Commit 5217192b authored by Paul E. McKenney's avatar Paul E. McKenney

Merge remote-tracking branch 'tip/smp/hotplug' into next.2012.09.25b

The conflicts between kernel/rcutree.h and kernel/rcutree_plugin.h
were due to adjacent insertions and deletions, which were resolved
by simply accepting the changes on both branches.
parents bda4ec9f bff4a394
......@@ -42,6 +42,7 @@
*/
#include <linux/slab.h>
#include <linux/smpboot.h>
#include "ehca_classes.h"
#include "ehca_irq.h"
......@@ -652,7 +653,7 @@ void ehca_tasklet_eq(unsigned long data)
ehca_process_eq((struct ehca_shca*)data, 1);
}
static inline int find_next_online_cpu(struct ehca_comp_pool *pool)
static int find_next_online_cpu(struct ehca_comp_pool *pool)
{
int cpu;
unsigned long flags;
......@@ -662,17 +663,20 @@ static inline int find_next_online_cpu(struct ehca_comp_pool *pool)
ehca_dmp(cpu_online_mask, cpumask_size(), "");
spin_lock_irqsave(&pool->last_cpu_lock, flags);
cpu = cpumask_next(pool->last_cpu, cpu_online_mask);
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(cpu_online_mask);
pool->last_cpu = cpu;
do {
cpu = cpumask_next(pool->last_cpu, cpu_online_mask);
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(cpu_online_mask);
pool->last_cpu = cpu;
} while (!per_cpu_ptr(pool->cpu_comp_tasks, cpu)->active);
spin_unlock_irqrestore(&pool->last_cpu_lock, flags);
return cpu;
}
static void __queue_comp_task(struct ehca_cq *__cq,
struct ehca_cpu_comp_task *cct)
struct ehca_cpu_comp_task *cct,
struct task_struct *thread)
{
unsigned long flags;
......@@ -683,7 +687,7 @@ static void __queue_comp_task(struct ehca_cq *__cq,
__cq->nr_callbacks++;
list_add_tail(&__cq->entry, &cct->cq_list);
cct->cq_jobs++;
wake_up(&cct->wait_queue);
wake_up_process(thread);
} else
__cq->nr_callbacks++;
......@@ -695,6 +699,7 @@ static void queue_comp_task(struct ehca_cq *__cq)
{
int cpu_id;
struct ehca_cpu_comp_task *cct;
struct task_struct *thread;
int cq_jobs;
unsigned long flags;
......@@ -702,7 +707,8 @@ static void queue_comp_task(struct ehca_cq *__cq)
BUG_ON(!cpu_online(cpu_id));
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu_id);
BUG_ON(!cct);
thread = *per_cpu_ptr(pool->cpu_comp_threads, cpu_id);
BUG_ON(!cct || !thread);
spin_lock_irqsave(&cct->task_lock, flags);
cq_jobs = cct->cq_jobs;
......@@ -710,28 +716,25 @@ static void queue_comp_task(struct ehca_cq *__cq)
if (cq_jobs > 0) {
cpu_id = find_next_online_cpu(pool);
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu_id);
BUG_ON(!cct);
thread = *per_cpu_ptr(pool->cpu_comp_threads, cpu_id);
BUG_ON(!cct || !thread);
}
__queue_comp_task(__cq, cct);
__queue_comp_task(__cq, cct, thread);
}
static void run_comp_task(struct ehca_cpu_comp_task *cct)
{
struct ehca_cq *cq;
unsigned long flags;
spin_lock_irqsave(&cct->task_lock, flags);
while (!list_empty(&cct->cq_list)) {
cq = list_entry(cct->cq_list.next, struct ehca_cq, entry);
spin_unlock_irqrestore(&cct->task_lock, flags);
spin_unlock_irq(&cct->task_lock);
comp_event_callback(cq);
if (atomic_dec_and_test(&cq->nr_events))
wake_up(&cq->wait_completion);
spin_lock_irqsave(&cct->task_lock, flags);
spin_lock_irq(&cct->task_lock);
spin_lock(&cq->task_lock);
cq->nr_callbacks--;
if (!cq->nr_callbacks) {
......@@ -740,159 +743,76 @@ static void run_comp_task(struct ehca_cpu_comp_task *cct)
}
spin_unlock(&cq->task_lock);
}
spin_unlock_irqrestore(&cct->task_lock, flags);
}
static int comp_task(void *__cct)
static void comp_task_park(unsigned int cpu)
{
struct ehca_cpu_comp_task *cct = __cct;
int cql_empty;
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
add_wait_queue(&cct->wait_queue, &wait);
spin_lock_irq(&cct->task_lock);
cql_empty = list_empty(&cct->cq_list);
spin_unlock_irq(&cct->task_lock);
if (cql_empty)
schedule();
else
__set_current_state(TASK_RUNNING);
remove_wait_queue(&cct->wait_queue, &wait);
struct ehca_cpu_comp_task *cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
struct ehca_cpu_comp_task *target;
struct task_struct *thread;
struct ehca_cq *cq, *tmp;
LIST_HEAD(list);
spin_lock_irq(&cct->task_lock);
cql_empty = list_empty(&cct->cq_list);
spin_unlock_irq(&cct->task_lock);
if (!cql_empty)
run_comp_task(__cct);
spin_lock_irq(&cct->task_lock);
cct->cq_jobs = 0;
cct->active = 0;
list_splice_init(&cct->cq_list, &list);
spin_unlock_irq(&cct->task_lock);
set_current_state(TASK_INTERRUPTIBLE);
cpu = find_next_online_cpu(pool);
target = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
thread = *per_cpu_ptr(pool->cpu_comp_threads, cpu);
spin_lock_irq(&target->task_lock);
list_for_each_entry_safe(cq, tmp, &list, entry) {
list_del(&cq->entry);
__queue_comp_task(cq, target, thread);
}
__set_current_state(TASK_RUNNING);
return 0;
}
static struct task_struct *create_comp_task(struct ehca_comp_pool *pool,
int cpu)
{
struct ehca_cpu_comp_task *cct;
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
spin_lock_init(&cct->task_lock);
INIT_LIST_HEAD(&cct->cq_list);
init_waitqueue_head(&cct->wait_queue);
cct->task = kthread_create_on_node(comp_task, cct, cpu_to_node(cpu),
"ehca_comp/%d", cpu);
return cct->task;
spin_unlock_irq(&target->task_lock);
}
static void destroy_comp_task(struct ehca_comp_pool *pool,
int cpu)
static void comp_task_stop(unsigned int cpu, bool online)
{
struct ehca_cpu_comp_task *cct;
struct task_struct *task;
unsigned long flags_cct;
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
spin_lock_irqsave(&cct->task_lock, flags_cct);
struct ehca_cpu_comp_task *cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
task = cct->task;
cct->task = NULL;
spin_lock_irq(&cct->task_lock);
cct->cq_jobs = 0;
spin_unlock_irqrestore(&cct->task_lock, flags_cct);
if (task)
kthread_stop(task);
cct->active = 0;
WARN_ON(!list_empty(&cct->cq_list));
spin_unlock_irq(&cct->task_lock);
}
static void __cpuinit take_over_work(struct ehca_comp_pool *pool, int cpu)
static int comp_task_should_run(unsigned int cpu)
{
struct ehca_cpu_comp_task *cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
LIST_HEAD(list);
struct ehca_cq *cq;
unsigned long flags_cct;
spin_lock_irqsave(&cct->task_lock, flags_cct);
list_splice_init(&cct->cq_list, &list);
while (!list_empty(&list)) {
cq = list_entry(cct->cq_list.next, struct ehca_cq, entry);
list_del(&cq->entry);
__queue_comp_task(cq, this_cpu_ptr(pool->cpu_comp_tasks));
}
spin_unlock_irqrestore(&cct->task_lock, flags_cct);
return cct->cq_jobs;
}
static int __cpuinit comp_pool_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
static void comp_task(unsigned int cpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct ehca_cpu_comp_task *cct;
struct ehca_cpu_comp_task *cct = this_cpu_ptr(pool->cpu_comp_tasks);
int cql_empty;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_PREPARE)", cpu);
if (!create_comp_task(pool, cpu)) {
ehca_gen_err("Can't create comp_task for cpu: %x", cpu);
return notifier_from_errno(-ENOMEM);
}
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_CANCELED)", cpu);
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
kthread_bind(cct->task, cpumask_any(cpu_online_mask));
destroy_comp_task(pool, cpu);
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_ONLINE)", cpu);
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
kthread_bind(cct->task, cpu);
wake_up_process(cct->task);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_DOWN_PREPARE)", cpu);
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_DOWN_FAILED)", cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
ehca_gen_dbg("CPU: %x (CPU_DEAD)", cpu);
destroy_comp_task(pool, cpu);
take_over_work(pool, cpu);
break;
spin_lock_irq(&cct->task_lock);
cql_empty = list_empty(&cct->cq_list);
if (!cql_empty) {
__set_current_state(TASK_RUNNING);
run_comp_task(cct);
}
return NOTIFY_OK;
spin_unlock_irq(&cct->task_lock);
}
static struct notifier_block comp_pool_callback_nb __cpuinitdata = {
.notifier_call = comp_pool_callback,
.priority = 0,
static struct smp_hotplug_thread comp_pool_threads = {
.thread_should_run = comp_task_should_run,
.thread_fn = comp_task,
.thread_comm = "ehca_comp/%u",
.cleanup = comp_task_stop,
.park = comp_task_park,
};
int ehca_create_comp_pool(void)
{
int cpu;
struct task_struct *task;
int cpu, ret = -ENOMEM;
if (!ehca_scaling_code)
return 0;
......@@ -905,38 +825,46 @@ int ehca_create_comp_pool(void)
pool->last_cpu = cpumask_any(cpu_online_mask);
pool->cpu_comp_tasks = alloc_percpu(struct ehca_cpu_comp_task);
if (pool->cpu_comp_tasks == NULL) {
kfree(pool);
return -EINVAL;
}
if (!pool->cpu_comp_tasks)
goto out_pool;
for_each_online_cpu(cpu) {
task = create_comp_task(pool, cpu);
if (task) {
kthread_bind(task, cpu);
wake_up_process(task);
}
pool->cpu_comp_threads = alloc_percpu(struct task_struct *);
if (!pool->cpu_comp_threads)
goto out_tasks;
for_each_present_cpu(cpu) {
struct ehca_cpu_comp_task *cct;
cct = per_cpu_ptr(pool->cpu_comp_tasks, cpu);
spin_lock_init(&cct->task_lock);
INIT_LIST_HEAD(&cct->cq_list);
}
register_hotcpu_notifier(&comp_pool_callback_nb);
comp_pool_threads.store = pool->cpu_comp_threads;
ret = smpboot_register_percpu_thread(&comp_pool_threads);
if (ret)
goto out_threads;
printk(KERN_INFO "eHCA scaling code enabled\n");
pr_info("eHCA scaling code enabled\n");
return ret;
return 0;
out_threads:
free_percpu(pool->cpu_comp_threads);
out_tasks:
free_percpu(pool->cpu_comp_tasks);
out_pool:
kfree(pool);
return ret;
}
void ehca_destroy_comp_pool(void)
{
int i;
if (!ehca_scaling_code)
return;
unregister_hotcpu_notifier(&comp_pool_callback_nb);
for_each_online_cpu(i)
destroy_comp_task(pool, i);
smpboot_unregister_percpu_thread(&comp_pool_threads);
free_percpu(pool->cpu_comp_threads);
free_percpu(pool->cpu_comp_tasks);
kfree(pool);
}
......@@ -58,15 +58,15 @@ void ehca_tasklet_eq(unsigned long data);
void ehca_process_eq(struct ehca_shca *shca, int is_irq);
struct ehca_cpu_comp_task {
wait_queue_head_t wait_queue;
struct list_head cq_list;
struct task_struct *task;
spinlock_t task_lock;
int cq_jobs;
int active;
};
struct ehca_comp_pool {
struct ehca_cpu_comp_task *cpu_comp_tasks;
struct ehca_cpu_comp_task __percpu *cpu_comp_tasks;
struct task_struct * __percpu *cpu_comp_threads;
int last_cpu;
spinlock_t last_cpu_lock;
};
......
......@@ -14,6 +14,11 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
kthread_create_on_node(threadfn, data, -1, namefmt, ##arg)
struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
void *data,
unsigned int cpu,
const char *namefmt);
/**
* kthread_run - create and wake a thread.
* @threadfn: the function to run until signal_pending(current).
......@@ -34,9 +39,13 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void kthread_bind(struct task_struct *k, unsigned int cpu);
int kthread_stop(struct task_struct *k);
int kthread_should_stop(void);
bool kthread_should_stop(void);
bool kthread_should_park(void);
bool kthread_freezable_should_stop(bool *was_frozen);
void *kthread_data(struct task_struct *k);
int kthread_park(struct task_struct *k);
void kthread_unpark(struct task_struct *k);
void kthread_parkme(void);
int kthreadd(void *unused);
extern struct task_struct *kthreadd_task;
......
#ifndef _LINUX_SMPBOOT_H
#define _LINUX_SMPBOOT_H
#include <linux/types.h>
struct task_struct;
/* Cookie handed to the thread_fn*/
struct smpboot_thread_data;
/**
* struct smp_hotplug_thread - CPU hotplug related thread descriptor
* @store: Pointer to per cpu storage for the task pointers
* @list: List head for core management
* @thread_should_run: Check whether the thread should run or not. Called with
* preemption disabled.
* @thread_fn: The associated thread function
* @setup: Optional setup function, called when the thread gets
* operational the first time
* @cleanup: Optional cleanup function, called when the thread
* should stop (module exit)
* @park: Optional park function, called when the thread is
* parked (cpu offline)
* @unpark: Optional unpark function, called when the thread is
* unparked (cpu online)
* @thread_comm: The base name of the thread
*/
struct smp_hotplug_thread {
struct task_struct __percpu **store;
struct list_head list;
int (*thread_should_run)(unsigned int cpu);
void (*thread_fn)(unsigned int cpu);
void (*setup)(unsigned int cpu);
void (*cleanup)(unsigned int cpu, bool online);
void (*park)(unsigned int cpu);
void (*unpark)(unsigned int cpu);
const char *thread_comm;
};
int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread);
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread);
int smpboot_thread_schedule(void);
#endif
......@@ -10,7 +10,7 @@ obj-y = fork.o exec_domain.o panic.o printk.o \
kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
notifier.o ksysfs.o cred.o \
async.o range.o groups.o lglock.o
async.o range.o groups.o lglock.o smpboot.o
ifdef CONFIG_FUNCTION_TRACER
# Do not trace debug files and internal ftrace files
......@@ -46,7 +46,6 @@ obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o
obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o
obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_SMP) += smpboot.o
ifneq ($(CONFIG_SMP),y)
obj-y += up.o
endif
......
......@@ -280,12 +280,13 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
__func__, cpu);
goto out_release;
}
smpboot_park_threads(cpu);
err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
if (err) {
/* CPU didn't die: tell everyone. Can't complain. */
smpboot_unpark_threads(cpu);
cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
goto out_release;
}
BUG_ON(cpu_online(cpu));
......@@ -354,6 +355,10 @@ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
goto out;
}
ret = smpboot_create_threads(cpu);
if (ret)
goto out;
ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
if (ret) {
nr_calls--;
......@@ -368,6 +373,9 @@ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
goto out_notify;
BUG_ON(!cpu_online(cpu));
/* Wake the per cpu threads */
smpboot_unpark_threads(cpu);
/* Now call notifier in preparation. */
cpu_notify(CPU_ONLINE | mod, hcpu);
......
......@@ -37,11 +37,20 @@ struct kthread_create_info
};
struct kthread {
int should_stop;
unsigned long flags;
unsigned int cpu;
void *data;
struct completion parked;
struct completion exited;
};
enum KTHREAD_BITS {
KTHREAD_IS_PER_CPU = 0,
KTHREAD_SHOULD_STOP,
KTHREAD_SHOULD_PARK,
KTHREAD_IS_PARKED,
};
#define to_kthread(tsk) \
container_of((tsk)->vfork_done, struct kthread, exited)
......@@ -52,12 +61,28 @@ struct kthread {
* and this will return true. You should then return, and your return
* value will be passed through to kthread_stop().
*/
int kthread_should_stop(void)
bool kthread_should_stop(void)
{
return to_kthread(current)->should_stop;
return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
}
EXPORT_SYMBOL(kthread_should_stop);
/**
* kthread_should_park - should this kthread park now?
*
* When someone calls kthread_park() on your kthread, it will be woken
* and this will return true. You should then do the necessary
* cleanup and call kthread_parkme()
*
* Similar to kthread_should_stop(), but this keeps the thread alive
* and in a park position. kthread_unpark() "restarts" the thread and
* calls the thread function again.
*/
bool kthread_should_park(void)
{
return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
}
/**
* kthread_freezable_should_stop - should this freezable kthread return now?
* @was_frozen: optional out parameter, indicates whether %current was frozen
......@@ -96,6 +121,24 @@ void *kthread_data(struct task_struct *task)
return to_kthread(task)->data;
}
static void __kthread_parkme(struct kthread *self)
{
__set_current_state(TASK_INTERRUPTIBLE);
while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
complete(&self->parked);
schedule();
__set_current_state(TASK_INTERRUPTIBLE);
}
clear_bit(KTHREAD_IS_PARKED, &self->flags);
__set_current_state(TASK_RUNNING);
}
void kthread_parkme(void)
{
__kthread_parkme(to_kthread(current));
}
static int kthread(void *_create)
{
/* Copy data: it's on kthread's stack */
......@@ -105,9 +148,10 @@ static int kthread(void *_create)
struct kthread self;
int ret;
self.should_stop = 0;
self.flags = 0;
self.data = data;
init_completion(&self.exited);
init_completion(&self.parked);
current->vfork_done = &self.exited;
/* OK, tell user we're spawned, wait for stop or wakeup */
......@@ -117,9 +161,11 @@ static int kthread(void *_create)
schedule();
ret = -EINTR;
if (!self.should_stop)
ret = threadfn(data);
if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
__kthread_parkme(&self);
ret = threadfn(data);
}
/* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
......@@ -172,8 +218,7 @@ static void create_kthread(struct kthread_create_info *create)
* Returns a task_struct or ERR_PTR(-ENOMEM).
*/
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void *data,
int node,
void *data, int node,
const char namefmt[],
...)
{
......@@ -210,6 +255,13 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
}
EXPORT_SYMBOL(kthread_create_on_node);
static void __kthread_bind(struct task_struct *p, unsigned int cpu)
{
/* It's safe because the task is inactive. */
do_set_cpus_allowed(p, cpumask_of(cpu));
p->flags |= PF_THREAD_BOUND;
}
/**
* kthread_bind - bind a just-created kthread to a cpu.
* @p: thread created by kthread_create().
......@@ -226,13 +278,111 @@ void kthread_bind(struct task_struct *p, unsigned int cpu)
WARN_ON(1);
return;
}
/* It's safe because the task is inactive. */
do_set_cpus_allowed(p, cpumask_of(cpu));
p->flags |= PF_THREAD_BOUND;
__kthread_bind(p, cpu);
}
EXPORT_SYMBOL(kthread_bind);
/**
* kthread_create_on_cpu - Create a cpu bound kthread
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @cpu: The cpu on which the thread should be bound,
* @namefmt: printf-style name for the thread. Format is restricted
* to "name.*%u". Code fills in cpu number.
*
* Description: This helper function creates and names a kernel thread
* The thread will be woken and put into park mode.
*/
struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
void *data, unsigned int cpu,
const char *namefmt)
{
struct task_struct *p;
p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
cpu);
if (IS_ERR(p))
return p;
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
to_kthread(p)->cpu = cpu;
/* Park the thread to get it out of TASK_UNINTERRUPTIBLE state */
kthread_park(p);
return p;
}
static struct kthread *task_get_live_kthread(struct task_struct *k)
{
struct kthread *kthread;
get_task_struct(k);
kthread = to_kthread(k);
/* It might have exited */
barrier();
if (k->vfork_done != NULL)
return kthread;
return NULL;
}
/**
* kthread_unpark - unpark a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return false, wakes it, and
* waits for it to return. If the thread is marked percpu then its
* bound to the cpu again.
*/
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = task_get_live_kthread(k);
if (kthread) {
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
* until the task has left the park code. So if we'd
* park before that happens we'd see the IS_PARKED bit
* which might be about to be cleared.
*/
if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
__kthread_bind(k, kthread->cpu);
wake_up_process(k);
}
}
put_task_struct(k);
}
/**
* kthread_park - park a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return true, wakes it, and
* waits for it to return. This can also be called after kthread_create()
* instead of calling wake_up_process(): the thread will park without
* calling threadfn().
*
* Returns 0 if the thread is parked, -ENOSYS if the thread exited.
* If called by the kthread itself just the park bit is set.
*/
int kthread_park(struct task_struct *k)
{
struct kthread *kthread = task_get_live_kthread(k);
int ret = -ENOSYS;
if (kthread) {
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
}
ret = 0;
}
put_task_struct(k);
return ret;
}
/**
* kthread_stop - stop a thread created by kthread_create().
* @k: thread created by kthread_create().
......@@ -250,16 +400,13 @@ EXPORT_SYMBOL(kthread_bind);
*/
int kthread_stop(struct task_struct *k)
{
struct kthread *kthread;
struct kthread *kthread = task_get_live_kthread(k);
int ret;
trace_sched_kthread_stop(k);
get_task_struct(k);
kthread = to_kthread(k);
barrier(); /* it might have exited */
if (k->vfork_done != NULL) {
kthread->should_stop = 1;
if (kthread) {
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
wake_up_process(k);
wait_for_completion(&kthread->exited);
}
......
......@@ -134,13 +134,12 @@ static int rcu_scheduler_fully_active __read_mostly;
*/
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);
#endif /* #ifdef CONFIG_RCU_BOOST */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
......@@ -1543,8 +1542,7 @@ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
/* Adjust any no-longer-needed kthreads. */
rcu_stop_cpu_kthread(cpu);
rcu_node_kthread_setaffinity(rnp, -1);
rcu_boost_kthread_setaffinity(rnp, -1);
/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
......@@ -2572,12 +2570,10 @@ static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
break;
case CPU_ONLINE:
case CPU_DOWN_FAILED:
rcu_node_kthread_setaffinity(rnp, -1);
rcu_cpu_kthread_setrt(cpu, 1);
rcu_boost_kthread_setaffinity(rnp, -1);
break;
case CPU_DOWN_PREPARE:
rcu_node_kthread_setaffinity(rnp, cpu);
rcu_cpu_kthread_setrt(cpu, 0);
rcu_boost_kthread_setaffinity(rnp, cpu);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
......
......@@ -196,12 +196,6 @@ struct rcu_node {
/* Refused to boost: not sure why, though. */
/* This can happen due to race conditions. */
#endif /* #ifdef CONFIG_RCU_BOOST */
struct task_struct *node_kthread_task;
/* kthread that takes care of this rcu_node */
/* structure, for example, awakening the */
/* per-CPU kthreads as needed. */
unsigned int node_kthread_status;
/* State of node_kthread_task for tracing. */
raw_spinlock_t fqslock ____cacheline_internodealigned_in_smp;
} ____cacheline_internodealigned_in_smp;
......@@ -465,7 +459,6 @@ static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp);
#ifdef CONFIG_HOTPLUG_CPU
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp,
unsigned long flags);
static void rcu_stop_cpu_kthread(int cpu);
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_print_detail_task_stall(struct rcu_state *rsp);
static int rcu_print_task_stall(struct rcu_node *rnp);
......@@ -488,15 +481,9 @@ static void invoke_rcu_callbacks_kthread(void);
static bool rcu_is_callbacks_kthread(void);
#ifdef CONFIG_RCU_BOOST
static void rcu_preempt_do_callbacks(void);
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
cpumask_var_t cm);
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
struct rcu_node *rnp,
int rnp_index);
static void invoke_rcu_node_kthread(struct rcu_node *rnp);
static void rcu_yield(void (*f)(unsigned long), unsigned long arg);
struct rcu_node *rnp);
#endif /* #ifdef CONFIG_RCU_BOOST */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt);
static void __cpuinit rcu_prepare_kthreads(int cpu);
static void rcu_prepare_for_idle_init(int cpu);
static void rcu_cleanup_after_idle(int cpu);
......
......@@ -26,6 +26,7 @@
#include <linux/delay.h>
#include <linux/oom.h>
#include <linux/smpboot.h>
#define RCU_KTHREAD_PRIO 1
......@@ -1090,6 +1091,16 @@ static void rcu_initiate_boost_trace(struct rcu_node *rnp)
#endif /* #else #ifdef CONFIG_RCU_TRACE */
static void rcu_wake_cond(struct task_struct *t, int status)
{
/*
* If the thread is yielding, only wake it when this
* is invoked from idle
*/
if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
wake_up_process(t);
}
/*
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
* or ->boost_tasks, advancing the pointer to the next task in the
......@@ -1161,17 +1172,6 @@ static int rcu_boost(struct rcu_node *rnp)
ACCESS_ONCE(rnp->boost_tasks) != NULL;
}
/*
* Timer handler to initiate waking up of boost kthreads that
* have yielded the CPU due to excessive numbers of tasks to
* boost. We wake up the per-rcu_node kthread, which in turn
* will wake up the booster kthread.
*/
static void rcu_boost_kthread_timer(unsigned long arg)
{
invoke_rcu_node_kthread((struct rcu_node *)arg);
}
/*
* Priority-boosting kthread. One per leaf rcu_node and one for the
* root rcu_node.
......@@ -1195,8 +1195,9 @@ static int rcu_boost_kthread(void *arg)
else
spincnt = 0;
if (spincnt > 10) {
rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
trace_rcu_utilization("End boost kthread@rcu_yield");
rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
schedule_timeout_interruptible(2);
trace_rcu_utilization("Start boost kthread@rcu_yield");
spincnt = 0;
}
......@@ -1234,8 +1235,8 @@ static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
rnp->boost_tasks = rnp->gp_tasks;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
t = rnp->boost_kthread_task;
if (t != NULL)
wake_up_process(t);
if (t)
rcu_wake_cond(t, rnp->boost_kthread_status);
} else {
rcu_initiate_boost_trace(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
......@@ -1252,8 +1253,10 @@ static void invoke_rcu_callbacks_kthread(void)
local_irq_save(flags);
__this_cpu_write(rcu_cpu_has_work, 1);
if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
current != __this_cpu_read(rcu_cpu_kthread_task))
wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
current != __this_cpu_read(rcu_cpu_kthread_task)) {
rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
__this_cpu_read(rcu_cpu_kthread_status));
}
local_irq_restore(flags);
}
......@@ -1266,21 +1269,6 @@ static bool rcu_is_callbacks_kthread(void)
return __get_cpu_var(rcu_cpu_kthread_task) == current;
}
/*
* Set the affinity of the boost kthread. The CPU-hotplug locks are
* held, so no one should be messing with the existence of the boost
* kthread.
*/
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
cpumask_var_t cm)
{
struct task_struct *t;
t = rnp->boost_kthread_task;
if (t != NULL)
set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
}
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
/*
......@@ -1297,15 +1285,19 @@ static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
* Returns zero if all is well, a negated errno otherwise.
*/
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
struct rcu_node *rnp,
int rnp_index)
struct rcu_node *rnp)
{
int rnp_index = rnp - &rsp->node[0];
unsigned long flags;
struct sched_param sp;
struct task_struct *t;
if (&rcu_preempt_state != rsp)
return 0;
if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
return 0;
rsp->boost = 1;
if (rnp->boost_kthread_task != NULL)
return 0;
......@@ -1322,25 +1314,6 @@ static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Stop the RCU's per-CPU kthread when its CPU goes offline,.
*/
static void rcu_stop_cpu_kthread(int cpu)
{
struct task_struct *t;
/* Stop the CPU's kthread. */
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (t != NULL) {
per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
kthread_stop(t);
}
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_kthread_do_work(void)
{
rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
......@@ -1348,112 +1321,22 @@ static void rcu_kthread_do_work(void)
rcu_preempt_do_callbacks();
}
/*
* Wake up the specified per-rcu_node-structure kthread.
* Because the per-rcu_node kthreads are immortal, we don't need
* to do anything to keep them alive.
*/
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
struct task_struct *t;
t = rnp->node_kthread_task;
if (t != NULL)
wake_up_process(t);
}
/*
* Set the specified CPU's kthread to run RT or not, as specified by
* the to_rt argument. The CPU-hotplug locks are held, so the task
* is not going away.
*/
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
static void rcu_cpu_kthread_setup(unsigned int cpu)
{
int policy;
struct sched_param sp;
struct task_struct *t;
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (t == NULL)
return;
if (to_rt) {
policy = SCHED_FIFO;
sp.sched_priority = RCU_KTHREAD_PRIO;
} else {
policy = SCHED_NORMAL;
sp.sched_priority = 0;
}
sched_setscheduler_nocheck(t, policy, &sp);
}
/*
* Timer handler to initiate the waking up of per-CPU kthreads that
* have yielded the CPU due to excess numbers of RCU callbacks.
* We wake up the per-rcu_node kthread, which in turn will wake up
* the booster kthread.
*/
static void rcu_cpu_kthread_timer(unsigned long arg)
{
struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
struct rcu_node *rnp = rdp->mynode;
atomic_or(rdp->grpmask, &rnp->wakemask);
invoke_rcu_node_kthread(rnp);
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
}
/*
* Drop to non-real-time priority and yield, but only after posting a
* timer that will cause us to regain our real-time priority if we
* remain preempted. Either way, we restore our real-time priority
* before returning.
*/
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
static void rcu_cpu_kthread_park(unsigned int cpu)
{
struct sched_param sp;
struct timer_list yield_timer;
int prio = current->rt_priority;
setup_timer_on_stack(&yield_timer, f, arg);
mod_timer(&yield_timer, jiffies + 2);
sp.sched_priority = 0;
sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
set_user_nice(current, 19);
schedule();
set_user_nice(current, 0);
sp.sched_priority = prio;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
del_timer(&yield_timer);
per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
}
/*
* Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
* This can happen while the corresponding CPU is either coming online
* or going offline. We cannot wait until the CPU is fully online
* before starting the kthread, because the various notifier functions
* can wait for RCU grace periods. So we park rcu_cpu_kthread() until
* the corresponding CPU is online.
*
* Return 1 if the kthread needs to stop, 0 otherwise.
*
* Caller must disable bh. This function can momentarily enable it.
*/
static int rcu_cpu_kthread_should_stop(int cpu)
static int rcu_cpu_kthread_should_run(unsigned int cpu)
{
while (cpu_is_offline(cpu) ||
!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
smp_processor_id() != cpu) {
if (kthread_should_stop())
return 1;
per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
local_bh_enable();
schedule_timeout_uninterruptible(1);
if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
set_cpus_allowed_ptr(current, cpumask_of(cpu));
local_bh_disable();
}
per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
return 0;
return __get_cpu_var(rcu_cpu_has_work);
}
/*
......@@ -1461,138 +1344,35 @@ static int rcu_cpu_kthread_should_stop(int cpu)
* RCU softirq used in flavors and configurations of RCU that do not
* support RCU priority boosting.
*/
static int rcu_cpu_kthread(void *arg)
static void rcu_cpu_kthread(unsigned int cpu)
{
int cpu = (int)(long)arg;
unsigned long flags;
int spincnt = 0;
unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
char work;
char *workp = &per_cpu(rcu_cpu_has_work, cpu);
unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
int spincnt;
trace_rcu_utilization("Start CPU kthread@init");
for (;;) {
*statusp = RCU_KTHREAD_WAITING;
trace_rcu_utilization("End CPU kthread@rcu_wait");
rcu_wait(*workp != 0 || kthread_should_stop());
for (spincnt = 0; spincnt < 10; spincnt++) {
trace_rcu_utilization("Start CPU kthread@rcu_wait");
local_bh_disable();
if (rcu_cpu_kthread_should_stop(cpu)) {
local_bh_enable();
break;
}
*statusp = RCU_KTHREAD_RUNNING;
per_cpu(rcu_cpu_kthread_loops, cpu)++;
local_irq_save(flags);
this_cpu_inc(rcu_cpu_kthread_loops);
local_irq_disable();
work = *workp;
*workp = 0;
local_irq_restore(flags);
local_irq_enable();
if (work)
rcu_kthread_do_work();
local_bh_enable();
if (*workp != 0)
spincnt++;
else
spincnt = 0;
if (spincnt > 10) {
*statusp = RCU_KTHREAD_YIELDING;
trace_rcu_utilization("End CPU kthread@rcu_yield");
rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
trace_rcu_utilization("Start CPU kthread@rcu_yield");
spincnt = 0;
}
}
*statusp = RCU_KTHREAD_STOPPED;
trace_rcu_utilization("End CPU kthread@term");
return 0;
}
/*
* Spawn a per-CPU kthread, setting up affinity and priority.
* Because the CPU hotplug lock is held, no other CPU will be attempting
* to manipulate rcu_cpu_kthread_task. There might be another CPU
* attempting to access it during boot, but the locking in kthread_bind()
* will enforce sufficient ordering.
*
* Please note that we cannot simply refuse to wake up the per-CPU
* kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
* which can result in softlockup complaints if the task ends up being
* idle for more than a couple of minutes.
*
* However, please note also that we cannot bind the per-CPU kthread to its
* CPU until that CPU is fully online. We also cannot wait until the
* CPU is fully online before we create its per-CPU kthread, as this would
* deadlock the system when CPU notifiers tried waiting for grace
* periods. So we bind the per-CPU kthread to its CPU only if the CPU
* is online. If its CPU is not yet fully online, then the code in
* rcu_cpu_kthread() will wait until it is fully online, and then do
* the binding.
*/
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
struct sched_param sp;
struct task_struct *t;
if (!rcu_scheduler_fully_active ||
per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
return 0;
t = kthread_create_on_node(rcu_cpu_kthread,
(void *)(long)cpu,
cpu_to_node(cpu),
"rcuc/%d", cpu);
if (IS_ERR(t))
return PTR_ERR(t);
if (cpu_online(cpu))
kthread_bind(t, cpu);
per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
per_cpu(rcu_cpu_kthread_task, cpu) = t;
wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
return 0;
}
/*
* Per-rcu_node kthread, which is in charge of waking up the per-CPU
* kthreads when needed. We ignore requests to wake up kthreads
* for offline CPUs, which is OK because force_quiescent_state()
* takes care of this case.
*/
static int rcu_node_kthread(void *arg)
{
int cpu;
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp = (struct rcu_node *)arg;
struct sched_param sp;
struct task_struct *t;
for (;;) {
rnp->node_kthread_status = RCU_KTHREAD_WAITING;
rcu_wait(atomic_read(&rnp->wakemask) != 0);
rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
raw_spin_lock_irqsave(&rnp->lock, flags);
mask = atomic_xchg(&rnp->wakemask, 0);
rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
if ((mask & 0x1) == 0)
continue;
preempt_disable();
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (!cpu_online(cpu) || t == NULL) {
preempt_enable();
continue;
}
per_cpu(rcu_cpu_has_work, cpu) = 1;
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
preempt_enable();
if (*workp == 0) {
trace_rcu_utilization("End CPU kthread@rcu_wait");
*statusp = RCU_KTHREAD_WAITING;
return;
}
}
/* NOTREACHED */
rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
return 0;
*statusp = RCU_KTHREAD_YIELDING;
trace_rcu_utilization("Start CPU kthread@rcu_yield");
schedule_timeout_interruptible(2);
trace_rcu_utilization("End CPU kthread@rcu_yield");
*statusp = RCU_KTHREAD_WAITING;
}
/*
......@@ -1604,17 +1384,17 @@ static int rcu_node_kthread(void *arg)
* no outgoing CPU. If there are no CPUs left in the affinity set,
* this function allows the kthread to execute on any CPU.
*/
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
struct task_struct *t = rnp->boost_kthread_task;
unsigned long mask = rnp->qsmaskinit;
cpumask_var_t cm;
int cpu;
unsigned long mask = rnp->qsmaskinit;
if (rnp->node_kthread_task == NULL)
if (!t)
return;
if (!alloc_cpumask_var(&cm, GFP_KERNEL))
if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
return;
cpumask_clear(cm);
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
if ((mask & 0x1) && cpu != outgoingcpu)
cpumask_set_cpu(cpu, cm);
......@@ -1624,62 +1404,36 @@ static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
cpumask_clear_cpu(cpu, cm);
WARN_ON_ONCE(cpumask_weight(cm) == 0);
}
set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
rcu_boost_kthread_setaffinity(rnp, cm);
set_cpus_allowed_ptr(t, cm);
free_cpumask_var(cm);
}
/*
* Spawn a per-rcu_node kthread, setting priority and affinity.
* Called during boot before online/offline can happen, or, if
* during runtime, with the main CPU-hotplug locks held. So only
* one of these can be executing at a time.
*/
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
struct rcu_node *rnp)
{
unsigned long flags;
int rnp_index = rnp - &rsp->node[0];
struct sched_param sp;
struct task_struct *t;
if (!rcu_scheduler_fully_active ||
rnp->qsmaskinit == 0)
return 0;
if (rnp->node_kthread_task == NULL) {
t = kthread_create(rcu_node_kthread, (void *)rnp,
"rcun/%d", rnp_index);
if (IS_ERR(t))
return PTR_ERR(t);
raw_spin_lock_irqsave(&rnp->lock, flags);
rnp->node_kthread_task = t;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
sp.sched_priority = 99;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
}
return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
}
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
.store = &rcu_cpu_kthread_task,
.thread_should_run = rcu_cpu_kthread_should_run,
.thread_fn = rcu_cpu_kthread,
.thread_comm = "rcuc/%u",
.setup = rcu_cpu_kthread_setup,
.park = rcu_cpu_kthread_park,
};
/*
* Spawn all kthreads -- called as soon as the scheduler is running.
*/
static int __init rcu_spawn_kthreads(void)
{
int cpu;
struct rcu_node *rnp;
int cpu;
rcu_scheduler_fully_active = 1;
for_each_possible_cpu(cpu) {
for_each_possible_cpu(cpu)
per_cpu(rcu_cpu_has_work, cpu) = 0;
if (cpu_online(cpu))
(void)rcu_spawn_one_cpu_kthread(cpu);
}
BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
rnp = rcu_get_root(rcu_state);
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
if (NUM_RCU_NODES > 1) {
rcu_for_each_leaf_node(rcu_state, rnp)
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
}
return 0;
}
......@@ -1691,11 +1445,8 @@ static void __cpuinit rcu_prepare_kthreads(int cpu)
struct rcu_node *rnp = rdp->mynode;
/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
if (rcu_scheduler_fully_active) {
(void)rcu_spawn_one_cpu_kthread(cpu);
if (rnp->node_kthread_task == NULL)
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
}
if (rcu_scheduler_fully_active)
(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
}
#else /* #ifdef CONFIG_RCU_BOOST */
......@@ -1719,19 +1470,7 @@ static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}
#ifdef CONFIG_HOTPLUG_CPU
static void rcu_stop_cpu_kthread(int cpu)
{
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}
......
......@@ -107,11 +107,10 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
rdp->nxttail[RCU_WAIT_TAIL]],
".D"[&rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]]);
#ifdef CONFIG_RCU_BOOST
seq_printf(m, " kt=%d/%c/%d ktl=%x",
seq_printf(m, " kt=%d/%c ktl=%x",
per_cpu(rcu_cpu_has_work, rdp->cpu),
convert_kthread_status(per_cpu(rcu_cpu_kthread_status,
rdp->cpu)),
per_cpu(rcu_cpu_kthread_cpu, rdp->cpu),
per_cpu(rcu_cpu_kthread_loops, rdp->cpu) & 0xffff);
#endif /* #ifdef CONFIG_RCU_BOOST */
seq_printf(m, " b=%ld", rdp->blimit);
......
/*
* Common SMP CPU bringup/teardown functions
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/smpboot.h>
#include "smpboot.h"
#ifdef CONFIG_SMP
#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
/*
* For the hotplug case we keep the task structs around and reuse
......@@ -65,3 +73,228 @@ void __init idle_threads_init(void)
}
}
#endif
#endif /* #ifdef CONFIG_SMP */
static LIST_HEAD(hotplug_threads);
static DEFINE_MUTEX(smpboot_threads_lock);
struct smpboot_thread_data {
unsigned int cpu;
unsigned int status;
struct smp_hotplug_thread *ht;
};
enum {
HP_THREAD_NONE = 0,
HP_THREAD_ACTIVE,
HP_THREAD_PARKED,
};
/**
* smpboot_thread_fn - percpu hotplug thread loop function
* @data: thread data pointer
*
* Checks for thread stop and park conditions. Calls the necessary
* setup, cleanup, park and unpark functions for the registered
* thread.
*
* Returns 1 when the thread should exit, 0 otherwise.
*/
static int smpboot_thread_fn(void *data)
{
struct smpboot_thread_data *td = data;
struct smp_hotplug_thread *ht = td->ht;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
preempt_disable();
if (kthread_should_stop()) {
set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->cleanup)
ht->cleanup(td->cpu, cpu_online(td->cpu));
kfree(td);
return 0;
}
if (kthread_should_park()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->park && td->status == HP_THREAD_ACTIVE) {
BUG_ON(td->cpu != smp_processor_id());
ht->park(td->cpu);
td->status = HP_THREAD_PARKED;
}
kthread_parkme();
/* We might have been woken for stop */
continue;
}
BUG_ON(td->cpu != smp_processor_id());
/* Check for state change setup */
switch (td->status) {
case HP_THREAD_NONE:
preempt_enable();
if (ht->setup)
ht->setup(td->cpu);
td->status = HP_THREAD_ACTIVE;
preempt_disable();
break;
case HP_THREAD_PARKED:
preempt_enable();
if (ht->unpark)
ht->unpark(td->cpu);
td->status = HP_THREAD_ACTIVE;
preempt_disable();
break;
}
if (!ht->thread_should_run(td->cpu)) {
preempt_enable();
schedule();
} else {
set_current_state(TASK_RUNNING);
preempt_enable();
ht->thread_fn(td->cpu);
}
}
}
static int
__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
struct smpboot_thread_data *td;
if (tsk)
return 0;
td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
if (!td)
return -ENOMEM;
td->cpu = cpu;
td->ht = ht;
tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
ht->thread_comm);
if (IS_ERR(tsk)) {
kfree(td);
return PTR_ERR(tsk);
}
get_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = tsk;
return 0;
}
int smpboot_create_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
int ret = 0;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list) {
ret = __smpboot_create_thread(cur, cpu);
if (ret)
break;
}
mutex_unlock(&smpboot_threads_lock);
return ret;
}
static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
kthread_unpark(tsk);
}
void smpboot_unpark_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry(cur, &hotplug_threads, list)
smpboot_unpark_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
{
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk)
kthread_park(tsk);
}
void smpboot_park_threads(unsigned int cpu)
{
struct smp_hotplug_thread *cur;
mutex_lock(&smpboot_threads_lock);
list_for_each_entry_reverse(cur, &hotplug_threads, list)
smpboot_park_thread(cur, cpu);
mutex_unlock(&smpboot_threads_lock);
}
static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
{
unsigned int cpu;
/* We need to destroy also the parked threads of offline cpus */
for_each_possible_cpu(cpu) {
struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
if (tsk) {
kthread_stop(tsk);
put_task_struct(tsk);
*per_cpu_ptr(ht->store, cpu) = NULL;
}
}
}
/**
* smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
* @plug_thread: Hotplug thread descriptor
*
* Creates and starts the threads on all online cpus.
*/
int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
unsigned int cpu;
int ret = 0;
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {
ret = __smpboot_create_thread(plug_thread, cpu);
if (ret) {
smpboot_destroy_threads(plug_thread);
goto out;
}
smpboot_unpark_thread(plug_thread, cpu);
}
list_add(&plug_thread->list, &hotplug_threads);
out:
mutex_unlock(&smpboot_threads_lock);
return ret;
}
EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
/**
* smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
* @plug_thread: Hotplug thread descriptor
*
* Stops all threads on all possible cpus.
*/
void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
list_del(&plug_thread->list);
smpboot_destroy_threads(plug_thread);
mutex_unlock(&smpboot_threads_lock);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
......@@ -13,4 +13,8 @@ static inline void idle_thread_set_boot_cpu(void) { }
static inline void idle_threads_init(void) { }
#endif
int smpboot_create_threads(unsigned int cpu);
void smpboot_park_threads(unsigned int cpu);
void smpboot_unpark_threads(unsigned int cpu);
#endif
......@@ -23,6 +23,7 @@
#include <linux/rcupdate.h>
#include <linux/ftrace.h>
#include <linux/smp.h>
#include <linux/smpboot.h>
#include <linux/tick.h>
#define CREATE_TRACE_POINTS
......@@ -742,49 +743,22 @@ void __init softirq_init(void)
open_softirq(HI_SOFTIRQ, tasklet_hi_action);
}
static int run_ksoftirqd(void * __bind_cpu)
static int ksoftirqd_should_run(unsigned int cpu)
{
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
preempt_disable();
if (!local_softirq_pending()) {
schedule_preempt_disabled();
}
__set_current_state(TASK_RUNNING);
while (local_softirq_pending()) {
/* Preempt disable stops cpu going offline.
If already offline, we'll be on wrong CPU:
don't process */
if (cpu_is_offline((long)__bind_cpu))
goto wait_to_die;
local_irq_disable();
if (local_softirq_pending())
__do_softirq();
local_irq_enable();
sched_preempt_enable_no_resched();
cond_resched();
preempt_disable();
rcu_note_context_switch((long)__bind_cpu);
}
preempt_enable();
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
return 0;
return local_softirq_pending();
}
wait_to_die:
preempt_enable();
/* Wait for kthread_stop */
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
schedule();
set_current_state(TASK_INTERRUPTIBLE);
static void run_ksoftirqd(unsigned int cpu)
{
local_irq_disable();
if (local_softirq_pending()) {
__do_softirq();
rcu_note_context_switch(cpu);
local_irq_enable();
cond_resched();
return;
}
__set_current_state(TASK_RUNNING);
return 0;
local_irq_enable();
}
#ifdef CONFIG_HOTPLUG_CPU
......@@ -850,50 +824,14 @@ static int __cpuinit cpu_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int hotcpu = (unsigned long)hcpu;
struct task_struct *p;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
p = kthread_create_on_node(run_ksoftirqd,
hcpu,
cpu_to_node(hotcpu),
"ksoftirqd/%d", hotcpu);
if (IS_ERR(p)) {
printk("ksoftirqd for %i failed\n", hotcpu);
return notifier_from_errno(PTR_ERR(p));
}
kthread_bind(p, hotcpu);
per_cpu(ksoftirqd, hotcpu) = p;
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
wake_up_process(per_cpu(ksoftirqd, hotcpu));
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!per_cpu(ksoftirqd, hotcpu))
break;
/* Unbind so it can run. Fall thru. */
kthread_bind(per_cpu(ksoftirqd, hotcpu),
cpumask_any(cpu_online_mask));
case CPU_DEAD:
case CPU_DEAD_FROZEN: {
static const struct sched_param param = {
.sched_priority = MAX_RT_PRIO-1
};
p = per_cpu(ksoftirqd, hotcpu);
per_cpu(ksoftirqd, hotcpu) = NULL;
sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
kthread_stop(p);
takeover_tasklets(hotcpu);
case CPU_DEAD_FROZEN:
takeover_tasklets((unsigned long)hcpu);
break;
}
#endif /* CONFIG_HOTPLUG_CPU */
}
}
return NOTIFY_OK;
}
......@@ -901,14 +839,19 @@ static struct notifier_block __cpuinitdata cpu_nfb = {
.notifier_call = cpu_callback
};
static struct smp_hotplug_thread softirq_threads = {
.store = &ksoftirqd,
.thread_should_run = ksoftirqd_should_run,
.thread_fn = run_ksoftirqd,
.thread_comm = "ksoftirqd/%u",
};
static __init int spawn_ksoftirqd(void)
{
void *cpu = (void *)(long)smp_processor_id();
int err = cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
BUG_ON(err != NOTIFY_OK);
cpu_callback(&cpu_nfb, CPU_ONLINE, cpu);
register_cpu_notifier(&cpu_nfb);
BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
return 0;
}
early_initcall(spawn_ksoftirqd);
......
......@@ -22,6 +22,7 @@
#include <linux/notifier.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/smpboot.h>
#include <asm/irq_regs.h>
#include <linux/kvm_para.h>
......@@ -29,16 +30,18 @@
int watchdog_enabled = 1;
int __read_mostly watchdog_thresh = 10;
static int __read_mostly watchdog_disabled;
static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
static DEFINE_PER_CPU(struct task_struct *, softlockup_watchdog);
static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
static DEFINE_PER_CPU(bool, softlockup_touch_sync);
static DEFINE_PER_CPU(bool, soft_watchdog_warn);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts);
static DEFINE_PER_CPU(unsigned long, soft_lockup_hrtimer_cnt);
#ifdef CONFIG_HARDLOCKUP_DETECTOR
static DEFINE_PER_CPU(bool, hard_watchdog_warn);
static DEFINE_PER_CPU(bool, watchdog_nmi_touch);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts_saved);
static DEFINE_PER_CPU(struct perf_event *, watchdog_ev);
#endif
......@@ -248,13 +251,15 @@ static void watchdog_overflow_callback(struct perf_event *event,
__this_cpu_write(hard_watchdog_warn, false);
return;
}
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
static void watchdog_interrupt_count(void)
{
__this_cpu_inc(hrtimer_interrupts);
}
#else
static inline void watchdog_interrupt_count(void) { return; }
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
static int watchdog_nmi_enable(unsigned int cpu);
static void watchdog_nmi_disable(unsigned int cpu);
/* watchdog kicker functions */
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
......@@ -327,49 +332,68 @@ static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
return HRTIMER_RESTART;
}
static void watchdog_set_prio(unsigned int policy, unsigned int prio)
{
struct sched_param param = { .sched_priority = prio };
/*
* The watchdog thread - touches the timestamp.
*/
static int watchdog(void *unused)
sched_setscheduler(current, policy, &param);
}
static void watchdog_enable(unsigned int cpu)
{
struct sched_param param = { .sched_priority = 0 };
struct hrtimer *hrtimer = &__raw_get_cpu_var(watchdog_hrtimer);
/* initialize timestamp */
__touch_watchdog();
if (!watchdog_enabled) {
kthread_park(current);
return;
}
/* Enable the perf event */
watchdog_nmi_enable(cpu);
/* kick off the timer for the hardlockup detector */
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function = watchdog_timer_fn;
/* done here because hrtimer_start can only pin to smp_processor_id() */
hrtimer_start(hrtimer, ns_to_ktime(get_sample_period()),
HRTIMER_MODE_REL_PINNED);
set_current_state(TASK_INTERRUPTIBLE);
/*
* Run briefly (kicked by the hrtimer callback function) once every
* get_sample_period() seconds (4 seconds by default) to reset the
* softlockup timestamp. If this gets delayed for more than
* 2*watchdog_thresh seconds then the debug-printout triggers in
* watchdog_timer_fn().
*/
while (!kthread_should_stop()) {
__touch_watchdog();
schedule();
/* initialize timestamp */
watchdog_set_prio(SCHED_FIFO, MAX_RT_PRIO - 1);
__touch_watchdog();
}
if (kthread_should_stop())
break;
static void watchdog_disable(unsigned int cpu)
{
struct hrtimer *hrtimer = &__raw_get_cpu_var(watchdog_hrtimer);
set_current_state(TASK_INTERRUPTIBLE);
}
/*
* Drop the policy/priority elevation during thread exit to avoid a
* scheduling latency spike.
*/
__set_current_state(TASK_RUNNING);
sched_setscheduler(current, SCHED_NORMAL, &param);
return 0;
watchdog_set_prio(SCHED_NORMAL, 0);
hrtimer_cancel(hrtimer);
/* disable the perf event */
watchdog_nmi_disable(cpu);
}
static int watchdog_should_run(unsigned int cpu)
{
return __this_cpu_read(hrtimer_interrupts) !=
__this_cpu_read(soft_lockup_hrtimer_cnt);
}
/*
* The watchdog thread function - touches the timestamp.
*
* It only runs once every get_sample_period() seconds (4 seconds by
* default) to reset the softlockup timestamp. If this gets delayed
* for more than 2*watchdog_thresh seconds then the debug-printout
* triggers in watchdog_timer_fn().
*/
static void watchdog(unsigned int cpu)
{
__this_cpu_write(soft_lockup_hrtimer_cnt,
__this_cpu_read(hrtimer_interrupts));
__touch_watchdog();
}
#ifdef CONFIG_HARDLOCKUP_DETECTOR
/*
......@@ -379,7 +403,7 @@ static int watchdog(void *unused)
*/
static unsigned long cpu0_err;
static int watchdog_nmi_enable(int cpu)
static int watchdog_nmi_enable(unsigned int cpu)
{
struct perf_event_attr *wd_attr;
struct perf_event *event = per_cpu(watchdog_ev, cpu);
......@@ -433,7 +457,7 @@ static int watchdog_nmi_enable(int cpu)
return 0;
}
static void watchdog_nmi_disable(int cpu)
static void watchdog_nmi_disable(unsigned int cpu)
{
struct perf_event *event = per_cpu(watchdog_ev, cpu);
......@@ -447,107 +471,35 @@ static void watchdog_nmi_disable(int cpu)
return;
}
#else
static int watchdog_nmi_enable(int cpu) { return 0; }
static void watchdog_nmi_disable(int cpu) { return; }
static int watchdog_nmi_enable(unsigned int cpu) { return 0; }
static void watchdog_nmi_disable(unsigned int cpu) { return; }
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
/* prepare/enable/disable routines */
static void watchdog_prepare_cpu(int cpu)
{
struct hrtimer *hrtimer = &per_cpu(watchdog_hrtimer, cpu);
WARN_ON(per_cpu(softlockup_watchdog, cpu));
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function = watchdog_timer_fn;
}
static int watchdog_enable(int cpu)
{
struct task_struct *p = per_cpu(softlockup_watchdog, cpu);
int err = 0;
/* enable the perf event */
err = watchdog_nmi_enable(cpu);
/* Regardless of err above, fall through and start softlockup */
/* create the watchdog thread */
if (!p) {
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
p = kthread_create_on_node(watchdog, NULL, cpu_to_node(cpu), "watchdog/%d", cpu);
if (IS_ERR(p)) {
pr_err("softlockup watchdog for %i failed\n", cpu);
if (!err) {
/* if hardlockup hasn't already set this */
err = PTR_ERR(p);
/* and disable the perf event */
watchdog_nmi_disable(cpu);
}
goto out;
}
sched_setscheduler(p, SCHED_FIFO, &param);
kthread_bind(p, cpu);
per_cpu(watchdog_touch_ts, cpu) = 0;
per_cpu(softlockup_watchdog, cpu) = p;
wake_up_process(p);
}
out:
return err;
}
static void watchdog_disable(int cpu)
{
struct task_struct *p = per_cpu(softlockup_watchdog, cpu);
struct hrtimer *hrtimer = &per_cpu(watchdog_hrtimer, cpu);
/*
* cancel the timer first to stop incrementing the stats
* and waking up the kthread
*/
hrtimer_cancel(hrtimer);
/* disable the perf event */
watchdog_nmi_disable(cpu);
/* stop the watchdog thread */
if (p) {
per_cpu(softlockup_watchdog, cpu) = NULL;
kthread_stop(p);
}
}
/* sysctl functions */
#ifdef CONFIG_SYSCTL
static void watchdog_enable_all_cpus(void)
{
int cpu;
watchdog_enabled = 0;
for_each_online_cpu(cpu)
if (!watchdog_enable(cpu))
/* if any cpu succeeds, watchdog is considered
enabled for the system */
watchdog_enabled = 1;
if (!watchdog_enabled)
pr_err("failed to be enabled on some cpus\n");
unsigned int cpu;
if (watchdog_disabled) {
watchdog_disabled = 0;
for_each_online_cpu(cpu)
kthread_unpark(per_cpu(softlockup_watchdog, cpu));
}
}
static void watchdog_disable_all_cpus(void)
{
int cpu;
for_each_online_cpu(cpu)
watchdog_disable(cpu);
unsigned int cpu;
/* if all watchdogs are disabled, then they are disabled for the system */
watchdog_enabled = 0;
if (!watchdog_disabled) {
watchdog_disabled = 1;
for_each_online_cpu(cpu)
kthread_park(per_cpu(softlockup_watchdog, cpu));
}
}
/*
* proc handler for /proc/sys/kernel/nmi_watchdog,watchdog_thresh
*/
......@@ -557,73 +509,36 @@ int proc_dowatchdog(struct ctl_table *table, int write,
{
int ret;
if (watchdog_disabled < 0)
return -ENODEV;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret || !write)
goto out;
return ret;
if (watchdog_enabled && watchdog_thresh)
watchdog_enable_all_cpus();
else
watchdog_disable_all_cpus();
out:
return ret;
}
#endif /* CONFIG_SYSCTL */
/*
* Create/destroy watchdog threads as CPUs come and go:
*/
static int __cpuinit
cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
int hotcpu = (unsigned long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
watchdog_prepare_cpu(hotcpu);
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
if (watchdog_enabled)
watchdog_enable(hotcpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
watchdog_disable(hotcpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
watchdog_disable(hotcpu);
break;
#endif /* CONFIG_HOTPLUG_CPU */
}
/*
* hardlockup and softlockup are not important enough
* to block cpu bring up. Just always succeed and
* rely on printk output to flag problems.
*/
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata cpu_nfb = {
.notifier_call = cpu_callback
static struct smp_hotplug_thread watchdog_threads = {
.store = &softlockup_watchdog,
.thread_should_run = watchdog_should_run,
.thread_fn = watchdog,
.thread_comm = "watchdog/%u",
.setup = watchdog_enable,
.park = watchdog_disable,
.unpark = watchdog_enable,
};
void __init lockup_detector_init(void)
{
void *cpu = (void *)(long)smp_processor_id();
int err;
err = cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
WARN_ON(notifier_to_errno(err));
cpu_callback(&cpu_nfb, CPU_ONLINE, cpu);
register_cpu_notifier(&cpu_nfb);
return;
if (smpboot_register_percpu_thread(&watchdog_threads)) {
pr_err("Failed to create watchdog threads, disabled\n");
watchdog_disabled = -ENODEV;
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment