Commit 5b7d70c6 authored by Ben Dooks's avatar Ben Dooks Committed by Greg Kroah-Hartman

USB: Gadget driver for Samsung HS/OtG block

Driver support for the new high-speed/OtG block that is
in the newer line of Samsung SoC devices such as the
S3C64XX series.

This driver does not currntly have DMA support enabled due
to issues with buffer alignment which need to be sorted out.
Signed-off-by: default avatarBen Dooks <ben@simtec.co.uk>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 54e4026b
/* arch/arm/plat-s3c/include/plat/regs-usb-hsotg-phy.h
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*
* S3C - USB2.0 Highspeed/OtG device PHY registers
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Note, this is a seperate header file as some of the clock framework
* needs to touch this if the clk_48m is used as the USB OHCI or other
* peripheral source.
*/
#ifndef __PLAT_S3C64XX_REGS_USB_HSOTG_PHY_H
#define __PLAT_S3C64XX_REGS_USB_HSOTG_PHY_H __FILE__
/* S3C64XX_PA_USB_HSPHY */
#define S3C_HSOTG_PHYREG(x) ((x) + S3C_VA_USB_HSPHY)
#define S3C_PHYPWR S3C_HSOTG_PHYREG(0x00)
#define SRC_PHYPWR_OTG_DISABLE (1 << 4)
#define SRC_PHYPWR_ANALOG_POWERDOWN (1 << 3)
#define SRC_PHYPWR_FORCE_SUSPEND (1 << 1)
#define S3C_PHYCLK S3C_HSOTG_PHYREG(0x04)
#define S3C_PHYCLK_MODE_USB11 (1 << 6)
#define S3C_PHYCLK_EXT_OSC (1 << 5)
#define S3C_PHYCLK_CLK_FORCE (1 << 4)
#define S3C_PHYCLK_ID_PULL (1 << 2)
#define S3C_PHYCLK_CLKSEL_MASK (0x3 << 0)
#define S3C_PHYCLK_CLKSEL_SHIFT (0)
#define S3C_PHYCLK_CLKSEL_48M (0x0 << 0)
#define S3C_PHYCLK_CLKSEL_12M (0x2 << 0)
#define S3C_PHYCLK_CLKSEL_24M (0x3 << 0)
#define S3C_RSTCON S3C_HSOTG_PHYREG(0x08)
#define S3C_RSTCON_PHYCLK (1 << 2)
#define S3C_RSTCON_HCLK (1 << 2)
#define S3C_RSTCON_PHY (1 << 0)
#define S3C_PHYTUNE S3C_HSOTG_PHYREG(0x20)
#endif /* __PLAT_S3C64XX_REGS_USB_HSOTG_PHY_H */
/* arch/arm/plat-s3c/include/plat/regs-usb-hsotg.h
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*
* S3C - USB2.0 Highspeed/OtG device block registers
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __PLAT_S3C64XX_REGS_USB_HSOTG_H
#define __PLAT_S3C64XX_REGS_USB_HSOTG_H __FILE__
#define S3C_HSOTG_REG(x) (x)
#define S3C_GOTGCTL S3C_HSOTG_REG(0x000)
#define S3C_GOTGCTL_BSESVLD (1 << 19)
#define S3C_GOTGCTL_ASESVLD (1 << 18)
#define S3C_GOTGCTL_DBNC_SHORT (1 << 17)
#define S3C_GOTGCTL_CONID_B (1 << 16)
#define S3C_GOTGCTL_DEVHNPEN (1 << 11)
#define S3C_GOTGCTL_HSSETHNPEN (1 << 10)
#define S3C_GOTGCTL_HNPREQ (1 << 9)
#define S3C_GOTGCTL_HSTNEGSCS (1 << 8)
#define S3C_GOTGCTL_SESREQ (1 << 1)
#define S3C_GOTGCTL_SESREQSCS (1 << 0)
#define S3C_GOTGINT S3C_HSOTG_REG(0x004)
#define S3C_GOTGINT_DbnceDone (1 << 19)
#define S3C_GOTGINT_ADevTOUTChg (1 << 18)
#define S3C_GOTGINT_HstNegDet (1 << 17)
#define S3C_GOTGINT_HstnegSucStsChng (1 << 9)
#define S3C_GOTGINT_SesReqSucStsChng (1 << 8)
#define S3C_GOTGINT_SesEndDet (1 << 2)
#define S3C_GAHBCFG S3C_HSOTG_REG(0x008)
#define S3C_GAHBCFG_PTxFEmpLvl (1 << 8)
#define S3C_GAHBCFG_NPTxFEmpLvl (1 << 7)
#define S3C_GAHBCFG_DMAEn (1 << 5)
#define S3C_GAHBCFG_HBstLen_MASK (0xf << 1)
#define S3C_GAHBCFG_HBstLen_SHIFT (1)
#define S3C_GAHBCFG_HBstLen_Single (0x0 << 1)
#define S3C_GAHBCFG_HBstLen_Incr (0x1 << 1)
#define S3C_GAHBCFG_HBstLen_Incr4 (0x3 << 1)
#define S3C_GAHBCFG_HBstLen_Incr8 (0x5 << 1)
#define S3C_GAHBCFG_HBstLen_Incr16 (0x7 << 1)
#define S3C_GAHBCFG_GlblIntrEn (1 << 0)
#define S3C_GUSBCFG S3C_HSOTG_REG(0x00C)
#define S3C_GUSBCFG_PHYLPClkSel (1 << 15)
#define S3C_GUSBCFG_HNPCap (1 << 9)
#define S3C_GUSBCFG_SRPCap (1 << 8)
#define S3C_GUSBCFG_PHYIf16 (1 << 3)
#define S3C_GUSBCFG_TOutCal_MASK (0x7 << 0)
#define S3C_GUSBCFG_TOutCal_SHIFT (0)
#define S3C_GUSBCFG_TOutCal_LIMIT (0x7)
#define S3C_GUSBCFG_TOutCal(_x) ((_x) << 0)
#define S3C_GRSTCTL S3C_HSOTG_REG(0x010)
#define S3C_GRSTCTL_AHBIdle (1 << 31)
#define S3C_GRSTCTL_DMAReq (1 << 30)
#define S3C_GRSTCTL_TxFNum_MASK (0x1f << 6)
#define S3C_GRSTCTL_TxFNum_SHIFT (6)
#define S3C_GRSTCTL_TxFNum_LIMIT (0x1f)
#define S3C_GRSTCTL_TxFNum(_x) ((_x) << 6)
#define S3C_GRSTCTL_TxFFlsh (1 << 5)
#define S3C_GRSTCTL_RxFFlsh (1 << 4)
#define S3C_GRSTCTL_INTknQFlsh (1 << 3)
#define S3C_GRSTCTL_FrmCntrRst (1 << 2)
#define S3C_GRSTCTL_HSftRst (1 << 1)
#define S3C_GRSTCTL_CSftRst (1 << 0)
#define S3C_GINTSTS S3C_HSOTG_REG(0x014)
#define S3C_GINTMSK S3C_HSOTG_REG(0x018)
#define S3C_GINTSTS_WkUpInt (1 << 31)
#define S3C_GINTSTS_SessReqInt (1 << 30)
#define S3C_GINTSTS_DisconnInt (1 << 29)
#define S3C_GINTSTS_ConIDStsChng (1 << 28)
#define S3C_GINTSTS_PTxFEmp (1 << 26)
#define S3C_GINTSTS_HChInt (1 << 25)
#define S3C_GINTSTS_PrtInt (1 << 24)
#define S3C_GINTSTS_FetSusp (1 << 22)
#define S3C_GINTSTS_incompIP (1 << 21)
#define S3C_GINTSTS_IncomplSOIN (1 << 20)
#define S3C_GINTSTS_OEPInt (1 << 19)
#define S3C_GINTSTS_IEPInt (1 << 18)
#define S3C_GINTSTS_EPMis (1 << 17)
#define S3C_GINTSTS_EOPF (1 << 15)
#define S3C_GINTSTS_ISOutDrop (1 << 14)
#define S3C_GINTSTS_EnumDone (1 << 13)
#define S3C_GINTSTS_USBRst (1 << 12)
#define S3C_GINTSTS_USBSusp (1 << 11)
#define S3C_GINTSTS_ErlySusp (1 << 10)
#define S3C_GINTSTS_GOUTNakEff (1 << 7)
#define S3C_GINTSTS_GINNakEff (1 << 6)
#define S3C_GINTSTS_NPTxFEmp (1 << 5)
#define S3C_GINTSTS_RxFLvl (1 << 4)
#define S3C_GINTSTS_SOF (1 << 3)
#define S3C_GINTSTS_OTGInt (1 << 2)
#define S3C_GINTSTS_ModeMis (1 << 1)
#define S3C_GINTSTS_CurMod_Host (1 << 0)
#define S3C_GRXSTSR S3C_HSOTG_REG(0x01C)
#define S3C_GRXSTSP S3C_HSOTG_REG(0x020)
#define S3C_GRXSTS_FN_MASK (0x7f << 25)
#define S3C_GRXSTS_FN_SHIFT (25)
#define S3C_GRXSTS_PktSts_MASK (0xf << 17)
#define S3C_GRXSTS_PktSts_SHIFT (17)
#define S3C_GRXSTS_PktSts_GlobalOutNAK (0x1 << 17)
#define S3C_GRXSTS_PktSts_OutRX (0x2 << 17)
#define S3C_GRXSTS_PktSts_OutDone (0x3 << 17)
#define S3C_GRXSTS_PktSts_SetupDone (0x4 << 17)
#define S3C_GRXSTS_PktSts_SetupRX (0x6 << 17)
#define S3C_GRXSTS_DPID_MASK (0x3 << 15)
#define S3C_GRXSTS_DPID_SHIFT (15)
#define S3C_GRXSTS_ByteCnt_MASK (0x7ff << 4)
#define S3C_GRXSTS_ByteCnt_SHIFT (4)
#define S3C_GRXSTS_EPNum_MASK (0xf << 0)
#define S3C_GRXSTS_EPNum_SHIFT (0)
#define S3C_GRXFSIZ S3C_HSOTG_REG(0x024)
#define S3C_GNPTXFSIZ S3C_HSOTG_REG(0x028)
#define S3C_GNPTXFSIZ_NPTxFDep_MASK (0xffff << 16)
#define S3C_GNPTXFSIZ_NPTxFDep_SHIFT (16)
#define S3C_GNPTXFSIZ_NPTxFDep_LIMIT (0xffff)
#define S3C_GNPTXFSIZ_NPTxFDep(_x) ((_x) << 16)
#define S3C_GNPTXFSIZ_NPTxFStAddr_MASK (0xffff << 0)
#define S3C_GNPTXFSIZ_NPTxFStAddr_SHIFT (0)
#define S3C_GNPTXFSIZ_NPTxFStAddr_LIMIT (0xffff)
#define S3C_GNPTXFSIZ_NPTxFStAddr(_x) ((_x) << 0)
#define S3C_GNPTXSTS S3C_HSOTG_REG(0x02C)
#define S3C_GNPTXSTS_NPtxQTop_MASK (0x7f << 24)
#define S3C_GNPTXSTS_NPtxQTop_SHIFT (24)
#define S3C_GNPTXSTS_NPTxQSpcAvail_MASK (0xff << 16)
#define S3C_GNPTXSTS_NPTxQSpcAvail_SHIFT (16)
#define S3C_GNPTXSTS_NPTxQSpcAvail_GET(_v) (((_v) >> 16) & 0xff)
#define S3C_GNPTXSTS_NPTxFSpcAvail_MASK (0xffff << 0)
#define S3C_GNPTXSTS_NPTxFSpcAvail_SHIFT (0)
#define S3C_GNPTXSTS_NPTxFSpcAvail_GET(_v) (((_v) >> 0) & 0xffff)
#define S3C_HPTXFSIZ S3C_HSOTG_REG(0x100)
#define S3C_DPTXFSIZn(_a) S3C_HSOTG_REG(0x104 + (((_a) - 1) * 4))
#define S3C_DPTXFSIZn_DPTxFSize_MASK (0xffff << 16)
#define S3C_DPTXFSIZn_DPTxFSize_SHIFT (16)
#define S3C_DPTXFSIZn_DPTxFSize_GET(_v) (((_v) >> 16) & 0xffff)
#define S3C_DPTXFSIZn_DPTxFSize_LIMIT (0xffff)
#define S3C_DPTXFSIZn_DPTxFSize(_x) ((_x) << 16)
#define S3C_DPTXFSIZn_DPTxFStAddr_MASK (0xffff << 0)
#define S3C_DPTXFSIZn_DPTxFStAddr_SHIFT (0)
/* Device mode registers */
#define S3C_DCFG S3C_HSOTG_REG(0x800)
#define S3C_DCFG_EPMisCnt_MASK (0x1f << 18)
#define S3C_DCFG_EPMisCnt_SHIFT (18)
#define S3C_DCFG_EPMisCnt_LIMIT (0x1f)
#define S3C_DCFG_EPMisCnt(_x) ((_x) << 18)
#define S3C_DCFG_PerFrInt_MASK (0x3 << 11)
#define S3C_DCFG_PerFrInt_SHIFT (11)
#define S3C_DCFG_PerFrInt_LIMIT (0x3)
#define S3C_DCFG_PerFrInt(_x) ((_x) << 11)
#define S3C_DCFG_DevAddr_MASK (0x7f << 4)
#define S3C_DCFG_DevAddr_SHIFT (4)
#define S3C_DCFG_DevAddr_LIMIT (0x7f)
#define S3C_DCFG_DevAddr(_x) ((_x) << 4)
#define S3C_DCFG_NZStsOUTHShk (1 << 2)
#define S3C_DCFG_DevSpd_MASK (0x3 << 0)
#define S3C_DCFG_DevSpd_SHIFT (0)
#define S3C_DCFG_DevSpd_HS (0x0 << 0)
#define S3C_DCFG_DevSpd_FS (0x1 << 0)
#define S3C_DCFG_DevSpd_LS (0x2 << 0)
#define S3C_DCFG_DevSpd_FS48 (0x3 << 0)
#define S3C_DCTL S3C_HSOTG_REG(0x804)
#define S3C_DCTL_PWROnPrgDone (1 << 11)
#define S3C_DCTL_CGOUTNak (1 << 10)
#define S3C_DCTL_SGOUTNak (1 << 9)
#define S3C_DCTL_CGNPInNAK (1 << 8)
#define S3C_DCTL_SGNPInNAK (1 << 7)
#define S3C_DCTL_TstCtl_MASK (0x7 << 4)
#define S3C_DCTL_TstCtl_SHIFT (4)
#define S3C_DCTL_GOUTNakSts (1 << 3)
#define S3C_DCTL_GNPINNakSts (1 << 2)
#define S3C_DCTL_SftDiscon (1 << 1)
#define S3C_DCTL_RmtWkUpSig (1 << 0)
#define S3C_DSTS S3C_HSOTG_REG(0x808)
#define S3C_DSTS_SOFFN_MASK (0x3fff << 8)
#define S3C_DSTS_SOFFN_SHIFT (8)
#define S3C_DSTS_SOFFN_LIMIT (0x3fff)
#define S3C_DSTS_SOFFN(_x) ((_x) << 8)
#define S3C_DSTS_ErraticErr (1 << 3)
#define S3C_DSTS_EnumSpd_MASK (0x3 << 1)
#define S3C_DSTS_EnumSpd_SHIFT (1)
#define S3C_DSTS_EnumSpd_HS (0x0 << 1)
#define S3C_DSTS_EnumSpd_FS (0x1 << 1)
#define S3C_DSTS_EnumSpd_LS (0x2 << 1)
#define S3C_DSTS_EnumSpd_FS48 (0x3 << 1)
#define S3C_DSTS_SuspSts (1 << 0)
#define S3C_DIEPMSK S3C_HSOTG_REG(0x810)
#define S3C_DIEPMSK_INEPNakEffMsk (1 << 6)
#define S3C_DIEPMSK_INTknEPMisMsk (1 << 5)
#define S3C_DIEPMSK_INTknTXFEmpMsk (1 << 4)
#define S3C_DIEPMSK_TimeOUTMsk (1 << 3)
#define S3C_DIEPMSK_AHBErrMsk (1 << 2)
#define S3C_DIEPMSK_EPDisbldMsk (1 << 1)
#define S3C_DIEPMSK_XferComplMsk (1 << 0)
#define S3C_DOEPMSK S3C_HSOTG_REG(0x814)
#define S3C_DOEPMSK_Back2BackSetup (1 << 6)
#define S3C_DOEPMSK_OUTTknEPdisMsk (1 << 4)
#define S3C_DOEPMSK_SetupMsk (1 << 3)
#define S3C_DOEPMSK_AHBErrMsk (1 << 2)
#define S3C_DOEPMSK_EPDisbldMsk (1 << 1)
#define S3C_DOEPMSK_XferComplMsk (1 << 0)
#define S3C_DAINT S3C_HSOTG_REG(0x818)
#define S3C_DAINTMSK S3C_HSOTG_REG(0x81C)
#define S3C_DAINT_OutEP_SHIFT (16)
#define S3C_DAINT_OutEP(x) (1 << ((x) + 16))
#define S3C_DAINT_InEP(x) (1 << (x))
#define S3C_DTKNQR1 S3C_HSOTG_REG(0x820)
#define S3C_DTKNQR2 S3C_HSOTG_REG(0x824)
#define S3C_DTKNQR3 S3C_HSOTG_REG(0x830)
#define S3C_DTKNQR4 S3C_HSOTG_REG(0x834)
#define S3C_DVBUSDIS S3C_HSOTG_REG(0x828)
#define S3C_DVBUSPULSE S3C_HSOTG_REG(0x82C)
#define S3C_DIEPCTL0 S3C_HSOTG_REG(0x900)
#define S3C_DOEPCTL0 S3C_HSOTG_REG(0xB00)
#define S3C_DIEPCTL(_a) S3C_HSOTG_REG(0x900 + ((_a) * 0x20))
#define S3C_DOEPCTL(_a) S3C_HSOTG_REG(0xB00 + ((_a) * 0x20))
/* EP0 specialness:
* bits[29..28] - reserved (no SetD0PID, SetD1PID)
* bits[25..22] - should always be zero, this isn't a periodic endpoint
* bits[10..0] - MPS setting differenct for EP0
*/
#define S3C_D0EPCTL_MPS_MASK (0x3 << 0)
#define S3C_D0EPCTL_MPS_SHIFT (0)
#define S3C_D0EPCTL_MPS_64 (0x0 << 0)
#define S3C_D0EPCTL_MPS_32 (0x1 << 0)
#define S3C_D0EPCTL_MPS_16 (0x2 << 0)
#define S3C_D0EPCTL_MPS_8 (0x3 << 0)
#define S3C_DxEPCTL_EPEna (1 << 31)
#define S3C_DxEPCTL_EPDis (1 << 30)
#define S3C_DxEPCTL_SetD1PID (1 << 29)
#define S3C_DxEPCTL_SetOddFr (1 << 29)
#define S3C_DxEPCTL_SetD0PID (1 << 28)
#define S3C_DxEPCTL_SetEvenFr (1 << 28)
#define S3C_DxEPCTL_SNAK (1 << 27)
#define S3C_DxEPCTL_CNAK (1 << 26)
#define S3C_DxEPCTL_TxFNum_MASK (0xf << 22)
#define S3C_DxEPCTL_TxFNum_SHIFT (22)
#define S3C_DxEPCTL_TxFNum_LIMIT (0xf)
#define S3C_DxEPCTL_TxFNum(_x) ((_x) << 22)
#define S3C_DxEPCTL_Stall (1 << 21)
#define S3C_DxEPCTL_Snp (1 << 20)
#define S3C_DxEPCTL_EPType_MASK (0x3 << 18)
#define S3C_DxEPCTL_EPType_SHIFT (18)
#define S3C_DxEPCTL_EPType_Control (0x0 << 18)
#define S3C_DxEPCTL_EPType_Iso (0x1 << 18)
#define S3C_DxEPCTL_EPType_Bulk (0x2 << 18)
#define S3C_DxEPCTL_EPType_Intterupt (0x3 << 18)
#define S3C_DxEPCTL_NAKsts (1 << 17)
#define S3C_DxEPCTL_DPID (1 << 16)
#define S3C_DxEPCTL_EOFrNum (1 << 16)
#define S3C_DxEPCTL_USBActEp (1 << 15)
#define S3C_DxEPCTL_NextEp_MASK (0xf << 11)
#define S3C_DxEPCTL_NextEp_SHIFT (11)
#define S3C_DxEPCTL_NextEp_LIMIT (0xf)
#define S3C_DxEPCTL_NextEp(_x) ((_x) << 11)
#define S3C_DxEPCTL_MPS_MASK (0x7ff << 0)
#define S3C_DxEPCTL_MPS_SHIFT (0)
#define S3C_DxEPCTL_MPS_LIMIT (0x7ff)
#define S3C_DxEPCTL_MPS(_x) ((_x) << 0)
#define S3C_DIEPINT(_a) S3C_HSOTG_REG(0x908 + ((_a) * 0x20))
#define S3C_DOEPINT(_a) S3C_HSOTG_REG(0xB08 + ((_a) * 0x20))
#define S3C_DxEPINT_INEPNakEff (1 << 6)
#define S3C_DxEPINT_Back2BackSetup (1 << 6)
#define S3C_DxEPINT_INTknEPMis (1 << 5)
#define S3C_DxEPINT_INTknTXFEmp (1 << 4)
#define S3C_DxEPINT_OUTTknEPdis (1 << 4)
#define S3C_DxEPINT_Timeout (1 << 3)
#define S3C_DxEPINT_Setup (1 << 3)
#define S3C_DxEPINT_AHBErr (1 << 2)
#define S3C_DxEPINT_EPDisbld (1 << 1)
#define S3C_DxEPINT_XferCompl (1 << 0)
#define S3C_DIEPTSIZ0 S3C_HSOTG_REG(0x910)
#define S3C_DIEPTSIZ0_PktCnt_MASK (0x3 << 19)
#define S3C_DIEPTSIZ0_PktCnt_SHIFT (19)
#define S3C_DIEPTSIZ0_PktCnt_LIMIT (0x3)
#define S3C_DIEPTSIZ0_PktCnt(_x) ((_x) << 19)
#define S3C_DIEPTSIZ0_XferSize_MASK (0x7f << 0)
#define S3C_DIEPTSIZ0_XferSize_SHIFT (0)
#define S3C_DIEPTSIZ0_XferSize_LIMIT (0x7f)
#define S3C_DIEPTSIZ0_XferSize(_x) ((_x) << 0)
#define DOEPTSIZ0 S3C_HSOTG_REG(0xB10)
#define S3C_DOEPTSIZ0_SUPCnt_MASK (0x3 << 29)
#define S3C_DOEPTSIZ0_SUPCnt_SHIFT (29)
#define S3C_DOEPTSIZ0_SUPCnt_LIMIT (0x3)
#define S3C_DOEPTSIZ0_SUPCnt(_x) ((_x) << 29)
#define S3C_DOEPTSIZ0_PktCnt (1 << 19)
#define S3C_DOEPTSIZ0_XferSize_MASK (0x7f << 0)
#define S3C_DOEPTSIZ0_XferSize_SHIFT (0)
#define S3C_DIEPTSIZ(_a) S3C_HSOTG_REG(0x910 + ((_a) * 0x20))
#define S3C_DOEPTSIZ(_a) S3C_HSOTG_REG(0xB10 + ((_a) * 0x20))
#define S3C_DxEPTSIZ_MC_MASK (0x3 << 29)
#define S3C_DxEPTSIZ_MC_SHIFT (29)
#define S3C_DxEPTSIZ_MC_LIMIT (0x3)
#define S3C_DxEPTSIZ_MC(_x) ((_x) << 29)
#define S3C_DxEPTSIZ_PktCnt_MASK (0x3ff << 19)
#define S3C_DxEPTSIZ_PktCnt_SHIFT (19)
#define S3C_DxEPTSIZ_PktCnt_GET(_v) (((_v) >> 19) & 0x3ff)
#define S3C_DxEPTSIZ_PktCnt_LIMIT (0x3ff)
#define S3C_DxEPTSIZ_PktCnt(_x) ((_x) << 19)
#define S3C_DxEPTSIZ_XferSize_MASK (0x7ffff << 0)
#define S3C_DxEPTSIZ_XferSize_SHIFT (0)
#define S3C_DxEPTSIZ_XferSize_GET(_v) (((_v) >> 0) & 0x7ffff)
#define S3C_DxEPTSIZ_XferSize_LIMIT (0x7ffff)
#define S3C_DxEPTSIZ_XferSize(_x) ((_x) << 0)
#define S3C_DIEPDMA(_a) S3C_HSOTG_REG(0x914 + ((_a) * 0x20))
#define S3C_DOEPDMA(_a) S3C_HSOTG_REG(0xB14 + ((_a) * 0x20))
#define S3C_EPFIFO(_a) S3C_HSOTG_REG(0x1000 + ((_a) * 0x1000))
#endif /* __PLAT_S3C64XX_REGS_USB_HSOTG_H */
......@@ -272,6 +272,20 @@ config USB_PXA27X
default USB_GADGET
select USB_GADGET_SELECTED
config USB_GADGET_S3C_HSOTG
boolean "S3C HS/OtG USB Device controller"
depends on S3C_DEV_USB_HSOTG
select USB_GADGET_S3C_HSOTG_PIO
help
The Samsung S3C64XX USB2.0 high-speed gadget controller
integrated into the S3C64XX series SoC.
config USB_S3C_HSOTG
tristate
depends on USB_GADGET_S3C_HSOTG
default USB_GADGET
select USB_GADGET_SELECTED
config USB_GADGET_S3C2410
boolean "S3C2410 USB Device Controller"
depends on ARCH_S3C2410
......
......@@ -25,6 +25,7 @@ endif
obj-$(CONFIG_USB_M66592) += m66592-udc.o
obj-$(CONFIG_USB_FSL_QE) += fsl_qe_udc.o
obj-$(CONFIG_USB_CI13XXX) += ci13xxx_udc.o
obj-$(CONFIG_USB_S3C_HSOTG) += s3c-hsotg.o
#
# USB gadget drivers
......
/* linux/drivers/usb/gadget/s3c-hsotg.c
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* S3C USB2.0 High-speed / OtG driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <mach/map.h>
#include <plat/regs-usb-hsotg-phy.h>
#include <plat/regs-usb-hsotg.h>
#include <plat/regs-sys.h>
#include <plat/udc-hs.h>
#define DMA_ADDR_INVALID (~((dma_addr_t)0))
/* EP0_MPS_LIMIT
*
* Unfortunately there seems to be a limit of the amount of data that can
* be transfered by IN transactions on EP0. This is either 127 bytes or 3
* packets (which practially means 1 packet and 63 bytes of data) when the
* MPS is set to 64.
*
* This means if we are wanting to move >127 bytes of data, we need to
* split the transactions up, but just doing one packet at a time does
* not work (this may be an implicit DATA0 PID on first packet of the
* transaction) and doing 2 packets is outside the controller's limits.
*
* If we try to lower the MPS size for EP0, then no transfers work properly
* for EP0, and the system will fail basic enumeration. As no cause for this
* has currently been found, we cannot support any large IN transfers for
* EP0.
*/
#define EP0_MPS_LIMIT 64
struct s3c_hsotg;
struct s3c_hsotg_req;
/**
* struct s3c_hsotg_ep - driver endpoint definition.
* @ep: The gadget layer representation of the endpoint.
* @name: The driver generated name for the endpoint.
* @queue: Queue of requests for this endpoint.
* @parent: Reference back to the parent device structure.
* @req: The current request that the endpoint is processing. This is
* used to indicate an request has been loaded onto the endpoint
* and has yet to be completed (maybe due to data move, or simply
* awaiting an ack from the core all the data has been completed).
* @debugfs: File entry for debugfs file for this endpoint.
* @lock: State lock to protect contents of endpoint.
* @dir_in: Set to true if this endpoint is of the IN direction, which
* means that it is sending data to the Host.
* @index: The index for the endpoint registers.
* @name: The name array passed to the USB core.
* @halted: Set if the endpoint has been halted.
* @periodic: Set if this is a periodic ep, such as Interrupt
* @sent_zlp: Set if we've sent a zero-length packet.
* @total_data: The total number of data bytes done.
* @fifo_size: The size of the FIFO (for periodic IN endpoints)
* @fifo_load: The amount of data loaded into the FIFO (periodic IN)
* @last_load: The offset of data for the last start of request.
* @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
*
* This is the driver's state for each registered enpoint, allowing it
* to keep track of transactions that need doing. Each endpoint has a
* lock to protect the state, to try and avoid using an overall lock
* for the host controller as much as possible.
*
* For periodic IN endpoints, we have fifo_size and fifo_load to try
* and keep track of the amount of data in the periodic FIFO for each
* of these as we don't have a status register that tells us how much
* is in each of them.
*/
struct s3c_hsotg_ep {
struct usb_ep ep;
struct list_head queue;
struct s3c_hsotg *parent;
struct s3c_hsotg_req *req;
struct dentry *debugfs;
spinlock_t lock;
unsigned long total_data;
unsigned int size_loaded;
unsigned int last_load;
unsigned int fifo_load;
unsigned short fifo_size;
unsigned char dir_in;
unsigned char index;
unsigned int halted:1;
unsigned int periodic:1;
unsigned int sent_zlp:1;
char name[10];
};
#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
/**
* struct s3c_hsotg - driver state.
* @dev: The parent device supplied to the probe function
* @driver: USB gadget driver
* @plat: The platform specific configuration data.
* @regs: The memory area mapped for accessing registers.
* @regs_res: The resource that was allocated when claiming register space.
* @irq: The IRQ number we are using
* @debug_root: root directrory for debugfs.
* @debug_file: main status file for debugfs.
* @debug_fifo: FIFO status file for debugfs.
* @ep0_reply: Request used for ep0 reply.
* @ep0_buff: Buffer for EP0 reply data, if needed.
* @ctrl_buff: Buffer for EP0 control requests.
* @ctrl_req: Request for EP0 control packets.
* @eps: The endpoints being supplied to the gadget framework
*/
struct s3c_hsotg {
struct device *dev;
struct usb_gadget_driver *driver;
struct s3c_hsotg_plat *plat;
void __iomem *regs;
struct resource *regs_res;
int irq;
struct dentry *debug_root;
struct dentry *debug_file;
struct dentry *debug_fifo;
struct usb_request *ep0_reply;
struct usb_request *ctrl_req;
u8 ep0_buff[8];
u8 ctrl_buff[8];
struct usb_gadget gadget;
struct s3c_hsotg_ep eps[];
};
/**
* struct s3c_hsotg_req - data transfer request
* @req: The USB gadget request
* @queue: The list of requests for the endpoint this is queued for.
* @in_progress: Has already had size/packets written to core
* @mapped: DMA buffer for this request has been mapped via dma_map_single().
*/
struct s3c_hsotg_req {
struct usb_request req;
struct list_head queue;
unsigned char in_progress;
unsigned char mapped;
};
/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
return container_of(req, struct s3c_hsotg_req, req);
}
static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct s3c_hsotg_ep, ep);
}
static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
return container_of(gadget, struct s3c_hsotg, gadget);
}
static inline void __orr32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) | val, ptr);
}
static inline void __bic32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) & ~val, ptr);
}
/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
/**
* using_dma - return the DMA status of the driver.
* @hsotg: The driver state.
*
* Return true if we're using DMA.
*
* Currently, we have the DMA support code worked into everywhere
* that needs it, but the AMBA DMA implementation in the hardware can
* only DMA from 32bit aligned addresses. This means that gadgets such
* as the CDC Ethernet cannot work as they often pass packets which are
* not 32bit aligned.
*
* Unfortunately the choice to use DMA or not is global to the controller
* and seems to be only settable when the controller is being put through
* a core reset. This means we either need to fix the gadgets to take
* account of DMA alignment, or add bounce buffers (yuerk).
*
* Until this issue is sorted out, we always return 'false'.
*/
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
return false; /* support is not complete */
}
/**
* s3c_hsotg_en_gsint - enable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk | ints;
if (new_gsintmsk != gsintmsk) {
dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
}
}
/**
* s3c_hsotg_disable_gsint - disable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk & ~ints;
if (new_gsintmsk != gsintmsk)
writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
}
/**
* s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
* @hsotg: The device state
* @ep: The endpoint index
* @dir_in: True if direction is in.
* @en: The enable value, true to enable
*
* Set or clear the mask for an individual endpoint's interrupt
* request.
*/
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int dir_in,
unsigned int en)
{
unsigned long flags;
u32 bit = 1 << ep;
u32 daint;
if (!dir_in)
bit <<= 16;
local_irq_save(flags);
daint = readl(hsotg->regs + S3C_DAINTMSK);
if (en)
daint |= bit;
else
daint &= ~bit;
writel(daint, hsotg->regs + S3C_DAINTMSK);
local_irq_restore(flags);
}
/**
* s3c_hsotg_init_fifo - initialise non-periodic FIFOs
* @hsotg: The device instance.
*/
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
/* the ryu 2.6.24 release ahs
writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
hsotg->regs + S3C_GNPTXFSIZ);
*/
/* set FIFO sizes to 2048/0x1C0 */
writel(2048, hsotg->regs + S3C_GRXFSIZ);
writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
hsotg->regs + S3C_GNPTXFSIZ);
}
/**
* @ep: USB endpoint to allocate request for.
* @flags: Allocation flags
*
* Allocate a new USB request structure appropriate for the specified endpoint
*/
struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, gfp_t flags)
{
struct s3c_hsotg_req *req;
req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
req->req.dma = DMA_ADDR_INVALID;
return &req->req;
}
/**
* is_ep_periodic - return true if the endpoint is in periodic mode.
* @hs_ep: The endpoint to query.
*
* Returns true if the endpoint is in periodic mode, meaning it is being
* used for an Interrupt or ISO transfer.
*/
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
return hs_ep->periodic;
}
/**
* s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint for the request
* @hs_req: The request being processed.
*
* This is the reverse of s3c_hsotg_map_dma(), called for the completion
* of a request to ensure the buffer is ready for access by the caller.
*/
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
struct usb_request *req = &hs_req->req;
enum dma_data_direction dir;
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* ignore this if we're not moving any data */
if (hs_req->req.length == 0)
return;
if (hs_req->mapped) {
/* we mapped this, so unmap and remove the dma */
dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
req->dma = DMA_ADDR_INVALID;
hs_req->mapped = 0;
} else {
dma_sync_single(hsotg->dev, req->dma, req->length, dir);
}
}
/**
* s3c_hsotg_write_fifo - write packet Data to the TxFIFO
* @hsotg: The controller state.
* @hs_ep: The endpoint we're going to write for.
* @hs_req: The request to write data for.
*
* This is called when the TxFIFO has some space in it to hold a new
* transmission and we have something to give it. The actual setup of
* the data size is done elsewhere, so all we have to do is to actually
* write the data.
*
* The return value is zero if there is more space (or nothing was done)
* otherwise -ENOSPC is returned if the FIFO space was used up.
*
* This routine is only needed for PIO
*/
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
bool periodic = is_ep_periodic(hs_ep);
u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
int buf_pos = hs_req->req.actual;
int to_write = hs_ep->size_loaded;
void *data;
int can_write;
int pkt_round;
to_write -= (buf_pos - hs_ep->last_load);
/* if there's nothing to write, get out early */
if (to_write == 0)
return 0;
if (periodic) {
u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
int size_left;
int size_done;
/* work out how much data was loaded so we can calculate
* how much data is left in the fifo. */
size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
__func__, size_left,
hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
/* how much of the data has moved */
size_done = hs_ep->size_loaded - size_left;
/* how much data is left in the fifo */
can_write = hs_ep->fifo_load - size_done;
dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
__func__, can_write);
can_write = hs_ep->fifo_size - can_write;
dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
__func__, can_write);
if (can_write <= 0) {
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
return -ENOSPC;
}
} else {
if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
dev_dbg(hsotg->dev,
"%s: no queue slots available (0x%08x)\n",
__func__, gnptxsts);
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
return -ENOSPC;
}
can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
}
dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
__func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
/* limit to 512 bytes of data, it seems at least on the non-periodic
* FIFO, requests of >512 cause the endpoint to get stuck with a
* fragment of the end of the transfer in it.
*/
if (can_write > 512)
can_write = 512;
/* see if we can write data */
if (to_write > can_write) {
to_write = can_write;
pkt_round = to_write % hs_ep->ep.maxpacket;
/* Not sure, but we probably shouldn't be writing partial
* packets into the FIFO, so round the write down to an
* exact number of packets.
*
* Note, we do not currently check to see if we can ever
* write a full packet or not to the FIFO.
*/
if (pkt_round)
to_write -= pkt_round;
/* enable correct FIFO interrupt to alert us when there
* is more room left. */
s3c_hsotg_en_gsint(hsotg,
periodic ? S3C_GINTSTS_PTxFEmp :
S3C_GINTSTS_NPTxFEmp);
}
dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
to_write, hs_req->req.length, can_write, buf_pos);
if (to_write <= 0)
return -ENOSPC;
hs_req->req.actual = buf_pos + to_write;
hs_ep->total_data += to_write;
if (periodic)
hs_ep->fifo_load += to_write;
to_write = DIV_ROUND_UP(to_write, 4);
data = hs_req->req.buf + buf_pos;
writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
return (to_write >= can_write) ? -ENOSPC : 0;
}
/**
* get_ep_limit - get the maximum data legnth for this endpoint
* @hs_ep: The endpoint
*
* Return the maximum data that can be queued in one go on a given endpoint
* so that transfers that are too long can be split.
*/
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
int index = hs_ep->index;
unsigned maxsize;
unsigned maxpkt;
if (index != 0) {
maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
} else {
if (hs_ep->dir_in) {
/* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
maxsize = 64+64+1;
maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
} else {
maxsize = 0x3f;
maxpkt = 2;
}
}
/* we made the constant loading easier above by using +1 */
maxpkt--;
maxsize--;
/* constrain by packet count if maxpkts*pktsize is greater
* than the length register size. */
if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
maxsize = maxpkt * hs_ep->ep.maxpacket;
return maxsize;
}
/**
* s3c_hsotg_start_req - start a USB request from an endpoint's queue
* @hsotg: The controller state.
* @hs_ep: The endpoint to process a request for
* @hs_req: The request to start.
* @continuing: True if we are doing more for the current request.
*
* Start the given request running by setting the endpoint registers
* appropriately, and writing any data to the FIFOs.
*/
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
bool continuing)
{
struct usb_request *ureq = &hs_req->req;
int index = hs_ep->index;
int dir_in = hs_ep->dir_in;
u32 epctrl_reg;
u32 epsize_reg;
u32 epsize;
u32 ctrl;
unsigned length;
unsigned packets;
unsigned maxreq;
if (index != 0) {
if (hs_ep->req && !continuing) {
dev_err(hsotg->dev, "%s: active request\n", __func__);
WARN_ON(1);
return;
} else if (hs_ep->req != hs_req && continuing) {
dev_err(hsotg->dev,
"%s: continue different req\n", __func__);
WARN_ON(1);
return;
}
}
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
__func__, readl(hsotg->regs + epctrl_reg), index,
hs_ep->dir_in ? "in" : "out");
length = ureq->length - ureq->actual;
if (0)
dev_dbg(hsotg->dev,
"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
ureq->buf, length, ureq->dma,
ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
maxreq = get_ep_limit(hs_ep);
if (length > maxreq) {
int round = maxreq % hs_ep->ep.maxpacket;
dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
__func__, length, maxreq, round);
/* round down to multiple of packets */
if (round)
maxreq -= round;
length = maxreq;
}
if (length)
packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
else
packets = 1; /* send one packet if length is zero. */
if (dir_in && index != 0)
epsize = S3C_DxEPTSIZ_MC(1);
else
epsize = 0;
if (index != 0 && ureq->zero) {
/* test for the packets being exactly right for the
* transfer */
if (length == (packets * hs_ep->ep.maxpacket))
packets++;
}
epsize |= S3C_DxEPTSIZ_PktCnt(packets);
epsize |= S3C_DxEPTSIZ_XferSize(length);
dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
__func__, packets, length, ureq->length, epsize, epsize_reg);
/* store the request as the current one we're doing */
hs_ep->req = hs_req;
/* write size / packets */
writel(epsize, hsotg->regs + epsize_reg);
ctrl = readl(hsotg->regs + epctrl_reg);
if (ctrl & S3C_DxEPCTL_Stall) {
dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
/* not sure what we can do here, if it is EP0 then we should
* get this cleared once the endpoint has transmitted the
* STALL packet, otherwise it needs to be cleared by the
* host.
*/
}
if (using_dma(hsotg)) {
unsigned int dma_reg;
/* write DMA address to control register, buffer already
* synced by s3c_hsotg_ep_queue(). */
dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
writel(ureq->dma, hsotg->regs + dma_reg);
dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
__func__, ureq->dma, dma_reg);
}
ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= S3C_DxEPCTL_USBActEp;
ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/* set these, it seems that DMA support increments past the end
* of the packet buffer so we need to calculate the length from
* this information. */
hs_ep->size_loaded = length;
hs_ep->last_load = ureq->actual;
if (dir_in && !using_dma(hsotg)) {
/* set these anyway, we may need them for non-periodic in */
hs_ep->fifo_load = 0;
s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
/* clear the INTknTXFEmpMsk when we start request, more as a aide
* to debugging to see what is going on. */
if (dir_in)
writel(S3C_DIEPMSK_INTknTXFEmpMsk,
hsotg->regs + S3C_DIEPINT(index));
/* Note, trying to clear the NAK here causes problems with transmit
* on the S3C6400 ending up with the TXFIFO becomming full. */
/* check ep is enabled */
if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
dev_warn(hsotg->dev,
"ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
index, readl(hsotg->regs + epctrl_reg));
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
}
/**
* s3c_hsotg_map_dma - map the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint the request is on.
* @req: The request being processed.
*
* We've been asked to queue a request, so ensure that the memory buffer
* is correctly setup for DMA. If we've been passed an extant DMA address
* then ensure the buffer has been synced to memory. If our buffer has no
* DMA memory, then we map the memory and mark our request to allow us to
* cleanup on completion.
*/
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct usb_request *req)
{
enum dma_data_direction dir;
struct s3c_hsotg_req *hs_req = our_req(req);
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* if the length is zero, ignore the DMA data */
if (hs_req->req.length == 0)
return 0;
if (req->dma == DMA_ADDR_INVALID) {
dma_addr_t dma;
dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
if (unlikely(dma_mapping_error(hsotg->dev, dma)))
goto dma_error;
if (dma & 3) {
dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
__func__);
dma_unmap_single(hsotg->dev, dma, req->length, dir);
return -EINVAL;
}
hs_req->mapped = 1;
req->dma = dma;
} else {
dma_sync_single(hsotg->dev, req->dma, req->length, dir);
hs_req->mapped = 0;
}
return 0;
dma_error:
dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
__func__, req->buf, req->length);
return -EIO;
}
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long irqflags;
bool first;
dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
ep->name, req, req->length, req->buf, req->no_interrupt,
req->zero, req->short_not_ok);
/* initialise status of the request */
INIT_LIST_HEAD(&hs_req->queue);
req->actual = 0;
req->status = -EINPROGRESS;
/* if we're using DMA, sync the buffers as necessary */
if (using_dma(hs)) {
int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
if (ret)
return ret;
}
spin_lock_irqsave(&hs_ep->lock, irqflags);
first = list_empty(&hs_ep->queue);
list_add_tail(&hs_req->queue, &hs_ep->queue);
if (first)
s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
spin_unlock_irqrestore(&hs_ep->lock, irqflags);
return 0;
}
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
kfree(hs_req);
}
/**
* s3c_hsotg_complete_oursetup - setup completion callback
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself
* submitted that need cleaning up.
*/
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
s3c_hsotg_ep_free_request(ep, req);
}
/**
* ep_from_windex - convert control wIndex value to endpoint
* @hsotg: The driver state.
* @windex: The control request wIndex field (in host order).
*
* Convert the given wIndex into a pointer to an driver endpoint
* structure, or return NULL if it is not a valid endpoint.
*/
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
u32 windex)
{
struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
int dir = (windex & USB_DIR_IN) ? 1 : 0;
int idx = windex & 0x7F;
if (windex >= 0x100)
return NULL;
if (idx > S3C_HSOTG_EPS)
return NULL;
if (idx && ep->dir_in != dir)
return NULL;
return ep;
}
/**
* s3c_hsotg_send_reply - send reply to control request
* @hsotg: The device state
* @ep: Endpoint 0
* @buff: Buffer for request
* @length: Length of reply.
*
* Create a request and queue it on the given endpoint. This is useful as
* an internal method of sending replies to certain control requests, etc.
*/
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
void *buff,
int length)
{
struct usb_request *req;
int ret;
dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
hsotg->ep0_reply = req;
if (!req) {
dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
return -ENOMEM;
}
req->buf = hsotg->ep0_buff;
req->length = length;
req->zero = 1; /* always do zero-length final transfer */
req->complete = s3c_hsotg_complete_oursetup;
if (length)
memcpy(req->buf, buff, length);
else
ep->sent_zlp = 1;
ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
if (ret) {
dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
return ret;
}
return 0;
}
/**
* s3c_hsotg_process_req_status - process request GET_STATUS
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
struct s3c_hsotg_ep *ep;
__le16 reply;
int ret;
dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
if (!ep0->dir_in) {
dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
return -EINVAL;
}
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
reply = cpu_to_le16(0); /* bit 0 => self powered,
* bit 1 => remote wakeup */
break;
case USB_RECIP_INTERFACE:
/* currently, the data result should be zero */
reply = cpu_to_le16(0);
break;
case USB_RECIP_ENDPOINT:
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep)
return -ENOENT;
reply = cpu_to_le16(ep->halted ? 1 : 0);
break;
default:
return 0;
}
if (le16_to_cpu(ctrl->wLength) != 2)
return -EINVAL;
ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
if (ret) {
dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
return ret;
}
return 1;
}
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
/**
* s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
struct s3c_hsotg_ep *ep;
dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
__func__, set ? "SET" : "CLEAR");
if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep) {
dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
__func__, le16_to_cpu(ctrl->wIndex));
return -ENOENT;
}
switch (le16_to_cpu(ctrl->wValue)) {
case USB_ENDPOINT_HALT:
s3c_hsotg_ep_sethalt(&ep->ep, set);
break;
default:
return -ENOENT;
}
} else
return -ENOENT; /* currently only deal with endpoint */
return 1;
}
/**
* s3c_hsotg_process_control - process a control request
* @hsotg: The device state
* @ctrl: The control request received
*
* The controller has received the SETUP phase of a control request, and
* needs to work out what to do next (and whether to pass it on to the
* gadget driver).
*/
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
int ret = 0;
u32 dcfg;
ep0->sent_zlp = 0;
dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
ctrl->bRequest, ctrl->bRequestType,
ctrl->wValue, ctrl->wLength);
/* record the direction of the request, for later use when enquing
* packets onto EP0. */
ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
/* if we've no data with this request, then the last part of the
* transaction is going to implicitly be IN. */
if (ctrl->wLength == 0)
ep0->dir_in = 1;
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (ctrl->bRequest) {
case USB_REQ_SET_ADDRESS:
dcfg = readl(hsotg->regs + S3C_DCFG);
dcfg &= ~S3C_DCFG_DevAddr_MASK;
dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
writel(dcfg, hsotg->regs + S3C_DCFG);
dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
return;
case USB_REQ_GET_STATUS:
ret = s3c_hsotg_process_req_status(hsotg, ctrl);
break;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
break;
}
}
/* as a fallback, try delivering it to the driver to deal with */
if (ret == 0 && hsotg->driver) {
ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
if (ret < 0)
dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
}
if (ret > 0) {
if (!ep0->dir_in) {
/* need to generate zlp in reply or take data */
/* todo - deal with any data we might be sent? */
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
}
}
/* the request is either unhandlable, or is not formatted correctly
* so respond with a STALL for the status stage to indicate failure.
*/
if (ret < 0) {
u32 reg;
u32 ctrl;
dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
/* S3C_DxEPCTL_Stall will be cleared by EP once it has
* taken effect, so no need to clear later. */
ctrl = readl(hsotg->regs + reg);
ctrl |= S3C_DxEPCTL_Stall;
ctrl |= S3C_DxEPCTL_CNAK;
writel(ctrl, hsotg->regs + reg);
dev_dbg(hsotg->dev,
"writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
ctrl, reg, readl(hsotg->regs + reg));
/* don't belive we need to anything more to get the EP
* to reply with a STALL packet */
}
}
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
/**
* s3c_hsotg_complete_setup - completion of a setup transfer
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself submitted for
* EP0 setup packets
*/
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
if (req->status < 0) {
dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
return;
}
if (req->actual == 0)
s3c_hsotg_enqueue_setup(hsotg);
else
s3c_hsotg_process_control(hsotg, req->buf);
}
/**
* s3c_hsotg_enqueue_setup - start a request for EP0 packets
* @hsotg: The device state.
*
* Enqueue a request on EP0 if necessary to received any SETUP packets
* received from the host.
*/
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
struct usb_request *req = hsotg->ctrl_req;
struct s3c_hsotg_req *hs_req = our_req(req);
int ret;
dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
req->zero = 0;
req->length = 8;
req->buf = hsotg->ctrl_buff;
req->complete = s3c_hsotg_complete_setup;
if (!list_empty(&hs_req->queue)) {
dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
return;
}
hsotg->eps[0].dir_in = 0;
ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
if (ret < 0) {
dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
/* Don't think there's much we can do other than watch the
* driver fail. */
}
}
/**
* get_ep_head - return the first request on the endpoint
* @hs_ep: The controller endpoint to get
*
* Get the first request on the endpoint.
*/
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
if (list_empty(&hs_ep->queue))
return NULL;
return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}
/**
* s3c_hsotg_complete_request - complete a request given to us
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* The given request has finished, so call the necessary completion
* if it has one and then look to see if we can start a new request
* on the endpoint.
*
* Note, expects the ep to already be locked as appropriate.
*/
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
int result)
{
bool restart;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
return;
}
dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
/* only replace the status if we've not already set an error
* from a previous transaction */
if (hs_req->req.status == -EINPROGRESS)
hs_req->req.status = result;
hs_ep->req = NULL;
list_del_init(&hs_req->queue);
if (using_dma(hsotg))
s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
/* call the complete request with the locks off, just in case the
* request tries to queue more work for this endpoint. */
if (hs_req->req.complete) {
spin_unlock(&hs_ep->lock);
hs_req->req.complete(&hs_ep->ep, &hs_req->req);
spin_lock(&hs_ep->lock);
}
/* Look to see if there is anything else to do. Note, the completion
* of the previous request may have caused a new request to be started
* so be careful when doing this. */
if (!hs_ep->req && result >= 0) {
restart = !list_empty(&hs_ep->queue);
if (restart) {
hs_req = get_ep_head(hs_ep);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
}
}
}
/**
* s3c_hsotg_complete_request_lock - complete a request given to us (locked)
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* See s3c_hsotg_complete_request(), but called with the endpoint's
* lock held.
*/
static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
int result)
{
unsigned long flags;
spin_lock_irqsave(&hs_ep->lock, flags);
s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
spin_unlock_irqrestore(&hs_ep->lock, flags);
}
/**
* s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
* @hsotg: The device state.
* @ep_idx: The endpoint index for the data
* @size: The size of data in the fifo, in bytes
*
* The FIFO status shows there is data to read from the FIFO for a given
* endpoint, so sort out whether we need to read the data into a request
* that has been made for that endpoint.
*/
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
struct s3c_hsotg_req *hs_req = hs_ep->req;
void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
int to_read;
int max_req;
int read_ptr;
if (!hs_req) {
u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
int ptr;
dev_warn(hsotg->dev,
"%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
__func__, size, ep_idx, epctl);
/* dump the data from the FIFO, we've nothing we can do */
for (ptr = 0; ptr < size; ptr += 4)
(void)readl(fifo);
return;
}
spin_lock(&hs_ep->lock);
to_read = size;
read_ptr = hs_req->req.actual;
max_req = hs_req->req.length - read_ptr;
if (to_read > max_req) {
/* more data appeared than we where willing
* to deal with in this request.
*/
/* currently we don't deal this */
WARN_ON_ONCE(1);
}
dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
__func__, to_read, max_req, read_ptr, hs_req->req.length);
hs_ep->total_data += to_read;
hs_req->req.actual += to_read;
to_read = DIV_ROUND_UP(to_read, 4);
/* note, we might over-write the buffer end by 3 bytes depending on
* alignment of the data. */
readsl(fifo, hs_req->req.buf + read_ptr, to_read);
spin_unlock(&hs_ep->lock);
}
/**
* s3c_hsotg_send_zlp - send zero-length packet on control endpoint
* @hsotg: The device instance
* @req: The request currently on this endpoint
*
* Generate a zero-length IN packet request for terminating a SETUP
* transaction.
*
* Note, since we don't write any data to the TxFIFO, then it is
* currently belived that we do not need to wait for any space in
* the TxFIFO.
*/
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
struct s3c_hsotg_req *req)
{
u32 ctrl;
if (!req) {
dev_warn(hsotg->dev, "%s: no request?\n", __func__);
return;
}
if (req->req.length == 0) {
hsotg->eps[0].sent_zlp = 1;
s3c_hsotg_enqueue_setup(hsotg);
return;
}
hsotg->eps[0].dir_in = 1;
hsotg->eps[0].sent_zlp = 1;
dev_dbg(hsotg->dev, "sending zero-length packet\n");
/* issue a zero-sized packet to terminate this */
writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= S3C_DxEPCTL_USBActEp;
writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
}
/**
* s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
* @hsotg: The device instance
* @epnum: The endpoint received from
* @was_setup: Set if processing a SetupDone event.
*
* The RXFIFO has delivered an OutDone event, which means that the data
* transfer for an OUT endpoint has been completed, either by a short
* packet or by the finish of a transfer.
*/
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
int epnum, bool was_setup)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
struct s3c_hsotg_req *hs_req = hs_ep->req;
struct usb_request *req = &hs_req->req;
int result = 0;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
return;
}
if (using_dma(hsotg)) {
u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
unsigned size_done;
unsigned size_left;
/* Calculate the size of the transfer by checking how much
* is left in the endpoint size register and then working it
* out from the amount we loaded for the transfer.
*
* We need to do this as DMA pointers are always 32bit aligned
* so may overshoot/undershoot the transfer.
*/
size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
req->actual = size_done;
}
if (req->actual < req->length && req->short_not_ok) {
dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
__func__, req->actual, req->length);
/* todo - what should we return here? there's no one else
* even bothering to check the status. */
}
if (epnum == 0) {
if (!was_setup && req->complete != s3c_hsotg_complete_setup)
s3c_hsotg_send_zlp(hsotg, hs_req);
}
s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
}
/**
* s3c_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
u32 dsts;
dsts = readl(hsotg->regs + S3C_DSTS);
dsts &= S3C_DSTS_SOFFN_MASK;
dsts >>= S3C_DSTS_SOFFN_SHIFT;
return dsts;
}
/**
* s3c_hsotg_handle_rx - RX FIFO has data
* @hsotg: The device instance
*
* The IRQ handler has detected that the RX FIFO has some data in it
* that requires processing, so find out what is in there and do the
* appropriate read.
*
* The RXFIFO is a true FIFO, the packets comming out are still in packet
* chunks, so if you have x packets received on an endpoint you'll get x
* FIFO events delivered, each with a packet's worth of data in it.
*
* When using DMA, we should not be processing events from the RXFIFO
* as the actual data should be sent to the memory directly and we turn
* on the completion interrupts to get notifications of transfer completion.
*/
void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
{
u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
u32 epnum, status, size;
WARN_ON(using_dma(hsotg));
epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
status = grxstsr & S3C_GRXSTS_PktSts_MASK;
size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
size >>= S3C_GRXSTS_ByteCnt_SHIFT;
if (1)
dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
__func__, grxstsr, size, epnum);
#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
dev_dbg(hsotg->dev, "GlobalOutNAK\n");
break;
case __status(S3C_GRXSTS_PktSts_OutDone):
dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg));
if (!using_dma(hsotg))
s3c_hsotg_handle_outdone(hsotg, epnum, false);
break;
case __status(S3C_GRXSTS_PktSts_SetupDone):
dev_dbg(hsotg->dev,
"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + S3C_DOEPCTL(0)));
s3c_hsotg_handle_outdone(hsotg, epnum, true);
break;
case __status(S3C_GRXSTS_PktSts_OutRX):
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
case __status(S3C_GRXSTS_PktSts_SetupRX):
dev_dbg(hsotg->dev,
"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + S3C_DOEPCTL(0)));
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
default:
dev_warn(hsotg->dev, "%s: unknown status %08x\n",
__func__, grxstsr);
s3c_hsotg_dump(hsotg);
break;
}
}
/**
* s3c_hsotg_ep0_mps - turn max packet size into register setting
* @mps: The maximum packet size in bytes.
*/
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
switch (mps) {
case 64:
return S3C_D0EPCTL_MPS_64;
case 32:
return S3C_D0EPCTL_MPS_32;
case 16:
return S3C_D0EPCTL_MPS_16;
case 8:
return S3C_D0EPCTL_MPS_8;
}
/* bad max packet size, warn and return invalid result */
WARN_ON(1);
return (u32)-1;
}
/**
* s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
* @hsotg: The driver state.
* @ep: The index number of the endpoint
* @mps: The maximum packet size in bytes
*
* Configure the maximum packet size for the given endpoint, updating
* the hardware control registers to reflect this.
*/
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int mps)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
void __iomem *regs = hsotg->regs;
u32 mpsval;
u32 reg;
if (ep == 0) {
/* EP0 is a special case */
mpsval = s3c_hsotg_ep0_mps(mps);
if (mpsval > 3)
goto bad_mps;
} else {
if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
goto bad_mps;
mpsval = mps;
}
hs_ep->ep.maxpacket = mps;
/* update both the in and out endpoint controldir_ registers, even
* if one of the directions may not be in use. */
reg = readl(regs + S3C_DIEPCTL(ep));
reg &= ~S3C_DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + S3C_DIEPCTL(ep));
reg = readl(regs + S3C_DOEPCTL(ep));
reg &= ~S3C_DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + S3C_DOEPCTL(ep));
return;
bad_mps:
dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}
/**
* s3c_hsotg_trytx - check to see if anything needs transmitting
* @hsotg: The driver state
* @hs_ep: The driver endpoint to check.
*
* Check to see if there is a request that has data to send, and if so
* make an attempt to write data into the FIFO.
*/
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
if (!hs_ep->dir_in || !hs_req)
return 0;
if (hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
hs_ep->index);
return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
return 0;
}
/**
* s3c_hsotg_complete_in - complete IN transfer
* @hsotg: The device state.
* @hs_ep: The endpoint that has just completed.
*
* An IN transfer has been completed, update the transfer's state and then
* call the relevant completion routines.
*/
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
int size_left, size_done;
if (!hs_req) {
dev_dbg(hsotg->dev, "XferCompl but no req\n");
return;
}
/* Calculate the size of the transfer by checking how much is left
* in the endpoint size register and then working it out from
* the amount we loaded for the transfer.
*
* We do this even for DMA, as the transfer may have incremented
* past the end of the buffer (DMA transfers are always 32bit
* aligned).
*/
size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
if (hs_req->req.actual != size_done)
dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
__func__, hs_req->req.actual, size_done);
hs_req->req.actual = size_done;
/* if we did all of the transfer, and there is more data left
* around, then try restarting the rest of the request */
if (!size_left && hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
} else
s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
}
/**
* s3c_hsotg_epint - handle an in/out endpoint interrupt
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
* @dir_in: Set if this is an IN endpoint
*
* Process and clear any interrupt pending for an individual endpoint
*/
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
int dir_in)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
u32 ints;
u32 clear = 0;
ints = readl(hsotg->regs + epint_reg);
dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
__func__, idx, dir_in ? "in" : "out", ints);
if (ints & S3C_DxEPINT_XferCompl) {
dev_dbg(hsotg->dev,
"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
__func__, readl(hsotg->regs + epctl_reg),
readl(hsotg->regs + epsiz_reg));
/* we get OutDone from the FIFO, so we only need to look
* at completing IN requests here */
if (dir_in) {
s3c_hsotg_complete_in(hsotg, hs_ep);
if (idx == 0)
s3c_hsotg_enqueue_setup(hsotg);
} else if (using_dma(hsotg)) {
/* We're using DMA, we need to fire an OutDone here
* as we ignore the RXFIFO. */
s3c_hsotg_handle_outdone(hsotg, idx, false);
}
clear |= S3C_DxEPINT_XferCompl;
}
if (ints & S3C_DxEPINT_EPDisbld) {
dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
clear |= S3C_DxEPINT_EPDisbld;
}
if (ints & S3C_DxEPINT_AHBErr) {
dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
clear |= S3C_DxEPINT_AHBErr;
}
if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
if (using_dma(hsotg) && idx == 0) {
/* this is the notification we've received a
* setup packet. In non-DMA mode we'd get this
* from the RXFIFO, instead we need to process
* the setup here. */
if (dir_in)
WARN_ON_ONCE(1);
else
s3c_hsotg_handle_outdone(hsotg, 0, true);
}
clear |= S3C_DxEPINT_Setup;
}
if (ints & S3C_DxEPINT_Back2BackSetup) {
dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
clear |= S3C_DxEPINT_Back2BackSetup;
}
if (dir_in) {
/* not sure if this is important, but we'll clear it anyway
*/
if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
__func__, idx);
clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
}
/* this probably means something bad is happening */
if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
__func__, idx);
clear |= S3C_DIEPMSK_INTknEPMisMsk;
}
}
writel(clear, hsotg->regs + epint_reg);
}
/**
* s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
* @hsotg: The device state.
*
* Handle updating the device settings after the enumeration phase has
* been completed.
*/
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
u32 dsts = readl(hsotg->regs + S3C_DSTS);
int ep0_mps = 0, ep_mps;
/* This should signal the finish of the enumeration phase
* of the USB handshaking, so we should now know what rate
* we connected at. */
dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
/* note, since we're limited by the size of transfer on EP0, and
* it seems IN transfers must be a even number of packets we do
* not advertise a 64byte MPS on EP0. */
/* catch both EnumSpd_FS and EnumSpd_FS48 */
switch (dsts & S3C_DSTS_EnumSpd_MASK) {
case S3C_DSTS_EnumSpd_FS:
case S3C_DSTS_EnumSpd_FS48:
hsotg->gadget.speed = USB_SPEED_FULL;
dev_info(hsotg->dev, "new device is full-speed\n");
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 64;
break;
case S3C_DSTS_EnumSpd_HS:
dev_info(hsotg->dev, "new device is high-speed\n");
hsotg->gadget.speed = USB_SPEED_HIGH;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 512;
break;
case S3C_DSTS_EnumSpd_LS:
hsotg->gadget.speed = USB_SPEED_LOW;
dev_info(hsotg->dev, "new device is low-speed\n");
/* note, we don't actually support LS in this driver at the
* moment, and the documentation seems to imply that it isn't
* supported by the PHYs on some of the devices.
*/
break;
}
/* we should now know the maximum packet size for an
* endpoint, so set the endpoints to a default value. */
if (ep0_mps) {
int i;
s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
for (i = 1; i < S3C_HSOTG_EPS; i++)
s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
}
/* ensure after enumeration our EP0 is active */
s3c_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
}
/**
* kill_all_requests - remove all requests from the endpoint's queue
* @hsotg: The device state.
* @ep: The endpoint the requests may be on.
* @result: The result code to use.
* @force: Force removal of any current requests
*
* Go through the requests on the given endpoint and mark them
* completed with the given result code.
*/
static void kill_all_requests(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
int result, bool force)
{
struct s3c_hsotg_req *req, *treq;
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
/* currently, we can't do much about an already
* running request on an in endpoint */
if (ep->req == req && ep->dir_in && !force)
continue;
s3c_hsotg_complete_request(hsotg, ep, req,
result);
}
spin_unlock_irqrestore(&ep->lock, flags);
}
#define call_gadget(_hs, _entry) \
if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
(_hs)->driver && (_hs)->driver->_entry) \
(_hs)->driver->_entry(&(_hs)->gadget);
/**
* s3c_hsotg_disconnect_irq - disconnect irq service
* @hsotg: The device state.
*
* A disconnect IRQ has been received, meaning that the host has
* lost contact with the bus. Remove all current transactions
* and signal the gadget driver that this has happened.
*/
static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
{
unsigned ep;
for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
call_gadget(hsotg, disconnect);
}
/**
* s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
* @hsotg: The device state:
* @periodic: True if this is a periodic FIFO interrupt
*/
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
struct s3c_hsotg_ep *ep;
int epno, ret;
/* look through for any more data to transmit */
for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
ep = &hsotg->eps[epno];
if (!ep->dir_in)
continue;
if ((periodic && !ep->periodic) ||
(!periodic && ep->periodic))
continue;
ret = s3c_hsotg_trytx(hsotg, ep);
if (ret < 0)
break;
}
}
static struct s3c_hsotg *our_hsotg;
/* IRQ flags which will trigger a retry around the IRQ loop */
#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
S3C_GINTSTS_PTxFEmp | \
S3C_GINTSTS_RxFLvl)
/**
* s3c_hsotg_irq - handle device interrupt
* @irq: The IRQ number triggered
* @pw: The pw value when registered the handler.
*/
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
struct s3c_hsotg *hsotg = pw;
int retry_count = 8;
u32 gintsts;
u32 gintmsk;
irq_retry:
gintsts = readl(hsotg->regs + S3C_GINTSTS);
gintmsk = readl(hsotg->regs + S3C_GINTMSK);
dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
gintsts &= gintmsk;
if (gintsts & S3C_GINTSTS_OTGInt) {
u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
writel(otgint, hsotg->regs + S3C_GOTGINT);
writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_DisconnInt) {
dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
s3c_hsotg_disconnect_irq(hsotg);
}
if (gintsts & S3C_GINTSTS_SessReqInt) {
dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_EnumDone) {
s3c_hsotg_irq_enumdone(hsotg);
writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_ConIDStsChng) {
dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
readl(hsotg->regs + S3C_DSTS),
readl(hsotg->regs + S3C_GOTGCTL));
writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
u32 daint = readl(hsotg->regs + S3C_DAINT);
u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
int ep;
dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
if (daint_out & 1)
s3c_hsotg_epint(hsotg, ep, 0);
}
for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
if (daint_in & 1)
s3c_hsotg_epint(hsotg, ep, 1);
}
writel(daint, hsotg->regs + S3C_DAINT);
writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_USBRst) {
dev_info(hsotg->dev, "%s: USBRst\n", __func__);
dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
readl(hsotg->regs + S3C_GNPTXSTS));
kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
/* it seems after a reset we can end up with a situation
* where the TXFIFO still has data in it... try flushing
* it to remove anything that may still be in it.
*/
if (1) {
writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
hsotg->regs + S3C_GRSTCTL);
dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
readl(hsotg->regs + S3C_GNPTXSTS));
}
s3c_hsotg_enqueue_setup(hsotg);
writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
}
/* check both FIFOs */
if (gintsts & S3C_GINTSTS_NPTxFEmp) {
dev_dbg(hsotg->dev, "NPTxFEmp\n");
/* Disable the interrupt to stop it happening again
* unless one of these endpoint routines decides that
* it needs re-enabling */
s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, false);
writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_PTxFEmp) {
dev_dbg(hsotg->dev, "PTxFEmp\n");
/* See note in S3C_GINTSTS_NPTxFEmp */
s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, true);
writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_RxFLvl) {
/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
* we need to retry s3c_hsotg_handle_rx if this is still
* set. */
s3c_hsotg_handle_rx(hsotg);
writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_ModeMis) {
dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_USBSusp) {
dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
call_gadget(hsotg, suspend);
}
if (gintsts & S3C_GINTSTS_WkUpInt) {
dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
call_gadget(hsotg, resume);
}
if (gintsts & S3C_GINTSTS_ErlySusp) {
dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
}
/* these next two seem to crop-up occasionally causing the core
* to shutdown the USB transfer, so try clearing them and logging
* the occurence. */
if (gintsts & S3C_GINTSTS_GOUTNakEff) {
dev_info(hsotg->dev, "GOUTNakEff triggered\n");
s3c_hsotg_dump(hsotg);
writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_GINNakEff) {
dev_info(hsotg->dev, "GINNakEff triggered\n");
s3c_hsotg_dump(hsotg);
writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
}
/* if we've had fifo events, we should try and go around the
* loop again to see if there's any point in returning yet. */
if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
goto irq_retry;
return IRQ_HANDLED;
}
/**
* s3c_hsotg_ep_enable - enable the given endpoint
* @ep: The USB endpint to configure
* @desc: The USB endpoint descriptor to configure with.
*
* This is called from the USB gadget code's usb_ep_enable().
*/
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
unsigned long flags;
int index = hs_ep->index;
u32 epctrl_reg;
u32 epctrl;
u32 mps;
int dir_in;
dev_dbg(hsotg->dev,
"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
desc->wMaxPacketSize, desc->bInterval);
/* not to be called for EP0 */
WARN_ON(index == 0);
dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
if (dir_in != hs_ep->dir_in) {
dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
return -EINVAL;
}
mps = le16_to_cpu(desc->wMaxPacketSize);
/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
epctrl = readl(hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
__func__, epctrl, epctrl_reg);
spin_lock_irqsave(&hs_ep->lock, flags);
epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
epctrl |= S3C_DxEPCTL_MPS(mps);
/* mark the endpoint as active, otherwise the core may ignore
* transactions entirely for this endpoint */
epctrl |= S3C_DxEPCTL_USBActEp;
/* set the NAK status on the endpoint, otherwise we might try and
* do something with data that we've yet got a request to process
* since the RXFIFO will take data for an endpoint even if the
* size register hasn't been set.
*/
epctrl |= S3C_DxEPCTL_SNAK;
/* update the endpoint state */
hs_ep->ep.maxpacket = mps;
/* default, set to non-periodic */
hs_ep->periodic = 0;
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_ISOC:
dev_err(hsotg->dev, "no current ISOC support\n");
return -EINVAL;
case USB_ENDPOINT_XFER_BULK:
epctrl |= S3C_DxEPCTL_EPType_Bulk;
break;
case USB_ENDPOINT_XFER_INT:
if (dir_in) {
/* Allocate our TxFNum by simply using the index
* of the endpoint for the moment. We could do
* something better if the host indicates how
* many FIFOs we are expecting to use. */
hs_ep->periodic = 1;
epctrl |= S3C_DxEPCTL_TxFNum(index);
}
epctrl |= S3C_DxEPCTL_EPType_Intterupt;
break;
case USB_ENDPOINT_XFER_CONTROL:
epctrl |= S3C_DxEPCTL_EPType_Control;
break;
}
/* for non control endpoints, set PID to D0 */
if (index)
epctrl |= S3C_DxEPCTL_SetD0PID;
dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
__func__, epctrl);
writel(epctrl, hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
/* enable the endpoint interrupt */
s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
spin_unlock_irqrestore(&hs_ep->lock, flags);
return 0;
}
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
int dir_in = hs_ep->dir_in;
int index = hs_ep->index;
unsigned long flags;
u32 epctrl_reg;
u32 ctrl;
dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
if (ep == &hsotg->eps[0].ep) {
dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
return -EINVAL;
}
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
/* terminate all requests with shutdown */
kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
spin_lock_irqsave(&hs_ep->lock, flags);
ctrl = readl(hsotg->regs + epctrl_reg);
ctrl &= ~S3C_DxEPCTL_EPEna;
ctrl &= ~S3C_DxEPCTL_USBActEp;
ctrl |= S3C_DxEPCTL_SNAK;
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/* disable endpoint interrupts */
s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
spin_unlock_irqrestore(&hs_ep->lock, flags);
return 0;
}
/**
* on_list - check request is on the given endpoint
* @ep: The endpoint to check.
* @test: The request to test if it is on the endpoint.
*/
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
struct s3c_hsotg_req *req, *treq;
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
if (req == test)
return true;
}
return false;
}
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long flags;
dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
if (hs_req == hs_ep->req) {
dev_dbg(hs->dev, "%s: already in progress\n", __func__);
return -EINPROGRESS;
}
spin_lock_irqsave(&hs_ep->lock, flags);
if (!on_list(hs_ep, hs_req)) {
spin_unlock_irqrestore(&hs_ep->lock, flags);
return -EINVAL;
}
s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
spin_unlock_irqrestore(&hs_ep->lock, flags);
return 0;
}
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
int index = hs_ep->index;
unsigned long irqflags;
u32 epreg;
u32 epctl;
dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
spin_lock_irqsave(&hs_ep->lock, irqflags);
/* write both IN and OUT control registers */
epreg = S3C_DIEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value)
epctl |= S3C_DxEPCTL_Stall;
else
epctl &= ~S3C_DxEPCTL_Stall;
writel(epctl, hs->regs + epreg);
epreg = S3C_DOEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value)
epctl |= S3C_DxEPCTL_Stall;
else
epctl &= ~S3C_DxEPCTL_Stall;
writel(epctl, hs->regs + epreg);
spin_unlock_irqrestore(&hs_ep->lock, irqflags);
return 0;
}
static struct usb_ep_ops s3c_hsotg_ep_ops = {
.enable = s3c_hsotg_ep_enable,
.disable = s3c_hsotg_ep_disable,
.alloc_request = s3c_hsotg_ep_alloc_request,
.free_request = s3c_hsotg_ep_free_request,
.queue = s3c_hsotg_ep_queue,
.dequeue = s3c_hsotg_ep_dequeue,
.set_halt = s3c_hsotg_ep_sethalt,
/* note, don't belive we have any call for the fifo routines */
};
/**
* s3c_hsotg_corereset - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
int timeout;
u32 grstctl;
dev_dbg(hsotg->dev, "resetting core\n");
/* issue soft reset */
writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
timeout = 1000;
do {
grstctl = readl(hsotg->regs + S3C_GRSTCTL);
} while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
if (!grstctl & S3C_GRSTCTL_CSftRst) {
dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
return -EINVAL;
}
timeout = 1000;
while (1) {
u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
if (timeout-- < 0) {
dev_info(hsotg->dev,
"%s: reset failed, GRSTCTL=%08x\n",
__func__, grstctl);
return -ETIMEDOUT;
}
if (grstctl & S3C_GRSTCTL_CSftRst)
continue;
if (!(grstctl & S3C_GRSTCTL_AHBIdle))
continue;
break; /* reset done */
}
dev_dbg(hsotg->dev, "reset successful\n");
return 0;
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = our_hsotg;
int ret;
if (!hsotg) {
printk(KERN_ERR "%s: called with no device\n", __func__);
return -ENODEV;
}
if (!driver) {
dev_err(hsotg->dev, "%s: no driver\n", __func__);
return -EINVAL;
}
if (driver->speed != USB_SPEED_HIGH &&
driver->speed != USB_SPEED_FULL) {
dev_err(hsotg->dev, "%s: bad speed\n", __func__);
}
if (!driver->bind || !driver->setup) {
dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
return -EINVAL;
}
WARN_ON(hsotg->driver);
driver->driver.bus = NULL;
hsotg->driver = driver;
hsotg->gadget.dev.driver = &driver->driver;
hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
ret = device_add(&hsotg->gadget.dev);
if (ret) {
dev_err(hsotg->dev, "failed to register gadget device\n");
goto err;
}
ret = driver->bind(&hsotg->gadget);
if (ret) {
dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
hsotg->gadget.dev.driver = NULL;
hsotg->driver = NULL;
goto err;
}
/* we must now enable ep0 ready for host detection and then
* set configuration. */
s3c_hsotg_corereset(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
(0x5 << 10), hsotg->regs + S3C_GUSBCFG);
/* looks like soft-reset changes state of FIFOs */
s3c_hsotg_init_fifo(hsotg);
__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
S3C_GINTSTS_ErlySusp,
hsotg->regs + S3C_GINTMSK);
if (using_dma(hsotg))
writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
S3C_GAHBCFG_HBstLen_Incr4,
hsotg->regs + S3C_GAHBCFG);
else
writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
* up being flooded with interrupts if the host is polling the
* endpoint to try and read data. */
writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
S3C_DIEPMSK_INTknEPMisMsk |
S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
hsotg->regs + S3C_DIEPMSK);
/* don't need XferCompl, we get that from RXFIFO in slave mode. In
* DMA mode we may need this. */
writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
S3C_DOEPMSK_EPDisbldMsk |
using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
S3C_DIEPMSK_TimeOUTMsk) : 0,
hsotg->regs + S3C_DOEPMSK);
writel(0, hsotg->regs + S3C_DAINTMSK);
dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
/* enable in and out endpoint interrupts */
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
/* Enable the RXFIFO when in slave mode, as this is how we collect
* the data. In DMA mode, we get events from the FIFO but also
* things we cannot process, so do not use it. */
if (!using_dma(hsotg))
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
/* Enable interrupts for EP0 in and out */
s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
udelay(10); /* see openiboot */
__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
writing to the EPCTL register.. */
/* set to read 1 8byte packet */
writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
S3C_DxEPCTL_USBActEp,
hsotg->regs + S3C_DOEPCTL0);
/* enable, but don't activate EP0in */
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
s3c_hsotg_enqueue_setup(hsotg);
dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
/* clear global NAKs */
writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
hsotg->regs + S3C_DCTL);
/* remove the soft-disconnect and let's go */
__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
/* report to the user, and return */
dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
return 0;
err:
hsotg->driver = NULL;
hsotg->gadget.dev.driver = NULL;
return ret;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = our_hsotg;
int ep;
if (!hsotg)
return -ENODEV;
if (!driver || driver != hsotg->driver || !driver->unbind)
return -EINVAL;
/* all endpoints should be shutdown */
for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
call_gadget(hsotg, disconnect);
driver->unbind(&hsotg->gadget);
hsotg->driver = NULL;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
device_del(&hsotg->gadget.dev);
dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
return s3c_hsotg_read_frameno(to_hsotg(gadget));
}
static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
.get_frame = s3c_hsotg_gadget_getframe,
};
/**
* s3c_hsotg_initep - initialise a single endpoint
* @hsotg: The device state.
* @hs_ep: The endpoint to be initialised.
* @epnum: The endpoint number
*
* Initialise the given endpoint (as part of the probe and device state
* creation) to give to the gadget driver. Setup the endpoint name, any
* direction information and other state that may be required.
*/
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
int epnum)
{
u32 ptxfifo;
char *dir;
if (epnum == 0)
dir = "";
else if ((epnum % 2) == 0) {
dir = "out";
} else {
dir = "in";
hs_ep->dir_in = 1;
}
hs_ep->index = epnum;
snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
INIT_LIST_HEAD(&hs_ep->queue);
INIT_LIST_HEAD(&hs_ep->ep.ep_list);
spin_lock_init(&hs_ep->lock);
/* add to the list of endpoints known by the gadget driver */
if (epnum)
list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
hs_ep->parent = hsotg;
hs_ep->ep.name = hs_ep->name;
hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
hs_ep->ep.ops = &s3c_hsotg_ep_ops;
/* Read the FIFO size for the Periodic TX FIFO, even if we're
* an OUT endpoint, we may as well do this if in future the
* code is changed to make each endpoint's direction changeable.
*/
ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
/* if we're using dma, we need to set the next-endpoint pointer
* to be something valid.
*/
if (using_dma(hsotg)) {
u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
}
}
/**
* s3c_hsotg_otgreset - reset the OtG phy block
* @hsotg: The host state.
*
* Power up the phy, set the basic configuration and start the PHY.
*/
static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
{
u32 osc;
writel(0, S3C_PHYPWR);
mdelay(1);
osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
writel(osc | 0x10, S3C_PHYCLK);
/* issue a full set of resets to the otg and core */
writel(S3C_RSTCON_PHY, S3C_RSTCON);
udelay(20); /* at-least 10uS */
writel(0, S3C_RSTCON);
}
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
/* unmask subset of endpoint interrupts */
writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
hsotg->regs + S3C_DIEPMSK);
writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
hsotg->regs + S3C_DOEPMSK);
writel(0, hsotg->regs + S3C_DAINTMSK);
if (0) {
/* post global nak until we're ready */
writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
hsotg->regs + S3C_DCTL);
}
/* setup fifos */
dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(hsotg->regs + S3C_GRXFSIZ),
readl(hsotg->regs + S3C_GNPTXFSIZ));
s3c_hsotg_init_fifo(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
hsotg->regs + S3C_GUSBCFG);
writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
hsotg->regs + S3C_GAHBCFG);
}
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
struct device *dev = hsotg->dev;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
readl(regs + S3C_DIEPMSK));
dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
/* show periodic fifo settings */
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + S3C_DPTXFSIZn(idx));
dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
}
for (idx = 0; idx < 15; idx++) {
dev_info(dev,
"ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
readl(regs + S3C_DIEPCTL(idx)),
readl(regs + S3C_DIEPTSIZ(idx)),
readl(regs + S3C_DIEPDMA(idx)));
val = readl(regs + S3C_DOEPCTL(idx));
dev_info(dev,
"ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
idx, readl(regs + S3C_DOEPCTL(idx)),
readl(regs + S3C_DOEPTSIZ(idx)),
readl(regs + S3C_DOEPDMA(idx)));
}
dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
}
/**
* state_show - debugfs: show overall driver and device state.
* @seq: The seq file to write to.
* @v: Unused parameter.
*
* This debugfs entry shows the overall state of the hardware and
* some general information about each of the endpoints available
* to the system.
*/
static int state_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
int idx;
seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
readl(regs + S3C_DCFG),
readl(regs + S3C_DCTL),
readl(regs + S3C_DSTS));
seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
readl(regs + S3C_GINTMSK),
readl(regs + S3C_GINTSTS));
seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
readl(regs + S3C_DAINTMSK),
readl(regs + S3C_DAINT));
seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
readl(regs + S3C_GNPTXSTS),
readl(regs + S3C_GRXSTSR));
seq_printf(seq, "\nEndpoint status:\n");
for (idx = 0; idx < 15; idx++) {
u32 in, out;
in = readl(regs + S3C_DIEPCTL(idx));
out = readl(regs + S3C_DOEPCTL(idx));
seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
idx, in, out);
in = readl(regs + S3C_DIEPTSIZ(idx));
out = readl(regs + S3C_DOEPTSIZ(idx));
seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
in, out);
seq_printf(seq, "\n");
}
return 0;
}
static int state_open(struct inode *inode, struct file *file)
{
return single_open(file, state_show, inode->i_private);
}
static const struct file_operations state_fops = {
.owner = THIS_MODULE,
.open = state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* fifo_show - debugfs: show the fifo information
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* Show the FIFO information for the overall fifo and all the
* periodic transmission FIFOs.
*/
static int fifo_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
seq_printf(seq, "Non-periodic FIFOs:\n");
seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
val = readl(regs + S3C_GNPTXFSIZ);
seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
seq_printf(seq, "\nPeriodic TXFIFOs:\n");
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + S3C_DPTXFSIZn(idx));
seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
}
return 0;
}
static int fifo_open(struct inode *inode, struct file *file)
{
return single_open(file, fifo_show, inode->i_private);
}
static const struct file_operations fifo_fops = {
.owner = THIS_MODULE,
.open = fifo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const char *decode_direction(int is_in)
{
return is_in ? "in" : "out";
}
/**
* ep_show - debugfs: show the state of an endpoint.
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* This debugfs entry shows the state of the given endpoint (one is
* registered for each available).
*/
static int ep_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg_ep *ep = seq->private;
struct s3c_hsotg *hsotg = ep->parent;
struct s3c_hsotg_req *req;
void __iomem *regs = hsotg->regs;
int index = ep->index;
int show_limit = 15;
unsigned long flags;
seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
ep->index, ep->ep.name, decode_direction(ep->dir_in));
/* first show the register state */
seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
readl(regs + S3C_DIEPCTL(index)),
readl(regs + S3C_DOEPCTL(index)));
seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
readl(regs + S3C_DIEPDMA(index)),
readl(regs + S3C_DOEPDMA(index)));
seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
readl(regs + S3C_DIEPINT(index)),
readl(regs + S3C_DOEPINT(index)));
seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
readl(regs + S3C_DIEPTSIZ(index)),
readl(regs + S3C_DOEPTSIZ(index)));
seq_printf(seq, "\n");
seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
seq_printf(seq, "total_data=%ld\n", ep->total_data);
seq_printf(seq, "request list (%p,%p):\n",
ep->queue.next, ep->queue.prev);
spin_lock_irqsave(&ep->lock, flags);
list_for_each_entry(req, &ep->queue, queue) {
if (--show_limit < 0) {
seq_printf(seq, "not showing more requests...\n");
break;
}
seq_printf(seq, "%c req %p: %d bytes @%p, ",
req == ep->req ? '*' : ' ',
req, req->req.length, req->req.buf);
seq_printf(seq, "%d done, res %d\n",
req->req.actual, req->req.status);
}
spin_unlock_irqrestore(&ep->lock, flags);
return 0;
}
static int ep_open(struct inode *inode, struct file *file)
{
return single_open(file, ep_show, inode->i_private);
}
static const struct file_operations ep_fops = {
.owner = THIS_MODULE,
.open = ep_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* s3c_hsotg_create_debug - create debugfs directory and files
* @hsotg: The driver state
*
* Create the debugfs files to allow the user to get information
* about the state of the system. The directory name is created
* with the same name as the device itself, in case we end up
* with multiple blocks in future systems.
*/
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
struct dentry *root;
unsigned epidx;
root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
hsotg->debug_root = root;
if (IS_ERR(root)) {
dev_err(hsotg->dev, "cannot create debug root\n");
return;
}
/* create general state file */
hsotg->debug_file = debugfs_create_file("state", 0444, root,
hsotg, &state_fops);
if (IS_ERR(hsotg->debug_file))
dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
hsotg, &fifo_fops);
if (IS_ERR(hsotg->debug_fifo))
dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
/* create one file for each endpoint */
for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
ep->debugfs = debugfs_create_file(ep->name, 0444,
root, ep, &ep_fops);
if (IS_ERR(ep->debugfs))
dev_err(hsotg->dev, "failed to create %s debug file\n",
ep->name);
}
}
/**
* s3c_hsotg_delete_debug - cleanup debugfs entries
* @hsotg: The driver state
*
* Cleanup (remove) the debugfs files for use on module exit.
*/
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
unsigned epidx;
for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
debugfs_remove(ep->debugfs);
}
debugfs_remove(hsotg->debug_file);
debugfs_remove(hsotg->debug_fifo);
debugfs_remove(hsotg->debug_root);
}
/**
* s3c_hsotg_gate - set the hardware gate for the block
* @pdev: The device we bound to
* @on: On or off.
*
* Set the hardware gate setting into the block. If we end up on
* something other than an S3C64XX, then we might need to change this
* to using a platform data callback, or some other mechanism.
*/
static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
{
unsigned long flags;
u32 others;
local_irq_save(flags);
others = __raw_readl(S3C64XX_OTHERS);
if (on)
others |= S3C64XX_OTHERS_USBMASK;
else
others &= ~S3C64XX_OTHERS_USBMASK;
__raw_writel(others, S3C64XX_OTHERS);
local_irq_restore(flags);
}
struct s3c_hsotg_plat s3c_hsotg_default_pdata;
static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct s3c_hsotg *hsotg;
struct resource *res;
int epnum;
int ret;
if (!plat)
plat = &s3c_hsotg_default_pdata;
hsotg = kzalloc(sizeof(struct s3c_hsotg) +
sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
GFP_KERNEL);
if (!hsotg) {
dev_err(dev, "cannot get memory\n");
return -ENOMEM;
}
hsotg->dev = dev;
hsotg->plat = plat;
platform_set_drvdata(pdev, hsotg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "cannot find register resource 0\n");
ret = -EINVAL;
goto err_mem;
}
hsotg->regs_res = request_mem_region(res->start, resource_size(res),
dev_name(dev));
if (!hsotg->regs_res) {
dev_err(dev, "cannot reserve registers\n");
ret = -ENOENT;
goto err_mem;
}
hsotg->regs = ioremap(res->start, resource_size(res));
if (!hsotg->regs) {
dev_err(dev, "cannot map registers\n");
ret = -ENXIO;
goto err_regs_res;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "cannot find IRQ\n");
goto err_regs;
}
hsotg->irq = ret;
ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
if (ret < 0) {
dev_err(dev, "cannot claim IRQ\n");
goto err_regs;
}
dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
device_initialize(&hsotg->gadget.dev);
dev_set_name(&hsotg->gadget.dev, "gadget");
hsotg->gadget.is_dualspeed = 1;
hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
hsotg->gadget.name = dev_name(dev);
hsotg->gadget.dev.parent = dev;
hsotg->gadget.dev.dma_mask = dev->dma_mask;
/* setup endpoint information */
INIT_LIST_HEAD(&hsotg->gadget.ep_list);
hsotg->gadget.ep0 = &hsotg->eps[0].ep;
/* allocate EP0 request */
hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
GFP_KERNEL);
if (!hsotg->ctrl_req) {
dev_err(dev, "failed to allocate ctrl req\n");
goto err_regs;
}
/* reset the system */
s3c_hsotg_gate(pdev, true);
s3c_hsotg_otgreset(hsotg);
s3c_hsotg_corereset(hsotg);
s3c_hsotg_init(hsotg);
/* initialise the endpoints now the core has been initialised */
for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
s3c_hsotg_create_debug(hsotg);
s3c_hsotg_dump(hsotg);
our_hsotg = hsotg;
return 0;
err_regs:
iounmap(hsotg->regs);
err_regs_res:
release_resource(hsotg->regs_res);
kfree(hsotg->regs_res);
err_mem:
kfree(hsotg);
return ret;
}
static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
s3c_hsotg_delete_debug(hsotg);
usb_gadget_unregister_driver(hsotg->driver);
free_irq(hsotg->irq, hsotg);
iounmap(hsotg->regs);
release_resource(hsotg->regs_res);
kfree(hsotg->regs_res);
s3c_hsotg_gate(pdev, false);
kfree(hsotg);
return 0;
}
#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif
static struct platform_driver s3c_hsotg_driver = {
.driver = {
.name = "s3c-hsotg",
.owner = THIS_MODULE,
},
.probe = s3c_hsotg_probe,
.remove = __devexit_p(s3c_hsotg_remove),
.suspend = s3c_hsotg_suspend,
.resume = s3c_hsotg_resume,
};
static int __init s3c_hsotg_modinit(void)
{
return platform_driver_register(&s3c_hsotg_driver);
}
static void __exit s3c_hsotg_modexit(void)
{
platform_driver_unregister(&s3c_hsotg_driver);
}
module_init(s3c_hsotg_modinit);
module_exit(s3c_hsotg_modexit);
MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment