_evcntr, .reset = NULL },
/* /*
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency. * in 32bit mode. Here we choose to reset it as zero for consistency.
*/ */
{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 }, { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 }, .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
.access = access_pmovs, .reg = PMOVSSET_EL0 },
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
...@@ -1694,7 +1712,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1694,7 +1712,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency. * in 32bit mode. Here we choose to reset it as zero for consistency.
*/ */
{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 }, { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
.reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
......
...@@ -9,31 +9,6 @@ ...@@ -9,31 +9,6 @@
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE) | X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE)
static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
#define BUILD_KVM_GPR_ACCESSORS(lname, uname) \ #define BUILD_KVM_GPR_ACCESSORS(lname, uname) \
static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\ static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\
{ \ { \
...@@ -43,7 +18,6 @@ static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \ ...@@ -43,7 +18,6 @@ static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \
unsigned long val) \ unsigned long val) \
{ \ { \
vcpu->arch.regs[VCPU_REGS_##uname] = val; \ vcpu->arch.regs[VCPU_REGS_##uname] = val; \
kvm_register_mark_dirty(vcpu, VCPU_REGS_##uname); \
} }
BUILD_KVM_GPR_ACCESSORS(rax, RAX) BUILD_KVM_GPR_ACCESSORS(rax, RAX)
BUILD_KVM_GPR_ACCESSORS(rbx, RBX) BUILD_KVM_GPR_ACCESSORS(rbx, RBX)
...@@ -63,6 +37,31 @@ BUILD_KVM_GPR_ACCESSORS(r14, R14) ...@@ -63,6 +37,31 @@ BUILD_KVM_GPR_ACCESSORS(r14, R14)
BUILD_KVM_GPR_ACCESSORS(r15, R15) BUILD_KVM_GPR_ACCESSORS(r15, R15)
#endif #endif
static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
{ {
if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS)) if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
......
...@@ -44,8 +44,15 @@ ...@@ -44,8 +44,15 @@
#define PT32_ROOT_LEVEL 2 #define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3 #define PT32E_ROOT_LEVEL 3
static inline u64 rsvd_bits(int s, int e) static __always_inline u64 rsvd_bits(int s, int e)
{ {
BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
if (__builtin_constant_p(e))
BUILD_BUG_ON(e > 63);
else
e &= 63;
if (e < s) if (e < s)
return 0; return 0;
......
...@@ -200,6 +200,9 @@ static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu) ...@@ -200,6 +200,9 @@ static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
{ {
struct vcpu_svm *svm = to_svm(vcpu); struct vcpu_svm *svm = to_svm(vcpu);
if (WARN_ON(!is_guest_mode(vcpu)))
return true;
if (!nested_svm_vmrun_msrpm(svm)) { if (!nested_svm_vmrun_msrpm(svm)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = vcpu->run->internal.suberror =
......
...@@ -1415,15 +1415,12 @@ static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) ...@@ -1415,15 +1415,12 @@ static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
* to be returned: * to be returned:
* GPRs RAX, RBX, RCX, RDX * GPRs RAX, RBX, RCX, RDX
* *
* Copy their values to the GHCB if they are dirty. * Copy their values, even if they may not have been written during the
* VM-Exit. It's the guest's responsibility to not consume random data.
*/ */
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RAX))
ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RBX))
ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RCX))
ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
if (kvm_register_is_dirty(vcpu, VCPU_REGS_RDX))
ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
} }
......
...@@ -3739,6 +3739,8 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) ...@@ -3739,6 +3739,8 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
{ {
struct vcpu_svm *svm = to_svm(vcpu); struct vcpu_svm *svm = to_svm(vcpu);
trace_kvm_entry(vcpu);
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
......
...@@ -3124,13 +3124,9 @@ static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) ...@@ -3124,13 +3124,9 @@ static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
return 0; return 0;
} }
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
{ {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_host_map *map;
struct page *page;
u64 hpa;
/* /*
* hv_evmcs may end up being not mapped after migration (when * hv_evmcs may end up being not mapped after migration (when
...@@ -3153,6 +3149,17 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) ...@@ -3153,6 +3149,17 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
} }
} }
return true;
}
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_host_map *map;
struct page *page;
u64 hpa;
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/* /*
* Translate L1 physical address to host physical * Translate L1 physical address to host physical
...@@ -3221,6 +3228,18 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) ...@@ -3221,6 +3228,18 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS); exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
else else
exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS); exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
return true;
}
static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
if (!nested_get_evmcs_page(vcpu))
return false;
if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
return false;
return true; return true;
} }
...@@ -6077,12 +6096,15 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu, ...@@ -6077,12 +6096,15 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
if (is_guest_mode(vcpu)) { if (is_guest_mode(vcpu)) {
sync_vmcs02_to_vmcs12(vcpu, vmcs12); sync_vmcs02_to_vmcs12(vcpu, vmcs12);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
} else if (!vmx->nested.need_vmcs12_to_shadow_sync) { } else {
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
if (!vmx->nested.need_vmcs12_to_shadow_sync) {
if (vmx->nested.hv_evmcs) if (vmx->nested.hv_evmcs)
copy_enlightened_to_vmcs12(vmx); copy_enlightened_to_vmcs12(vmx);
else if (enable_shadow_vmcs) else if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx); copy_shadow_to_vmcs12(vmx);
} }
}
BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE); BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE); BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
...@@ -6602,7 +6624,7 @@ struct kvm_x86_nested_ops vmx_nested_ops = { ...@@ -6602,7 +6624,7 @@ struct kvm_x86_nested_ops vmx_nested_ops = {
.hv_timer_pending = nested_vmx_preemption_timer_pending, .hv_timer_pending = nested_vmx_preemption_timer_pending,
.get_state = vmx_get_nested_state, .get_state = vmx_get_nested_state,
.set_state = vmx_set_nested_state, .set_state = vmx_set_nested_state,
.get_nested_state_pages = nested_get_vmcs12_pages, .get_nested_state_pages = vmx_get_nested_state_pages,
.write_log_dirty = nested_vmx_write_pml_buffer, .write_log_dirty = nested_vmx_write_pml_buffer,
.enable_evmcs = nested_enable_evmcs, .enable_evmcs = nested_enable_evmcs,
.get_evmcs_version = nested_get_evmcs_version, .get_evmcs_version = nested_get_evmcs_version,
......
...@@ -29,7 +29,7 @@ static struct kvm_event_hw_type_mapping intel_arch_events[] = { ...@@ -29,7 +29,7 @@ static struct kvm_event_hw_type_mapping intel_arch_events[] = {
[4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES }, [4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES },
[5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, [5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
[6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES }, [6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
[7] = { 0x00, 0x30, PERF_COUNT_HW_REF_CPU_CYCLES }, [7] = { 0x00, 0x03, PERF_COUNT_HW_REF_CPU_CYCLES },
}; };
/* mapping between fixed pmc index and intel_arch_events array */ /* mapping between fixed pmc index and intel_arch_events array */
...@@ -345,7 +345,9 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu) ...@@ -345,7 +345,9 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
x86_pmu.num_counters_gp); x86_pmu.num_counters_gp);
eax.split.bit_width = min_t(int, eax.split.bit_width, x86_pmu.bit_width_gp);
pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
eax.split.mask_length = min_t(int, eax.split.mask_length, x86_pmu.events_mask_len);
pmu->available_event_types = ~entry->ebx & pmu->available_event_types = ~entry->ebx &
((1ull << eax.split.mask_length) - 1); ((1ull << eax.split.mask_length) - 1);
...@@ -355,6 +357,8 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu) ...@@ -355,6 +357,8 @@ static void intel_pmu_refresh(struct kvm_vcpu *vcpu)
pmu->nr_arch_fixed_counters = pmu->nr_arch_fixed_counters =
min_t(int, edx.split.num_counters_fixed, min_t(int, edx.split.num_counters_fixed,
x86_pmu.num_counters_fixed); x86_pmu.num_counters_fixed);
edx.split.bit_width_fixed = min_t(int,
edx.split.bit_width_fixed, x86_pmu.bit_width_fixed);
pmu->counter_bitmask[KVM_PMC_FIXED] = pmu->counter_bitmask[KVM_PMC_FIXED] =
((u64)1 << edx.split.bit_width_fixed) - 1; ((u64)1 << edx.split.bit_width_fixed) - 1;
} }
......
...@@ -6653,6 +6653,8 @@ static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) ...@@ -6653,6 +6653,8 @@ static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
if (vmx->emulation_required) if (vmx->emulation_required)
return EXIT_FASTPATH_NONE; return EXIT_FASTPATH_NONE;
trace_kvm_entry(vcpu);
if (vmx->ple_window_dirty) { if (vmx->ple_window_dirty) {
vmx->ple_window_dirty = false; vmx->ple_window_dirty = false;
vmcs_write32(PLE_WINDOW, vmx->ple_window); vmcs_write32(PLE_WINDOW, vmx->ple_window);
......
...@@ -105,6 +105,7 @@ static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; ...@@ -105,6 +105,7 @@ static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
static void update_cr8_intercept(struct kvm_vcpu *vcpu); static void update_cr8_intercept(struct kvm_vcpu *vcpu);
static void process_nmi(struct kvm_vcpu *vcpu); static void process_nmi(struct kvm_vcpu *vcpu);
static void process_smi(struct kvm_vcpu *vcpu);
static void enter_smm(struct kvm_vcpu *vcpu); static void enter_smm(struct kvm_vcpu *vcpu);
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
static void store_regs(struct kvm_vcpu *vcpu); static void store_regs(struct kvm_vcpu *vcpu);
...@@ -4230,6 +4231,9 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, ...@@ -4230,6 +4231,9 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
{ {
process_nmi(vcpu); process_nmi(vcpu);
if (kvm_check_request(KVM_REQ_SMI, vcpu))
process_smi(vcpu);
/* /*
* In guest mode, payload delivery should be deferred, * In guest mode, payload delivery should be deferred,
* so that the L1 hypervisor can intercept #PF before * so that the L1 hypervisor can intercept #PF before
...@@ -8802,9 +8806,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) ...@@ -8802,9 +8806,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
if (kvm_request_pending(vcpu)) { if (kvm_request_pending(vcpu)) {
if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
if (WARN_ON_ONCE(!is_guest_mode(vcpu))) if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
;
else if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
r = 0; r = 0;
goto out; goto out;
} }
...@@ -8988,8 +8990,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) ...@@ -8988,8 +8990,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
kvm_x86_ops.request_immediate_exit(vcpu); kvm_x86_ops.request_immediate_exit(vcpu);
} }
trace_kvm_entry(vcpu);
fpregs_assert_state_consistent(); fpregs_assert_state_consistent();
if (test_thread_flag(TIF_NEED_FPU_LOAD)) if (test_thread_flag(TIF_NEED_FPU_LOAD))
switch_fpu_return(); switch_fpu_return();
...@@ -11556,6 +11556,7 @@ int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, ...@@ -11556,6 +11556,7 @@ int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
} }
EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
......
...@@ -1292,6 +1292,7 @@ int __kvm_set_memory_region(struct kvm *kvm, ...@@ -1292,6 +1292,7 @@ int __kvm_set_memory_region(struct kvm *kvm,
return -EINVAL; return -EINVAL;
/* We can read the guest memory with __xxx_user() later on. */ /* We can read the guest memory with __xxx_user() later on. */
if ((mem->userspace_addr & (PAGE_SIZE - 1)) || if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
(mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
!access_ok((void __user *)(unsigned long)mem->userspace_addr, !access_ok((void __user *)(unsigned long)mem->userspace_addr,
mem->memory_size)) mem->memory_size))
return -EINVAL; return -EINVAL;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment