x86/virt/tdx: Add skeleton to enable TDX on demand
There are essentially two steps to get the TDX module ready: 1) Get each CPU ready to run TDX 2) Set up the shared TDX module data structures Introduce and export (to KVM) the infrastructure to do both of these pieces at runtime. == Per-CPU TDX Initialization == Track the initialization status of each CPU with a per-cpu variable. This avoids failures in the case of KVM module reloads and handles cases where CPUs come online later. Generally, the per-cpu SEAMCALLs happen first. But there's actually one global call that has to happen before _any_ others (TDH_SYS_INIT). It's analogous to the boot CPU having to do a bit of extra work just because it happens to be the first one. Track if _any_ CPU has done this call and then only actually do it during the first per-cpu init. == Shared TDX Initialization == Create the global state function (tdx_enable()) as a simple placeholder. The TODO list will be pared down as functionality is added. Use a state machine protected by mutex to make sure the work in tdx_enable() will only be done once. This avoids failures if the KVM module is reloaded. A CPU must be made ready to run TDX before it can participate in initializing the shared parts of the module. Any caller of tdx_enable() need to ensure that it can never run on a CPU which is not ready to run TDX. It needs to be wary of CPU hotplug, preemption and the VMX enabling state of any CPU on which it might run. == Why runtime instead of boot time? == The TDX module can be initialized only once in its lifetime. Instead of always initializing it at boot time, this implementation chooses an "on demand" approach to initialize TDX until there is a real need (e.g when requested by KVM). This approach has below pros: 1) It avoids consuming the memory that must be allocated by kernel and given to the TDX module as metadata (~1/256th of the TDX-usable memory), and also saves the CPU cycles of initializing the TDX module (and the metadata) when TDX is not used at all. 2) The TDX module design allows it to be updated while the system is running. The update procedure shares quite a few steps with this "on demand" initialization mechanism. The hope is that much of "on demand" mechanism can be shared with a future "update" mechanism. A boot-time TDX module implementation would not be able to share much code with the update mechanism. 3) Making SEAMCALL requires VMX to be enabled. Currently, only the KVM code mucks with VMX enabling. If the TDX module were to be initialized separately from KVM (like at boot), the boot code would need to be taught how to muck with VMX enabling and KVM would need to be taught how to cope with that. Making KVM itself responsible for TDX initialization lets the rest of the kernel stay blissfully unaware of VMX. [ dhansen: completely reorder/rewrite changelog ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-6-dave.hansen%40intel.com
Showing
arch/x86/virt/vmx/tdx/tdx.h
0 → 100644
Please register or sign in to comment