Commit 4a960e89 authored by Ricardo Neri's avatar Ricardo Neri Committed by Rafael J. Wysocki

x86/Documentation: Describe the Intel Hardware Feedback Interface

Start a documentation file to describe the purpose and operation of Intel's
Hardware Feedback Interface. Describe how this interface is used in Linux
to relay performance and energy efficiency updates to userspace.
Reviewed-by: default avatarLen Brown <len.brown@intel.com>
Suggested-by: default avatarSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: default avatarRicardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: default avatarRafael J. Wysocki <rafael.j.wysocki@intel.com>
parent 26291c54
...@@ -21,6 +21,7 @@ x86-specific Documentation ...@@ -21,6 +21,7 @@ x86-specific Documentation
tlb tlb
mtrr mtrr
pat pat
intel-hfi
intel-iommu intel-iommu
intel_txt intel_txt
amd-memory-encryption amd-memory-encryption
......
.. SPDX-License-Identifier: GPL-2.0
============================================================
Hardware-Feedback Interface for scheduling on Intel Hardware
============================================================
Overview
--------
Intel has described the Hardware Feedback Interface (HFI) in the Intel 64 and
IA-32 Architectures Software Developer's Manual (Intel SDM) Volume 3 Section
14.6 [1]_.
The HFI gives the operating system a performance and energy efficiency
capability data for each CPU in the system. Linux can use the information from
the HFI to influence task placement decisions.
The Hardware Feedback Interface
-------------------------------
The Hardware Feedback Interface provides to the operating system information
about the performance and energy efficiency of each CPU in the system. Each
capability is given as a unit-less quantity in the range [0-255]. Higher values
indicate higher capability. Energy efficiency and performance are reported in
separate capabilities. Even though on some systems these two metrics may be
related, they are specified as independent capabilities in the Intel SDM.
These capabilities may change at runtime as a result of changes in the
operating conditions of the system or the action of external factors. The rate
at which these capabilities are updated is specific to each processor model. On
some models, capabilities are set at boot time and never change. On others,
capabilities may change every tens of milliseconds. For instance, a remote
mechanism may be used to lower Thermal Design Power. Such change can be
reflected in the HFI. Likewise, if the system needs to be throttled due to
excessive heat, the HFI may reflect reduced performance on specific CPUs.
The kernel or a userspace policy daemon can use these capabilities to modify
task placement decisions. For instance, if either the performance or energy
capabilities of a given logical processor becomes zero, it is an indication that
the hardware recommends to the operating system to not schedule any tasks on
that processor for performance or energy efficiency reasons, respectively.
Implementation details for Linux
--------------------------------
The infrastructure to handle thermal event interrupts has two parts. In the
Local Vector Table of a CPU's local APIC, there exists a register for the
Thermal Monitor Register. This register controls how interrupts are delivered
to a CPU when the thermal monitor generates and interrupt. Further details
can be found in the Intel SDM Vol. 3 Section 10.5 [1]_.
The thermal monitor may generate interrupts per CPU or per package. The HFI
generates package-level interrupts. This monitor is configured and initialized
via a set of machine-specific registers. Specifically, the HFI interrupt and
status are controlled via designated bits in the IA32_PACKAGE_THERM_INTERRUPT
and IA32_PACKAGE_THERM_STATUS registers, respectively. There exists one HFI
table per package. Further details can be found in the Intel SDM Vol. 3
Section 14.9 [1]_.
The hardware issues an HFI interrupt after updating the HFI table and is ready
for the operating system to consume it. CPUs receive such interrupt via the
thermal entry in the Local APIC's Local Vector Table.
When servicing such interrupt, the HFI driver parses the updated table and
relays the update to userspace using the thermal notification framework. Given
that there may be many HFI updates every second, the updates relayed to
userspace are throttled at a rate of CONFIG_HZ jiffies.
References
----------
.. [1] https://www.intel.com/sdm
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment