Commit 4bdfd7d1 authored by Darrick J. Wong's avatar Darrick J. Wong

xfs: repair free space btrees

Rebuild the free space btrees from the gaps in the rmap btree.  Refer to
the case study in Documentation/filesystems/xfs-online-fsck-design.rst
for more details.
Signed-off-by: default avatarDarrick J. Wong <djwong@kernel.org>
Reviewed-by: default avatarDave Chinner <dchinner@redhat.com>
Reviewed-by: default avatarChristoph Hellwig <hch@lst.de>
parent 8bd0bf57
...@@ -182,6 +182,7 @@ xfs-$(CONFIG_XFS_QUOTA) += scrub/quota.o ...@@ -182,6 +182,7 @@ xfs-$(CONFIG_XFS_QUOTA) += scrub/quota.o
ifeq ($(CONFIG_XFS_ONLINE_REPAIR),y) ifeq ($(CONFIG_XFS_ONLINE_REPAIR),y)
xfs-y += $(addprefix scrub/, \ xfs-y += $(addprefix scrub/, \
agheader_repair.o \ agheader_repair.o \
alloc_repair.o \
newbt.o \ newbt.o \
reap.o \ reap.o \
repair.o \ repair.o \
......
...@@ -80,6 +80,15 @@ struct xfs_perag { ...@@ -80,6 +80,15 @@ struct xfs_perag {
*/ */
uint16_t pag_checked; uint16_t pag_checked;
uint16_t pag_sick; uint16_t pag_sick;
#ifdef CONFIG_XFS_ONLINE_REPAIR
/*
* Alternate btree heights so that online repair won't trip the write
* verifiers while rebuilding the AG btrees.
*/
uint8_t pagf_repair_levels[XFS_BTNUM_AGF];
#endif
spinlock_t pag_state_lock; spinlock_t pag_state_lock;
spinlock_t pagb_lock; /* lock for pagb_tree */ spinlock_t pagb_lock; /* lock for pagb_tree */
......
...@@ -411,6 +411,8 @@ xfs_ag_resv_free_extent( ...@@ -411,6 +411,8 @@ xfs_ag_resv_free_extent(
fallthrough; fallthrough;
case XFS_AG_RESV_NONE: case XFS_AG_RESV_NONE:
xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, (int64_t)len); xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, (int64_t)len);
fallthrough;
case XFS_AG_RESV_IGNORE:
return; return;
} }
......
...@@ -246,11 +246,9 @@ xfs_alloc_btrec_to_irec( ...@@ -246,11 +246,9 @@ xfs_alloc_btrec_to_irec(
/* Simple checks for free space records. */ /* Simple checks for free space records. */
xfs_failaddr_t xfs_failaddr_t
xfs_alloc_check_irec( xfs_alloc_check_irec(
struct xfs_btree_cur *cur, struct xfs_perag *pag,
const struct xfs_alloc_rec_incore *irec) const struct xfs_alloc_rec_incore *irec)
{ {
struct xfs_perag *pag = cur->bc_ag.pag;
if (irec->ar_blockcount == 0) if (irec->ar_blockcount == 0)
return __this_address; return __this_address;
...@@ -299,7 +297,7 @@ xfs_alloc_get_rec( ...@@ -299,7 +297,7 @@ xfs_alloc_get_rec(
return error; return error;
xfs_alloc_btrec_to_irec(rec, &irec); xfs_alloc_btrec_to_irec(rec, &irec);
fa = xfs_alloc_check_irec(cur, &irec); fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
if (fa) if (fa)
return xfs_alloc_complain_bad_rec(cur, fa, &irec); return xfs_alloc_complain_bad_rec(cur, fa, &irec);
...@@ -3944,7 +3942,7 @@ xfs_alloc_query_range_helper( ...@@ -3944,7 +3942,7 @@ xfs_alloc_query_range_helper(
xfs_failaddr_t fa; xfs_failaddr_t fa;
xfs_alloc_btrec_to_irec(rec, &irec); xfs_alloc_btrec_to_irec(rec, &irec);
fa = xfs_alloc_check_irec(cur, &irec); fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
if (fa) if (fa)
return xfs_alloc_complain_bad_rec(cur, fa, &irec); return xfs_alloc_complain_bad_rec(cur, fa, &irec);
......
...@@ -185,7 +185,7 @@ xfs_alloc_get_rec( ...@@ -185,7 +185,7 @@ xfs_alloc_get_rec(
union xfs_btree_rec; union xfs_btree_rec;
void xfs_alloc_btrec_to_irec(const union xfs_btree_rec *rec, void xfs_alloc_btrec_to_irec(const union xfs_btree_rec *rec,
struct xfs_alloc_rec_incore *irec); struct xfs_alloc_rec_incore *irec);
xfs_failaddr_t xfs_alloc_check_irec(struct xfs_btree_cur *cur, xfs_failaddr_t xfs_alloc_check_irec(struct xfs_perag *pag,
const struct xfs_alloc_rec_incore *irec); const struct xfs_alloc_rec_incore *irec);
int xfs_read_agf(struct xfs_perag *pag, struct xfs_trans *tp, int flags, int xfs_read_agf(struct xfs_perag *pag, struct xfs_trans *tp, int flags,
......
...@@ -323,7 +323,18 @@ xfs_allocbt_verify( ...@@ -323,7 +323,18 @@ xfs_allocbt_verify(
if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
btnum = XFS_BTNUM_CNTi; btnum = XFS_BTNUM_CNTi;
if (pag && xfs_perag_initialised_agf(pag)) { if (pag && xfs_perag_initialised_agf(pag)) {
if (level >= pag->pagf_levels[btnum]) unsigned int maxlevel = pag->pagf_levels[btnum];
#ifdef CONFIG_XFS_ONLINE_REPAIR
/*
* Online repair could be rewriting the free space btrees, so
* we'll validate against the larger of either tree while this
* is going on.
*/
maxlevel = max_t(unsigned int, maxlevel,
pag->pagf_repair_levels[btnum]);
#endif
if (level >= maxlevel)
return __this_address; return __this_address;
} else if (level >= mp->m_alloc_maxlevels) } else if (level >= mp->m_alloc_maxlevels)
return __this_address; return __this_address;
......
...@@ -208,6 +208,13 @@ enum xfs_ag_resv_type { ...@@ -208,6 +208,13 @@ enum xfs_ag_resv_type {
XFS_AG_RESV_AGFL, XFS_AG_RESV_AGFL,
XFS_AG_RESV_METADATA, XFS_AG_RESV_METADATA,
XFS_AG_RESV_RMAPBT, XFS_AG_RESV_RMAPBT,
/*
* Don't increase fdblocks when freeing extent. This is a pony for
* the bnobt repair functions to re-free the free space without
* altering fdblocks. If you think you need this you're wrong.
*/
XFS_AG_RESV_IGNORE,
}; };
/* Results of scanning a btree keyspace to check occupancy. */ /* Results of scanning a btree keyspace to check occupancy. */
......
...@@ -9,13 +9,16 @@ ...@@ -9,13 +9,16 @@
#include "xfs_format.h" #include "xfs_format.h"
#include "xfs_trans_resv.h" #include "xfs_trans_resv.h"
#include "xfs_mount.h" #include "xfs_mount.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_btree.h" #include "xfs_btree.h"
#include "xfs_alloc.h" #include "xfs_alloc.h"
#include "xfs_rmap.h" #include "xfs_rmap.h"
#include "xfs_ag.h"
#include "scrub/scrub.h" #include "scrub/scrub.h"
#include "scrub/common.h" #include "scrub/common.h"
#include "scrub/btree.h" #include "scrub/btree.h"
#include "xfs_ag.h" #include "scrub/repair.h"
/* /*
* Set us up to scrub free space btrees. * Set us up to scrub free space btrees.
...@@ -24,10 +27,19 @@ int ...@@ -24,10 +27,19 @@ int
xchk_setup_ag_allocbt( xchk_setup_ag_allocbt(
struct xfs_scrub *sc) struct xfs_scrub *sc)
{ {
int error;
if (xchk_need_intent_drain(sc)) if (xchk_need_intent_drain(sc))
xchk_fsgates_enable(sc, XCHK_FSGATES_DRAIN); xchk_fsgates_enable(sc, XCHK_FSGATES_DRAIN);
return xchk_setup_ag_btree(sc, false); error = xchk_setup_ag_btree(sc, false);
if (error)
return error;
if (xchk_could_repair(sc))
return xrep_setup_ag_allocbt(sc);
return 0;
} }
/* Free space btree scrubber. */ /* Free space btree scrubber. */
...@@ -127,7 +139,7 @@ xchk_allocbt_rec( ...@@ -127,7 +139,7 @@ xchk_allocbt_rec(
struct xchk_alloc *ca = bs->private; struct xchk_alloc *ca = bs->private;
xfs_alloc_btrec_to_irec(rec, &irec); xfs_alloc_btrec_to_irec(rec, &irec);
if (xfs_alloc_check_irec(bs->cur, &irec) != NULL) { if (xfs_alloc_check_irec(bs->cur->bc_ag.pag, &irec) != NULL) {
xchk_btree_set_corrupt(bs->sc, bs->cur, 0); xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
return 0; return 0;
} }
......
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_inode.h"
#include "xfs_refcount.h"
#include "xfs_extent_busy.h"
#include "xfs_health.h"
#include "xfs_bmap.h"
#include "xfs_ialloc.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Free Space Btree Repair
* =======================
*
* The reverse mappings are supposed to record all space usage for the entire
* AG. Therefore, we can recreate the free extent records in an AG by looking
* for gaps in the physical extents recorded in the rmapbt. These records are
* staged in @free_records. Identifying the gaps is more difficult on a
* reflink filesystem because rmap records are allowed to overlap.
*
* Because the final step of building a new index is to free the space used by
* the old index, repair needs to find that space. Unfortunately, all
* structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
* the same rmapbt owner code (OWN_AG), so this is not straightforward.
*
* The scan of the reverse mapping information records the space used by OWN_AG
* in @old_allocbt_blocks, which (at this stage) is somewhat misnamed. While
* walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
* record all visited rmap btree blocks and all blocks owned by the AGFL.
*
* After that is where the definitions of old_allocbt_blocks shifts. This
* expression identifies possible former bnobt/cntbt blocks:
*
* (OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
*
* Substituting from above definitions, that becomes:
*
* old_allocbt_blocks & ~not_allocbt_blocks
*
* The OWN_AG bitmap itself isn't needed after this point, so what we really do
* instead is:
*
* old_allocbt_blocks &= ~not_allocbt_blocks;
*
* After this point, @old_allocbt_blocks is a bitmap of alleged former
* bnobt/cntbt blocks. The xagb_bitmap_disunion operation modifies its first
* parameter in place to avoid copying records around.
*
* Next, some of the space described by @free_records are diverted to the newbt
* reservation and used to format new btree blocks. The remaining records are
* written to the new btree indices. We reconstruct both bnobt and cntbt at
* the same time since we've already done all the work.
*
* We use the prefix 'xrep_abt' here because we regenerate both free space
* allocation btrees at the same time.
*/
struct xrep_abt {
/* Blocks owned by the rmapbt or the agfl. */
struct xagb_bitmap not_allocbt_blocks;
/* All OWN_AG blocks. */
struct xagb_bitmap old_allocbt_blocks;
/*
* New bnobt information. All btree block reservations are added to
* the reservation list in new_bnobt.
*/
struct xrep_newbt new_bnobt;
/* new cntbt information */
struct xrep_newbt new_cntbt;
/* Free space extents. */
struct xfarray *free_records;
struct xfs_scrub *sc;
/* Number of non-null records in @free_records. */
uint64_t nr_real_records;
/* get_records()'s position in the free space record array. */
xfarray_idx_t array_cur;
/*
* Next block we anticipate seeing in the rmap records. If the next
* rmap record is greater than next_agbno, we have found unused space.
*/
xfs_agblock_t next_agbno;
/* Number of free blocks in this AG. */
xfs_agblock_t nr_blocks;
/* Longest free extent we found in the AG. */
xfs_agblock_t longest;
};
/* Set up to repair AG free space btrees. */
int
xrep_setup_ag_allocbt(
struct xfs_scrub *sc)
{
unsigned int busy_gen;
/*
* Make sure the busy extent list is clear because we can't put extents
* on there twice.
*/
busy_gen = READ_ONCE(sc->sa.pag->pagb_gen);
if (xfs_extent_busy_list_empty(sc->sa.pag))
return 0;
return xfs_extent_busy_flush(sc->tp, sc->sa.pag, busy_gen, 0);
}
/* Check for any obvious conflicts in the free extent. */
STATIC int
xrep_abt_check_free_ext(
struct xfs_scrub *sc,
const struct xfs_alloc_rec_incore *rec)
{
enum xbtree_recpacking outcome;
int error;
if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
return -EFSCORRUPTED;
/* Must not be an inode chunk. */
error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
rec->ar_startblock, rec->ar_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
/* Must not be shared or CoW staging. */
if (sc->sa.refc_cur) {
error = xfs_refcount_has_records(sc->sa.refc_cur,
XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
rec->ar_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
error = xfs_refcount_has_records(sc->sa.refc_cur,
XFS_REFC_DOMAIN_COW, rec->ar_startblock,
rec->ar_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
}
return 0;
}
/*
* Stash a free space record for all the space since the last bno we found
* all the way up to @end.
*/
static int
xrep_abt_stash(
struct xrep_abt *ra,
xfs_agblock_t end)
{
struct xfs_alloc_rec_incore arec = {
.ar_startblock = ra->next_agbno,
.ar_blockcount = end - ra->next_agbno,
};
struct xfs_scrub *sc = ra->sc;
int error = 0;
if (xchk_should_terminate(sc, &error))
return error;
error = xrep_abt_check_free_ext(ra->sc, &arec);
if (error)
return error;
trace_xrep_abt_found(sc->mp, sc->sa.pag->pag_agno, &arec);
error = xfarray_append(ra->free_records, &arec);
if (error)
return error;
ra->nr_blocks += arec.ar_blockcount;
return 0;
}
/* Record extents that aren't in use from gaps in the rmap records. */
STATIC int
xrep_abt_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_abt *ra = priv;
int error;
/* Record all the OWN_AG blocks... */
if (rec->rm_owner == XFS_RMAP_OWN_AG) {
error = xagb_bitmap_set(&ra->old_allocbt_blocks,
rec->rm_startblock, rec->rm_blockcount);
if (error)
return error;
}
/* ...and all the rmapbt blocks... */
error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
if (error)
return error;
/* ...and all the free space. */
if (rec->rm_startblock > ra->next_agbno) {
error = xrep_abt_stash(ra, rec->rm_startblock);
if (error)
return error;
}
/*
* rmap records can overlap on reflink filesystems, so project
* next_agbno as far out into the AG space as we currently know about.
*/
ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
rec->rm_startblock + rec->rm_blockcount);
return 0;
}
/* Collect an AGFL block for the not-to-release list. */
static int
xrep_abt_walk_agfl(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xrep_abt *ra = priv;
return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
}
/*
* Compare two free space extents by block number. We want to sort in order of
* increasing block number.
*/
static int
xrep_bnobt_extent_cmp(
const void *a,
const void *b)
{
const struct xfs_alloc_rec_incore *ap = a;
const struct xfs_alloc_rec_incore *bp = b;
if (ap->ar_startblock > bp->ar_startblock)
return 1;
else if (ap->ar_startblock < bp->ar_startblock)
return -1;
return 0;
}
/*
* Re-sort the free extents by block number so that we can put the records into
* the bnobt in the correct order. Make sure the records do not overlap in
* physical space.
*/
STATIC int
xrep_bnobt_sort_records(
struct xrep_abt *ra)
{
struct xfs_alloc_rec_incore arec;
xfarray_idx_t cur = XFARRAY_CURSOR_INIT;
xfs_agblock_t next_agbno = 0;
int error;
error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
if (error)
return error;
while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
if (arec.ar_startblock < next_agbno)
return -EFSCORRUPTED;
next_agbno = arec.ar_startblock + arec.ar_blockcount;
}
return error;
}
/*
* Compare two free space extents by length and then block number. We want
* to sort first in order of increasing length and then in order of increasing
* block number.
*/
static int
xrep_cntbt_extent_cmp(
const void *a,
const void *b)
{
const struct xfs_alloc_rec_incore *ap = a;
const struct xfs_alloc_rec_incore *bp = b;
if (ap->ar_blockcount > bp->ar_blockcount)
return 1;
else if (ap->ar_blockcount < bp->ar_blockcount)
return -1;
return xrep_bnobt_extent_cmp(a, b);
}
/*
* Sort the free extents by length so so that we can put the records into the
* cntbt in the correct order. Don't let userspace kill us if we're resorting
* after allocating btree blocks.
*/
STATIC int
xrep_cntbt_sort_records(
struct xrep_abt *ra,
bool is_resort)
{
return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
is_resort ? 0 : XFARRAY_SORT_KILLABLE);
}
/*
* Iterate all reverse mappings to find (1) the gaps between rmap records (all
* unowned space), (2) the OWN_AG extents (which encompass the free space
* btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
* blocks. The free space is (1) + (2) - (3) - (4).
*/
STATIC int
xrep_abt_find_freespace(
struct xrep_abt *ra)
{
struct xfs_scrub *sc = ra->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_buf *agfl_bp;
xfs_agblock_t agend;
int error;
xagb_bitmap_init(&ra->not_allocbt_blocks);
xrep_ag_btcur_init(sc, &sc->sa);
/*
* Iterate all the reverse mappings to find gaps in the physical
* mappings, all the OWN_AG blocks, and all the rmapbt extents.
*/
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
if (error)
goto err;
/* Insert a record for space between the last rmap and EOAG. */
agend = be32_to_cpu(agf->agf_length);
if (ra->next_agbno < agend) {
error = xrep_abt_stash(ra, agend);
if (error)
goto err;
}
/* Collect all the AGFL blocks. */
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
goto err;
error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
if (error)
goto err_agfl;
/* Compute the old bnobt/cntbt blocks. */
error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
&ra->not_allocbt_blocks);
if (error)
goto err_agfl;
ra->nr_real_records = xfarray_length(ra->free_records);
err_agfl:
xfs_trans_brelse(sc->tp, agfl_bp);
err:
xchk_ag_btcur_free(&sc->sa);
xagb_bitmap_destroy(&ra->not_allocbt_blocks);
return error;
}
/*
* We're going to use the observed free space records to reserve blocks for the
* new free space btrees, so we play an iterative game where we try to converge
* on the number of blocks we need:
*
* 1. Estimate how many blocks we'll need to store the records.
* 2. If the first free record has more blocks than we need, we're done.
* We will have to re-sort the records prior to building the cntbt.
* 3. If that record has exactly the number of blocks we need, null out the
* record. We're done.
* 4. Otherwise, we still need more blocks. Null out the record, subtract its
* length from the number of blocks we need, and go back to step 1.
*
* Fortunately, we don't have to do any transaction work to play this game, so
* we don't have to tear down the staging cursors.
*/
STATIC int
xrep_abt_reserve_space(
struct xrep_abt *ra,
struct xfs_btree_cur *bno_cur,
struct xfs_btree_cur *cnt_cur,
bool *needs_resort)
{
struct xfs_scrub *sc = ra->sc;
xfarray_idx_t record_nr;
unsigned int allocated = 0;
int error = 0;
record_nr = xfarray_length(ra->free_records) - 1;
do {
struct xfs_alloc_rec_incore arec;
uint64_t required;
unsigned int desired;
unsigned int len;
/* Compute how many blocks we'll need. */
error = xfs_btree_bload_compute_geometry(cnt_cur,
&ra->new_cntbt.bload, ra->nr_real_records);
if (error)
break;
error = xfs_btree_bload_compute_geometry(bno_cur,
&ra->new_bnobt.bload, ra->nr_real_records);
if (error)
break;
/* How many btree blocks do we need to store all records? */
required = ra->new_bnobt.bload.nr_blocks +
ra->new_cntbt.bload.nr_blocks;
ASSERT(required < INT_MAX);
/* If we've reserved enough blocks, we're done. */
if (allocated >= required)
break;
desired = required - allocated;
/* We need space but there's none left; bye! */
if (ra->nr_real_records == 0) {
error = -ENOSPC;
break;
}
/* Grab the first record from the list. */
error = xfarray_load(ra->free_records, record_nr, &arec);
if (error)
break;
ASSERT(arec.ar_blockcount <= UINT_MAX);
len = min_t(unsigned int, arec.ar_blockcount, desired);
trace_xrep_newbt_alloc_ag_blocks(sc->mp, sc->sa.pag->pag_agno,
arec.ar_startblock, len, XFS_RMAP_OWN_AG);
error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
arec.ar_startblock, len);
if (error)
break;
allocated += len;
ra->nr_blocks -= len;
if (arec.ar_blockcount > desired) {
/*
* Record has more space than we need. The number of
* free records doesn't change, so shrink the free
* record, inform the caller that the records are no
* longer sorted by length, and exit.
*/
arec.ar_startblock += desired;
arec.ar_blockcount -= desired;
error = xfarray_store(ra->free_records, record_nr,
&arec);
if (error)
break;
*needs_resort = true;
return 0;
}
/*
* We're going to use up the entire record, so unset it and
* move on to the next one. This changes the number of free
* records (but doesn't break the sorting order), so we must
* go around the loop once more to re-run _bload_init.
*/
error = xfarray_unset(ra->free_records, record_nr);
if (error)
break;
ra->nr_real_records--;
record_nr--;
} while (1);
return error;
}
STATIC int
xrep_abt_dispose_one(
struct xrep_abt *ra,
struct xrep_newbt_resv *resv)
{
struct xfs_scrub *sc = ra->sc;
struct xfs_perag *pag = sc->sa.pag;
xfs_agblock_t free_agbno = resv->agbno + resv->used;
xfs_extlen_t free_aglen = resv->len - resv->used;
int error;
ASSERT(pag == resv->pag);
/* Add a deferred rmap for each extent we used. */
if (resv->used > 0)
xfs_rmap_alloc_extent(sc->tp, pag->pag_agno, resv->agbno,
resv->used, XFS_RMAP_OWN_AG);
/*
* For each reserved btree block we didn't use, add it to the free
* space btree. We didn't touch fdblocks when we reserved them, so
* we don't touch it now.
*/
if (free_aglen == 0)
return 0;
trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
free_aglen, ra->new_bnobt.oinfo.oi_owner);
error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
&ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
if (error)
return error;
return xrep_defer_finish(sc);
}
/*
* Deal with all the space we reserved. Blocks that were allocated for the
* free space btrees need to have a (deferred) rmap added for the OWN_AG
* allocation, and blocks that didn't get used can be freed via the usual
* (deferred) means.
*/
STATIC void
xrep_abt_dispose_reservations(
struct xrep_abt *ra,
int error)
{
struct xrep_newbt_resv *resv, *n;
if (error)
goto junkit;
list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
error = xrep_abt_dispose_one(ra, resv);
if (error)
goto junkit;
}
junkit:
list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
xfs_perag_put(resv->pag);
list_del(&resv->list);
kfree(resv);
}
xrep_newbt_cancel(&ra->new_bnobt);
xrep_newbt_cancel(&ra->new_cntbt);
}
/* Retrieve free space data for bulk load. */
STATIC int
xrep_abt_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xfs_alloc_rec_incore *arec = &cur->bc_rec.a;
struct xrep_abt *ra = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
error = xfarray_load_next(ra->free_records, &ra->array_cur,
arec);
if (error)
return error;
ra->longest = max(ra->longest, arec->ar_blockcount);
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_abt_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_abt *ra = priv;
return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
}
/*
* Reset the AGF counters to reflect the free space btrees that we just
* rebuilt, then reinitialize the per-AG data.
*/
STATIC int
xrep_abt_reset_counters(
struct xrep_abt *ra)
{
struct xfs_scrub *sc = ra->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
unsigned int freesp_btreeblks = 0;
/*
* Compute the contribution to agf_btreeblks for the new free space
* btrees. This is the computed btree size minus anything we didn't
* use.
*/
freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;
freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);
/*
* The AGF header contains extra information related to the free space
* btrees, so we must update those fields here.
*/
agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
(be32_to_cpu(agf->agf_rmap_blocks) - 1));
agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
agf->agf_longest = cpu_to_be32(ra->longest);
xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
XFS_AGF_LONGEST |
XFS_AGF_FREEBLKS);
/*
* After we commit the new btree to disk, it is possible that the
* process to reap the old btree blocks will race with the AIL trying
* to checkpoint the old btree blocks into the filesystem. If the new
* tree is shorter than the old one, the allocbt write verifier will
* fail and the AIL will shut down the filesystem.
*
* To avoid this, save the old incore btree height values as the alt
* height values before re-initializing the perag info from the updated
* AGF to capture all the new values.
*/
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = pag->pagf_levels[XFS_BTNUM_BNOi];
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = pag->pagf_levels[XFS_BTNUM_CNTi];
/* Reinitialize with the values we just logged. */
return xrep_reinit_pagf(sc);
}
/*
* Use the collected free space information to stage new free space btrees.
* If this is successful we'll return with the new btree root
* information logged to the repair transaction but not yet committed.
*/
STATIC int
xrep_abt_build_new_trees(
struct xrep_abt *ra)
{
struct xfs_scrub *sc = ra->sc;
struct xfs_btree_cur *bno_cur;
struct xfs_btree_cur *cnt_cur;
struct xfs_perag *pag = sc->sa.pag;
bool needs_resort = false;
int error;
/*
* Sort the free extents by length so that we can set up the free space
* btrees in as few extents as possible. This reduces the amount of
* deferred rmap / free work we have to do at the end.
*/
error = xrep_cntbt_sort_records(ra, false);
if (error)
return error;
/*
* Prepare to construct the new btree by reserving disk space for the
* new btree and setting up all the accounting information we'll need
* to root the new btree while it's under construction and before we
* attach it to the AG header.
*/
xrep_newbt_init_bare(&ra->new_bnobt, sc);
xrep_newbt_init_bare(&ra->new_cntbt, sc);
ra->new_bnobt.bload.get_records = xrep_abt_get_records;
ra->new_cntbt.bload.get_records = xrep_abt_get_records;
ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;
/* Allocate cursors for the staged btrees. */
bno_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_bnobt.afake,
pag, XFS_BTNUM_BNO);
cnt_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_cntbt.afake,
pag, XFS_BTNUM_CNT);
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
goto err_cur;
/* Reserve the space we'll need for the new btrees. */
error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
if (error)
goto err_cur;
/*
* If we need to re-sort the free extents by length, do so so that we
* can put the records into the cntbt in the correct order.
*/
if (needs_resort) {
error = xrep_cntbt_sort_records(ra, needs_resort);
if (error)
goto err_cur;
}
/*
* Due to btree slack factors, it's possible for a new btree to be one
* level taller than the old btree. Update the alternate incore btree
* height so that we don't trip the verifiers when writing the new
* btree blocks to disk.
*/
pag->pagf_repair_levels[XFS_BTNUM_BNOi] =
ra->new_bnobt.bload.btree_height;
pag->pagf_repair_levels[XFS_BTNUM_CNTi] =
ra->new_cntbt.bload.btree_height;
/* Load the free space by length tree. */
ra->array_cur = XFARRAY_CURSOR_INIT;
ra->longest = 0;
error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
if (error)
goto err_levels;
error = xrep_bnobt_sort_records(ra);
if (error)
return error;
/* Load the free space by block number tree. */
ra->array_cur = XFARRAY_CURSOR_INIT;
error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
if (error)
goto err_levels;
/*
* Install the new btrees in the AG header. After this point the old
* btrees are no longer accessible and the new trees are live.
*/
xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
xfs_btree_del_cursor(bno_cur, 0);
xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
xfs_btree_del_cursor(cnt_cur, 0);
/* Reset the AGF counters now that we've changed the btree shape. */
error = xrep_abt_reset_counters(ra);
if (error)
goto err_newbt;
/* Dispose of any unused blocks and the accounting information. */
xrep_abt_dispose_reservations(ra, error);
return xrep_roll_ag_trans(sc);
err_levels:
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
err_cur:
xfs_btree_del_cursor(cnt_cur, error);
xfs_btree_del_cursor(bno_cur, error);
err_newbt:
xrep_abt_dispose_reservations(ra, error);
return error;
}
/*
* Now that we've logged the roots of the new btrees, invalidate all of the
* old blocks and free them.
*/
STATIC int
xrep_abt_remove_old_trees(
struct xrep_abt *ra)
{
struct xfs_perag *pag = ra->sc->sa.pag;
int error;
/* Free the old btree blocks if they're not in use. */
error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
&XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
if (error)
return error;
/*
* Now that we've zapped all the old allocbt blocks we can turn off
* the alternate height mechanism.
*/
pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
return 0;
}
/* Repair the freespace btrees for some AG. */
int
xrep_allocbt(
struct xfs_scrub *sc)
{
struct xrep_abt *ra;
struct xfs_mount *mp = sc->mp;
char *descr;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
if (!ra)
return -ENOMEM;
ra->sc = sc;
/* We rebuild both data structures. */
sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;
/*
* Make sure the busy extent list is clear because we can't put extents
* on there twice. In theory we cleared this before we started, but
* let's not risk the filesystem.
*/
if (!xfs_extent_busy_list_empty(sc->sa.pag)) {
error = -EDEADLOCK;
goto out_ra;
}
/* Set up enough storage to handle maximally fragmented free space. */
descr = xchk_xfile_ag_descr(sc, "free space records");
error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
sizeof(struct xfs_alloc_rec_incore),
&ra->free_records);
kfree(descr);
if (error)
goto out_ra;
/* Collect the free space data and find the old btree blocks. */
xagb_bitmap_init(&ra->old_allocbt_blocks);
error = xrep_abt_find_freespace(ra);
if (error)
goto out_bitmap;
/* Rebuild the free space information. */
error = xrep_abt_build_new_trees(ra);
if (error)
goto out_bitmap;
/* Kill the old trees. */
error = xrep_abt_remove_old_trees(ra);
if (error)
goto out_bitmap;
out_bitmap:
xagb_bitmap_destroy(&ra->old_allocbt_blocks);
xfarray_destroy(ra->free_records);
out_ra:
kfree(ra);
return error;
}
/* Make sure both btrees are ok after we've rebuilt them. */
int
xrep_revalidate_allocbt(
struct xfs_scrub *sc)
{
__u32 old_type = sc->sm->sm_type;
int error;
/*
* We must update sm_type temporarily so that the tree-to-tree cross
* reference checks will work in the correct direction, and also so
* that tracing will report correctly if there are more errors.
*/
sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
error = xchk_allocbt(sc);
if (error)
goto out;
sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
error = xchk_allocbt(sc);
out:
sc->sm->sm_type = old_type;
return error;
}
...@@ -200,8 +200,21 @@ static inline bool xchk_needs_repair(const struct xfs_scrub_metadata *sm) ...@@ -200,8 +200,21 @@ static inline bool xchk_needs_repair(const struct xfs_scrub_metadata *sm)
XFS_SCRUB_OFLAG_XCORRUPT | XFS_SCRUB_OFLAG_XCORRUPT |
XFS_SCRUB_OFLAG_PREEN); XFS_SCRUB_OFLAG_PREEN);
} }
/*
* "Should we prepare for a repair?"
*
* Return true if the caller permits us to repair metadata and we're not
* setting up for a post-repair evaluation.
*/
static inline bool xchk_could_repair(const struct xfs_scrub *sc)
{
return (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
!(sc->flags & XREP_ALREADY_FIXED);
}
#else #else
# define xchk_needs_repair(sc) (false) # define xchk_needs_repair(sc) (false)
# define xchk_could_repair(sc) (false)
#endif /* CONFIG_XFS_ONLINE_REPAIR */ #endif /* CONFIG_XFS_ONLINE_REPAIR */
int xchk_metadata_inode_forks(struct xfs_scrub *sc); int xchk_metadata_inode_forks(struct xfs_scrub *sc);
...@@ -213,6 +226,12 @@ int xchk_metadata_inode_forks(struct xfs_scrub *sc); ...@@ -213,6 +226,12 @@ int xchk_metadata_inode_forks(struct xfs_scrub *sc);
#define xchk_xfile_descr(sc, fmt, ...) \ #define xchk_xfile_descr(sc, fmt, ...) \
kasprintf(XCHK_GFP_FLAGS, "XFS (%s): " fmt, \ kasprintf(XCHK_GFP_FLAGS, "XFS (%s): " fmt, \
(sc)->mp->m_super->s_id, ##__VA_ARGS__) (sc)->mp->m_super->s_id, ##__VA_ARGS__)
#define xchk_xfile_ag_descr(sc, fmt, ...) \
kasprintf(XCHK_GFP_FLAGS, "XFS (%s): AG 0x%x " fmt, \
(sc)->mp->m_super->s_id, \
(sc)->sa.pag ? (sc)->sa.pag->pag_agno : (sc)->sm->sm_agno, \
##__VA_ARGS__)
/* /*
* Setting up a hook to wait for intents to drain is costly -- we have to take * Setting up a hook to wait for intents to drain is costly -- we have to take
......
...@@ -157,11 +157,13 @@ xrep_newbt_add_blocks( ...@@ -157,11 +157,13 @@ xrep_newbt_add_blocks(
resv->used = 0; resv->used = 0;
resv->pag = xfs_perag_hold(pag); resv->pag = xfs_perag_hold(pag);
if (args->tp) {
ASSERT(xnr->oinfo.oi_offset == 0); ASSERT(xnr->oinfo.oi_offset == 0);
error = xfs_alloc_schedule_autoreap(args, true, &resv->autoreap); error = xfs_alloc_schedule_autoreap(args, true, &resv->autoreap);
if (error) if (error)
goto out_pag; goto out_pag;
}
list_add_tail(&resv->list, &xnr->resv_list); list_add_tail(&resv->list, &xnr->resv_list);
return 0; return 0;
...@@ -171,6 +173,30 @@ xrep_newbt_add_blocks( ...@@ -171,6 +173,30 @@ xrep_newbt_add_blocks(
return error; return error;
} }
/*
* Add an extent to the new btree reservation pool. Callers are required to
* reap this reservation manually if the repair is cancelled. @pag must be a
* passive reference.
*/
int
xrep_newbt_add_extent(
struct xrep_newbt *xnr,
struct xfs_perag *pag,
xfs_agblock_t agbno,
xfs_extlen_t len)
{
struct xfs_mount *mp = xnr->sc->mp;
struct xfs_alloc_arg args = {
.tp = NULL, /* no autoreap */
.oinfo = xnr->oinfo,
.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, agbno),
.len = len,
.resv = xnr->resv,
};
return xrep_newbt_add_blocks(xnr, pag, &args);
}
/* Don't let our allocation hint take us beyond this AG */ /* Don't let our allocation hint take us beyond this AG */
static inline void static inline void
xrep_newbt_validate_ag_alloc_hint( xrep_newbt_validate_ag_alloc_hint(
...@@ -372,6 +398,7 @@ xrep_newbt_free_extent( ...@@ -372,6 +398,7 @@ xrep_newbt_free_extent(
free_aglen, xnr->oinfo.oi_owner); free_aglen, xnr->oinfo.oi_owner);
ASSERT(xnr->resv != XFS_AG_RESV_AGFL); ASSERT(xnr->resv != XFS_AG_RESV_AGFL);
ASSERT(xnr->resv != XFS_AG_RESV_IGNORE);
/* /*
* Use EFIs to free the reservations. This reduces the chance * Use EFIs to free the reservations. This reduces the chance
...@@ -517,3 +544,16 @@ xrep_newbt_claim_block( ...@@ -517,3 +544,16 @@ xrep_newbt_claim_block(
/* Relog all the EFIs. */ /* Relog all the EFIs. */
return xrep_defer_finish(xnr->sc); return xrep_defer_finish(xnr->sc);
} }
/* How many reserved blocks are unused? */
unsigned int
xrep_newbt_unused_blocks(
struct xrep_newbt *xnr)
{
struct xrep_newbt_resv *resv;
unsigned int unused = 0;
list_for_each_entry(resv, &xnr->resv_list, list)
unused += resv->len - resv->used;
return unused;
}
...@@ -57,9 +57,12 @@ void xrep_newbt_init_ag(struct xrep_newbt *xnr, struct xfs_scrub *sc, ...@@ -57,9 +57,12 @@ void xrep_newbt_init_ag(struct xrep_newbt *xnr, struct xfs_scrub *sc,
int xrep_newbt_init_inode(struct xrep_newbt *xnr, struct xfs_scrub *sc, int xrep_newbt_init_inode(struct xrep_newbt *xnr, struct xfs_scrub *sc,
int whichfork, const struct xfs_owner_info *oinfo); int whichfork, const struct xfs_owner_info *oinfo);
int xrep_newbt_alloc_blocks(struct xrep_newbt *xnr, uint64_t nr_blocks); int xrep_newbt_alloc_blocks(struct xrep_newbt *xnr, uint64_t nr_blocks);
int xrep_newbt_add_extent(struct xrep_newbt *xnr, struct xfs_perag *pag,
xfs_agblock_t agbno, xfs_extlen_t len);
void xrep_newbt_cancel(struct xrep_newbt *xnr); void xrep_newbt_cancel(struct xrep_newbt *xnr);
int xrep_newbt_commit(struct xrep_newbt *xnr); int xrep_newbt_commit(struct xrep_newbt *xnr);
int xrep_newbt_claim_block(struct xfs_btree_cur *cur, struct xrep_newbt *xnr, int xrep_newbt_claim_block(struct xfs_btree_cur *cur, struct xrep_newbt *xnr,
union xfs_btree_ptr *ptr); union xfs_btree_ptr *ptr);
unsigned int xrep_newbt_unused_blocks(struct xrep_newbt *xnr);
#endif /* __XFS_SCRUB_NEWBT_H__ */ #endif /* __XFS_SCRUB_NEWBT_H__ */
...@@ -734,3 +734,75 @@ xrep_ino_dqattach( ...@@ -734,3 +734,75 @@ xrep_ino_dqattach(
return error; return error;
} }
/*
* Initialize all the btree cursors for an AG repair except for the btree that
* we're rebuilding.
*/
void
xrep_ag_btcur_init(
struct xfs_scrub *sc,
struct xchk_ag *sa)
{
struct xfs_mount *mp = sc->mp;
/* Set up a bnobt cursor for cross-referencing. */
if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
sc->sa.pag, XFS_BTNUM_BNO);
sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
sc->sa.pag, XFS_BTNUM_CNT);
}
/* Set up a inobt cursor for cross-referencing. */
if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
sa->agi_bp, XFS_BTNUM_INO);
if (xfs_has_finobt(mp))
sa->fino_cur = xfs_inobt_init_cursor(sc->sa.pag,
sc->tp, sa->agi_bp, XFS_BTNUM_FINO);
}
/* Set up a rmapbt cursor for cross-referencing. */
if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
xfs_has_rmapbt(mp))
sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
sc->sa.pag);
/* Set up a refcountbt cursor for cross-referencing. */
if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
xfs_has_reflink(mp))
sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
sa->agf_bp, sc->sa.pag);
}
/*
* Reinitialize the in-core AG state after a repair by rereading the AGF
* buffer. We had better get the same AGF buffer as the one that's attached
* to the scrub context.
*/
int
xrep_reinit_pagf(
struct xfs_scrub *sc)
{
struct xfs_perag *pag = sc->sa.pag;
struct xfs_buf *bp;
int error;
ASSERT(pag);
ASSERT(xfs_perag_initialised_agf(pag));
clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
if (error)
return error;
if (bp != sc->sa.agf_bp) {
ASSERT(bp == sc->sa.agf_bp);
return -EFSCORRUPTED;
}
return 0;
}
...@@ -60,6 +60,15 @@ int xrep_find_ag_btree_roots(struct xfs_scrub *sc, struct xfs_buf *agf_bp, ...@@ -60,6 +60,15 @@ int xrep_find_ag_btree_roots(struct xfs_scrub *sc, struct xfs_buf *agf_bp,
void xrep_force_quotacheck(struct xfs_scrub *sc, xfs_dqtype_t type); void xrep_force_quotacheck(struct xfs_scrub *sc, xfs_dqtype_t type);
int xrep_ino_dqattach(struct xfs_scrub *sc); int xrep_ino_dqattach(struct xfs_scrub *sc);
/* Repair setup functions */
int xrep_setup_ag_allocbt(struct xfs_scrub *sc);
void xrep_ag_btcur_init(struct xfs_scrub *sc, struct xchk_ag *sa);
/* Metadata revalidators */
int xrep_revalidate_allocbt(struct xfs_scrub *sc);
/* Metadata repairers */ /* Metadata repairers */
int xrep_probe(struct xfs_scrub *sc); int xrep_probe(struct xfs_scrub *sc);
...@@ -67,6 +76,9 @@ int xrep_superblock(struct xfs_scrub *sc); ...@@ -67,6 +76,9 @@ int xrep_superblock(struct xfs_scrub *sc);
int xrep_agf(struct xfs_scrub *sc); int xrep_agf(struct xfs_scrub *sc);
int xrep_agfl(struct xfs_scrub *sc); int xrep_agfl(struct xfs_scrub *sc);
int xrep_agi(struct xfs_scrub *sc); int xrep_agi(struct xfs_scrub *sc);
int xrep_allocbt(struct xfs_scrub *sc);
int xrep_reinit_pagf(struct xfs_scrub *sc);
#else #else
...@@ -87,11 +99,23 @@ xrep_calc_ag_resblks( ...@@ -87,11 +99,23 @@ xrep_calc_ag_resblks(
return 0; return 0;
} }
/* repair setup functions for no-repair */
static inline int
xrep_setup_nothing(
struct xfs_scrub *sc)
{
return 0;
}
#define xrep_setup_ag_allocbt xrep_setup_nothing
#define xrep_revalidate_allocbt (NULL)
#define xrep_probe xrep_notsupported #define xrep_probe xrep_notsupported
#define xrep_superblock xrep_notsupported #define xrep_superblock xrep_notsupported
#define xrep_agf xrep_notsupported #define xrep_agf xrep_notsupported
#define xrep_agfl xrep_notsupported #define xrep_agfl xrep_notsupported
#define xrep_agi xrep_notsupported #define xrep_agi xrep_notsupported
#define xrep_allocbt xrep_notsupported
#endif /* CONFIG_XFS_ONLINE_REPAIR */ #endif /* CONFIG_XFS_ONLINE_REPAIR */
......
...@@ -239,13 +239,15 @@ static const struct xchk_meta_ops meta_scrub_ops[] = { ...@@ -239,13 +239,15 @@ static const struct xchk_meta_ops meta_scrub_ops[] = {
.type = ST_PERAG, .type = ST_PERAG,
.setup = xchk_setup_ag_allocbt, .setup = xchk_setup_ag_allocbt,
.scrub = xchk_allocbt, .scrub = xchk_allocbt,
.repair = xrep_notsupported, .repair = xrep_allocbt,
.repair_eval = xrep_revalidate_allocbt,
}, },
[XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */ [XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */
.type = ST_PERAG, .type = ST_PERAG,
.setup = xchk_setup_ag_allocbt, .setup = xchk_setup_ag_allocbt,
.scrub = xchk_allocbt, .scrub = xchk_allocbt,
.repair = xrep_notsupported, .repair = xrep_allocbt,
.repair_eval = xrep_revalidate_allocbt,
}, },
[XFS_SCRUB_TYPE_INOBT] = { /* inobt */ [XFS_SCRUB_TYPE_INOBT] = { /* inobt */
.type = ST_PERAG, .type = ST_PERAG,
...@@ -531,6 +533,9 @@ xfs_scrub_metadata( ...@@ -531,6 +533,9 @@ xfs_scrub_metadata(
/* Scrub for errors. */ /* Scrub for errors. */
check_start = xchk_stats_now(); check_start = xchk_stats_now();
if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
error = sc->ops->repair_eval(sc);
else
error = sc->ops->scrub(sc); error = sc->ops->scrub(sc);
run.scrub_ns += xchk_stats_elapsed_ns(check_start); run.scrub_ns += xchk_stats_elapsed_ns(check_start);
if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER)) if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
...@@ -542,8 +547,7 @@ xfs_scrub_metadata( ...@@ -542,8 +547,7 @@ xfs_scrub_metadata(
xchk_update_health(sc); xchk_update_health(sc);
if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) && if (xchk_could_repair(sc)) {
!(sc->flags & XREP_ALREADY_FIXED)) {
bool needs_fix = xchk_needs_repair(sc->sm); bool needs_fix = xchk_needs_repair(sc->sm);
/* Userspace asked us to rebuild the structure regardless. */ /* Userspace asked us to rebuild the structure regardless. */
......
...@@ -35,6 +35,14 @@ struct xchk_meta_ops { ...@@ -35,6 +35,14 @@ struct xchk_meta_ops {
/* Repair or optimize the metadata. */ /* Repair or optimize the metadata. */
int (*repair)(struct xfs_scrub *); int (*repair)(struct xfs_scrub *);
/*
* Re-scrub the metadata we repaired, in case there's extra work that
* we need to do to check our repair work. If this is NULL, we'll use
* the ->scrub function pointer, assuming that the regular scrub is
* sufficient.
*/
int (*repair_eval)(struct xfs_scrub *sc);
/* Decide if we even have this piece of metadata. */ /* Decide if we even have this piece of metadata. */
bool (*has)(struct xfs_mount *); bool (*has)(struct xfs_mount *);
......
...@@ -1172,11 +1172,33 @@ DEFINE_EVENT(xrep_rmap_class, name, \ ...@@ -1172,11 +1172,33 @@ DEFINE_EVENT(xrep_rmap_class, name, \
xfs_agblock_t agbno, xfs_extlen_t len, \ xfs_agblock_t agbno, xfs_extlen_t len, \
uint64_t owner, uint64_t offset, unsigned int flags), \ uint64_t owner, uint64_t offset, unsigned int flags), \
TP_ARGS(mp, agno, agbno, len, owner, offset, flags)) TP_ARGS(mp, agno, agbno, len, owner, offset, flags))
DEFINE_REPAIR_RMAP_EVENT(xrep_alloc_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_ialloc_extent_fn); DEFINE_REPAIR_RMAP_EVENT(xrep_ialloc_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_rmap_extent_fn); DEFINE_REPAIR_RMAP_EVENT(xrep_rmap_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_bmap_extent_fn); DEFINE_REPAIR_RMAP_EVENT(xrep_bmap_extent_fn);
TRACE_EVENT(xrep_abt_found,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
const struct xfs_alloc_rec_incore *rec),
TP_ARGS(mp, agno, rec),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, startblock)
__field(xfs_extlen_t, blockcount)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startblock = rec->ar_startblock;
__entry->blockcount = rec->ar_blockcount;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startblock,
__entry->blockcount)
)
TRACE_EVENT(xrep_refcount_extent_fn, TRACE_EVENT(xrep_refcount_extent_fn,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno, TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
struct xfs_refcount_irec *irec), struct xfs_refcount_irec *irec),
......
...@@ -54,6 +54,28 @@ static inline int xfarray_append(struct xfarray *array, const void *ptr) ...@@ -54,6 +54,28 @@ static inline int xfarray_append(struct xfarray *array, const void *ptr)
uint64_t xfarray_length(struct xfarray *array); uint64_t xfarray_length(struct xfarray *array);
int xfarray_load_next(struct xfarray *array, xfarray_idx_t *idx, void *rec); int xfarray_load_next(struct xfarray *array, xfarray_idx_t *idx, void *rec);
/*
* Iterate the non-null elements in a sparse xfarray. Callers should
* initialize *idx to XFARRAY_CURSOR_INIT before the first call; on return, it
* will be set to one more than the index of the record that was retrieved.
* Returns 1 if a record was retrieved, 0 if there weren't any more records, or
* a negative errno.
*/
static inline int
xfarray_iter(
struct xfarray *array,
xfarray_idx_t *idx,
void *rec)
{
int ret = xfarray_load_next(array, idx, rec);
if (ret == -ENODATA)
return 0;
if (ret == 0)
return 1;
return ret;
}
/* Declarations for xfile array sort functionality. */ /* Declarations for xfile array sort functionality. */
typedef cmp_func_t xfarray_cmp_fn; typedef cmp_func_t xfarray_cmp_fn;
......
...@@ -678,3 +678,16 @@ xfs_extent_busy_ag_cmp( ...@@ -678,3 +678,16 @@ xfs_extent_busy_ag_cmp(
diff = b1->bno - b2->bno; diff = b1->bno - b2->bno;
return diff; return diff;
} }
/* Are there any busy extents in this AG? */
bool
xfs_extent_busy_list_empty(
struct xfs_perag *pag)
{
bool res;
spin_lock(&pag->pagb_lock);
res = RB_EMPTY_ROOT(&pag->pagb_tree);
spin_unlock(&pag->pagb_lock);
return res;
}
...@@ -85,4 +85,6 @@ static inline void xfs_extent_busy_sort(struct list_head *list) ...@@ -85,4 +85,6 @@ static inline void xfs_extent_busy_sort(struct list_head *list)
list_sort(NULL, list, xfs_extent_busy_ag_cmp); list_sort(NULL, list, xfs_extent_busy_ag_cmp);
} }
bool xfs_extent_busy_list_empty(struct xfs_perag *pag);
#endif /* __XFS_EXTENT_BUSY_H__ */ #endif /* __XFS_EXTENT_BUSY_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment