Commit 60cb8d3d authored by David S. Miller's avatar David S. Miller

Merge branch 'Strict-mode-for-VRF'

Andrea Mayer says:

====================
Strict mode for VRF

This patch set adds the new "strict mode" functionality to the Virtual
Routing and Forwarding infrastructure (VRF). Hereafter we discuss the
requirements and the main features of the "strict mode" for VRF.

On VRF creation, it is necessary to specify the associated routing table used
during the lookup operations. Currently, there is no mechanism that avoids
creating multiple VRFs sharing the same routing table. In other words, it is not
possible to force a one-to-one relationship between a specific VRF and the table
associated with it.

The "strict mode" imposes that each VRF can be associated to a routing table
only if such routing table is not already in use by any other VRF.
In particular, the strict mode ensures that:

 1) given a specific routing table, the VRF (if exists) is uniquely identified;
 2) given a specific VRF, the related table is not shared with any other VRF.

Constraints (1) and (2) force a one-to-one relationship between each VRF and the
corresponding routing table.

The strict mode feature is designed to be network-namespace aware and it can be
directly enabled/disabled acting on the "strict_mode" parameter.
Read and write operations are carried out through the classic sysctl command on
net.vrf.strict_mode path, i.e: sysctl -w net.vrf.strict_mode=1.

Only two distinct values {0,1} are accepted by the strict_mode parameter:

 - with strict_mode=0, multiple VRFs can be associated with the same table.
   This is the (legacy) default kernel behavior, the same that we experience
   when the strict mode patch set is not applied;

 - with strict_mode=1, the one-to-one relationship between the VRFs and the
   associated tables is guaranteed. In this configuration, the creation of a VRF
   which refers to a routing table already associated with another VRF fails and
   the error is returned to the user.

The kernel keeps track of the associations between a VRF and the routing table
during the VRF setup, in the "management" plane. Therefore, the strict mode does
not impact the performance or the intrinsic functionality of the data plane in
any way.

When the strict mode is active it is always possible to disable the strict mode,
while the reverse operation is not always allowed.
Setting the strict_mode parameter to 0 is equivalent to removing the one-to-one
constraint between any single VRF and its associated routing table.

Conversely, if the strict mode is disabled and there are multiple VRFs that
refer to the same routing table, then it is prohibited to set the strict_mode
parameter to 1. In this configuration, any attempt to perform the operation will
lead to an error and it will be reported to the user.
To enable strict mode once again (by setting the strict_mode parameter to 1),
you must first remove all the VRFs that share common tables.

There are several use cases which can take advantage from the introduction of
the strict mode feature. In particular, the strict mode allows us to:

  i) guarantee the proper functioning of some applications which deal with
     routing protocols;

 ii) perform some tunneling decap operations which require to use specific
     routing tables for segregating and forwarding the traffic.

Considering (i), the creation of different VRFs that point to the same table
leads to the situation where two different routing entities believe they have
exclusive access to the same table. This leads to the situation where different
routing daemons can conflict for gaining routes control due to overlapping
tables. By enabling strict mode it is possible to prevent this situation which
often occurs due to incorrect configurations done by the users.
The ability to enable/disable the strict mode functionality does not depend on
the tool used for configuring the networking. In essence, the strict mode patch
solves, at the kernel level, what some other patches [1] had tried to solve at
the userspace level (using only iproute2) with all the related problems.

Considering (ii), the introduction of the strict mode functionality allows us
implementing the SRv6 End.DT4 behavior. Such behavior terminates a SR tunnel and
it forwards the IPv4 traffic according to the routes present in the routing
table supplied during the configuration. The SRv6 End.DT4 can be realized
exploiting the routing capabilities made available by the VRF infrastructure.
This behavior could leverage a specific VRF for forcing the traffic to be
forwarded in accordance with the routes available in the VRF table.
Anyway, in order to make the End.DT4 properly work, it must be guaranteed that
the table used for the route lookup operations is bound to one and only one VRF.
In this way, it is possible to use the table for uniquely retrieving the
associated VRF and for routing packets.

I would like to thank David Ahern for his constant and valuable support during
the design and development phases of this patch set.

Comments, suggestions and improvements are very welcome!
====================
Acked-by: default avatarDavid Ahern <dsahern@gmail.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents c5eb179e 8735e6ea
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include <net/rtnetlink.h> #include <net/rtnetlink.h>
#include <linux/u64_stats_sync.h> #include <linux/u64_stats_sync.h>
#include <linux/hashtable.h> #include <linux/hashtable.h>
#include <linux/spinlock_types.h>
#include <linux/inetdevice.h> #include <linux/inetdevice.h>
#include <net/arp.h> #include <net/arp.h>
...@@ -35,12 +36,76 @@ ...@@ -35,12 +36,76 @@
#include <net/netns/generic.h> #include <net/netns/generic.h>
#define DRV_NAME "vrf" #define DRV_NAME "vrf"
#define DRV_VERSION "1.0" #define DRV_VERSION "1.1"
#define FIB_RULE_PREF 1000 /* default preference for FIB rules */ #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
#define HT_MAP_BITS 4
#define HASH_INITVAL ((u32)0xcafef00d)
struct vrf_map {
DECLARE_HASHTABLE(ht, HT_MAP_BITS);
spinlock_t vmap_lock;
/* shared_tables:
* count how many distinct tables do not comply with the strict mode
* requirement.
* shared_tables value must be 0 in order to enable the strict mode.
*
* example of the evolution of shared_tables:
* | time
* add vrf0 --> table 100 shared_tables = 0 | t0
* add vrf1 --> table 101 shared_tables = 0 | t1
* add vrf2 --> table 100 shared_tables = 1 | t2
* add vrf3 --> table 100 shared_tables = 1 | t3
* add vrf4 --> table 101 shared_tables = 2 v t4
*
* shared_tables is a "step function" (or "staircase function")
* and it is increased by one when the second vrf is associated to a
* table.
*
* at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
*
* at t3, another dev (vrf3) is bound to the same table 100 but the
* value of shared_tables is still 1.
* This means that no matter how many new vrfs will register on the
* table 100, the shared_tables will not increase (considering only
* table 100).
*
* at t4, vrf4 is bound to table 101, and shared_tables = 2.
*
* Looking at the value of shared_tables we can immediately know if
* the strict_mode can or cannot be enforced. Indeed, strict_mode
* can be enforced iff shared_tables = 0.
*
* Conversely, shared_tables is decreased when a vrf is de-associated
* from a table with exactly two associated vrfs.
*/
u32 shared_tables;
bool strict_mode;
};
struct vrf_map_elem {
struct hlist_node hnode;
struct list_head vrf_list; /* VRFs registered to this table */
u32 table_id;
int users;
int ifindex;
};
static unsigned int vrf_net_id; static unsigned int vrf_net_id;
/* per netns vrf data */
struct netns_vrf {
/* protected by rtnl lock */
bool add_fib_rules;
struct vrf_map vmap;
struct ctl_table_header *ctl_hdr;
};
struct net_vrf { struct net_vrf {
struct rtable __rcu *rth; struct rtable __rcu *rth;
struct rt6_info __rcu *rt6; struct rt6_info __rcu *rt6;
...@@ -48,6 +113,9 @@ struct net_vrf { ...@@ -48,6 +113,9 @@ struct net_vrf {
struct fib6_table *fib6_table; struct fib6_table *fib6_table;
#endif #endif
u32 tb_id; u32 tb_id;
struct list_head me_list; /* entry in vrf_map_elem */
int ifindex;
}; };
struct pcpu_dstats { struct pcpu_dstats {
...@@ -103,6 +171,260 @@ static void vrf_get_stats64(struct net_device *dev, ...@@ -103,6 +171,260 @@ static void vrf_get_stats64(struct net_device *dev,
} }
} }
static struct vrf_map *netns_vrf_map(struct net *net)
{
struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
return &nn_vrf->vmap;
}
static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
{
return netns_vrf_map(dev_net(dev));
}
static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
{
struct list_head *me_head = &me->vrf_list;
struct net_vrf *vrf;
if (list_empty(me_head))
return -ENODEV;
vrf = list_first_entry(me_head, struct net_vrf, me_list);
return vrf->ifindex;
}
static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
{
struct vrf_map_elem *me;
me = kmalloc(sizeof(*me), flags);
if (!me)
return NULL;
return me;
}
static void vrf_map_elem_free(struct vrf_map_elem *me)
{
kfree(me);
}
static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
int ifindex, int users)
{
me->table_id = table_id;
me->ifindex = ifindex;
me->users = users;
INIT_LIST_HEAD(&me->vrf_list);
}
static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
u32 table_id)
{
struct vrf_map_elem *me;
u32 key;
key = jhash_1word(table_id, HASH_INITVAL);
hash_for_each_possible(vmap->ht, me, hnode, key) {
if (me->table_id == table_id)
return me;
}
return NULL;
}
static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
{
u32 table_id = me->table_id;
u32 key;
key = jhash_1word(table_id, HASH_INITVAL);
hash_add(vmap->ht, &me->hnode, key);
}
static void vrf_map_del_elem(struct vrf_map_elem *me)
{
hash_del(&me->hnode);
}
static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
{
spin_lock(&vmap->vmap_lock);
}
static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
{
spin_unlock(&vmap->vmap_lock);
}
static bool vrf_strict_mode(struct vrf_map *vmap)
{
bool strict_mode;
vrf_map_lock(vmap);
strict_mode = vmap->strict_mode;
vrf_map_unlock(vmap);
return strict_mode;
}
static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
{
bool *cur_mode;
int res = 0;
vrf_map_lock(vmap);
cur_mode = &vmap->strict_mode;
if (*cur_mode == new_mode)
goto unlock;
if (*cur_mode) {
/* disable strict mode */
*cur_mode = false;
} else {
if (vmap->shared_tables) {
/* we cannot allow strict_mode because there are some
* vrfs that share one or more tables.
*/
res = -EBUSY;
goto unlock;
}
/* no tables are shared among vrfs, so we can go back
* to 1:1 association between a vrf with its table.
*/
*cur_mode = true;
}
unlock:
vrf_map_unlock(vmap);
return res;
}
/* called with rtnl lock held */
static int
vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
{
struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
struct net_vrf *vrf = netdev_priv(dev);
struct vrf_map_elem *new_me, *me;
u32 table_id = vrf->tb_id;
bool free_new_me = false;
int users;
int res;
/* we pre-allocate elements used in the spin-locked section (so that we
* keep the spinlock as short as possibile).
*/
new_me = vrf_map_elem_alloc(GFP_KERNEL);
if (!new_me)
return -ENOMEM;
vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
vrf_map_lock(vmap);
me = vrf_map_lookup_elem(vmap, table_id);
if (!me) {
me = new_me;
vrf_map_add_elem(vmap, me);
goto link_vrf;
}
/* we already have an entry in the vrf_map, so it means there is (at
* least) a vrf registered on the specific table.
*/
free_new_me = true;
if (vmap->strict_mode) {
/* vrfs cannot share the same table */
NL_SET_ERR_MSG(extack, "Table is used by another VRF");
res = -EBUSY;
goto unlock;
}
link_vrf:
users = ++me->users;
if (users == 2)
++vmap->shared_tables;
list_add(&vrf->me_list, &me->vrf_list);
res = 0;
unlock:
vrf_map_unlock(vmap);
/* clean-up, if needed */
if (free_new_me)
vrf_map_elem_free(new_me);
return res;
}
/* called with rtnl lock held */
static void vrf_map_unregister_dev(struct net_device *dev)
{
struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
struct net_vrf *vrf = netdev_priv(dev);
u32 table_id = vrf->tb_id;
struct vrf_map_elem *me;
int users;
vrf_map_lock(vmap);
me = vrf_map_lookup_elem(vmap, table_id);
if (!me)
goto unlock;
list_del(&vrf->me_list);
users = --me->users;
if (users == 1) {
--vmap->shared_tables;
} else if (users == 0) {
vrf_map_del_elem(me);
/* no one will refer to this element anymore */
vrf_map_elem_free(me);
}
unlock:
vrf_map_unlock(vmap);
}
/* return the vrf device index associated with the table_id */
static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
{
struct vrf_map *vmap = netns_vrf_map(net);
struct vrf_map_elem *me;
int ifindex;
vrf_map_lock(vmap);
if (!vmap->strict_mode) {
ifindex = -EPERM;
goto unlock;
}
me = vrf_map_lookup_elem(vmap, table_id);
if (!me) {
ifindex = -ENODEV;
goto unlock;
}
ifindex = vrf_map_elem_get_vrf_ifindex(me);
unlock:
vrf_map_unlock(vmap);
return ifindex;
}
/* by default VRF devices do not have a qdisc and are expected /* by default VRF devices do not have a qdisc and are expected
* to be created with only a single queue. * to be created with only a single queue.
*/ */
...@@ -1319,6 +1641,8 @@ static void vrf_dellink(struct net_device *dev, struct list_head *head) ...@@ -1319,6 +1641,8 @@ static void vrf_dellink(struct net_device *dev, struct list_head *head)
netdev_for_each_lower_dev(dev, port_dev, iter) netdev_for_each_lower_dev(dev, port_dev, iter)
vrf_del_slave(dev, port_dev); vrf_del_slave(dev, port_dev);
vrf_map_unregister_dev(dev);
unregister_netdevice_queue(dev, head); unregister_netdevice_queue(dev, head);
} }
...@@ -1327,6 +1651,7 @@ static int vrf_newlink(struct net *src_net, struct net_device *dev, ...@@ -1327,6 +1651,7 @@ static int vrf_newlink(struct net *src_net, struct net_device *dev,
struct netlink_ext_ack *extack) struct netlink_ext_ack *extack)
{ {
struct net_vrf *vrf = netdev_priv(dev); struct net_vrf *vrf = netdev_priv(dev);
struct netns_vrf *nn_vrf;
bool *add_fib_rules; bool *add_fib_rules;
struct net *net; struct net *net;
int err; int err;
...@@ -1349,11 +1674,26 @@ static int vrf_newlink(struct net *src_net, struct net_device *dev, ...@@ -1349,11 +1674,26 @@ static int vrf_newlink(struct net *src_net, struct net_device *dev,
if (err) if (err)
goto out; goto out;
/* mapping between table_id and vrf;
* note: such binding could not be done in the dev init function
* because dev->ifindex id is not available yet.
*/
vrf->ifindex = dev->ifindex;
err = vrf_map_register_dev(dev, extack);
if (err) {
unregister_netdevice(dev);
goto out;
}
net = dev_net(dev); net = dev_net(dev);
add_fib_rules = net_generic(net, vrf_net_id); nn_vrf = net_generic(net, vrf_net_id);
add_fib_rules = &nn_vrf->add_fib_rules;
if (*add_fib_rules) { if (*add_fib_rules) {
err = vrf_add_fib_rules(dev); err = vrf_add_fib_rules(dev);
if (err) { if (err) {
vrf_map_unregister_dev(dev);
unregister_netdevice(dev); unregister_netdevice(dev);
goto out; goto out;
} }
...@@ -1440,20 +1780,102 @@ static struct notifier_block vrf_notifier_block __read_mostly = { ...@@ -1440,20 +1780,102 @@ static struct notifier_block vrf_notifier_block __read_mostly = {
.notifier_call = vrf_device_event, .notifier_call = vrf_device_event,
}; };
static int vrf_map_init(struct vrf_map *vmap)
{
spin_lock_init(&vmap->vmap_lock);
hash_init(vmap->ht);
vmap->strict_mode = false;
return 0;
}
static int vrf_shared_table_handler(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct net *net = (struct net *)table->extra1;
struct vrf_map *vmap = netns_vrf_map(net);
int proc_strict_mode = 0;
struct ctl_table tmp = {
.procname = table->procname,
.data = &proc_strict_mode,
.maxlen = sizeof(int),
.mode = table->mode,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
};
int ret;
if (!write)
proc_strict_mode = vrf_strict_mode(vmap);
ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
if (write && ret == 0)
ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
return ret;
}
static const struct ctl_table vrf_table[] = {
{
.procname = "strict_mode",
.data = NULL,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = vrf_shared_table_handler,
/* set by the vrf_netns_init */
.extra1 = NULL,
},
{ },
};
/* Initialize per network namespace state */ /* Initialize per network namespace state */
static int __net_init vrf_netns_init(struct net *net) static int __net_init vrf_netns_init(struct net *net)
{ {
bool *add_fib_rules = net_generic(net, vrf_net_id); struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
struct ctl_table *table;
int res;
nn_vrf->add_fib_rules = true;
vrf_map_init(&nn_vrf->vmap);
table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
if (!table)
return -ENOMEM;
/* init the extra1 parameter with the reference to current netns */
table[0].extra1 = net;
*add_fib_rules = true; nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
if (!nn_vrf->ctl_hdr) {
res = -ENOMEM;
goto free_table;
}
return 0; return 0;
free_table:
kfree(table);
return res;
}
static void __net_exit vrf_netns_exit(struct net *net)
{
struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
struct ctl_table *table;
table = nn_vrf->ctl_hdr->ctl_table_arg;
unregister_net_sysctl_table(nn_vrf->ctl_hdr);
kfree(table);
} }
static struct pernet_operations vrf_net_ops __net_initdata = { static struct pernet_operations vrf_net_ops __net_initdata = {
.init = vrf_netns_init, .init = vrf_netns_init,
.exit = vrf_netns_exit,
.id = &vrf_net_id, .id = &vrf_net_id,
.size = sizeof(bool), .size = sizeof(struct netns_vrf),
}; };
static int __init vrf_init_module(void) static int __init vrf_init_module(void)
...@@ -1466,14 +1888,24 @@ static int __init vrf_init_module(void) ...@@ -1466,14 +1888,24 @@ static int __init vrf_init_module(void)
if (rc < 0) if (rc < 0)
goto error; goto error;
rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
vrf_ifindex_lookup_by_table_id);
if (rc < 0)
goto unreg_pernet;
rc = rtnl_link_register(&vrf_link_ops); rc = rtnl_link_register(&vrf_link_ops);
if (rc < 0) { if (rc < 0)
unregister_pernet_subsys(&vrf_net_ops); goto table_lookup_unreg;
goto error;
}
return 0; return 0;
table_lookup_unreg:
l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
vrf_ifindex_lookup_by_table_id);
unreg_pernet:
unregister_pernet_subsys(&vrf_net_ops);
error: error:
unregister_netdevice_notifier(&vrf_notifier_block); unregister_netdevice_notifier(&vrf_notifier_block);
return rc; return rc;
......
...@@ -10,6 +10,16 @@ ...@@ -10,6 +10,16 @@
#include <net/dst.h> #include <net/dst.h>
#include <net/fib_rules.h> #include <net/fib_rules.h>
enum l3mdev_type {
L3MDEV_TYPE_UNSPEC,
L3MDEV_TYPE_VRF,
__L3MDEV_TYPE_MAX
};
#define L3MDEV_TYPE_MAX (__L3MDEV_TYPE_MAX - 1)
typedef int (*lookup_by_table_id_t)(struct net *net, u32 table_d);
/** /**
* struct l3mdev_ops - l3mdev operations * struct l3mdev_ops - l3mdev operations
* *
...@@ -37,6 +47,15 @@ struct l3mdev_ops { ...@@ -37,6 +47,15 @@ struct l3mdev_ops {
#ifdef CONFIG_NET_L3_MASTER_DEV #ifdef CONFIG_NET_L3_MASTER_DEV
int l3mdev_table_lookup_register(enum l3mdev_type l3type,
lookup_by_table_id_t fn);
void l3mdev_table_lookup_unregister(enum l3mdev_type l3type,
lookup_by_table_id_t fn);
int l3mdev_ifindex_lookup_by_table_id(enum l3mdev_type l3type, struct net *net,
u32 table_id);
int l3mdev_fib_rule_match(struct net *net, struct flowi *fl, int l3mdev_fib_rule_match(struct net *net, struct flowi *fl,
struct fib_lookup_arg *arg); struct fib_lookup_arg *arg);
...@@ -280,6 +299,26 @@ struct sk_buff *l3mdev_ip6_out(struct sock *sk, struct sk_buff *skb) ...@@ -280,6 +299,26 @@ struct sk_buff *l3mdev_ip6_out(struct sock *sk, struct sk_buff *skb)
return skb; return skb;
} }
static inline
int l3mdev_table_lookup_register(enum l3mdev_type l3type,
lookup_by_table_id_t fn)
{
return -EOPNOTSUPP;
}
static inline
void l3mdev_table_lookup_unregister(enum l3mdev_type l3type,
lookup_by_table_id_t fn)
{
}
static inline
int l3mdev_ifindex_lookup_by_table_id(enum l3mdev_type l3type, struct net *net,
u32 table_id)
{
return -ENODEV;
}
static inline static inline
int l3mdev_fib_rule_match(struct net *net, struct flowi *fl, int l3mdev_fib_rule_match(struct net *net, struct flowi *fl,
struct fib_lookup_arg *arg) struct fib_lookup_arg *arg)
......
...@@ -9,6 +9,99 @@ ...@@ -9,6 +9,99 @@
#include <net/fib_rules.h> #include <net/fib_rules.h>
#include <net/l3mdev.h> #include <net/l3mdev.h>
static DEFINE_SPINLOCK(l3mdev_lock);
struct l3mdev_handler {
lookup_by_table_id_t dev_lookup;
};
static struct l3mdev_handler l3mdev_handlers[L3MDEV_TYPE_MAX + 1];
static int l3mdev_check_type(enum l3mdev_type l3type)
{
if (l3type <= L3MDEV_TYPE_UNSPEC || l3type > L3MDEV_TYPE_MAX)
return -EINVAL;
return 0;
}
int l3mdev_table_lookup_register(enum l3mdev_type l3type,
lookup_by_table_id_t fn)
{
struct l3mdev_handler *hdlr;
int res;
res = l3mdev_check_type(l3type);
if (res)
return res;
hdlr = &l3mdev_handlers[l3type];
spin_lock(&l3mdev_lock);
if (hdlr->dev_lookup) {
res = -EBUSY;
goto unlock;
}
hdlr->dev_lookup = fn;
res = 0;
unlock:
spin_unlock(&l3mdev_lock);
return res;
}
EXPORT_SYMBOL_GPL(l3mdev_table_lookup_register);
void l3mdev_table_lookup_unregister(enum l3mdev_type l3type,
lookup_by_table_id_t fn)
{
struct l3mdev_handler *hdlr;
if (l3mdev_check_type(l3type))
return;
hdlr = &l3mdev_handlers[l3type];
spin_lock(&l3mdev_lock);
if (hdlr->dev_lookup == fn)
hdlr->dev_lookup = NULL;
spin_unlock(&l3mdev_lock);
}
EXPORT_SYMBOL_GPL(l3mdev_table_lookup_unregister);
int l3mdev_ifindex_lookup_by_table_id(enum l3mdev_type l3type,
struct net *net, u32 table_id)
{
lookup_by_table_id_t lookup;
struct l3mdev_handler *hdlr;
int ifindex = -EINVAL;
int res;
res = l3mdev_check_type(l3type);
if (res)
return res;
hdlr = &l3mdev_handlers[l3type];
spin_lock(&l3mdev_lock);
lookup = hdlr->dev_lookup;
if (!lookup)
goto unlock;
ifindex = lookup(net, table_id);
unlock:
spin_unlock(&l3mdev_lock);
return ifindex;
}
EXPORT_SYMBOL_GPL(l3mdev_ifindex_lookup_by_table_id);
/** /**
* l3mdev_master_ifindex - get index of L3 master device * l3mdev_master_ifindex - get index of L3 master device
* @dev: targeted interface * @dev: targeted interface
......
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# This test is designed for testing the new VRF strict_mode functionality.
ret=0
# identifies the "init" network namespace which is often called root network
# namespace.
INIT_NETNS_NAME="init"
PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no}
log_test()
{
local rc=$1
local expected=$2
local msg="$3"
if [ ${rc} -eq ${expected} ]; then
nsuccess=$((nsuccess+1))
printf "\n TEST: %-60s [ OK ]\n" "${msg}"
else
ret=1
nfail=$((nfail+1))
printf "\n TEST: %-60s [FAIL]\n" "${msg}"
if [ "${PAUSE_ON_FAIL}" = "yes" ]; then
echo
echo "hit enter to continue, 'q' to quit"
read a
[ "$a" = "q" ] && exit 1
fi
fi
}
print_log_test_results()
{
if [ "$TESTS" != "none" ]; then
printf "\nTests passed: %3d\n" ${nsuccess}
printf "Tests failed: %3d\n" ${nfail}
fi
}
log_section()
{
echo
echo "################################################################################"
echo "TEST SECTION: $*"
echo "################################################################################"
}
ip_expand_args()
{
local nsname=$1
local nsarg=""
if [ "${nsname}" != "${INIT_NETNS_NAME}" ]; then
nsarg="-netns ${nsname}"
fi
echo "${nsarg}"
}
vrf_count()
{
local nsname=$1
local nsarg="$(ip_expand_args ${nsname})"
ip ${nsarg} -o link show type vrf | wc -l
}
count_vrf_by_table_id()
{
local nsname=$1
local tableid=$2
local nsarg="$(ip_expand_args ${nsname})"
ip ${nsarg} -d -o link show type vrf | grep "table ${tableid}" | wc -l
}
add_vrf()
{
local nsname=$1
local vrfname=$2
local vrftable=$3
local nsarg="$(ip_expand_args ${nsname})"
ip ${nsarg} link add ${vrfname} type vrf table ${vrftable} &>/dev/null
}
add_vrf_and_check()
{
local nsname=$1
local vrfname=$2
local vrftable=$3
local cnt
local rc
add_vrf ${nsname} ${vrfname} ${vrftable}; rc=$?
cnt=$(count_vrf_by_table_id ${nsname} ${vrftable})
log_test ${rc} 0 "${nsname}: add vrf ${vrfname}, ${cnt} vrfs for table ${vrftable}"
}
add_vrf_and_check_fail()
{
local nsname=$1
local vrfname=$2
local vrftable=$3
local cnt
local rc
add_vrf ${nsname} ${vrfname} ${vrftable}; rc=$?
cnt=$(count_vrf_by_table_id ${nsname} ${vrftable})
log_test ${rc} 2 "${nsname}: CANNOT add vrf ${vrfname}, ${cnt} vrfs for table ${vrftable}"
}
del_vrf_and_check()
{
local nsname=$1
local vrfname=$2
local nsarg="$(ip_expand_args ${nsname})"
ip ${nsarg} link del ${vrfname}
log_test $? 0 "${nsname}: remove vrf ${vrfname}"
}
config_vrf_and_check()
{
local nsname=$1
local addr=$2
local vrfname=$3
local nsarg="$(ip_expand_args ${nsname})"
ip ${nsarg} link set dev ${vrfname} up && \
ip ${nsarg} addr add ${addr} dev ${vrfname}
log_test $? 0 "${nsname}: vrf ${vrfname} up, addr ${addr}"
}
read_strict_mode()
{
local nsname=$1
local rval
local rc=0
local nsexec=""
if [ "${nsname}" != "${INIT_NETNS_NAME}" ]; then
# a custom network namespace is provided
nsexec="ip netns exec ${nsname}"
fi
rval="$(${nsexec} bash -c "cat /proc/sys/net/vrf/strict_mode" | \
grep -E "^[0-1]$")" &> /dev/null
if [ $? -ne 0 ]; then
# set errors
rval=255
rc=1
fi
# on success, rval can be only 0 or 1; on error, rval is equal to 255
echo ${rval}
return ${rc}
}
read_strict_mode_compare_and_check()
{
local nsname=$1
local expected=$2
local res
res="$(read_strict_mode ${nsname})"
log_test ${res} ${expected} "${nsname}: check strict_mode=${res}"
}
set_strict_mode()
{
local nsname=$1
local val=$2
local nsexec=""
if [ "${nsname}" != "${INIT_NETNS_NAME}" ]; then
# a custom network namespace is provided
nsexec="ip netns exec ${nsname}"
fi
${nsexec} bash -c "echo ${val} >/proc/sys/net/vrf/strict_mode" &>/dev/null
}
enable_strict_mode()
{
local nsname=$1
set_strict_mode ${nsname} 1
}
disable_strict_mode()
{
local nsname=$1
set_strict_mode ${nsname} 0
}
disable_strict_mode_and_check()
{
local nsname=$1
disable_strict_mode ${nsname}
log_test $? 0 "${nsname}: disable strict_mode (=0)"
}
enable_strict_mode_and_check()
{
local nsname=$1
enable_strict_mode ${nsname}
log_test $? 0 "${nsname}: enable strict_mode (=1)"
}
enable_strict_mode_and_check_fail()
{
local nsname=$1
enable_strict_mode ${nsname}
log_test $? 1 "${nsname}: CANNOT enable strict_mode"
}
strict_mode_check_default()
{
local nsname=$1
local strictmode
local vrfcnt
vrfcnt=$(vrf_count ${nsname})
strictmode=$(read_strict_mode ${nsname})
log_test ${strictmode} 0 "${nsname}: strict_mode=0 by default, ${vrfcnt} vrfs"
}
setup()
{
modprobe vrf
ip netns add testns
ip netns exec testns ip link set lo up
}
cleanup()
{
ip netns del testns 2>/dev/null
ip link del vrf100 2>/dev/null
ip link del vrf101 2>/dev/null
ip link del vrf102 2>/dev/null
echo 0 >/proc/sys/net/vrf/strict_mode 2>/dev/null
}
vrf_strict_mode_tests_init()
{
vrf_strict_mode_check_support init
strict_mode_check_default init
add_vrf_and_check init vrf100 100
config_vrf_and_check init 172.16.100.1/24 vrf100
enable_strict_mode_and_check init
add_vrf_and_check_fail init vrf101 100
disable_strict_mode_and_check init
add_vrf_and_check init vrf101 100
config_vrf_and_check init 172.16.101.1/24 vrf101
enable_strict_mode_and_check_fail init
del_vrf_and_check init vrf101
enable_strict_mode_and_check init
add_vrf_and_check init vrf102 102
config_vrf_and_check init 172.16.102.1/24 vrf102
# the strict_modle is enabled in the init
}
vrf_strict_mode_tests_testns()
{
vrf_strict_mode_check_support testns
strict_mode_check_default testns
enable_strict_mode_and_check testns
add_vrf_and_check testns vrf100 100
config_vrf_and_check testns 10.0.100.1/24 vrf100
add_vrf_and_check_fail testns vrf101 100
add_vrf_and_check_fail testns vrf102 100
add_vrf_and_check testns vrf200 200
disable_strict_mode_and_check testns
add_vrf_and_check testns vrf101 100
add_vrf_and_check testns vrf102 100
#the strict_mode is disabled in the testns
}
vrf_strict_mode_tests_mix()
{
read_strict_mode_compare_and_check init 1
read_strict_mode_compare_and_check testns 0
del_vrf_and_check testns vrf101
del_vrf_and_check testns vrf102
disable_strict_mode_and_check init
enable_strict_mode_and_check testns
enable_strict_mode_and_check init
enable_strict_mode_and_check init
disable_strict_mode_and_check testns
disable_strict_mode_and_check testns
read_strict_mode_compare_and_check init 1
read_strict_mode_compare_and_check testns 0
}
vrf_strict_mode_tests()
{
log_section "VRF strict_mode test on init network namespace"
vrf_strict_mode_tests_init
log_section "VRF strict_mode test on testns network namespace"
vrf_strict_mode_tests_testns
log_section "VRF strict_mode test mixing init and testns network namespaces"
vrf_strict_mode_tests_mix
}
vrf_strict_mode_check_support()
{
local nsname=$1
local output
local rc
output="$(lsmod | grep '^vrf' | awk '{print $1}')"
if [ -z "${output}" ]; then
modinfo vrf || return $?
fi
# we do not care about the value of the strict_mode; we only check if
# the strict_mode parameter is available or not.
read_strict_mode ${nsname} &>/dev/null; rc=$?
log_test ${rc} 0 "${nsname}: net.vrf.strict_mode is available"
return ${rc}
}
if [ "$(id -u)" -ne 0 ];then
echo "SKIP: Need root privileges"
exit 0
fi
if [ ! -x "$(command -v ip)" ]; then
echo "SKIP: Could not run test without ip tool"
exit 0
fi
cleanup &> /dev/null
setup
vrf_strict_mode_tests
cleanup
print_log_test_results
exit $ret
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment