Commit 5931e4eb authored by Thomas Gleixner's avatar Thomas Gleixner

Merge branch 'irq/core' into irq/urgent

Pull in the upstream changes so a fix for them can be applied.
parents ce7980ae 6f3ee0e2
......@@ -1277,11 +1277,11 @@ Manfred Spraul points out that you can still do this, even if the data
is very occasionally accessed in user context or softirqs/tasklets. The
irq handler doesn't use a lock, and all other accesses are done as so::
spin_lock(&lock);
mutex_lock(&lock);
disable_irq(irq);
...
enable_irq(irq);
spin_unlock(&lock);
mutex_unlock(&lock);
The disable_irq() prevents the irq handler from running
(and waits for it to finish if it's currently running on other CPUs).
......
......@@ -1307,11 +1307,11 @@ se i dati vengono occasionalmente utilizzati da un contesto utente o
da un'interruzione software. Il gestore d'interruzione non utilizza alcun
*lock*, e tutti gli altri accessi verranno fatti così::
spin_lock(&lock);
mutex_lock(&lock);
disable_irq(irq);
...
enable_irq(irq);
spin_unlock(&lock);
mutex_unlock(&lock);
La funzione disable_irq() impedisce al gestore d'interruzioni
d'essere eseguito (e aspetta che finisca nel caso fosse in esecuzione su
......
......@@ -10942,6 +10942,8 @@ L: linux-kernel@vger.kernel.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git irq/core
F: kernel/irq/
F: include/linux/group_cpus.h
F: lib/group_cpus.c
IRQCHIP DRIVERS
M: Thomas Gleixner <tglx@linutronix.de>
......
......@@ -2364,9 +2364,8 @@ static int mp_irqdomain_create(int ioapic)
return -ENODEV;
}
ip->irqdomain = irq_domain_create_linear(fn, hwirqs, cfg->ops,
(void *)(long)ioapic);
ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops,
(void *)(long)ioapic);
if (!ip->irqdomain) {
/* Release fw handle if it was allocated above */
if (!cfg->dev)
......@@ -2374,8 +2373,6 @@ static int mp_irqdomain_create(int ioapic)
return -ENOMEM;
}
ip->irqdomain->parent = parent;
if (cfg->type == IOAPIC_DOMAIN_LEGACY ||
cfg->type == IOAPIC_DOMAIN_STRICT)
ioapic_dynirq_base = max(ioapic_dynirq_base,
......
......@@ -166,10 +166,9 @@ static struct irq_domain *uv_get_irq_domain(void)
if (!fn)
goto out;
uv_domain = irq_domain_create_tree(fn, &uv_domain_ops, NULL);
if (uv_domain)
uv_domain->parent = x86_vector_domain;
else
uv_domain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0, fn,
&uv_domain_ops, NULL);
if (!uv_domain)
irq_domain_free_fwnode(fn);
out:
mutex_unlock(&uv_lock);
......
......@@ -10,66 +10,29 @@
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/group_cpus.h>
#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
static int queue_index(struct blk_mq_queue_map *qmap,
unsigned int nr_queues, const int q)
{
return qmap->queue_offset + (q % nr_queues);
}
static int get_first_sibling(unsigned int cpu)
{
unsigned int ret;
ret = cpumask_first(topology_sibling_cpumask(cpu));
if (ret < nr_cpu_ids)
return ret;
return cpu;
}
void blk_mq_map_queues(struct blk_mq_queue_map *qmap)
{
unsigned int *map = qmap->mq_map;
unsigned int nr_queues = qmap->nr_queues;
unsigned int cpu, first_sibling, q = 0;
for_each_possible_cpu(cpu)
map[cpu] = -1;
/*
* Spread queues among present CPUs first for minimizing
* count of dead queues which are mapped by all un-present CPUs
*/
for_each_present_cpu(cpu) {
if (q >= nr_queues)
break;
map[cpu] = queue_index(qmap, nr_queues, q++);
const struct cpumask *masks;
unsigned int queue, cpu;
masks = group_cpus_evenly(qmap->nr_queues);
if (!masks) {
for_each_possible_cpu(cpu)
qmap->mq_map[cpu] = qmap->queue_offset;
return;
}
for_each_possible_cpu(cpu) {
if (map[cpu] != -1)
continue;
/*
* First do sequential mapping between CPUs and queues.
* In case we still have CPUs to map, and we have some number of
* threads per cores then map sibling threads to the same queue
* for performance optimizations.
*/
if (q < nr_queues) {
map[cpu] = queue_index(qmap, nr_queues, q++);
} else {
first_sibling = get_first_sibling(cpu);
if (first_sibling == cpu)
map[cpu] = queue_index(qmap, nr_queues, q++);
else
map[cpu] = map[first_sibling];
}
for (queue = 0; queue < qmap->nr_queues; queue++) {
for_each_cpu(cpu, &masks[queue])
qmap->mq_map[cpu] = qmap->queue_offset + queue;
}
kfree(masks);
}
EXPORT_SYMBOL_GPL(blk_mq_map_queues);
......
......@@ -389,7 +389,7 @@ config LS_EXTIRQ
config LS_SCFG_MSI
def_bool y if SOC_LS1021A || ARCH_LAYERSCAPE
depends on PCI && PCI_MSI
depends on PCI_MSI
config PARTITION_PERCPU
bool
......@@ -658,6 +658,7 @@ config APPLE_AIC
bool "Apple Interrupt Controller (AIC)"
depends on ARM64
depends on ARCH_APPLE || COMPILE_TEST
select GENERIC_IRQ_IPI_MUX
help
Support for the Apple Interrupt Controller found on Apple Silicon SoCs,
such as the M1.
......
......@@ -199,21 +199,20 @@ static int alpine_msix_init_domains(struct alpine_msix_data *priv,
}
gic_domain = irq_find_host(gic_node);
of_node_put(gic_node);
if (!gic_domain) {
pr_err("Failed to find the GIC domain\n");
return -ENXIO;
}
middle_domain = irq_domain_add_tree(NULL,
&alpine_msix_middle_domain_ops,
priv);
middle_domain = irq_domain_add_hierarchy(gic_domain, 0, 0, NULL,
&alpine_msix_middle_domain_ops,
priv);
if (!middle_domain) {
pr_err("Failed to create the MSIX middle domain\n");
return -ENOMEM;
}
middle_domain->parent = gic_domain;
msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
&alpine_msix_domain_info,
middle_domain);
......
......@@ -292,7 +292,6 @@ struct aic_irq_chip {
void __iomem *base;
void __iomem *event;
struct irq_domain *hw_domain;
struct irq_domain *ipi_domain;
struct {
cpumask_t aff;
} *fiq_aff[AIC_NR_FIQ];
......@@ -307,9 +306,6 @@ struct aic_irq_chip {
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
......@@ -751,98 +747,8 @@ static void aic_ipi_send_fast(int cpu)
isb();
}
static void aic_ipi_mask(struct irq_data *d)
{
u32 irq_bit = BIT(irqd_to_hwirq(d));
/* No specific ordering requirements needed here. */
atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
}
static void aic_ipi_unmask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
/*
* The atomic_or() above must complete before the atomic_read()
* below to avoid racing aic_ipi_send_mask().
*/
smp_mb__after_atomic();
/*
* If a pending vIPI was unmasked, raise a HW IPI to ourselves.
* No barriers needed here since this is a self-IPI.
*/
if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(smp_processor_id());
else
aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
}
}
static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
u32 send = 0;
int cpu;
unsigned long pending;
for_each_cpu(cpu, mask) {
/*
* This sequence is the mirror of the one in aic_ipi_unmask();
* see the comment there. Additionally, release semantics
* ensure that the vIPI flag set is ordered after any shared
* memory accesses that precede it. This therefore also pairs
* with the atomic_fetch_andnot in aic_handle_ipi().
*/
pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
/*
* The atomic_fetch_or_release() above must complete before the
* atomic_read() below to avoid racing aic_ipi_unmask().
*/
smp_mb__after_atomic();
if (!(pending & irq_bit) &&
(atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(cpu);
else
send |= AIC_IPI_SEND_CPU(cpu);
}
}
/*
* The flag writes must complete before the physical IPI is issued
* to another CPU. This is implied by the control dependency on
* the result of atomic_read_acquire() above, which is itself
* already ordered after the vIPI flag write.
*/
if (send)
aic_ic_write(ic, AIC_IPI_SEND, send);
}
static struct irq_chip ipi_chip = {
.name = "AIC-IPI",
.irq_mask = aic_ipi_mask,
.irq_unmask = aic_ipi_unmask,
.ipi_send_mask = aic_ipi_send_mask,
};
/*
* IPI IRQ domain
*/
static void aic_handle_ipi(struct pt_regs *regs)
{
int i;
unsigned long enabled, firing;
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
......@@ -857,27 +763,7 @@ static void aic_handle_ipi(struct pt_regs *regs)
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
}
/*
* The mask read does not need to be ordered. Only we can change
* our own mask anyway, so no races are possible here, as long as
* we are properly in the interrupt handler (which is covered by
* the barrier that is part of the top-level AIC handler's readl()).
*/
enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
/*
* Clear the IPIs we are about to handle. This pairs with the
* atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
* ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
* before IPI handling code (to avoid races handling vIPIs before they
* are signaled). The former is taken care of by the release semantics
* of the write portion, while the latter is taken care of by the
* acquire semantics of the read portion.
*/
firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
for_each_set_bit(i, &firing, AIC_NR_SWIPI)
generic_handle_domain_irq(aic_irqc->ipi_domain, i);
ipi_mux_process();
/*
* No ordering needed here; at worst this just changes the timing of
......@@ -887,55 +773,24 @@ static void aic_handle_ipi(struct pt_regs *regs)
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
unsigned int nr_irqs, void *args)
static void aic_ipi_send_single(unsigned int cpu)
{
int i;
for (i = 0; i < nr_irqs; i++) {
irq_set_percpu_devid(virq + i);
irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
{
/* Not freeing IPIs */
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(cpu);
else
aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
}
static const struct irq_domain_ops aic_ipi_domain_ops = {
.alloc = aic_ipi_alloc,
.free = aic_ipi_free,
};
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
struct irq_domain *ipi_domain;
int base_ipi;
ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
&aic_ipi_domain_ops, irqc);
if (WARN_ON(!ipi_domain))
return -ENODEV;
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
NUMA_NO_NODE, NULL, false, NULL);
if (WARN_ON(!base_ipi)) {
irq_domain_remove(ipi_domain);
base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
if (WARN_ON(base_ipi <= 0))
return -ENODEV;
}
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
irqc->ipi_domain = ipi_domain;
return 0;
}
......
......@@ -454,8 +454,7 @@ static __init void armada_xp_ipi_init(struct device_node *node)
return;
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, IPI_DOORBELL_END,
NUMA_NO_NODE, NULL, false, NULL);
base_ipi = irq_domain_alloc_irqs(ipi_domain, IPI_DOORBELL_END, NUMA_NO_NODE, NULL);
if (WARN_ON(!base_ipi))
return;
......
......@@ -17,8 +17,9 @@
#define ASPEED_SCU_IC_REG 0x018
#define ASPEED_SCU_IC_SHIFT 0
#define ASPEED_SCU_IC_ENABLE GENMASK(6, ASPEED_SCU_IC_SHIFT)
#define ASPEED_SCU_IC_ENABLE GENMASK(15, ASPEED_SCU_IC_SHIFT)
#define ASPEED_SCU_IC_NUM_IRQS 7
#define ASPEED_SCU_IC_STATUS GENMASK(28, 16)
#define ASPEED_SCU_IC_STATUS_SHIFT 16
#define ASPEED_AST2600_SCU_IC0_REG 0x560
......@@ -155,6 +156,8 @@ static int aspeed_scu_ic_of_init_common(struct aspeed_scu_ic *scu_ic,
rc = PTR_ERR(scu_ic->scu);
goto err;
}
regmap_write_bits(scu_ic->scu, scu_ic->reg, ASPEED_SCU_IC_STATUS, ASPEED_SCU_IC_STATUS);
regmap_write_bits(scu_ic->scu, scu_ic->reg, ASPEED_SCU_IC_ENABLE, 0);
irq = irq_of_parse_and_map(node, 0);
if (!irq) {
......
......@@ -268,10 +268,7 @@ static void __init bcm2836_arm_irqchip_smp_init(void)
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, BITS_PER_MBOX,
NUMA_NO_NODE, NULL,
false, NULL);
base_ipi = irq_domain_alloc_irqs(ipi_domain, BITS_PER_MBOX, NUMA_NO_NODE, NULL);
if (WARN_ON(!base_ipi))
return;
......
......@@ -279,7 +279,8 @@ static int __init bcm7120_l2_intc_probe(struct device_node *dn,
flags |= IRQ_GC_BE_IO;
ret = irq_alloc_domain_generic_chips(data->domain, IRQS_PER_WORD, 1,
dn->full_name, handle_level_irq, clr, 0, flags);
dn->full_name, handle_level_irq, clr,
IRQ_LEVEL, flags);
if (ret) {
pr_err("failed to allocate generic irq chip\n");
goto out_free_domain;
......
......@@ -161,6 +161,7 @@ static int __init brcmstb_l2_intc_of_init(struct device_node *np,
*init_params)
{
unsigned int clr = IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN;
unsigned int set = 0;
struct brcmstb_l2_intc_data *data;
struct irq_chip_type *ct;
int ret;
......@@ -208,9 +209,12 @@ static int __init brcmstb_l2_intc_of_init(struct device_node *np,
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
flags |= IRQ_GC_BE_IO;
if (init_params->handler == handle_level_irq)
set |= IRQ_LEVEL;
/* Allocate a single Generic IRQ chip for this node */
ret = irq_alloc_domain_generic_chips(data->domain, 32, 1,
np->full_name, init_params->handler, clr, 0, flags);
np->full_name, init_params->handler, clr, set, flags);
if (ret) {
pr_err("failed to allocate generic irq chip\n");
goto out_free_domain;
......
......@@ -287,15 +287,14 @@ static __init int gicv2m_allocate_domains(struct irq_domain *parent)
if (!v2m)
return 0;
inner_domain = irq_domain_create_tree(v2m->fwnode,
&gicv2m_domain_ops, v2m);
inner_domain = irq_domain_create_hierarchy(parent, 0, 0, v2m->fwnode,
&gicv2m_domain_ops, v2m);
if (!inner_domain) {
pr_err("Failed to create GICv2m domain\n");
return -ENOMEM;
}
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
inner_domain->parent = parent;
pci_domain = pci_msi_create_irq_domain(v2m->fwnode,
&gicv2m_msi_domain_info,
inner_domain);
......
......@@ -4909,18 +4909,19 @@ static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
if (!info)
return -ENOMEM;
inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
info->ops = &its_msi_domain_ops;
info->data = its;
inner_domain = irq_domain_create_hierarchy(its_parent,
its->msi_domain_flags, 0,
handle, &its_domain_ops,
info);
if (!inner_domain) {
kfree(info);
return -ENOMEM;
}
inner_domain->parent = its_parent;
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
inner_domain->flags |= its->msi_domain_flags;
info->ops = &its_msi_domain_ops;
info->data = its;
inner_domain->host_data = info;
return 0;
}
......
......@@ -233,13 +233,12 @@ static int mbi_allocate_domains(struct irq_domain *parent)
struct irq_domain *nexus_domain, *pci_domain, *plat_domain;
int err;
nexus_domain = irq_domain_create_tree(parent->fwnode,
&mbi_domain_ops, NULL);
nexus_domain = irq_domain_create_hierarchy(parent, 0, 0, parent->fwnode,
&mbi_domain_ops, NULL);
if (!nexus_domain)
return -ENOMEM;
irq_domain_update_bus_token(nexus_domain, DOMAIN_BUS_NEXUS);
nexus_domain->parent = parent;
err = mbi_allocate_pci_domain(nexus_domain, &pci_domain);
......
......@@ -1310,9 +1310,7 @@ static void __init gic_smp_init(void)
gic_starting_cpu, NULL);
/* Register all 8 non-secure SGIs */
base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
NUMA_NO_NODE, &sgi_fwspec,
false, NULL);
base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
if (WARN_ON(base_sgi <= 0))
return;
......
......@@ -139,9 +139,7 @@ static int its_alloc_vcpu_sgis(struct its_vpe *vpe, int idx)
if (!vpe->sgi_domain)
goto err;
sgi_base = __irq_domain_alloc_irqs(vpe->sgi_domain, -1, 16,
NUMA_NO_NODE, vpe,
false, NULL);
sgi_base = irq_domain_alloc_irqs(vpe->sgi_domain, 16, NUMA_NO_NODE, vpe);
if (sgi_base <= 0)
goto err;
......@@ -176,9 +174,8 @@ int its_alloc_vcpu_irqs(struct its_vm *vm)
vm->vpes[i]->idai = true;
}
vpe_base_irq = __irq_domain_alloc_irqs(vm->domain, -1, vm->nr_vpes,
NUMA_NO_NODE, vm,
false, NULL);
vpe_base_irq = irq_domain_alloc_irqs(vm->domain, vm->nr_vpes,
NUMA_NO_NODE, vm);
if (vpe_base_irq <= 0)
goto err;
......
......@@ -868,9 +868,7 @@ static __init void gic_smp_init(void)
"irqchip/arm/gic:starting",
gic_starting_cpu, NULL);
base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
NUMA_NO_NODE, &sgi_fwspec,
false, NULL);
base_sgi = irq_domain_alloc_irqs(gic_data[0].domain, 8, NUMA_NO_NODE, &sgi_fwspec);
if (WARN_ON(base_sgi <= 0))
return;
......
......@@ -55,6 +55,8 @@ struct liointc_priv {
struct liointc_handler_data handler[LIOINTC_NUM_PARENT];
void __iomem *core_isr[LIOINTC_NUM_CORES];
u8 map_cache[LIOINTC_CHIP_IRQ];
u32 int_pol;
u32 int_edge;
bool has_lpc_irq_errata;
};
......@@ -138,6 +140,14 @@ static int liointc_set_type(struct irq_data *data, unsigned int type)
return 0;
}
static void liointc_suspend(struct irq_chip_generic *gc)
{
struct liointc_priv *priv = gc->private;
priv->int_pol = readl(gc->reg_base + LIOINTC_REG_INTC_POL);
priv->int_edge = readl(gc->reg_base + LIOINTC_REG_INTC_EDGE);
}
static void liointc_resume(struct irq_chip_generic *gc)
{
struct liointc_priv *priv = gc->private;
......@@ -150,6 +160,8 @@ static void liointc_resume(struct irq_chip_generic *gc)
/* Restore map cache */
for (i = 0; i < LIOINTC_CHIP_IRQ; i++)
writeb(priv->map_cache[i], gc->reg_base + i);
writel(priv->int_pol, gc->reg_base + LIOINTC_REG_INTC_POL);
writel(priv->int_edge, gc->reg_base + LIOINTC_REG_INTC_EDGE);
/* Restore mask cache */
writel(gc->mask_cache, gc->reg_base + LIOINTC_REG_INTC_ENABLE);
irq_gc_unlock_irqrestore(gc, flags);
......@@ -269,6 +281,7 @@ static int liointc_init(phys_addr_t addr, unsigned long size, int revision,
gc->private = priv;
gc->reg_base = base;
gc->domain = domain;
gc->suspend = liointc_suspend;
gc->resume = liointc_resume;
ct = gc->chip_types;
......
......@@ -163,16 +163,15 @@ static int pch_msi_init_domains(struct pch_msi_data *priv,
{
struct irq_domain *middle_domain, *msi_domain;
middle_domain = irq_domain_create_linear(domain_handle,
priv->num_irqs,
&pch_msi_middle_domain_ops,
priv);
middle_domain = irq_domain_create_hierarchy(parent, 0, priv->num_irqs,
domain_handle,
&pch_msi_middle_domain_ops,
priv);
if (!middle_domain) {
pr_err("Failed to create the MSI middle domain\n");
return -ENOMEM;
}
middle_domain->parent = parent;
irq_domain_update_bus_token(middle_domain, DOMAIN_BUS_NEXUS);
msi_domain = pci_msi_create_irq_domain(domain_handle,
......
......@@ -221,6 +221,7 @@ static int mvebu_gicp_probe(struct platform_device *pdev)
}
parent_domain = irq_find_host(irq_parent_dn);
of_node_put(irq_parent_dn);
if (!parent_domain) {
dev_err(&pdev->dev, "failed to find parent IRQ domain\n");
return -ENODEV;
......
......@@ -161,7 +161,7 @@ static struct msi_domain_info odmi_msi_domain_info = {
static int __init mvebu_odmi_init(struct device_node *node,
struct device_node *parent)
{
struct irq_domain *inner_domain, *plat_domain;
struct irq_domain *parent_domain, *inner_domain, *plat_domain;
int ret, i;
if (of_property_read_u32(node, "marvell,odmi-frames", &odmis_count))
......@@ -197,16 +197,17 @@ static int __init mvebu_odmi_init(struct device_node *node,
}
}
inner_domain = irq_domain_create_linear(of_node_to_fwnode(node),
odmis_count * NODMIS_PER_FRAME,
&odmi_domain_ops, NULL);
parent_domain = irq_find_host(parent);
inner_domain = irq_domain_create_hierarchy(parent_domain, 0,
odmis_count * NODMIS_PER_FRAME,
of_node_to_fwnode(node),
&odmi_domain_ops, NULL);
if (!inner_domain) {
ret = -ENOMEM;
goto err_unmap;
}
inner_domain->parent = irq_find_host(parent);
plat_domain = platform_msi_create_irq_domain(of_node_to_fwnode(node),
&odmi_msi_domain_info,
inner_domain);
......
......@@ -236,6 +236,7 @@ static int ti_sci_intr_irq_domain_probe(struct platform_device *pdev)
}
parent_domain = irq_find_host(parent_node);
of_node_put(parent_node);
if (!parent_domain) {
dev_err(dev, "Failed to find IRQ parent domain\n");
return -ENODEV;
......
......@@ -38,8 +38,10 @@ int platform_irqchip_probe(struct platform_device *pdev)
struct device_node *par_np = of_irq_find_parent(np);
of_irq_init_cb_t irq_init_cb = of_device_get_match_data(&pdev->dev);
if (!irq_init_cb)
if (!irq_init_cb) {
of_node_put(par_np);
return -EINVAL;
}
if (par_np == np)
par_np = NULL;
......@@ -52,8 +54,10 @@ int platform_irqchip_probe(struct platform_device *pdev)
* interrupt controller. The actual initialization callback of this
* interrupt controller can check for specific domains as necessary.
*/
if (par_np && !irq_find_matching_host(par_np, DOMAIN_BUS_ANY))
if (par_np && !irq_find_matching_host(par_np, DOMAIN_BUS_ANY)) {
of_node_put(par_np);
return -EPROBE_DEFER;
}
return irq_init_cb(np, par_np);
}
......
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2016 Thomas Gleixner.
* Copyright (C) 2016-2017 Christoph Hellwig.
*/
#ifndef __LINUX_GROUP_CPUS_H
#define __LINUX_GROUP_CPUS_H
#include <linux/kernel.h>
#include <linux/cpu.h>
struct cpumask *group_cpus_evenly(unsigned int numgrps);
#endif
......@@ -1266,6 +1266,9 @@ int __ipi_send_mask(struct irq_desc *desc, const struct cpumask *dest);
int ipi_send_single(unsigned int virq, unsigned int cpu);
int ipi_send_mask(unsigned int virq, const struct cpumask *dest);
void ipi_mux_process(void);
int ipi_mux_create(unsigned int nr_ipi, void (*mux_send)(unsigned int cpu));
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
/*
* Registers a generic IRQ handling function as the top-level IRQ handler in
......
......@@ -125,6 +125,8 @@ struct irq_domain_chip_generic;
* core code.
* @flags: Per irq_domain flags
* @mapcount: The number of mapped interrupts
* @mutex: Domain lock, hierarchical domains use root domain's lock
* @root: Pointer to root domain, or containing structure if non-hierarchical
*
* Optional elements:
* @fwnode: Pointer to firmware node associated with the irq_domain. Pretty easy
......@@ -143,7 +145,6 @@ struct irq_domain_chip_generic;
* Revmap data, used internally by the irq domain code:
* @revmap_size: Size of the linear map table @revmap[]
* @revmap_tree: Radix map tree for hwirqs that don't fit in the linear map
* @revmap_mutex: Lock for the revmap
* @revmap: Linear table of irq_data pointers
*/
struct irq_domain {
......@@ -153,6 +154,8 @@ struct irq_domain {
void *host_data;
unsigned int flags;
unsigned int mapcount;
struct mutex mutex;
struct irq_domain *root;
/* Optional data */
struct fwnode_handle *fwnode;
......@@ -171,7 +174,6 @@ struct irq_domain {
irq_hw_number_t hwirq_max;
unsigned int revmap_size;
struct radix_tree_root revmap_tree;
struct mutex revmap_mutex;
struct irq_data __rcu *revmap[];
};
......
......@@ -86,6 +86,11 @@ config GENERIC_IRQ_IPI
depends on SMP
select IRQ_DOMAIN_HIERARCHY
# Generic IRQ IPI Mux support
config GENERIC_IRQ_IPI_MUX
bool
depends on SMP
# Generic MSI hierarchical interrupt domain support
config GENERIC_MSI_IRQ
bool
......
......@@ -15,6 +15,7 @@ obj-$(CONFIG_GENERIC_IRQ_MIGRATION) += cpuhotplug.o
obj-$(CONFIG_PM_SLEEP) += pm.o
obj-$(CONFIG_GENERIC_MSI_IRQ) += msi.o
obj-$(CONFIG_GENERIC_IRQ_IPI) += ipi.o
obj-$(CONFIG_GENERIC_IRQ_IPI_MUX) += ipi-mux.o
obj-$(CONFIG_SMP) += affinity.o
obj-$(CONFIG_GENERIC_IRQ_DEBUGFS) += debugfs.o
obj-$(CONFIG_GENERIC_IRQ_MATRIX_ALLOCATOR) += matrix.o
......@@ -7,398 +7,7 @@
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/sort.h>
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
unsigned int cpus_per_vec)
{
const struct cpumask *siblmsk;
int cpu, sibl;
for ( ; cpus_per_vec > 0; ) {
cpu = cpumask_first(nmsk);
/* Should not happen, but I'm too lazy to think about it */
if (cpu >= nr_cpu_ids)
return;
cpumask_clear_cpu(cpu, nmsk);
cpumask_set_cpu(cpu, irqmsk);
cpus_per_vec--;
/* If the cpu has siblings, use them first */
siblmsk = topology_sibling_cpumask(cpu);
for (sibl = -1; cpus_per_vec > 0; ) {
sibl = cpumask_next(sibl, siblmsk);
if (sibl >= nr_cpu_ids)
break;
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
continue;
cpumask_set_cpu(sibl, irqmsk);
cpus_per_vec--;
}
}
}
static cpumask_var_t *alloc_node_to_cpumask(void)
{
cpumask_var_t *masks;
int node;
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
if (!masks)
return NULL;
for (node = 0; node < nr_node_ids; node++) {
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
goto out_unwind;
}
return masks;
out_unwind:
while (--node >= 0)
free_cpumask_var(masks[node]);
kfree(masks);
return NULL;
}
static void free_node_to_cpumask(cpumask_var_t *masks)
{
int node;
for (node = 0; node < nr_node_ids; node++)
free_cpumask_var(masks[node]);
kfree(masks);
}
static void build_node_to_cpumask(cpumask_var_t *masks)
{
int cpu;
for_each_possible_cpu(cpu)
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
}
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
const struct cpumask *mask, nodemask_t *nodemsk)
{
int n, nodes = 0;
/* Calculate the number of nodes in the supplied affinity mask */
for_each_node(n) {
if (cpumask_intersects(mask, node_to_cpumask[n])) {
node_set(n, *nodemsk);
nodes++;
}
}
return nodes;
}
struct node_vectors {
unsigned id;
union {
unsigned nvectors;
unsigned ncpus;
};
};
static int ncpus_cmp_func(const void *l, const void *r)
{
const struct node_vectors *ln = l;
const struct node_vectors *rn = r;
return ln->ncpus - rn->ncpus;
}
/*
* Allocate vector number for each node, so that for each node:
*
* 1) the allocated number is >= 1
*
* 2) the allocated numbver is <= active CPU number of this node
*
* The actual allocated total vectors may be less than @numvecs when
* active total CPU number is less than @numvecs.
*
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
* for each node.
*/
static void alloc_nodes_vectors(unsigned int numvecs,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
const nodemask_t nodemsk,
struct cpumask *nmsk,
struct node_vectors *node_vectors)
{
unsigned n, remaining_ncpus = 0;
for (n = 0; n < nr_node_ids; n++) {
node_vectors[n].id = n;
node_vectors[n].ncpus = UINT_MAX;
}
for_each_node_mask(n, nodemsk) {
unsigned ncpus;
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
ncpus = cpumask_weight(nmsk);
if (!ncpus)
continue;
remaining_ncpus += ncpus;
node_vectors[n].ncpus = ncpus;
}
numvecs = min_t(unsigned, remaining_ncpus, numvecs);
sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
ncpus_cmp_func, NULL);
/*
* Allocate vectors for each node according to the ratio of this
* node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
* bigger than number of active numa nodes. Always start the
* allocation from the node with minimized nr_cpus.
*
* This way guarantees that each active node gets allocated at
* least one vector, and the theory is simple: over-allocation
* is only done when this node is assigned by one vector, so
* other nodes will be allocated >= 1 vector, since 'numvecs' is
* bigger than number of numa nodes.
*
* One perfect invariant is that number of allocated vectors for
* each node is <= CPU count of this node:
*
* 1) suppose there are two nodes: A and B
* ncpu(X) is CPU count of node X
* vecs(X) is the vector count allocated to node X via this
* algorithm
*
* ncpu(A) <= ncpu(B)
* ncpu(A) + ncpu(B) = N
* vecs(A) + vecs(B) = V
*
* vecs(A) = max(1, round_down(V * ncpu(A) / N))
* vecs(B) = V - vecs(A)
*
* both N and V are integer, and 2 <= V <= N, suppose
* V = N - delta, and 0 <= delta <= N - 2
*
* 2) obviously vecs(A) <= ncpu(A) because:
*
* if vecs(A) is 1, then vecs(A) <= ncpu(A) given
* ncpu(A) >= 1
*
* otherwise,
* vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
*
* 3) prove how vecs(B) <= ncpu(B):
*
* if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
* over-allocated, so vecs(B) <= ncpu(B),
*
* otherwise:
*
* vecs(A) =
* round_down(V * ncpu(A) / N) =
* round_down((N - delta) * ncpu(A) / N) =
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
* round_down((N * ncpu(A) - delta * N) / N) =
* cpu(A) - delta
*
* then:
*
* vecs(A) - V >= ncpu(A) - delta - V
* =>
* V - vecs(A) <= V + delta - ncpu(A)
* =>
* vecs(B) <= N - ncpu(A)
* =>
* vecs(B) <= cpu(B)
*
* For nodes >= 3, it can be thought as one node and another big
* node given that is exactly what this algorithm is implemented,
* and we always re-calculate 'remaining_ncpus' & 'numvecs', and
* finally for each node X: vecs(X) <= ncpu(X).
*
*/
for (n = 0; n < nr_node_ids; n++) {
unsigned nvectors, ncpus;
if (node_vectors[n].ncpus == UINT_MAX)
continue;
WARN_ON_ONCE(numvecs == 0);
ncpus = node_vectors[n].ncpus;
nvectors = max_t(unsigned, 1,
numvecs * ncpus / remaining_ncpus);
WARN_ON_ONCE(nvectors > ncpus);
node_vectors[n].nvectors = nvectors;
remaining_ncpus -= ncpus;
numvecs -= nvectors;
}
}
static int __irq_build_affinity_masks(unsigned int startvec,
unsigned int numvecs,
unsigned int firstvec,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
struct cpumask *nmsk,
struct irq_affinity_desc *masks)
{
unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
unsigned int last_affv = firstvec + numvecs;
unsigned int curvec = startvec;
nodemask_t nodemsk = NODE_MASK_NONE;
struct node_vectors *node_vectors;
if (cpumask_empty(cpu_mask))
return 0;
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
/*
* If the number of nodes in the mask is greater than or equal the
* number of vectors we just spread the vectors across the nodes.
*/
if (numvecs <= nodes) {
for_each_node_mask(n, nodemsk) {
/* Ensure that only CPUs which are in both masks are set */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
if (++curvec == last_affv)
curvec = firstvec;
}
return numvecs;
}
node_vectors = kcalloc(nr_node_ids,
sizeof(struct node_vectors),
GFP_KERNEL);
if (!node_vectors)
return -ENOMEM;
/* allocate vector number for each node */
alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
nodemsk, nmsk, node_vectors);
for (i = 0; i < nr_node_ids; i++) {
unsigned int ncpus, v;
struct node_vectors *nv = &node_vectors[i];
if (nv->nvectors == UINT_MAX)
continue;
/* Get the cpus on this node which are in the mask */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
ncpus = cpumask_weight(nmsk);
if (!ncpus)
continue;
WARN_ON_ONCE(nv->nvectors > ncpus);
/* Account for rounding errors */
extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
/* Spread allocated vectors on CPUs of the current node */
for (v = 0; v < nv->nvectors; v++, curvec++) {
cpus_per_vec = ncpus / nv->nvectors;
/* Account for extra vectors to compensate rounding errors */
if (extra_vecs) {
cpus_per_vec++;
--extra_vecs;
}
/*
* wrapping has to be considered given 'startvec'
* may start anywhere
*/
if (curvec >= last_affv)
curvec = firstvec;
irq_spread_init_one(&masks[curvec].mask, nmsk,
cpus_per_vec);
}
done += nv->nvectors;
}
kfree(node_vectors);
return done;
}
/*
* build affinity in two stages:
* 1) spread present CPU on these vectors
* 2) spread other possible CPUs on these vectors
*/
static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
unsigned int firstvec,
struct irq_affinity_desc *masks)
{
unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
cpumask_var_t *node_to_cpumask;
cpumask_var_t nmsk, npresmsk;
int ret = -ENOMEM;
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
return ret;
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
goto fail_nmsk;
node_to_cpumask = alloc_node_to_cpumask();
if (!node_to_cpumask)
goto fail_npresmsk;
/* Stabilize the cpumasks */
cpus_read_lock();
build_node_to_cpumask(node_to_cpumask);
/* Spread on present CPUs starting from affd->pre_vectors */
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
node_to_cpumask, cpu_present_mask,
nmsk, masks);
if (ret < 0)
goto fail_build_affinity;
nr_present = ret;
/*
* Spread on non present CPUs starting from the next vector to be
* handled. If the spreading of present CPUs already exhausted the
* vector space, assign the non present CPUs to the already spread
* out vectors.
*/
if (nr_present >= numvecs)
curvec = firstvec;
else
curvec = firstvec + nr_present;
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
node_to_cpumask, npresmsk, nmsk,
masks);
if (ret >= 0)
nr_others = ret;
fail_build_affinity:
cpus_read_unlock();
if (ret >= 0)
WARN_ON(nr_present + nr_others < numvecs);
free_node_to_cpumask(node_to_cpumask);
fail_npresmsk:
free_cpumask_var(npresmsk);
fail_nmsk:
free_cpumask_var(nmsk);
return ret < 0 ? ret : 0;
}
#include <linux/group_cpus.h>
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
{
......@@ -461,14 +70,18 @@ irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
*/
for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
unsigned int this_vecs = affd->set_size[i];
int ret;
int j;
struct cpumask *result = group_cpus_evenly(this_vecs);
ret = irq_build_affinity_masks(curvec, this_vecs,
curvec, masks);
if (ret) {
if (!result) {
kfree(masks);
return NULL;
}
for (j = 0; j < this_vecs; j++)
cpumask_copy(&masks[curvec + j].mask, &result[j]);
kfree(result);
curvec += this_vecs;
usedvecs += this_vecs;
}
......
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Multiplex several virtual IPIs over a single HW IPI.
*
* Copyright The Asahi Linux Contributors
* Copyright (c) 2022 Ventana Micro Systems Inc.
*/
#define pr_fmt(fmt) "ipi-mux: " fmt
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqchip.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/jump_label.h>
#include <linux/percpu.h>
#include <linux/smp.h>
struct ipi_mux_cpu {
atomic_t enable;
atomic_t bits;
};
static struct ipi_mux_cpu __percpu *ipi_mux_pcpu;
static struct irq_domain *ipi_mux_domain;
static void (*ipi_mux_send)(unsigned int cpu);
static void ipi_mux_mask(struct irq_data *d)
{
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
atomic_andnot(BIT(irqd_to_hwirq(d)), &icpu->enable);
}
static void ipi_mux_unmask(struct irq_data *d)
{
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
u32 ibit = BIT(irqd_to_hwirq(d));
atomic_or(ibit, &icpu->enable);
/*
* The atomic_or() above must complete before the atomic_read()
* below to avoid racing ipi_mux_send_mask().
*/
smp_mb__after_atomic();
/* If a pending IPI was unmasked, raise a parent IPI immediately. */
if (atomic_read(&icpu->bits) & ibit)
ipi_mux_send(smp_processor_id());
}
static void ipi_mux_send_mask(struct irq_data *d, const struct cpumask *mask)
{
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
u32 ibit = BIT(irqd_to_hwirq(d));
unsigned long pending;
int cpu;
for_each_cpu(cpu, mask) {
icpu = per_cpu_ptr(ipi_mux_pcpu, cpu);
/*
* This sequence is the mirror of the one in ipi_mux_unmask();
* see the comment there. Additionally, release semantics
* ensure that the vIPI flag set is ordered after any shared
* memory accesses that precede it. This therefore also pairs
* with the atomic_fetch_andnot in ipi_mux_process().
*/
pending = atomic_fetch_or_release(ibit, &icpu->bits);
/*
* The atomic_fetch_or_release() above must complete
* before the atomic_read() below to avoid racing with
* ipi_mux_unmask().
*/
smp_mb__after_atomic();
/*
* The flag writes must complete before the physical IPI is
* issued to another CPU. This is implied by the control
* dependency on the result of atomic_read() below, which is
* itself already ordered after the vIPI flag write.
*/
if (!(pending & ibit) && (atomic_read(&icpu->enable) & ibit))
ipi_mux_send(cpu);
}
}
static const struct irq_chip ipi_mux_chip = {
.name = "IPI Mux",
.irq_mask = ipi_mux_mask,
.irq_unmask = ipi_mux_unmask,
.ipi_send_mask = ipi_mux_send_mask,
};
static int ipi_mux_domain_alloc(struct irq_domain *d, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i;
for (i = 0; i < nr_irqs; i++) {
irq_set_percpu_devid(virq + i);
irq_domain_set_info(d, virq + i, i, &ipi_mux_chip, NULL,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static const struct irq_domain_ops ipi_mux_domain_ops = {
.alloc = ipi_mux_domain_alloc,
.free = irq_domain_free_irqs_top,
};
/**
* ipi_mux_process - Process multiplexed virtual IPIs
*/
void ipi_mux_process(void)
{
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
irq_hw_number_t hwirq;
unsigned long ipis;
unsigned int en;
/*
* Reading enable mask does not need to be ordered as long as
* this function is called from interrupt handler because only
* the CPU itself can change it's own enable mask.
*/
en = atomic_read(&icpu->enable);
/*
* Clear the IPIs we are about to handle. This pairs with the
* atomic_fetch_or_release() in ipi_mux_send_mask().
*/
ipis = atomic_fetch_andnot(en, &icpu->bits) & en;
for_each_set_bit(hwirq, &ipis, BITS_PER_TYPE(int))
generic_handle_domain_irq(ipi_mux_domain, hwirq);
}
/**
* ipi_mux_create - Create virtual IPIs multiplexed on top of a single
* parent IPI.
* @nr_ipi: number of virtual IPIs to create. This should
* be <= BITS_PER_TYPE(int)
* @mux_send: callback to trigger parent IPI for a particular CPU
*
* Returns first virq of the newly created virtual IPIs upon success
* or <=0 upon failure
*/
int ipi_mux_create(unsigned int nr_ipi, void (*mux_send)(unsigned int cpu))
{
struct fwnode_handle *fwnode;
struct irq_domain *domain;
int rc;
if (ipi_mux_domain)
return -EEXIST;
if (BITS_PER_TYPE(int) < nr_ipi || !mux_send)
return -EINVAL;
ipi_mux_pcpu = alloc_percpu(typeof(*ipi_mux_pcpu));
if (!ipi_mux_pcpu)
return -ENOMEM;
fwnode = irq_domain_alloc_named_fwnode("IPI-Mux");
if (!fwnode) {
pr_err("unable to create IPI Mux fwnode\n");
rc = -ENOMEM;
goto fail_free_cpu;
}
domain = irq_domain_create_linear(fwnode, nr_ipi,
&ipi_mux_domain_ops, NULL);
if (!domain) {
pr_err("unable to add IPI Mux domain\n");
rc = -ENOMEM;
goto fail_free_fwnode;
}
domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
irq_domain_update_bus_token(domain, DOMAIN_BUS_IPI);
rc = irq_domain_alloc_irqs(domain, nr_ipi, NUMA_NO_NODE, NULL);
if (rc <= 0) {
pr_err("unable to alloc IRQs from IPI Mux domain\n");
goto fail_free_domain;
}
ipi_mux_domain = domain;
ipi_mux_send = mux_send;
return rc;
fail_free_domain:
irq_domain_remove(domain);
fail_free_fwnode:
irq_domain_free_fwnode(fwnode);
fail_free_cpu:
free_percpu(ipi_mux_pcpu);
return rc;
}
......@@ -25,6 +25,9 @@ static DEFINE_MUTEX(irq_domain_mutex);
static struct irq_domain *irq_default_domain;
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity);
static void irq_domain_check_hierarchy(struct irq_domain *domain);
struct irqchip_fwid {
......@@ -123,23 +126,12 @@ void irq_domain_free_fwnode(struct fwnode_handle *fwnode)
}
EXPORT_SYMBOL_GPL(irq_domain_free_fwnode);
/**
* __irq_domain_add() - Allocate a new irq_domain data structure
* @fwnode: firmware node for the interrupt controller
* @size: Size of linear map; 0 for radix mapping only
* @hwirq_max: Maximum number of interrupts supported by controller
* @direct_max: Maximum value of direct maps; Use ~0 for no limit; 0 for no
* direct mapping
* @ops: domain callbacks
* @host_data: Controller private data pointer
*
* Allocates and initializes an irq_domain structure.
* Returns pointer to IRQ domain, or NULL on failure.
*/
struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int size,
irq_hw_number_t hwirq_max, int direct_max,
const struct irq_domain_ops *ops,
void *host_data)
static struct irq_domain *__irq_domain_create(struct fwnode_handle *fwnode,
unsigned int size,
irq_hw_number_t hwirq_max,
int direct_max,
const struct irq_domain_ops *ops,
void *host_data)
{
struct irqchip_fwid *fwid;
struct irq_domain *domain;
......@@ -214,25 +206,66 @@ struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int s
/* Fill structure */
INIT_RADIX_TREE(&domain->revmap_tree, GFP_KERNEL);
mutex_init(&domain->revmap_mutex);
domain->ops = ops;
domain->host_data = host_data;
domain->hwirq_max = hwirq_max;
if (direct_max) {
if (direct_max)
domain->flags |= IRQ_DOMAIN_FLAG_NO_MAP;
}
domain->revmap_size = size;
/*
* Hierarchical domains use the domain lock of the root domain
* (innermost domain).
*
* For non-hierarchical domains (as for root domains), the root
* pointer is set to the domain itself so that &domain->root->mutex
* always points to the right lock.
*/
mutex_init(&domain->mutex);
domain->root = domain;
irq_domain_check_hierarchy(domain);
return domain;
}
static void __irq_domain_publish(struct irq_domain *domain)
{
mutex_lock(&irq_domain_mutex);
debugfs_add_domain_dir(domain);
list_add(&domain->link, &irq_domain_list);
mutex_unlock(&irq_domain_mutex);
pr_debug("Added domain %s\n", domain->name);
}
/**
* __irq_domain_add() - Allocate a new irq_domain data structure
* @fwnode: firmware node for the interrupt controller
* @size: Size of linear map; 0 for radix mapping only
* @hwirq_max: Maximum number of interrupts supported by controller
* @direct_max: Maximum value of direct maps; Use ~0 for no limit; 0 for no
* direct mapping
* @ops: domain callbacks
* @host_data: Controller private data pointer
*
* Allocates and initializes an irq_domain structure.
* Returns pointer to IRQ domain, or NULL on failure.
*/
struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int size,
irq_hw_number_t hwirq_max, int direct_max,
const struct irq_domain_ops *ops,
void *host_data)
{
struct irq_domain *domain;
domain = __irq_domain_create(fwnode, size, hwirq_max, direct_max,
ops, host_data);
if (domain)
__irq_domain_publish(domain);
return domain;
}
EXPORT_SYMBOL_GPL(__irq_domain_add);
......@@ -502,30 +535,34 @@ static bool irq_domain_is_nomap(struct irq_domain *domain)
static void irq_domain_clear_mapping(struct irq_domain *domain,
irq_hw_number_t hwirq)
{
lockdep_assert_held(&domain->root->mutex);
if (irq_domain_is_nomap(domain))
return;
mutex_lock(&domain->revmap_mutex);
if (hwirq < domain->revmap_size)
rcu_assign_pointer(domain->revmap[hwirq], NULL);
else
radix_tree_delete(&domain->revmap_tree, hwirq);
mutex_unlock(&domain->revmap_mutex);
}
static void irq_domain_set_mapping(struct irq_domain *domain,
irq_hw_number_t hwirq,
struct irq_data *irq_data)
{
/*
* This also makes sure that all domains point to the same root when
* called from irq_domain_insert_irq() for each domain in a hierarchy.
*/
lockdep_assert_held(&domain->root->mutex);
if (irq_domain_is_nomap(domain))
return;
mutex_lock(&domain->revmap_mutex);
if (hwirq < domain->revmap_size)
rcu_assign_pointer(domain->revmap[hwirq], irq_data);
else
radix_tree_insert(&domain->revmap_tree, hwirq, irq_data);
mutex_unlock(&domain->revmap_mutex);
}
static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
......@@ -538,6 +575,9 @@ static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
return;
hwirq = irq_data->hwirq;
mutex_lock(&domain->root->mutex);
irq_set_status_flags(irq, IRQ_NOREQUEST);
/* remove chip and handler */
......@@ -557,10 +597,12 @@ static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
/* Clear reverse map for this hwirq */
irq_domain_clear_mapping(domain, hwirq);
mutex_unlock(&domain->root->mutex);
}
int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
irq_hw_number_t hwirq)
static int irq_domain_associate_locked(struct irq_domain *domain, unsigned int virq,
irq_hw_number_t hwirq)
{
struct irq_data *irq_data = irq_get_irq_data(virq);
int ret;
......@@ -573,7 +615,6 @@ int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
if (WARN(irq_data->domain, "error: virq%i is already associated", virq))
return -EINVAL;
mutex_lock(&irq_domain_mutex);
irq_data->hwirq = hwirq;
irq_data->domain = domain;
if (domain->ops->map) {
......@@ -590,23 +631,29 @@ int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
}
irq_data->domain = NULL;
irq_data->hwirq = 0;
mutex_unlock(&irq_domain_mutex);
return ret;
}
/* If not already assigned, give the domain the chip's name */
if (!domain->name && irq_data->chip)
domain->name = irq_data->chip->name;
}
domain->mapcount++;
irq_domain_set_mapping(domain, hwirq, irq_data);
mutex_unlock(&irq_domain_mutex);
irq_clear_status_flags(virq, IRQ_NOREQUEST);
return 0;
}
int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
irq_hw_number_t hwirq)
{
int ret;
mutex_lock(&domain->root->mutex);
ret = irq_domain_associate_locked(domain, virq, hwirq);
mutex_unlock(&domain->root->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(irq_domain_associate);
void irq_domain_associate_many(struct irq_domain *domain, unsigned int irq_base,
......@@ -619,9 +666,8 @@ void irq_domain_associate_many(struct irq_domain *domain, unsigned int irq_base,
pr_debug("%s(%s, irqbase=%i, hwbase=%i, count=%i)\n", __func__,
of_node_full_name(of_node), irq_base, (int)hwirq_base, count);
for (i = 0; i < count; i++) {
for (i = 0; i < count; i++)
irq_domain_associate(domain, irq_base + i, hwirq_base + i);
}
}
EXPORT_SYMBOL_GPL(irq_domain_associate_many);
......@@ -668,6 +714,34 @@ unsigned int irq_create_direct_mapping(struct irq_domain *domain)
EXPORT_SYMBOL_GPL(irq_create_direct_mapping);
#endif
static unsigned int irq_create_mapping_affinity_locked(struct irq_domain *domain,
irq_hw_number_t hwirq,
const struct irq_affinity_desc *affinity)
{
struct device_node *of_node = irq_domain_get_of_node(domain);
int virq;
pr_debug("irq_create_mapping(0x%p, 0x%lx)\n", domain, hwirq);
/* Allocate a virtual interrupt number */
virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node),
affinity);
if (virq <= 0) {
pr_debug("-> virq allocation failed\n");
return 0;
}
if (irq_domain_associate_locked(domain, virq, hwirq)) {
irq_free_desc(virq);
return 0;
}
pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
hwirq, of_node_full_name(of_node), virq);
return virq;
}
/**
* irq_create_mapping_affinity() - Map a hardware interrupt into linux irq space
* @domain: domain owning this hardware interrupt or NULL for default domain
......@@ -680,14 +754,11 @@ EXPORT_SYMBOL_GPL(irq_create_direct_mapping);
* on the number returned from that call.
*/
unsigned int irq_create_mapping_affinity(struct irq_domain *domain,
irq_hw_number_t hwirq,
const struct irq_affinity_desc *affinity)
irq_hw_number_t hwirq,
const struct irq_affinity_desc *affinity)
{
struct device_node *of_node;
int virq;
pr_debug("irq_create_mapping(0x%p, 0x%lx)\n", domain, hwirq);
/* Look for default domain if necessary */
if (domain == NULL)
domain = irq_default_domain;
......@@ -695,32 +766,19 @@ unsigned int irq_create_mapping_affinity(struct irq_domain *domain,
WARN(1, "%s(, %lx) called with NULL domain\n", __func__, hwirq);
return 0;
}
pr_debug("-> using domain @%p\n", domain);
of_node = irq_domain_get_of_node(domain);
mutex_lock(&domain->root->mutex);
/* Check if mapping already exists */
virq = irq_find_mapping(domain, hwirq);
if (virq) {
pr_debug("-> existing mapping on virq %d\n", virq);
return virq;
}
/* Allocate a virtual interrupt number */
virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node),
affinity);
if (virq <= 0) {
pr_debug("-> virq allocation failed\n");
return 0;
}
if (irq_domain_associate(domain, virq, hwirq)) {
irq_free_desc(virq);
return 0;
pr_debug("existing mapping on virq %d\n", virq);
goto out;
}
pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
hwirq, of_node_full_name(of_node), virq);
virq = irq_create_mapping_affinity_locked(domain, hwirq, affinity);
out:
mutex_unlock(&domain->root->mutex);
return virq;
}
......@@ -789,6 +847,8 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
if (WARN_ON(type & ~IRQ_TYPE_SENSE_MASK))
type &= IRQ_TYPE_SENSE_MASK;
mutex_lock(&domain->root->mutex);
/*
* If we've already configured this interrupt,
* don't do it again, or hell will break loose.
......@@ -801,7 +861,7 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
* interrupt number.
*/
if (type == IRQ_TYPE_NONE || type == irq_get_trigger_type(virq))
return virq;
goto out;
/*
* If the trigger type has not been set yet, then set
......@@ -809,40 +869,45 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
*/
if (irq_get_trigger_type(virq) == IRQ_TYPE_NONE) {
irq_data = irq_get_irq_data(virq);
if (!irq_data)
return 0;
if (!irq_data) {
virq = 0;
goto out;
}
irqd_set_trigger_type(irq_data, type);
return virq;
goto out;
}
pr_warn("type mismatch, failed to map hwirq-%lu for %s!\n",
hwirq, of_node_full_name(to_of_node(fwspec->fwnode)));
return 0;
virq = 0;
goto out;
}
if (irq_domain_is_hierarchy(domain)) {
virq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, fwspec);
if (virq <= 0)
return 0;
virq = irq_domain_alloc_irqs_locked(domain, -1, 1, NUMA_NO_NODE,
fwspec, false, NULL);
if (virq <= 0) {
virq = 0;
goto out;
}
} else {
/* Create mapping */
virq = irq_create_mapping(domain, hwirq);
virq = irq_create_mapping_affinity_locked(domain, hwirq, NULL);
if (!virq)
return virq;
goto out;
}
irq_data = irq_get_irq_data(virq);
if (!irq_data) {
if (irq_domain_is_hierarchy(domain))
irq_domain_free_irqs(virq, 1);
else
irq_dispose_mapping(virq);
return 0;
if (WARN_ON(!irq_data)) {
virq = 0;
goto out;
}
/* Store trigger type */
irqd_set_trigger_type(irq_data, type);
out:
mutex_unlock(&domain->root->mutex);
return virq;
}
......@@ -1102,12 +1167,16 @@ struct irq_domain *irq_domain_create_hierarchy(struct irq_domain *parent,
struct irq_domain *domain;
if (size)
domain = irq_domain_create_linear(fwnode, size, ops, host_data);
domain = __irq_domain_create(fwnode, size, size, 0, ops, host_data);
else
domain = irq_domain_create_tree(fwnode, ops, host_data);
domain = __irq_domain_create(fwnode, 0, ~0, 0, ops, host_data);
if (domain) {
domain->root = parent->root;
domain->parent = parent;
domain->flags |= flags;
__irq_domain_publish(domain);
}
return domain;
......@@ -1123,10 +1192,6 @@ static void irq_domain_insert_irq(int virq)
domain->mapcount++;
irq_domain_set_mapping(domain, data->hwirq, data);
/* If not already assigned, give the domain the chip's name */
if (!domain->name && data->chip)
domain->name = data->chip->name;
}
irq_clear_status_flags(virq, IRQ_NOREQUEST);
......@@ -1426,40 +1491,12 @@ int irq_domain_alloc_irqs_hierarchy(struct irq_domain *domain,
return domain->ops->alloc(domain, irq_base, nr_irqs, arg);
}
/**
* __irq_domain_alloc_irqs - Allocate IRQs from domain
* @domain: domain to allocate from
* @irq_base: allocate specified IRQ number if irq_base >= 0
* @nr_irqs: number of IRQs to allocate
* @node: NUMA node id for memory allocation
* @arg: domain specific argument
* @realloc: IRQ descriptors have already been allocated if true
* @affinity: Optional irq affinity mask for multiqueue devices
*
* Allocate IRQ numbers and initialized all data structures to support
* hierarchy IRQ domains.
* Parameter @realloc is mainly to support legacy IRQs.
* Returns error code or allocated IRQ number
*
* The whole process to setup an IRQ has been split into two steps.
* The first step, __irq_domain_alloc_irqs(), is to allocate IRQ
* descriptor and required hardware resources. The second step,
* irq_domain_activate_irq(), is to program the hardware with preallocated
* resources. In this way, it's easier to rollback when failing to
* allocate resources.
*/
int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity)
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity)
{
int i, ret, virq;
if (domain == NULL) {
domain = irq_default_domain;
if (WARN(!domain, "domain is NULL; cannot allocate IRQ\n"))
return -EINVAL;
}
if (realloc && irq_base >= 0) {
virq = irq_base;
} else {
......@@ -1478,24 +1515,18 @@ int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
goto out_free_desc;
}
mutex_lock(&irq_domain_mutex);
ret = irq_domain_alloc_irqs_hierarchy(domain, virq, nr_irqs, arg);
if (ret < 0) {
mutex_unlock(&irq_domain_mutex);
if (ret < 0)
goto out_free_irq_data;
}
for (i = 0; i < nr_irqs; i++) {
ret = irq_domain_trim_hierarchy(virq + i);
if (ret) {
mutex_unlock(&irq_domain_mutex);
if (ret)
goto out_free_irq_data;
}
}
for (i = 0; i < nr_irqs; i++)
irq_domain_insert_irq(virq + i);
mutex_unlock(&irq_domain_mutex);
return virq;
......@@ -1505,6 +1536,48 @@ int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
irq_free_descs(virq, nr_irqs);
return ret;
}
/**
* __irq_domain_alloc_irqs - Allocate IRQs from domain
* @domain: domain to allocate from
* @irq_base: allocate specified IRQ number if irq_base >= 0
* @nr_irqs: number of IRQs to allocate
* @node: NUMA node id for memory allocation
* @arg: domain specific argument
* @realloc: IRQ descriptors have already been allocated if true
* @affinity: Optional irq affinity mask for multiqueue devices
*
* Allocate IRQ numbers and initialized all data structures to support
* hierarchy IRQ domains.
* Parameter @realloc is mainly to support legacy IRQs.
* Returns error code or allocated IRQ number
*
* The whole process to setup an IRQ has been split into two steps.
* The first step, __irq_domain_alloc_irqs(), is to allocate IRQ
* descriptor and required hardware resources. The second step,
* irq_domain_activate_irq(), is to program the hardware with preallocated
* resources. In this way, it's easier to rollback when failing to
* allocate resources.
*/
int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity)
{
int ret;
if (domain == NULL) {
domain = irq_default_domain;
if (WARN(!domain, "domain is NULL; cannot allocate IRQ\n"))
return -EINVAL;
}
mutex_lock(&domain->root->mutex);
ret = irq_domain_alloc_irqs_locked(domain, irq_base, nr_irqs, node, arg,
realloc, affinity);
mutex_unlock(&domain->root->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(__irq_domain_alloc_irqs);
/* The irq_data was moved, fix the revmap to refer to the new location */
......@@ -1512,11 +1585,12 @@ static void irq_domain_fix_revmap(struct irq_data *d)
{
void __rcu **slot;
lockdep_assert_held(&d->domain->root->mutex);
if (irq_domain_is_nomap(d->domain))
return;
/* Fix up the revmap. */
mutex_lock(&d->domain->revmap_mutex);
if (d->hwirq < d->domain->revmap_size) {
/* Not using radix tree */
rcu_assign_pointer(d->domain->revmap[d->hwirq], d);
......@@ -1525,7 +1599,6 @@ static void irq_domain_fix_revmap(struct irq_data *d)
if (slot)
radix_tree_replace_slot(&d->domain->revmap_tree, slot, d);
}
mutex_unlock(&d->domain->revmap_mutex);
}
/**
......@@ -1541,8 +1614,8 @@ static void irq_domain_fix_revmap(struct irq_data *d)
*/
int irq_domain_push_irq(struct irq_domain *domain, int virq, void *arg)
{
struct irq_data *child_irq_data;
struct irq_data *root_irq_data = irq_get_irq_data(virq);
struct irq_data *irq_data = irq_get_irq_data(virq);
struct irq_data *parent_irq_data;
struct irq_desc *desc;
int rv = 0;
......@@ -1567,47 +1640,46 @@ int irq_domain_push_irq(struct irq_domain *domain, int virq, void *arg)
if (WARN_ON(!irq_domain_is_hierarchy(domain)))
return -EINVAL;
if (!root_irq_data)
if (!irq_data)
return -EINVAL;
if (domain->parent != root_irq_data->domain)
if (domain->parent != irq_data->domain)
return -EINVAL;
child_irq_data = kzalloc_node(sizeof(*child_irq_data), GFP_KERNEL,
irq_data_get_node(root_irq_data));
if (!child_irq_data)
parent_irq_data = kzalloc_node(sizeof(*parent_irq_data), GFP_KERNEL,
irq_data_get_node(irq_data));
if (!parent_irq_data)
return -ENOMEM;
mutex_lock(&irq_domain_mutex);
mutex_lock(&domain->root->mutex);
/* Copy the original irq_data. */
*child_irq_data = *root_irq_data;
*parent_irq_data = *irq_data;
/*
* Overwrite the root_irq_data, which is embedded in struct
* irq_desc, with values for this domain.
* Overwrite the irq_data, which is embedded in struct irq_desc, with
* values for this domain.
*/
root_irq_data->parent_data = child_irq_data;
root_irq_data->domain = domain;
root_irq_data->mask = 0;
root_irq_data->hwirq = 0;
root_irq_data->chip = NULL;
root_irq_data->chip_data = NULL;
irq_data->parent_data = parent_irq_data;
irq_data->domain = domain;
irq_data->mask = 0;
irq_data->hwirq = 0;
irq_data->chip = NULL;
irq_data->chip_data = NULL;
/* May (probably does) set hwirq, chip, etc. */
rv = irq_domain_alloc_irqs_hierarchy(domain, virq, 1, arg);
if (rv) {
/* Restore the original irq_data. */
*root_irq_data = *child_irq_data;
kfree(child_irq_data);
*irq_data = *parent_irq_data;
kfree(parent_irq_data);
goto error;
}
irq_domain_fix_revmap(child_irq_data);
irq_domain_set_mapping(domain, root_irq_data->hwirq, root_irq_data);
irq_domain_fix_revmap(parent_irq_data);
irq_domain_set_mapping(domain, irq_data->hwirq, irq_data);
error:
mutex_unlock(&irq_domain_mutex);
mutex_unlock(&domain->root->mutex);
return rv;
}
......@@ -1623,8 +1695,8 @@ EXPORT_SYMBOL_GPL(irq_domain_push_irq);
*/
int irq_domain_pop_irq(struct irq_domain *domain, int virq)
{
struct irq_data *root_irq_data = irq_get_irq_data(virq);
struct irq_data *child_irq_data;
struct irq_data *irq_data = irq_get_irq_data(virq);
struct irq_data *parent_irq_data;
struct irq_data *tmp_irq_data;
struct irq_desc *desc;
......@@ -1646,37 +1718,37 @@ int irq_domain_pop_irq(struct irq_domain *domain, int virq)
if (domain == NULL)
return -EINVAL;
if (!root_irq_data)
if (!irq_data)
return -EINVAL;
tmp_irq_data = irq_domain_get_irq_data(domain, virq);
/* We can only "pop" if this domain is at the top of the list */
if (WARN_ON(root_irq_data != tmp_irq_data))
if (WARN_ON(irq_data != tmp_irq_data))
return -EINVAL;
if (WARN_ON(root_irq_data->domain != domain))
if (WARN_ON(irq_data->domain != domain))
return -EINVAL;
child_irq_data = root_irq_data->parent_data;
if (WARN_ON(!child_irq_data))
parent_irq_data = irq_data->parent_data;
if (WARN_ON(!parent_irq_data))
return -EINVAL;
mutex_lock(&irq_domain_mutex);
mutex_lock(&domain->root->mutex);
root_irq_data->parent_data = NULL;
irq_data->parent_data = NULL;
irq_domain_clear_mapping(domain, root_irq_data->hwirq);
irq_domain_clear_mapping(domain, irq_data->hwirq);
irq_domain_free_irqs_hierarchy(domain, virq, 1);
/* Restore the original irq_data. */
*root_irq_data = *child_irq_data;
*irq_data = *parent_irq_data;
irq_domain_fix_revmap(root_irq_data);
irq_domain_fix_revmap(irq_data);
mutex_unlock(&irq_domain_mutex);
mutex_unlock(&domain->root->mutex);
kfree(child_irq_data);
kfree(parent_irq_data);
return 0;
}
......@@ -1690,17 +1762,20 @@ EXPORT_SYMBOL_GPL(irq_domain_pop_irq);
void irq_domain_free_irqs(unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *data = irq_get_irq_data(virq);
struct irq_domain *domain;
int i;
if (WARN(!data || !data->domain || !data->domain->ops->free,
"NULL pointer, cannot free irq\n"))
return;
mutex_lock(&irq_domain_mutex);
domain = data->domain;
mutex_lock(&domain->root->mutex);
for (i = 0; i < nr_irqs; i++)
irq_domain_remove_irq(virq + i);
irq_domain_free_irqs_hierarchy(data->domain, virq, nr_irqs);
mutex_unlock(&irq_domain_mutex);
irq_domain_free_irqs_hierarchy(domain, virq, nr_irqs);
mutex_unlock(&domain->root->mutex);
irq_domain_free_irq_data(virq, nr_irqs);
irq_free_descs(virq, nr_irqs);
......@@ -1865,6 +1940,13 @@ void irq_domain_set_info(struct irq_domain *domain, unsigned int virq,
irq_set_handler_data(virq, handler_data);
}
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity)
{
return -EINVAL;
}
static void irq_domain_check_hierarchy(struct irq_domain *domain)
{
}
......
......@@ -723,10 +723,13 @@ EXPORT_SYMBOL(disable_irq_nosync);
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
* Can only be called from preemptible code as it might sleep when
* an interrupt thread is associated to @irq.
*
*/
void disable_irq(unsigned int irq)
{
might_sleep();
if (!__disable_irq_nosync(irq))
synchronize_irq(irq);
}
......
......@@ -353,6 +353,8 @@ obj-$(CONFIG_SBITMAP) += sbitmap.o
obj-$(CONFIG_PARMAN) += parman.o
obj-y += group_cpus.o
# GCC library routines
obj-$(CONFIG_GENERIC_LIB_ASHLDI3) += ashldi3.o
obj-$(CONFIG_GENERIC_LIB_ASHRDI3) += ashrdi3.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016 Thomas Gleixner.
* Copyright (C) 2016-2017 Christoph Hellwig.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/sort.h>
#include <linux/group_cpus.h>
#ifdef CONFIG_SMP
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
unsigned int cpus_per_grp)
{
const struct cpumask *siblmsk;
int cpu, sibl;
for ( ; cpus_per_grp > 0; ) {
cpu = cpumask_first(nmsk);
/* Should not happen, but I'm too lazy to think about it */
if (cpu >= nr_cpu_ids)
return;
cpumask_clear_cpu(cpu, nmsk);
cpumask_set_cpu(cpu, irqmsk);
cpus_per_grp--;
/* If the cpu has siblings, use them first */
siblmsk = topology_sibling_cpumask(cpu);
for (sibl = -1; cpus_per_grp > 0; ) {
sibl = cpumask_next(sibl, siblmsk);
if (sibl >= nr_cpu_ids)
break;
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
continue;
cpumask_set_cpu(sibl, irqmsk);
cpus_per_grp--;
}
}
}
static cpumask_var_t *alloc_node_to_cpumask(void)
{
cpumask_var_t *masks;
int node;
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
if (!masks)
return NULL;
for (node = 0; node < nr_node_ids; node++) {
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
goto out_unwind;
}
return masks;
out_unwind:
while (--node >= 0)
free_cpumask_var(masks[node]);
kfree(masks);
return NULL;
}
static void free_node_to_cpumask(cpumask_var_t *masks)
{
int node;
for (node = 0; node < nr_node_ids; node++)
free_cpumask_var(masks[node]);
kfree(masks);
}
static void build_node_to_cpumask(cpumask_var_t *masks)
{
int cpu;
for_each_possible_cpu(cpu)
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
}
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
const struct cpumask *mask, nodemask_t *nodemsk)
{
int n, nodes = 0;
/* Calculate the number of nodes in the supplied affinity mask */
for_each_node(n) {
if (cpumask_intersects(mask, node_to_cpumask[n])) {
node_set(n, *nodemsk);
nodes++;
}
}
return nodes;
}
struct node_groups {
unsigned id;
union {
unsigned ngroups;
unsigned ncpus;
};
};
static int ncpus_cmp_func(const void *l, const void *r)
{
const struct node_groups *ln = l;
const struct node_groups *rn = r;
return ln->ncpus - rn->ncpus;
}
/*
* Allocate group number for each node, so that for each node:
*
* 1) the allocated number is >= 1
*
* 2) the allocated number is <= active CPU number of this node
*
* The actual allocated total groups may be less than @numgrps when
* active total CPU number is less than @numgrps.
*
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
* for each node.
*/
static void alloc_nodes_groups(unsigned int numgrps,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
const nodemask_t nodemsk,
struct cpumask *nmsk,
struct node_groups *node_groups)
{
unsigned n, remaining_ncpus = 0;
for (n = 0; n < nr_node_ids; n++) {
node_groups[n].id = n;
node_groups[n].ncpus = UINT_MAX;
}
for_each_node_mask(n, nodemsk) {
unsigned ncpus;
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
ncpus = cpumask_weight(nmsk);
if (!ncpus)
continue;
remaining_ncpus += ncpus;
node_groups[n].ncpus = ncpus;
}
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
ncpus_cmp_func, NULL);
/*
* Allocate groups for each node according to the ratio of this
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
* bigger than number of active numa nodes. Always start the
* allocation from the node with minimized nr_cpus.
*
* This way guarantees that each active node gets allocated at
* least one group, and the theory is simple: over-allocation
* is only done when this node is assigned by one group, so
* other nodes will be allocated >= 1 groups, since 'numgrps' is
* bigger than number of numa nodes.
*
* One perfect invariant is that number of allocated groups for
* each node is <= CPU count of this node:
*
* 1) suppose there are two nodes: A and B
* ncpu(X) is CPU count of node X
* grps(X) is the group count allocated to node X via this
* algorithm
*
* ncpu(A) <= ncpu(B)
* ncpu(A) + ncpu(B) = N
* grps(A) + grps(B) = G
*
* grps(A) = max(1, round_down(G * ncpu(A) / N))
* grps(B) = G - grps(A)
*
* both N and G are integer, and 2 <= G <= N, suppose
* G = N - delta, and 0 <= delta <= N - 2
*
* 2) obviously grps(A) <= ncpu(A) because:
*
* if grps(A) is 1, then grps(A) <= ncpu(A) given
* ncpu(A) >= 1
*
* otherwise,
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
*
* 3) prove how grps(B) <= ncpu(B):
*
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
* over-allocated, so grps(B) <= ncpu(B),
*
* otherwise:
*
* grps(A) =
* round_down(G * ncpu(A) / N) =
* round_down((N - delta) * ncpu(A) / N) =
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
* round_down((N * ncpu(A) - delta * N) / N) =
* cpu(A) - delta
*
* then:
*
* grps(A) - G >= ncpu(A) - delta - G
* =>
* G - grps(A) <= G + delta - ncpu(A)
* =>
* grps(B) <= N - ncpu(A)
* =>
* grps(B) <= cpu(B)
*
* For nodes >= 3, it can be thought as one node and another big
* node given that is exactly what this algorithm is implemented,
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
* finally for each node X: grps(X) <= ncpu(X).
*
*/
for (n = 0; n < nr_node_ids; n++) {
unsigned ngroups, ncpus;
if (node_groups[n].ncpus == UINT_MAX)
continue;
WARN_ON_ONCE(numgrps == 0);
ncpus = node_groups[n].ncpus;
ngroups = max_t(unsigned, 1,
numgrps * ncpus / remaining_ncpus);
WARN_ON_ONCE(ngroups > ncpus);
node_groups[n].ngroups = ngroups;
remaining_ncpus -= ncpus;
numgrps -= ngroups;
}
}
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
struct cpumask *nmsk, struct cpumask *masks)
{
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
unsigned int last_grp = numgrps;
unsigned int curgrp = startgrp;
nodemask_t nodemsk = NODE_MASK_NONE;
struct node_groups *node_groups;
if (cpumask_empty(cpu_mask))
return 0;
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
/*
* If the number of nodes in the mask is greater than or equal the
* number of groups we just spread the groups across the nodes.
*/
if (numgrps <= nodes) {
for_each_node_mask(n, nodemsk) {
/* Ensure that only CPUs which are in both masks are set */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
if (++curgrp == last_grp)
curgrp = 0;
}
return numgrps;
}
node_groups = kcalloc(nr_node_ids,
sizeof(struct node_groups),
GFP_KERNEL);
if (!node_groups)
return -ENOMEM;
/* allocate group number for each node */
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
nodemsk, nmsk, node_groups);
for (i = 0; i < nr_node_ids; i++) {
unsigned int ncpus, v;
struct node_groups *nv = &node_groups[i];
if (nv->ngroups == UINT_MAX)
continue;
/* Get the cpus on this node which are in the mask */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
ncpus = cpumask_weight(nmsk);
if (!ncpus)
continue;
WARN_ON_ONCE(nv->ngroups > ncpus);
/* Account for rounding errors */
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
/* Spread allocated groups on CPUs of the current node */
for (v = 0; v < nv->ngroups; v++, curgrp++) {
cpus_per_grp = ncpus / nv->ngroups;
/* Account for extra groups to compensate rounding errors */
if (extra_grps) {
cpus_per_grp++;
--extra_grps;
}
/*
* wrapping has to be considered given 'startgrp'
* may start anywhere
*/
if (curgrp >= last_grp)
curgrp = 0;
grp_spread_init_one(&masks[curgrp], nmsk,
cpus_per_grp);
}
done += nv->ngroups;
}
kfree(node_groups);
return done;
}
/**
* group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
* @numgrps: number of groups
*
* Return: cpumask array if successful, NULL otherwise. And each element
* includes CPUs assigned to this group
*
* Try to put close CPUs from viewpoint of CPU and NUMA locality into
* same group, and run two-stage grouping:
* 1) allocate present CPUs on these groups evenly first
* 2) allocate other possible CPUs on these groups evenly
*
* We guarantee in the resulted grouping that all CPUs are covered, and
* no same CPU is assigned to multiple groups
*/
struct cpumask *group_cpus_evenly(unsigned int numgrps)
{
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
cpumask_var_t *node_to_cpumask;
cpumask_var_t nmsk, npresmsk;
int ret = -ENOMEM;
struct cpumask *masks = NULL;
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
return NULL;
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
goto fail_nmsk;
node_to_cpumask = alloc_node_to_cpumask();
if (!node_to_cpumask)
goto fail_npresmsk;
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
if (!masks)
goto fail_node_to_cpumask;
/* Stabilize the cpumasks */
cpus_read_lock();
build_node_to_cpumask(node_to_cpumask);
/* grouping present CPUs first */
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
cpu_present_mask, nmsk, masks);
if (ret < 0)
goto fail_build_affinity;
nr_present = ret;
/*
* Allocate non present CPUs starting from the next group to be
* handled. If the grouping of present CPUs already exhausted the
* group space, assign the non present CPUs to the already
* allocated out groups.
*/
if (nr_present >= numgrps)
curgrp = 0;
else
curgrp = nr_present;
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
npresmsk, nmsk, masks);
if (ret >= 0)
nr_others = ret;
fail_build_affinity:
cpus_read_unlock();
if (ret >= 0)
WARN_ON(nr_present + nr_others < numgrps);
fail_node_to_cpumask:
free_node_to_cpumask(node_to_cpumask);
fail_npresmsk:
free_cpumask_var(npresmsk);
fail_nmsk:
free_cpumask_var(nmsk);
if (ret < 0) {
kfree(masks);
return NULL;
}
return masks;
}
#else /* CONFIG_SMP */
struct cpumask *group_cpus_evenly(unsigned int numgrps)
{
struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
if (!masks)
return NULL;
/* assign all CPUs(cpu 0) to the 1st group only */
cpumask_copy(&masks[0], cpu_possible_mask);
return masks;
}
#endif /* CONFIG_SMP */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment