Commit 5f658dad authored by Darrick J. Wong's avatar Darrick J. Wong

xfs: document pageable kernel memory

Add a discussion of pageable kernel memory, since online fsck needs
quite a bit more memory than most other parts of the filesystem to stage
records and other information.
Signed-off-by: default avatarDarrick J. Wong <djwong@kernel.org>
Reviewed-by: default avatarDave Chinner <dchinner@redhat.com>
parent bae43864
......@@ -413,6 +413,8 @@ Algorithms") of Srinivasan.
However, any data structure builder that maintains a resource lock for the
duration of the repair is *always* an offline algorithm.
.. _secondary_metadata:
Secondary Metadata
``````````````````
......@@ -1832,3 +1834,501 @@ Scrub teardown disables all static keys obtained by ``xchk_fsgates_enable``.
For more information, please see the kernel documentation of
Documentation/staging/static-keys.rst.
.. _xfile:
Pageable Kernel Memory
----------------------
Some online checking functions work by scanning the filesystem to build a
shadow copy of an ondisk metadata structure in memory and comparing the two
copies.
For online repair to rebuild a metadata structure, it must compute the record
set that will be stored in the new structure before it can persist that new
structure to disk.
Ideally, repairs complete with a single atomic commit that introduces
a new data structure.
To meet these goals, the kernel needs to collect a large amount of information
in a place that doesn't require the correct operation of the filesystem.
Kernel memory isn't suitable because:
* Allocating a contiguous region of memory to create a C array is very
difficult, especially on 32-bit systems.
* Linked lists of records introduce double pointer overhead which is very high
and eliminate the possibility of indexed lookups.
* Kernel memory is pinned, which can drive the system into OOM conditions.
* The system might not have sufficient memory to stage all the information.
At any given time, online fsck does not need to keep the entire record set in
memory, which means that individual records can be paged out if necessary.
Continued development of online fsck demonstrated that the ability to perform
indexed data storage would also be very useful.
Fortunately, the Linux kernel already has a facility for byte-addressable and
pageable storage: tmpfs.
In-kernel graphics drivers (most notably i915) take advantage of tmpfs files
to store intermediate data that doesn't need to be in memory at all times, so
that usage precedent is already established.
Hence, the ``xfile`` was born!
+--------------------------------------------------------------------------+
| **Historical Sidebar**: |
+--------------------------------------------------------------------------+
| The first edition of online repair inserted records into a new btree as |
| it found them, which failed because filesystem could shut down with a |
| built data structure, which would be live after recovery finished. |
| |
| The second edition solved the half-rebuilt structure problem by storing |
| everything in memory, but frequently ran the system out of memory. |
| |
| The third edition solved the OOM problem by using linked lists, but the |
| memory overhead of the list pointers was extreme. |
+--------------------------------------------------------------------------+
xfile Access Models
```````````````````
A survey of the intended uses of xfiles suggested these use cases:
1. Arrays of fixed-sized records (space management btrees, directory and
extended attribute entries)
2. Sparse arrays of fixed-sized records (quotas and link counts)
3. Large binary objects (BLOBs) of variable sizes (directory and extended
attribute names and values)
4. Staging btrees in memory (reverse mapping btrees)
5. Arbitrary contents (realtime space management)
To support the first four use cases, high level data structures wrap the xfile
to share functionality between online fsck functions.
The rest of this section discusses the interfaces that the xfile presents to
four of those five higher level data structures.
The fifth use case is discussed in the :ref:`realtime summary <rtsummary>` case
study.
The most general storage interface supported by the xfile enables the reading
and writing of arbitrary quantities of data at arbitrary offsets in the xfile.
This capability is provided by ``xfile_pread`` and ``xfile_pwrite`` functions,
which behave similarly to their userspace counterparts.
XFS is very record-based, which suggests that the ability to load and store
complete records is important.
To support these cases, a pair of ``xfile_obj_load`` and ``xfile_obj_store``
functions are provided to read and persist objects into an xfile.
They are internally the same as pread and pwrite, except that they treat any
error as an out of memory error.
For online repair, squashing error conditions in this manner is an acceptable
behavior because the only reaction is to abort the operation back to userspace.
All five xfile usecases can be serviced by these four functions.
However, no discussion of file access idioms is complete without answering the
question, "But what about mmap?"
It is convenient to access storage directly with pointers, just like userspace
code does with regular memory.
Online fsck must not drive the system into OOM conditions, which means that
xfiles must be responsive to memory reclamation.
tmpfs can only push a pagecache folio to the swap cache if the folio is neither
pinned nor locked, which means the xfile must not pin too many folios.
Short term direct access to xfile contents is done by locking the pagecache
folio and mapping it into kernel address space.
Programmatic access (e.g. pread and pwrite) uses this mechanism.
Folio locks are not supposed to be held for long periods of time, so long
term direct access to xfile contents is done by bumping the folio refcount,
mapping it into kernel address space, and dropping the folio lock.
These long term users *must* be responsive to memory reclaim by hooking into
the shrinker infrastructure to know when to release folios.
The ``xfile_get_page`` and ``xfile_put_page`` functions are provided to
retrieve the (locked) folio that backs part of an xfile and to release it.
The only code to use these folio lease functions are the xfarray
:ref:`sorting<xfarray_sort>` algorithms and the :ref:`in-memory
btrees<xfbtree>`.
xfile Access Coordination
`````````````````````````
For security reasons, xfiles must be owned privately by the kernel.
They are marked ``S_PRIVATE`` to prevent interference from the security system,
must never be mapped into process file descriptor tables, and their pages must
never be mapped into userspace processes.
To avoid locking recursion issues with the VFS, all accesses to the shmfs file
are performed by manipulating the page cache directly.
xfile writers call the ``->write_begin`` and ``->write_end`` functions of the
xfile's address space to grab writable pages, copy the caller's buffer into the
page, and release the pages.
xfile readers call ``shmem_read_mapping_page_gfp`` to grab pages directly
before copying the contents into the caller's buffer.
In other words, xfiles ignore the VFS read and write code paths to avoid
having to create a dummy ``struct kiocb`` and to avoid taking inode and
freeze locks.
tmpfs cannot be frozen, and xfiles must not be exposed to userspace.
If an xfile is shared between threads to stage repairs, the caller must provide
its own locks to coordinate access.
For example, if a scrub function stores scan results in an xfile and needs
other threads to provide updates to the scanned data, the scrub function must
provide a lock for all threads to share.
.. _xfarray:
Arrays of Fixed-Sized Records
`````````````````````````````
In XFS, each type of indexed space metadata (free space, inodes, reference
counts, file fork space, and reverse mappings) consists of a set of fixed-size
records indexed with a classic B+ tree.
Directories have a set of fixed-size dirent records that point to the names,
and extended attributes have a set of fixed-size attribute keys that point to
names and values.
Quota counters and file link counters index records with numbers.
During a repair, scrub needs to stage new records during the gathering step and
retrieve them during the btree building step.
Although this requirement can be satisfied by calling the read and write
methods of the xfile directly, it is simpler for callers for there to be a
higher level abstraction to take care of computing array offsets, to provide
iterator functions, and to deal with sparse records and sorting.
The ``xfarray`` abstraction presents a linear array for fixed-size records atop
the byte-accessible xfile.
.. _xfarray_access_patterns:
Array Access Patterns
^^^^^^^^^^^^^^^^^^^^^
Array access patterns in online fsck tend to fall into three categories.
Iteration of records is assumed to be necessary for all cases and will be
covered in the next section.
The first type of caller handles records that are indexed by position.
Gaps may exist between records, and a record may be updated multiple times
during the collection step.
In other words, these callers want a sparse linearly addressed table file.
The typical use case are quota records or file link count records.
Access to array elements is performed programmatically via ``xfarray_load`` and
``xfarray_store`` functions, which wrap the similarly-named xfile functions to
provide loading and storing of array elements at arbitrary array indices.
Gaps are defined to be null records, and null records are defined to be a
sequence of all zero bytes.
Null records are detected by calling ``xfarray_element_is_null``.
They are created either by calling ``xfarray_unset`` to null out an existing
record or by never storing anything to an array index.
The second type of caller handles records that are not indexed by position
and do not require multiple updates to a record.
The typical use case here is rebuilding space btrees and key/value btrees.
These callers can add records to the array without caring about array indices
via the ``xfarray_append`` function, which stores a record at the end of the
array.
For callers that require records to be presentable in a specific order (e.g.
rebuilding btree data), the ``xfarray_sort`` function can arrange the sorted
records; this function will be covered later.
The third type of caller is a bag, which is useful for counting records.
The typical use case here is constructing space extent reference counts from
reverse mapping information.
Records can be put in the bag in any order, they can be removed from the bag
at any time, and uniqueness of records is left to callers.
The ``xfarray_store_anywhere`` function is used to insert a record in any
null record slot in the bag; and the ``xfarray_unset`` function removes a
record from the bag.
The proposed patchset is the
`big in-memory array
<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux.git/log/?h=big-array>`_.
Iterating Array Elements
^^^^^^^^^^^^^^^^^^^^^^^^
Most users of the xfarray require the ability to iterate the records stored in
the array.
Callers can probe every possible array index with the following:
.. code-block:: c
xfarray_idx_t i;
foreach_xfarray_idx(array, i) {
xfarray_load(array, i, &rec);
/* do something with rec */
}
All users of this idiom must be prepared to handle null records or must already
know that there aren't any.
For xfarray users that want to iterate a sparse array, the ``xfarray_iter``
function ignores indices in the xfarray that have never been written to by
calling ``xfile_seek_data`` (which internally uses ``SEEK_DATA``) to skip areas
of the array that are not populated with memory pages.
Once it finds a page, it will skip the zeroed areas of the page.
.. code-block:: c
xfarray_idx_t i = XFARRAY_CURSOR_INIT;
while ((ret = xfarray_iter(array, &i, &rec)) == 1) {
/* do something with rec */
}
.. _xfarray_sort:
Sorting Array Elements
^^^^^^^^^^^^^^^^^^^^^^
During the fourth demonstration of online repair, a community reviewer remarked
that for performance reasons, online repair ought to load batches of records
into btree record blocks instead of inserting records into a new btree one at a
time.
The btree insertion code in XFS is responsible for maintaining correct ordering
of the records, so naturally the xfarray must also support sorting the record
set prior to bulk loading.
Case Study: Sorting xfarrays
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sorting algorithm used in the xfarray is actually a combination of adaptive
quicksort and a heapsort subalgorithm in the spirit of
`Sedgewick <https://algs4.cs.princeton.edu/23quicksort/>`_ and
`pdqsort <https://github.com/orlp/pdqsort>`_, with customizations for the Linux
kernel.
To sort records in a reasonably short amount of time, ``xfarray`` takes
advantage of the binary subpartitioning offered by quicksort, but it also uses
heapsort to hedge aginst performance collapse if the chosen quicksort pivots
are poor.
Both algorithms are (in general) O(n * lg(n)), but there is a wide performance
gulf between the two implementations.
The Linux kernel already contains a reasonably fast implementation of heapsort.
It only operates on regular C arrays, which limits the scope of its usefulness.
There are two key places where the xfarray uses it:
* Sorting any record subset backed by a single xfile page.
* Loading a small number of xfarray records from potentially disparate parts
of the xfarray into a memory buffer, and sorting the buffer.
In other words, ``xfarray`` uses heapsort to constrain the nested recursion of
quicksort, thereby mitigating quicksort's worst runtime behavior.
Choosing a quicksort pivot is a tricky business.
A good pivot splits the set to sort in half, leading to the divide and conquer
behavior that is crucial to O(n * lg(n)) performance.
A poor pivot barely splits the subset at all, leading to O(n\ :sup:`2`)
runtime.
The xfarray sort routine tries to avoid picking a bad pivot by sampling nine
records into a memory buffer and using the kernel heapsort to identify the
median of the nine.
Most modern quicksort implementations employ Tukey's "ninther" to select a
pivot from a classic C array.
Typical ninther implementations pick three unique triads of records, sort each
of the triads, and then sort the middle value of each triad to determine the
ninther value.
As stated previously, however, xfile accesses are not entirely cheap.
It turned out to be much more performant to read the nine elements into a
memory buffer, run the kernel's in-memory heapsort on the buffer, and choose
the 4th element of that buffer as the pivot.
Tukey's ninthers are described in J. W. Tukey, `The ninther, a technique for
low-effort robust (resistant) location in large samples`, in *Contributions to
Survey Sampling and Applied Statistics*, edited by H. David, (Academic Press,
1978), pp. 251–257.
The partitioning of quicksort is fairly textbook -- rearrange the record
subset around the pivot, then set up the current and next stack frames to
sort with the larger and the smaller halves of the pivot, respectively.
This keeps the stack space requirements to log2(record count).
As a final performance optimization, the hi and lo scanning phase of quicksort
keeps examined xfile pages mapped in the kernel for as long as possible to
reduce map/unmap cycles.
Surprisingly, this reduces overall sort runtime by nearly half again after
accounting for the application of heapsort directly onto xfile pages.
Blob Storage
````````````
Extended attributes and directories add an additional requirement for staging
records: arbitrary byte sequences of finite length.
Each directory entry record needs to store entry name,
and each extended attribute needs to store both the attribute name and value.
The names, keys, and values can consume a large amount of memory, so the
``xfblob`` abstraction was created to simplify management of these blobs
atop an xfile.
Blob arrays provide ``xfblob_load`` and ``xfblob_store`` functions to retrieve
and persist objects.
The store function returns a magic cookie for every object that it persists.
Later, callers provide this cookie to the ``xblob_load`` to recall the object.
The ``xfblob_free`` function frees a specific blob, and the ``xfblob_truncate``
function frees them all because compaction is not needed.
The details of repairing directories and extended attributes will be discussed
in a subsequent section about atomic extent swapping.
However, it should be noted that these repair functions only use blob storage
to cache a small number of entries before adding them to a temporary ondisk
file, which is why compaction is not required.
The proposed patchset is at the start of the
`extended attribute repair
<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux.git/log/?h=repair-xattrs>`_ series.
.. _xfbtree:
In-Memory B+Trees
`````````````````
The chapter about :ref:`secondary metadata<secondary_metadata>` mentioned that
checking and repairing of secondary metadata commonly requires coordination
between a live metadata scan of the filesystem and writer threads that are
updating that metadata.
Keeping the scan data up to date requires requires the ability to propagate
metadata updates from the filesystem into the data being collected by the scan.
This *can* be done by appending concurrent updates into a separate log file and
applying them before writing the new metadata to disk, but this leads to
unbounded memory consumption if the rest of the system is very busy.
Another option is to skip the side-log and commit live updates from the
filesystem directly into the scan data, which trades more overhead for a lower
maximum memory requirement.
In both cases, the data structure holding the scan results must support indexed
access to perform well.
Given that indexed lookups of scan data is required for both strategies, online
fsck employs the second strategy of committing live updates directly into
scan data.
Because xfarrays are not indexed and do not enforce record ordering, they
are not suitable for this task.
Conveniently, however, XFS has a library to create and maintain ordered reverse
mapping records: the existing rmap btree code!
If only there was a means to create one in memory.
Recall that the :ref:`xfile <xfile>` abstraction represents memory pages as a
regular file, which means that the kernel can create byte or block addressable
virtual address spaces at will.
The XFS buffer cache specializes in abstracting IO to block-oriented address
spaces, which means that adaptation of the buffer cache to interface with
xfiles enables reuse of the entire btree library.
Btrees built atop an xfile are collectively known as ``xfbtrees``.
The next few sections describe how they actually work.
The proposed patchset is the
`in-memory btree
<https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux.git/log/?h=in-memory-btrees>`_
series.
Using xfiles as a Buffer Cache Target
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Two modifications are necessary to support xfiles as a buffer cache target.
The first is to make it possible for the ``struct xfs_buftarg`` structure to
host the ``struct xfs_buf`` rhashtable, because normally those are held by a
per-AG structure.
The second change is to modify the buffer ``ioapply`` function to "read" cached
pages from the xfile and "write" cached pages back to the xfile.
Multiple access to individual buffers is controlled by the ``xfs_buf`` lock,
since the xfile does not provide any locking on its own.
With this adaptation in place, users of the xfile-backed buffer cache use
exactly the same APIs as users of the disk-backed buffer cache.
The separation between xfile and buffer cache implies higher memory usage since
they do not share pages, but this property could some day enable transactional
updates to an in-memory btree.
Today, however, it simply eliminates the need for new code.
Space Management with an xfbtree
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Space management for an xfile is very simple -- each btree block is one memory
page in size.
These blocks use the same header format as an on-disk btree, but the in-memory
block verifiers ignore the checksums, assuming that xfile memory is no more
corruption-prone than regular DRAM.
Reusing existing code here is more important than absolute memory efficiency.
The very first block of an xfile backing an xfbtree contains a header block.
The header describes the owner, height, and the block number of the root
xfbtree block.
To allocate a btree block, use ``xfile_seek_data`` to find a gap in the file.
If there are no gaps, create one by extending the length of the xfile.
Preallocate space for the block with ``xfile_prealloc``, and hand back the
location.
To free an xfbtree block, use ``xfile_discard`` (which internally uses
``FALLOC_FL_PUNCH_HOLE``) to remove the memory page from the xfile.
Populating an xfbtree
^^^^^^^^^^^^^^^^^^^^^
An online fsck function that wants to create an xfbtree should proceed as
follows:
1. Call ``xfile_create`` to create an xfile.
2. Call ``xfs_alloc_memory_buftarg`` to create a buffer cache target structure
pointing to the xfile.
3. Pass the buffer cache target, buffer ops, and other information to
``xfbtree_create`` to write an initial tree header and root block to the
xfile.
Each btree type should define a wrapper that passes necessary arguments to
the creation function.
For example, rmap btrees define ``xfs_rmapbt_mem_create`` to take care of
all the necessary details for callers.
A ``struct xfbtree`` object will be returned.
4. Pass the xfbtree object to the btree cursor creation function for the
btree type.
Following the example above, ``xfs_rmapbt_mem_cursor`` takes care of this
for callers.
5. Pass the btree cursor to the regular btree functions to make queries against
and to update the in-memory btree.
For example, a btree cursor for an rmap xfbtree can be passed to the
``xfs_rmap_*`` functions just like any other btree cursor.
See the :ref:`next section<xfbtree_commit>` for information on dealing with
xfbtree updates that are logged to a transaction.
6. When finished, delete the btree cursor, destroy the xfbtree object, free the
buffer target, and the destroy the xfile to release all resources.
.. _xfbtree_commit:
Committing Logged xfbtree Buffers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Although it is a clever hack to reuse the rmap btree code to handle the staging
structure, the ephemeral nature of the in-memory btree block storage presents
some challenges of its own.
The XFS transaction manager must not commit buffer log items for buffers backed
by an xfile because the log format does not understand updates for devices
other than the data device.
An ephemeral xfbtree probably will not exist by the time the AIL checkpoints
log transactions back into the filesystem, and certainly won't exist during
log recovery.
For these reasons, any code updating an xfbtree in transaction context must
remove the buffer log items from the transaction and write the updates into the
backing xfile before committing or cancelling the transaction.
The ``xfbtree_trans_commit`` and ``xfbtree_trans_cancel`` functions implement
this functionality as follows:
1. Find each buffer log item whose buffer targets the xfile.
2. Record the dirty/ordered status of the log item.
3. Detach the log item from the buffer.
4. Queue the buffer to a special delwri list.
5. Clear the transaction dirty flag if the only dirty log items were the ones
that were detached in step 3.
6. Submit the delwri list to commit the changes to the xfile, if the updates
are being committed.
After removing xfile logged buffers from the transaction in this manner, the
transaction can be committed or cancelled.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment