Commit 653ed64b authored by Joel Fernandes (Google)'s avatar Joel Fernandes (Google) Committed by Paul E. McKenney

refperf: Add a test to measure performance of read-side synchronization

Add a test for comparing the performance of RCU with various read-side
synchronization mechanisms. The test has proved useful for collecting
data and performing these comparisons.

Currently RCU, SRCU, reader-writer lock, reader-writer semaphore and
reference counting can be measured using refperf.perf_type parameter.
Each invocation of the test runs measures performance of a specific
mechanism.

The maximum number of CPUs to concurrently run readers on is chosen by
the test itself and is 75% of the total number of CPUs. So if you had 24
CPUs, the test runs with a maximum of 18 parallel readers.

A number of experiments are conducted, and in each experiment, the
number of readers is increased by 1, upto the 75% of CPUs mark. During
each experiment, all readers execute an empty loop with refperf.loops
iterations and time the total loop duration. This is then averaged.

Example output:
Parameters "refperf.perf_type=srcu refperf.loops=2000000" looks like:

[    3.347133] srcu-ref-perf:
[    3.347133] Threads  Time(ns)
[    3.347133] 1        36
[    3.347133] 2        34
[    3.347133] 3        34
[    3.347133] 4        34
[    3.347133] 5        33
[    3.347133] 6        33
[    3.347133] 7        33
[    3.347133] 8        33
[    3.347133] 9        33
[    3.347133] 10       33
[    3.347133] 11       33
[    3.347133] 12       33
[    3.347133] 13       33
[    3.347133] 14       33
[    3.347133] 15       32
[    3.347133] 16       33
[    3.347133] 17       33
[    3.347133] 18       34
Signed-off-by: default avatarJoel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: default avatarPaul E. McKenney <paulmck@kernel.org>
parent 7e866460
......@@ -61,6 +61,25 @@ config RCU_TORTURE_TEST
Say M if you want the RCU torture tests to build as a module.
Say N if you are unsure.
config RCU_REF_PERF_TEST
tristate "Performance tests for read-side synchronization (RCU and others)"
depends on DEBUG_KERNEL
select TORTURE_TEST
select SRCU
select TASKS_RCU
select TASKS_RUDE_RCU
select TASKS_TRACE_RCU
default n
help
This option provides a kernel module that runs performance tests
useful comparing RCU with various read-side synchronization mechanisms.
The kernel module may be built after the fact on the running kernel to be
tested, if desired.
Say Y here if you want these performance tests built into the kernel.
Say M if you want to build it as a module instead.
Say N if you are unsure.
config RCU_CPU_STALL_TIMEOUT
int "RCU CPU stall timeout in seconds"
depends on RCU_STALL_COMMON
......
......@@ -12,6 +12,7 @@ obj-$(CONFIG_TREE_SRCU) += srcutree.o
obj-$(CONFIG_TINY_SRCU) += srcutiny.o
obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o
obj-$(CONFIG_RCU_PERF_TEST) += rcuperf.o
obj-$(CONFIG_RCU_REF_PERF_TEST) += refperf.o
obj-$(CONFIG_TREE_RCU) += tree.o
obj-$(CONFIG_TINY_RCU) += tiny.o
obj-$(CONFIG_RCU_NEED_SEGCBLIST) += rcu_segcblist.o
// SPDX-License-Identifier: GPL-2.0+
//
// Performance test comparing RCU vs other mechanisms
// for acquiring references on objects.
//
// Copyright (C) Google, 2020.
//
// Author: Joel Fernandes <joel@joelfernandes.org>
#define pr_fmt(fmt) fmt
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/torture.h>
#include <linux/types.h>
#include "rcu.h"
#define PERF_FLAG "-ref-perf: "
#define PERFOUT(s, x...) \
pr_alert("%s" PERF_FLAG s, perf_type, ## x)
#define VERBOSE_PERFOUT(s, x...) \
do { if (verbose) pr_alert("%s" PERF_FLAG s, perf_type, ## x); } while (0)
#define VERBOSE_PERFOUT_ERRSTRING(s, x...) \
do { if (verbose) pr_alert("%s" PERF_FLAG "!!! " s, perf_type, ## x); } while (0)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
static char *perf_type = "rcu";
module_param(perf_type, charp, 0444);
MODULE_PARM_DESC(perf_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
// Number of loops per experiment, all readers execute an operation concurrently
torture_param(long, loops, 10000000, "Number of loops per experiment.");
#ifdef MODULE
# define REFPERF_SHUTDOWN 0
#else
# define REFPERF_SHUTDOWN 1
#endif
torture_param(bool, shutdown, REFPERF_SHUTDOWN,
"Shutdown at end of performance tests.");
struct reader_task {
struct task_struct *task;
atomic_t start;
wait_queue_head_t wq;
u64 last_duration_ns;
// The average latency When 1..<this reader> are concurrently
// running an experiment. For example, if this reader_task is
// of index 5 in the reader_tasks array, then result is for
// 6 cores.
u64 result_avg;
};
static struct task_struct *shutdown_task;
static wait_queue_head_t shutdown_wq;
static struct task_struct *main_task;
static wait_queue_head_t main_wq;
static int shutdown_start;
static struct reader_task *reader_tasks;
static int nreaders;
// Number of readers that are part of the current experiment.
static atomic_t nreaders_exp;
// Use to wait for all threads to start.
static atomic_t n_init;
// Track which experiment is currently running.
static int exp_idx;
// Operations vector for selecting different types of tests.
struct ref_perf_ops {
void (*init)(void);
void (*cleanup)(void);
int (*readlock)(void);
void (*readunlock)(int idx);
const char *name;
};
static struct ref_perf_ops *cur_ops;
// Definitions for RCU ref perf testing.
static int ref_rcu_read_lock(void) __acquires(RCU)
{
rcu_read_lock();
return 0;
}
static void ref_rcu_read_unlock(int idx) __releases(RCU)
{
rcu_read_unlock();
}
static void rcu_sync_perf_init(void)
{
}
static struct ref_perf_ops rcu_ops = {
.init = rcu_sync_perf_init,
.readlock = ref_rcu_read_lock,
.readunlock = ref_rcu_read_unlock,
.name = "rcu"
};
// Definitions for SRCU ref perf testing.
DEFINE_STATIC_SRCU(srcu_refctl_perf);
static struct srcu_struct *srcu_ctlp = &srcu_refctl_perf;
static int srcu_ref_perf_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(srcu_ctlp);
}
static void srcu_ref_perf_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(srcu_ctlp, idx);
}
static struct ref_perf_ops srcu_ops = {
.init = rcu_sync_perf_init,
.readlock = srcu_ref_perf_read_lock,
.readunlock = srcu_ref_perf_read_unlock,
.name = "srcu"
};
// Definitions for reference count
static atomic_t refcnt;
static int srcu_ref_perf_refcnt_lock(void)
{
atomic_inc(&refcnt);
return 0;
}
static void srcu_ref_perf_refcnt_unlock(int idx) __releases(srcu_ctlp)
{
atomic_dec(&refcnt);
srcu_read_unlock(srcu_ctlp, idx);
}
static struct ref_perf_ops refcnt_ops = {
.init = rcu_sync_perf_init,
.readlock = srcu_ref_perf_refcnt_lock,
.readunlock = srcu_ref_perf_refcnt_unlock,
.name = "refcnt"
};
// Definitions for rwlock
static rwlock_t test_rwlock;
static void ref_perf_rwlock_init(void)
{
rwlock_init(&test_rwlock);
}
static int ref_perf_rwlock_lock(void)
{
read_lock(&test_rwlock);
return 0;
}
static void ref_perf_rwlock_unlock(int idx)
{
read_unlock(&test_rwlock);
}
static struct ref_perf_ops rwlock_ops = {
.init = ref_perf_rwlock_init,
.readlock = ref_perf_rwlock_lock,
.readunlock = ref_perf_rwlock_unlock,
.name = "rwlock"
};
// Definitions for rwsem
static struct rw_semaphore test_rwsem;
static void ref_perf_rwsem_init(void)
{
init_rwsem(&test_rwsem);
}
static int ref_perf_rwsem_lock(void)
{
down_read(&test_rwsem);
return 0;
}
static void ref_perf_rwsem_unlock(int idx)
{
up_read(&test_rwsem);
}
static struct ref_perf_ops rwsem_ops = {
.init = ref_perf_rwsem_init,
.readlock = ref_perf_rwsem_lock,
.readunlock = ref_perf_rwsem_unlock,
.name = "rwsem"
};
// Reader kthread. Repeatedly does empty RCU read-side
// critical section, minimizing update-side interference.
static int
ref_perf_reader(void *arg)
{
unsigned long flags;
long me = (long)arg;
struct reader_task *rt = &(reader_tasks[me]);
unsigned long spincnt;
int idx;
u64 start;
s64 duration;
VERBOSE_PERFOUT("ref_perf_reader %ld: task started", me);
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
atomic_inc(&n_init);
repeat:
VERBOSE_PERFOUT("ref_perf_reader %ld: waiting to start next experiment on cpu %d", me, smp_processor_id());
// Wait for signal that this reader can start.
wait_event(rt->wq, (atomic_read(&nreaders_exp) && atomic_read(&rt->start)) ||
torture_must_stop());
if (torture_must_stop())
goto end;
// Make sure that the CPU is affinitized appropriately during testing.
WARN_ON_ONCE(smp_processor_id() != me);
atomic_dec(&rt->start);
// To prevent noise, keep interrupts disabled. This also has the
// effect of preventing entries into slow path for rcu_read_unlock().
local_irq_save(flags);
start = ktime_get_mono_fast_ns();
VERBOSE_PERFOUT("ref_perf_reader %ld: experiment %d started", me, exp_idx);
for (spincnt = 0; spincnt < loops; spincnt++) {
idx = cur_ops->readlock();
cur_ops->readunlock(idx);
}
duration = ktime_get_mono_fast_ns() - start;
local_irq_restore(flags);
rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
atomic_dec(&nreaders_exp);
VERBOSE_PERFOUT("ref_perf_reader %ld: experiment %d ended, (readers remaining=%d)",
me, exp_idx, atomic_read(&nreaders_exp));
if (!atomic_read(&nreaders_exp))
wake_up(&main_wq);
if (!torture_must_stop())
goto repeat;
end:
torture_kthread_stopping("ref_perf_reader");
return 0;
}
void reset_readers(int n)
{
int i;
struct reader_task *rt;
for (i = 0; i < n; i++) {
rt = &(reader_tasks[i]);
rt->last_duration_ns = 0;
}
}
// Print the results of each reader and return the sum of all their durations.
u64 process_durations(int n)
{
int i;
struct reader_task *rt;
char buf1[64];
char buf[512];
u64 sum = 0;
buf[0] = 0;
sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
exp_idx);
for (i = 0; i <= n && !torture_must_stop(); i++) {
rt = &(reader_tasks[i]);
sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
if (i % 5 == 0)
strcat(buf, "\n");
strcat(buf, buf1);
sum += rt->last_duration_ns;
}
strcat(buf, "\n");
PERFOUT("%s\n", buf);
return sum;
}
// The main_func is the main orchestrator, it performs a bunch of
// experiments. For every experiment, it orders all the readers
// involved to start and waits for them to finish the experiment. It
// then reads their timestamps and starts the next experiment. Each
// experiment progresses from 1 concurrent reader to N of them at which
// point all the timestamps are printed.
static int main_func(void *arg)
{
int exp, r;
char buf1[64];
char buf[512];
set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
VERBOSE_PERFOUT("main_func task started");
atomic_inc(&n_init);
// Wait for all threads to start.
wait_event(main_wq, atomic_read(&n_init) == (nreaders + 1));
// Start exp readers up per experiment
for (exp = 0; exp < nreaders && !torture_must_stop(); exp++) {
if (torture_must_stop())
goto end;
reset_readers(exp);
atomic_set(&nreaders_exp, exp + 1);
exp_idx = exp;
for (r = 0; r <= exp; r++) {
atomic_set(&reader_tasks[r].start, 1);
wake_up(&reader_tasks[r].wq);
}
VERBOSE_PERFOUT("main_func: experiment started, waiting for %d readers",
exp);
wait_event(main_wq,
!atomic_read(&nreaders_exp) || torture_must_stop());
VERBOSE_PERFOUT("main_func: experiment ended");
if (torture_must_stop())
goto end;
reader_tasks[exp].result_avg = process_durations(exp) / ((exp + 1) * loops);
}
// Print the average of all experiments
PERFOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
buf[0] = 0;
strcat(buf, "\n");
strcat(buf, "Threads\tTime(ns)\n");
for (exp = 0; exp < nreaders; exp++) {
sprintf(buf1, "%d\t%llu\n", exp + 1, reader_tasks[exp].result_avg);
strcat(buf, buf1);
}
PERFOUT("%s", buf);
// This will shutdown everything including us.
if (shutdown) {
shutdown_start = 1;
wake_up(&shutdown_wq);
}
// Wait for torture to stop us
while (!torture_must_stop())
schedule_timeout_uninterruptible(1);
end:
torture_kthread_stopping("main_func");
return 0;
}
static void
ref_perf_print_module_parms(struct ref_perf_ops *cur_ops, const char *tag)
{
pr_alert("%s" PERF_FLAG
"--- %s: verbose=%d shutdown=%d loops=%ld\n", perf_type, tag,
verbose, shutdown, loops);
}
static void
ref_perf_cleanup(void)
{
int i;
if (torture_cleanup_begin())
return;
if (!cur_ops) {
torture_cleanup_end();
return;
}
if (reader_tasks) {
for (i = 0; i < nreaders; i++)
torture_stop_kthread("ref_perf_reader",
reader_tasks[i].task);
}
kfree(reader_tasks);
torture_stop_kthread("main_task", main_task);
kfree(main_task);
// Do perf-type-specific cleanup operations.
if (cur_ops->cleanup != NULL)
cur_ops->cleanup();
torture_cleanup_end();
}
// Shutdown kthread. Just waits to be awakened, then shuts down system.
static int
ref_perf_shutdown(void *arg)
{
wait_event(shutdown_wq, shutdown_start);
smp_mb(); // Wake before output.
ref_perf_cleanup();
kernel_power_off();
return -EINVAL;
}
static int __init
ref_perf_init(void)
{
long i;
int firsterr = 0;
static struct ref_perf_ops *perf_ops[] = {
&rcu_ops, &srcu_ops, &refcnt_ops, &rwlock_ops, &rwsem_ops,
};
if (!torture_init_begin(perf_type, verbose))
return -EBUSY;
for (i = 0; i < ARRAY_SIZE(perf_ops); i++) {
cur_ops = perf_ops[i];
if (strcmp(perf_type, cur_ops->name) == 0)
break;
}
if (i == ARRAY_SIZE(perf_ops)) {
pr_alert("rcu-perf: invalid perf type: \"%s\"\n", perf_type);
pr_alert("rcu-perf types:");
for (i = 0; i < ARRAY_SIZE(perf_ops); i++)
pr_cont(" %s", perf_ops[i]->name);
pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_REF_PERF_TEST));
firsterr = -EINVAL;
cur_ops = NULL;
goto unwind;
}
if (cur_ops->init)
cur_ops->init();
ref_perf_print_module_parms(cur_ops, "Start of test");
// Shutdown task
if (shutdown) {
init_waitqueue_head(&shutdown_wq);
firsterr = torture_create_kthread(ref_perf_shutdown, NULL,
shutdown_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
}
// Reader tasks (~75% of online CPUs).
nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
GFP_KERNEL);
if (!reader_tasks) {
VERBOSE_PERFOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
VERBOSE_PERFOUT("Starting %d reader threads\n", nreaders);
for (i = 0; i < nreaders; i++) {
firsterr = torture_create_kthread(ref_perf_reader, (void *)i,
reader_tasks[i].task);
if (firsterr)
goto unwind;
init_waitqueue_head(&(reader_tasks[i].wq));
}
// Main Task
init_waitqueue_head(&main_wq);
firsterr = torture_create_kthread(main_func, NULL, main_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
// Wait until all threads start
while (atomic_read(&n_init) < nreaders + 1)
schedule_timeout_uninterruptible(1);
wake_up(&main_wq);
torture_init_end();
return 0;
unwind:
torture_init_end();
ref_perf_cleanup();
return firsterr;
}
module_init(ref_perf_init);
module_exit(ref_perf_cleanup);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment