Commit 67fbbe15 authored by Ralf Baechle's avatar Ralf Baechle Committed by Jeff Garzik

SAA9730: Remove driver

The only user of the board, the extremly dated and rare MIPS Atlas board,
has been removed, so this driver can go, too.
Signed-off-by: default avatarRalf Baechle <ralf@linux-mips.org>
Signed-off-by: default avatarJeff Garzik <jgarzik@redhat.com>
parent e9911c2c
......@@ -1694,15 +1694,6 @@ config VIA_RHINE_MMIO
If unsure, say Y.
config LAN_SAA9730
bool "Philips SAA9730 Ethernet support"
depends on NET_PCI && PCI && MIPS_ATLAS
help
The SAA9730 is a combined multimedia and peripheral controller used
in thin clients, Internet access terminals, and diskless
workstations.
See <http://www.semiconductors.philips.com/pip/SAA9730_flyer_1>.
config SC92031
tristate "Silan SC92031 PCI Fast Ethernet Adapter driver (EXPERIMENTAL)"
depends on NET_PCI && PCI && EXPERIMENTAL
......
......@@ -166,7 +166,6 @@ obj-$(CONFIG_EEXPRESS_PRO) += eepro.o
obj-$(CONFIG_8139CP) += 8139cp.o
obj-$(CONFIG_8139TOO) += 8139too.o
obj-$(CONFIG_ZNET) += znet.o
obj-$(CONFIG_LAN_SAA9730) += saa9730.o
obj-$(CONFIG_CPMAC) += cpmac.o
obj-$(CONFIG_DEPCA) += depca.o
obj-$(CONFIG_EWRK3) += ewrk3.o
......
/*
* Copyright (C) 2000, 2005 MIPS Technologies, Inc. All rights reserved.
* Authors: Carsten Langgaard <carstenl@mips.com>
* Maciej W. Rozycki <macro@mips.com>
* Copyright (C) 2004 Ralf Baechle <ralf@linux-mips.org>
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* SAA9730 ethernet driver.
*
* Changes:
* Angelo Dell'Aera <buffer@antifork.org> : Conversion to the new PCI API
* (pci_driver).
* Conversion to spinlocks.
* Error handling fixes.
*/
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/mips-boards/prom.h>
#include "saa9730.h"
#ifdef LAN_SAA9730_DEBUG
int lan_saa9730_debug = LAN_SAA9730_DEBUG;
#else
int lan_saa9730_debug;
#endif
#define DRV_MODULE_NAME "saa9730"
static struct pci_device_id saa9730_pci_tbl[] = {
{ PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA9730,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, saa9730_pci_tbl);
/* Non-zero only if the current card is a PCI with BIOS-set IRQ. */
static unsigned int pci_irq_line;
static void evm_saa9730_enable_lan_int(struct lan_saa9730_private *lp)
{
writel(readl(&lp->evm_saa9730_regs->InterruptBlock1) | EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptBlock1);
writel(readl(&lp->evm_saa9730_regs->InterruptStatus1) | EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptStatus1);
writel(readl(&lp->evm_saa9730_regs->InterruptEnable1) | EVM_LAN_INT |
EVM_MASTER_EN, &lp->evm_saa9730_regs->InterruptEnable1);
}
static void evm_saa9730_disable_lan_int(struct lan_saa9730_private *lp)
{
writel(readl(&lp->evm_saa9730_regs->InterruptBlock1) & ~EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptBlock1);
writel(readl(&lp->evm_saa9730_regs->InterruptEnable1) & ~EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptEnable1);
}
static void evm_saa9730_clear_lan_int(struct lan_saa9730_private *lp)
{
writel(EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptStatus1);
}
static void evm_saa9730_block_lan_int(struct lan_saa9730_private *lp)
{
writel(readl(&lp->evm_saa9730_regs->InterruptBlock1) & ~EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptBlock1);
}
static void evm_saa9730_unblock_lan_int(struct lan_saa9730_private *lp)
{
writel(readl(&lp->evm_saa9730_regs->InterruptBlock1) | EVM_LAN_INT,
&lp->evm_saa9730_regs->InterruptBlock1);
}
static void __used show_saa9730_regs(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
int i, j;
printk("TxmBufferA = %p\n", lp->TxmBuffer[0][0]);
printk("TxmBufferB = %p\n", lp->TxmBuffer[1][0]);
printk("RcvBufferA = %p\n", lp->RcvBuffer[0][0]);
printk("RcvBufferB = %p\n", lp->RcvBuffer[1][0]);
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) {
printk("TxmBuffer[%d][%d] = %x\n", i, j,
le32_to_cpu(*(unsigned int *)
lp->TxmBuffer[i][j]));
}
}
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) {
printk("RcvBuffer[%d][%d] = %x\n", i, j,
le32_to_cpu(*(unsigned int *)
lp->RcvBuffer[i][j]));
}
}
printk("lp->evm_saa9730_regs->InterruptBlock1 = %x\n",
readl(&lp->evm_saa9730_regs->InterruptBlock1));
printk("lp->evm_saa9730_regs->InterruptStatus1 = %x\n",
readl(&lp->evm_saa9730_regs->InterruptStatus1));
printk("lp->evm_saa9730_regs->InterruptEnable1 = %x\n",
readl(&lp->evm_saa9730_regs->InterruptEnable1));
printk("lp->lan_saa9730_regs->Ok2Use = %x\n",
readl(&lp->lan_saa9730_regs->Ok2Use));
printk("lp->NextTxmBufferIndex = %x\n", lp->NextTxmBufferIndex);
printk("lp->NextTxmPacketIndex = %x\n", lp->NextTxmPacketIndex);
printk("lp->PendingTxmBufferIndex = %x\n",
lp->PendingTxmBufferIndex);
printk("lp->PendingTxmPacketIndex = %x\n",
lp->PendingTxmPacketIndex);
printk("lp->lan_saa9730_regs->LanDmaCtl = %x\n",
readl(&lp->lan_saa9730_regs->LanDmaCtl));
printk("lp->lan_saa9730_regs->DmaStatus = %x\n",
readl(&lp->lan_saa9730_regs->DmaStatus));
printk("lp->lan_saa9730_regs->CamCtl = %x\n",
readl(&lp->lan_saa9730_regs->CamCtl));
printk("lp->lan_saa9730_regs->TxCtl = %x\n",
readl(&lp->lan_saa9730_regs->TxCtl));
printk("lp->lan_saa9730_regs->TxStatus = %x\n",
readl(&lp->lan_saa9730_regs->TxStatus));
printk("lp->lan_saa9730_regs->RxCtl = %x\n",
readl(&lp->lan_saa9730_regs->RxCtl));
printk("lp->lan_saa9730_regs->RxStatus = %x\n",
readl(&lp->lan_saa9730_regs->RxStatus));
for (i = 0; i < LAN_SAA9730_CAM_DWORDS; i++) {
writel(i, &lp->lan_saa9730_regs->CamAddress);
printk("lp->lan_saa9730_regs->CamData = %x\n",
readl(&lp->lan_saa9730_regs->CamData));
}
printk("dev->stats.tx_packets = %lx\n", dev->stats.tx_packets);
printk("dev->stats.tx_errors = %lx\n", dev->stats.tx_errors);
printk("dev->stats.tx_aborted_errors = %lx\n",
dev->stats.tx_aborted_errors);
printk("dev->stats.tx_window_errors = %lx\n",
dev->stats.tx_window_errors);
printk("dev->stats.tx_carrier_errors = %lx\n",
dev->stats.tx_carrier_errors);
printk("dev->stats.tx_fifo_errors = %lx\n",
dev->stats.tx_fifo_errors);
printk("dev->stats.tx_heartbeat_errors = %lx\n",
dev->stats.tx_heartbeat_errors);
printk("dev->stats.collisions = %lx\n", dev->stats.collisions);
printk("dev->stats.rx_packets = %lx\n", dev->stats.rx_packets);
printk("dev->stats.rx_errors = %lx\n", dev->stats.rx_errors);
printk("dev->stats.rx_dropped = %lx\n", dev->stats.rx_dropped);
printk("dev->stats.rx_crc_errors = %lx\n", dev->stats.rx_crc_errors);
printk("dev->stats.rx_frame_errors = %lx\n",
dev->stats.rx_frame_errors);
printk("dev->stats.rx_fifo_errors = %lx\n",
dev->stats.rx_fifo_errors);
printk("dev->stats.rx_length_errors = %lx\n",
dev->stats.rx_length_errors);
printk("lp->lan_saa9730_regs->DebugPCIMasterAddr = %x\n",
readl(&lp->lan_saa9730_regs->DebugPCIMasterAddr));
printk("lp->lan_saa9730_regs->DebugLanTxStateMachine = %x\n",
readl(&lp->lan_saa9730_regs->DebugLanTxStateMachine));
printk("lp->lan_saa9730_regs->DebugLanRxStateMachine = %x\n",
readl(&lp->lan_saa9730_regs->DebugLanRxStateMachine));
printk("lp->lan_saa9730_regs->DebugLanTxFifoPointers = %x\n",
readl(&lp->lan_saa9730_regs->DebugLanTxFifoPointers));
printk("lp->lan_saa9730_regs->DebugLanRxFifoPointers = %x\n",
readl(&lp->lan_saa9730_regs->DebugLanRxFifoPointers));
printk("lp->lan_saa9730_regs->DebugLanCtlStateMachine = %x\n",
readl(&lp->lan_saa9730_regs->DebugLanCtlStateMachine));
}
static void lan_saa9730_buffer_init(struct lan_saa9730_private *lp)
{
int i, j;
/* Init RX buffers */
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) {
*(unsigned int *) lp->RcvBuffer[i][j] =
cpu_to_le32(RXSF_READY <<
RX_STAT_CTL_OWNER_SHF);
}
}
/* Init TX buffers */
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) {
*(unsigned int *) lp->TxmBuffer[i][j] =
cpu_to_le32(TXSF_EMPTY <<
TX_STAT_CTL_OWNER_SHF);
}
}
}
static void lan_saa9730_free_buffers(struct pci_dev *pdev,
struct lan_saa9730_private *lp)
{
pci_free_consistent(pdev, lp->buffer_size, lp->buffer_start,
lp->dma_addr);
}
static int lan_saa9730_allocate_buffers(struct pci_dev *pdev,
struct lan_saa9730_private *lp)
{
void *Pa;
unsigned int i, j, rxoffset, txoffset;
int ret;
/* Initialize buffer space */
lp->DmaRcvPackets = LAN_SAA9730_RCV_Q_SIZE;
lp->DmaTxmPackets = LAN_SAA9730_TXM_Q_SIZE;
/* Initialize Rx Buffer Index */
lp->NextRcvPacketIndex = 0;
lp->NextRcvBufferIndex = 0;
/* Set current buffer index & next available packet index */
lp->NextTxmPacketIndex = 0;
lp->NextTxmBufferIndex = 0;
lp->PendingTxmPacketIndex = 0;
lp->PendingTxmBufferIndex = 0;
/*
* Allocate all RX and TX packets in one chunk.
* The Rx and Tx packets must be PACKET_SIZE aligned.
*/
lp->buffer_size = ((LAN_SAA9730_RCV_Q_SIZE + LAN_SAA9730_TXM_Q_SIZE) *
LAN_SAA9730_PACKET_SIZE * LAN_SAA9730_BUFFERS) +
LAN_SAA9730_PACKET_SIZE;
lp->buffer_start = pci_alloc_consistent(pdev, lp->buffer_size,
&lp->dma_addr);
if (!lp->buffer_start) {
ret = -ENOMEM;
goto out;
}
Pa = (void *)ALIGN((unsigned long)lp->buffer_start,
LAN_SAA9730_PACKET_SIZE);
rxoffset = Pa - lp->buffer_start;
/* Init RX buffers */
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) {
*(unsigned int *) Pa =
cpu_to_le32(RXSF_READY <<
RX_STAT_CTL_OWNER_SHF);
lp->RcvBuffer[i][j] = Pa;
Pa += LAN_SAA9730_PACKET_SIZE;
}
}
txoffset = Pa - lp->buffer_start;
/* Init TX buffers */
for (i = 0; i < LAN_SAA9730_BUFFERS; i++) {
for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) {
*(unsigned int *) Pa =
cpu_to_le32(TXSF_EMPTY <<
TX_STAT_CTL_OWNER_SHF);
lp->TxmBuffer[i][j] = Pa;
Pa += LAN_SAA9730_PACKET_SIZE;
}
}
/*
* Set rx buffer A and rx buffer B to point to the first two buffer
* spaces.
*/
writel(lp->dma_addr + rxoffset, &lp->lan_saa9730_regs->RxBuffA);
writel(lp->dma_addr + rxoffset +
LAN_SAA9730_PACKET_SIZE * LAN_SAA9730_RCV_Q_SIZE,
&lp->lan_saa9730_regs->RxBuffB);
/*
* Set txm_buf_a and txm_buf_b to point to the first two buffer
* space
*/
writel(lp->dma_addr + txoffset,
&lp->lan_saa9730_regs->TxBuffA);
writel(lp->dma_addr + txoffset +
LAN_SAA9730_PACKET_SIZE * LAN_SAA9730_TXM_Q_SIZE,
&lp->lan_saa9730_regs->TxBuffB);
/* Set packet number */
writel((lp->DmaRcvPackets << PK_COUNT_RX_A_SHF) |
(lp->DmaRcvPackets << PK_COUNT_RX_B_SHF) |
(lp->DmaTxmPackets << PK_COUNT_TX_A_SHF) |
(lp->DmaTxmPackets << PK_COUNT_TX_B_SHF),
&lp->lan_saa9730_regs->PacketCount);
return 0;
out:
return ret;
}
static int lan_saa9730_cam_load(struct lan_saa9730_private *lp)
{
unsigned int i;
unsigned char *NetworkAddress;
NetworkAddress = (unsigned char *) &lp->PhysicalAddress[0][0];
for (i = 0; i < LAN_SAA9730_CAM_DWORDS; i++) {
/* First set address to where data is written */
writel(i, &lp->lan_saa9730_regs->CamAddress);
writel((NetworkAddress[0] << 24) | (NetworkAddress[1] << 16) |
(NetworkAddress[2] << 8) | NetworkAddress[3],
&lp->lan_saa9730_regs->CamData);
NetworkAddress += 4;
}
return 0;
}
static int lan_saa9730_cam_init(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
unsigned int i;
/* Copy MAC-address into all entries. */
for (i = 0; i < LAN_SAA9730_CAM_ENTRIES; i++) {
memcpy((unsigned char *) lp->PhysicalAddress[i],
(unsigned char *) dev->dev_addr, 6);
}
return 0;
}
static int lan_saa9730_mii_init(struct lan_saa9730_private *lp)
{
int i, l;
/* Check link status, spin here till station is not busy. */
i = 0;
while (readl(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) {
i++;
if (i > 100) {
printk("Error: lan_saa9730_mii_init: timeout\n");
return -1;
}
mdelay(1); /* wait 1 ms. */
}
/* Now set the control and address register. */
writel(MD_CA_BUSY | PHY_STATUS | PHY_ADDRESS << MD_CA_PHY_SHF,
&lp->lan_saa9730_regs->StationMgmtCtl);
/* check link status, spin here till station is not busy */
i = 0;
while (readl(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) {
i++;
if (i > 100) {
printk("Error: lan_saa9730_mii_init: timeout\n");
return -1;
}
mdelay(1); /* wait 1 ms. */
}
/* Wait for 1 ms. */
mdelay(1);
/* Check the link status. */
if (readl(&lp->lan_saa9730_regs->StationMgmtData) &
PHY_STATUS_LINK_UP) {
/* Link is up. */
return 0;
} else {
/* Link is down, reset the PHY first. */
/* set PHY address = 'CONTROL' */
writel(PHY_ADDRESS << MD_CA_PHY_SHF | MD_CA_WR | PHY_CONTROL,
&lp->lan_saa9730_regs->StationMgmtCtl);
/* Wait for 1 ms. */
mdelay(1);
/* set 'CONTROL' = force reset and renegotiate */
writel(PHY_CONTROL_RESET | PHY_CONTROL_AUTO_NEG |
PHY_CONTROL_RESTART_AUTO_NEG,
&lp->lan_saa9730_regs->StationMgmtData);
/* Wait for 50 ms. */
mdelay(50);
/* set 'BUSY' to start operation */
writel(MD_CA_BUSY | PHY_ADDRESS << MD_CA_PHY_SHF | MD_CA_WR |
PHY_CONTROL, &lp->lan_saa9730_regs->StationMgmtCtl);
/* await completion */
i = 0;
while (readl(&lp->lan_saa9730_regs->StationMgmtCtl) &
MD_CA_BUSY) {
i++;
if (i > 100) {
printk
("Error: lan_saa9730_mii_init: timeout\n");
return -1;
}
mdelay(1); /* wait 1 ms. */
}
/* Wait for 1 ms. */
mdelay(1);
for (l = 0; l < 2; l++) {
/* set PHY address = 'STATUS' */
writel(MD_CA_BUSY | PHY_ADDRESS << MD_CA_PHY_SHF |
PHY_STATUS,
&lp->lan_saa9730_regs->StationMgmtCtl);
/* await completion */
i = 0;
while (readl(&lp->lan_saa9730_regs->StationMgmtCtl) &
MD_CA_BUSY) {
i++;
if (i > 100) {
printk
("Error: lan_saa9730_mii_init: timeout\n");
return -1;
}
mdelay(1); /* wait 1 ms. */
}
/* wait for 3 sec. */
mdelay(3000);
/* check the link status */
if (readl(&lp->lan_saa9730_regs->StationMgmtData) &
PHY_STATUS_LINK_UP) {
/* link is up */
break;
}
}
}
return 0;
}
static int lan_saa9730_control_init(struct lan_saa9730_private *lp)
{
/* Initialize DMA control register. */
writel((LANMB_ANY << DMA_CTL_MAX_XFER_SHF) |
(LANEND_LITTLE << DMA_CTL_ENDIAN_SHF) |
(LAN_SAA9730_RCV_Q_INT_THRESHOLD << DMA_CTL_RX_INT_COUNT_SHF)
| DMA_CTL_RX_INT_TO_EN | DMA_CTL_RX_INT_EN |
DMA_CTL_MAC_RX_INT_EN | DMA_CTL_MAC_TX_INT_EN,
&lp->lan_saa9730_regs->LanDmaCtl);
/* Initial MAC control register. */
writel((MACCM_MII << MAC_CONTROL_CONN_SHF) | MAC_CONTROL_FULL_DUP,
&lp->lan_saa9730_regs->MacCtl);
/* Initialize CAM control register. */
writel(CAM_CONTROL_COMP_EN | CAM_CONTROL_BROAD_ACC,
&lp->lan_saa9730_regs->CamCtl);
/*
* Initialize CAM enable register, only turn on first entry, should
* contain own addr.
*/
writel(0x0001, &lp->lan_saa9730_regs->CamEnable);
/* Initialize Tx control register */
writel(TX_CTL_EN_COMP, &lp->lan_saa9730_regs->TxCtl);
/* Initialize Rcv control register */
writel(RX_CTL_STRIP_CRC, &lp->lan_saa9730_regs->RxCtl);
/* Reset DMA engine */
writel(DMA_TEST_SW_RESET, &lp->lan_saa9730_regs->DmaTest);
return 0;
}
static int lan_saa9730_stop(struct lan_saa9730_private *lp)
{
int i;
/* Stop DMA first */
writel(readl(&lp->lan_saa9730_regs->LanDmaCtl) &
~(DMA_CTL_EN_TX_DMA | DMA_CTL_EN_RX_DMA),
&lp->lan_saa9730_regs->LanDmaCtl);
/* Set the SW Reset bits in DMA and MAC control registers */
writel(DMA_TEST_SW_RESET, &lp->lan_saa9730_regs->DmaTest);
writel(readl(&lp->lan_saa9730_regs->MacCtl) | MAC_CONTROL_RESET,
&lp->lan_saa9730_regs->MacCtl);
/*
* Wait for MAC reset to have finished. The reset bit is auto cleared
* when the reset is done.
*/
i = 0;
while (readl(&lp->lan_saa9730_regs->MacCtl) & MAC_CONTROL_RESET) {
i++;
if (i > 100) {
printk
("Error: lan_sa9730_stop: MAC reset timeout\n");
return -1;
}
mdelay(1); /* wait 1 ms. */
}
return 0;
}
static int lan_saa9730_dma_init(struct lan_saa9730_private *lp)
{
/* Stop lan controller. */
lan_saa9730_stop(lp);
writel(LAN_SAA9730_DEFAULT_TIME_OUT_CNT,
&lp->lan_saa9730_regs->Timeout);
return 0;
}
static int lan_saa9730_start(struct lan_saa9730_private *lp)
{
lan_saa9730_buffer_init(lp);
/* Initialize Rx Buffer Index */
lp->NextRcvPacketIndex = 0;
lp->NextRcvBufferIndex = 0;
/* Set current buffer index & next available packet index */
lp->NextTxmPacketIndex = 0;
lp->NextTxmBufferIndex = 0;
lp->PendingTxmPacketIndex = 0;
lp->PendingTxmBufferIndex = 0;
writel(readl(&lp->lan_saa9730_regs->LanDmaCtl) | DMA_CTL_EN_TX_DMA |
DMA_CTL_EN_RX_DMA, &lp->lan_saa9730_regs->LanDmaCtl);
/* For Tx, turn on MAC then DMA */
writel(readl(&lp->lan_saa9730_regs->TxCtl) | TX_CTL_TX_EN,
&lp->lan_saa9730_regs->TxCtl);
/* For Rx, turn on DMA then MAC */
writel(readl(&lp->lan_saa9730_regs->RxCtl) | RX_CTL_RX_EN,
&lp->lan_saa9730_regs->RxCtl);
/* Set Ok2Use to let hardware own the buffers. */
writel(OK2USE_RX_A | OK2USE_RX_B, &lp->lan_saa9730_regs->Ok2Use);
return 0;
}
static int lan_saa9730_restart(struct lan_saa9730_private *lp)
{
lan_saa9730_stop(lp);
lan_saa9730_start(lp);
return 0;
}
static int lan_saa9730_tx(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
unsigned int *pPacket;
unsigned int tx_status;
if (lan_saa9730_debug > 5)
printk("lan_saa9730_tx interrupt\n");
/* Clear interrupt. */
writel(DMA_STATUS_MAC_TX_INT, &lp->lan_saa9730_regs->DmaStatus);
while (1) {
pPacket = lp->TxmBuffer[lp->PendingTxmBufferIndex]
[lp->PendingTxmPacketIndex];
/* Get status of first packet transmitted. */
tx_status = le32_to_cpu(*pPacket);
/* Check ownership. */
if ((tx_status & TX_STAT_CTL_OWNER_MSK) !=
(TXSF_HWDONE << TX_STAT_CTL_OWNER_SHF)) break;
/* Check for error. */
if (tx_status & TX_STAT_CTL_ERROR_MSK) {
if (lan_saa9730_debug > 1)
printk("lan_saa9730_tx: tx error = %x\n",
tx_status);
dev->stats.tx_errors++;
if (tx_status &
(TX_STATUS_EX_COLL << TX_STAT_CTL_STATUS_SHF))
dev->stats.tx_aborted_errors++;
if (tx_status &
(TX_STATUS_LATE_COLL << TX_STAT_CTL_STATUS_SHF))
dev->stats.tx_window_errors++;
if (tx_status &
(TX_STATUS_L_CARR << TX_STAT_CTL_STATUS_SHF))
dev->stats.tx_carrier_errors++;
if (tx_status &
(TX_STATUS_UNDER << TX_STAT_CTL_STATUS_SHF))
dev->stats.tx_fifo_errors++;
if (tx_status &
(TX_STATUS_SQ_ERR << TX_STAT_CTL_STATUS_SHF))
dev->stats.tx_heartbeat_errors++;
dev->stats.collisions +=
tx_status & TX_STATUS_TX_COLL_MSK;
}
/* Free buffer. */
*pPacket =
cpu_to_le32(TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF);
/* Update pending index pointer. */
lp->PendingTxmPacketIndex++;
if (lp->PendingTxmPacketIndex >= LAN_SAA9730_TXM_Q_SIZE) {
lp->PendingTxmPacketIndex = 0;
lp->PendingTxmBufferIndex ^= 1;
}
}
/* The tx buffer is no longer full. */
netif_wake_queue(dev);
return 0;
}
static int lan_saa9730_rx(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
int len = 0;
struct sk_buff *skb = 0;
unsigned int rx_status;
int BufferIndex;
int PacketIndex;
unsigned int *pPacket;
unsigned char *pData;
if (lan_saa9730_debug > 5)
printk("lan_saa9730_rx interrupt\n");
/* Clear receive interrupts. */
writel(DMA_STATUS_MAC_RX_INT | DMA_STATUS_RX_INT |
DMA_STATUS_RX_TO_INT, &lp->lan_saa9730_regs->DmaStatus);
/* Address next packet */
BufferIndex = lp->NextRcvBufferIndex;
PacketIndex = lp->NextRcvPacketIndex;
pPacket = lp->RcvBuffer[BufferIndex][PacketIndex];
rx_status = le32_to_cpu(*pPacket);
/* Process each packet. */
while ((rx_status & RX_STAT_CTL_OWNER_MSK) ==
(RXSF_HWDONE << RX_STAT_CTL_OWNER_SHF)) {
/* Check the rx status. */
if (rx_status & (RX_STATUS_GOOD << RX_STAT_CTL_STATUS_SHF)) {
/* Received packet is good. */
len = (rx_status & RX_STAT_CTL_LENGTH_MSK) >>
RX_STAT_CTL_LENGTH_SHF;
pData = (unsigned char *) pPacket;
pData += 4;
skb = dev_alloc_skb(len + 2);
if (skb == 0) {
printk
("%s: Memory squeeze, deferring packet.\n",
dev->name);
dev->stats.rx_dropped++;
} else {
dev->stats.rx_bytes += len;
dev->stats.rx_packets++;
skb_reserve(skb, 2); /* 16 byte align */
skb_put(skb, len); /* make room */
skb_copy_to_linear_data(skb,
(unsigned char *) pData,
len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
}
} else {
/* We got an error packet. */
if (lan_saa9730_debug > 2)
printk
("lan_saa9730_rx: We got an error packet = %x\n",
rx_status);
dev->stats.rx_errors++;
if (rx_status &
(RX_STATUS_CRC_ERR << RX_STAT_CTL_STATUS_SHF))
dev->stats.rx_crc_errors++;
if (rx_status &
(RX_STATUS_ALIGN_ERR << RX_STAT_CTL_STATUS_SHF))
dev->stats.rx_frame_errors++;
if (rx_status &
(RX_STATUS_OVERFLOW << RX_STAT_CTL_STATUS_SHF))
dev->stats.rx_fifo_errors++;
if (rx_status &
(RX_STATUS_LONG_ERR << RX_STAT_CTL_STATUS_SHF))
dev->stats.rx_length_errors++;
}
/* Indicate we have processed the buffer. */
*pPacket = cpu_to_le32(RXSF_READY << RX_STAT_CTL_OWNER_SHF);
/* Make sure A or B is available to hardware as appropriate. */
writel(BufferIndex ? OK2USE_RX_B : OK2USE_RX_A,
&lp->lan_saa9730_regs->Ok2Use);
/* Go to next packet in sequence. */
lp->NextRcvPacketIndex++;
if (lp->NextRcvPacketIndex >= LAN_SAA9730_RCV_Q_SIZE) {
lp->NextRcvPacketIndex = 0;
lp->NextRcvBufferIndex ^= 1;
}
/* Address next packet */
BufferIndex = lp->NextRcvBufferIndex;
PacketIndex = lp->NextRcvPacketIndex;
pPacket = lp->RcvBuffer[BufferIndex][PacketIndex];
rx_status = le32_to_cpu(*pPacket);
}
return 0;
}
static irqreturn_t lan_saa9730_interrupt(const int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct lan_saa9730_private *lp = netdev_priv(dev);
if (lan_saa9730_debug > 5)
printk("lan_saa9730_interrupt\n");
/* Disable the EVM LAN interrupt. */
evm_saa9730_block_lan_int(lp);
/* Clear the EVM LAN interrupt. */
evm_saa9730_clear_lan_int(lp);
/* Service pending transmit interrupts. */
if (readl(&lp->lan_saa9730_regs->DmaStatus) & DMA_STATUS_MAC_TX_INT)
lan_saa9730_tx(dev);
/* Service pending receive interrupts. */
if (readl(&lp->lan_saa9730_regs->DmaStatus) &
(DMA_STATUS_MAC_RX_INT | DMA_STATUS_RX_INT |
DMA_STATUS_RX_TO_INT)) lan_saa9730_rx(dev);
/* Enable the EVM LAN interrupt. */
evm_saa9730_unblock_lan_int(lp);
return IRQ_HANDLED;
}
static int lan_saa9730_open(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
/* Associate IRQ with lan_saa9730_interrupt */
if (request_irq(dev->irq, &lan_saa9730_interrupt, 0, "SAA9730 Eth",
dev)) {
printk("lan_saa9730_open: Can't get irq %d\n", dev->irq);
return -EAGAIN;
}
/* Enable the Lan interrupt in the event manager. */
evm_saa9730_enable_lan_int(lp);
/* Start the LAN controller */
if (lan_saa9730_start(lp))
return -1;
netif_start_queue(dev);
return 0;
}
static int lan_saa9730_write(struct lan_saa9730_private *lp,
struct sk_buff *skb, int skblen)
{
unsigned char *pbData = skb->data;
unsigned int len = skblen;
unsigned char *pbPacketData;
unsigned int tx_status;
int BufferIndex;
int PacketIndex;
if (lan_saa9730_debug > 5)
printk("lan_saa9730_write: skb=%p\n", skb);
BufferIndex = lp->NextTxmBufferIndex;
PacketIndex = lp->NextTxmPacketIndex;
tx_status = le32_to_cpu(*(unsigned int *)lp->TxmBuffer[BufferIndex]
[PacketIndex]);
if ((tx_status & TX_STAT_CTL_OWNER_MSK) !=
(TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF)) {
if (lan_saa9730_debug > 4)
printk
("lan_saa9730_write: Tx buffer not available: tx_status = %x\n",
tx_status);
return -1;
}
lp->NextTxmPacketIndex++;
if (lp->NextTxmPacketIndex >= LAN_SAA9730_TXM_Q_SIZE) {
lp->NextTxmPacketIndex = 0;
lp->NextTxmBufferIndex ^= 1;
}
pbPacketData = lp->TxmBuffer[BufferIndex][PacketIndex];
pbPacketData += 4;
/* copy the bits */
memcpy(pbPacketData, pbData, len);
/* Set transmit status for hardware */
*(unsigned int *)lp->TxmBuffer[BufferIndex][PacketIndex] =
cpu_to_le32((TXSF_READY << TX_STAT_CTL_OWNER_SHF) |
(TX_STAT_CTL_INT_AFTER_TX <<
TX_STAT_CTL_FRAME_SHF) |
(len << TX_STAT_CTL_LENGTH_SHF));
/* Make sure A or B is available to hardware as appropriate. */
writel(BufferIndex ? OK2USE_TX_B : OK2USE_TX_A,
&lp->lan_saa9730_regs->Ok2Use);
return 0;
}
static void lan_saa9730_tx_timeout(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
/* Transmitter timeout, serious problems */
dev->stats.tx_errors++;
printk("%s: transmit timed out, reset\n", dev->name);
/*show_saa9730_regs(dev); */
lan_saa9730_restart(lp);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static int lan_saa9730_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
unsigned long flags;
int skblen;
int len;
if (lan_saa9730_debug > 4)
printk("Send packet: skb=%p\n", skb);
skblen = skb->len;
spin_lock_irqsave(&lp->lock, flags);
len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen;
if (lan_saa9730_write(lp, skb, skblen)) {
spin_unlock_irqrestore(&lp->lock, flags);
printk("Error when writing packet to controller: skb=%p\n", skb);
netif_stop_queue(dev);
return -1;
}
dev->stats.tx_bytes += len;
dev->stats.tx_packets++;
dev->trans_start = jiffies;
netif_wake_queue(dev);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
static int lan_saa9730_close(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
if (lan_saa9730_debug > 1)
printk("lan_saa9730_close:\n");
netif_stop_queue(dev);
/* Disable the Lan interrupt in the event manager. */
evm_saa9730_disable_lan_int(lp);
/* Stop the controller */
if (lan_saa9730_stop(lp))
return -1;
free_irq(dev->irq, (void *) dev);
return 0;
}
static void lan_saa9730_set_multicast(struct net_device *dev)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
/* Stop the controller */
lan_saa9730_stop(lp);
if (dev->flags & IFF_PROMISC) {
/* accept all packets */
writel(CAM_CONTROL_COMP_EN | CAM_CONTROL_STATION_ACC |
CAM_CONTROL_GROUP_ACC | CAM_CONTROL_BROAD_ACC,
&lp->lan_saa9730_regs->CamCtl);
} else {
if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
/* accept all multicast packets */
/*
* Will handle the multicast stuff later. -carstenl
*/
writel(CAM_CONTROL_COMP_EN | CAM_CONTROL_GROUP_ACC |
CAM_CONTROL_BROAD_ACC,
&lp->lan_saa9730_regs->CamCtl);
}
}
lan_saa9730_restart(lp);
}
static void __devexit saa9730_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct lan_saa9730_private *lp = netdev_priv(dev);
if (dev) {
unregister_netdev(dev);
lan_saa9730_free_buffers(pdev, lp);
iounmap(lp->lan_saa9730_regs);
iounmap(lp->evm_saa9730_regs);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static int lan_saa9730_init(struct net_device *dev, struct pci_dev *pdev,
unsigned long ioaddr, int irq)
{
struct lan_saa9730_private *lp = netdev_priv(dev);
unsigned char ethernet_addr[6];
int ret;
if (get_ethernet_addr(ethernet_addr)) {
ret = -ENODEV;
goto out;
}
memcpy(dev->dev_addr, ethernet_addr, 6);
dev->base_addr = ioaddr;
dev->irq = irq;
lp->pci_dev = pdev;
/* Set SAA9730 LAN base address. */
lp->lan_saa9730_regs = ioremap(ioaddr + SAA9730_LAN_REGS_ADDR,
SAA9730_LAN_REGS_SIZE);
if (!lp->lan_saa9730_regs) {
ret = -ENOMEM;
goto out;
}
/* Set SAA9730 EVM base address. */
lp->evm_saa9730_regs = ioremap(ioaddr + SAA9730_EVM_REGS_ADDR,
SAA9730_EVM_REGS_SIZE);
if (!lp->evm_saa9730_regs) {
ret = -ENOMEM;
goto out_iounmap_lan;
}
/* Allocate LAN RX/TX frame buffer space. */
if ((ret = lan_saa9730_allocate_buffers(pdev, lp)))
goto out_iounmap;
/* Stop LAN controller. */
if ((ret = lan_saa9730_stop(lp)))
goto out_free_consistent;
/* Initialize CAM registers. */
if ((ret = lan_saa9730_cam_init(dev)))
goto out_free_consistent;
/* Initialize MII registers. */
if ((ret = lan_saa9730_mii_init(lp)))
goto out_free_consistent;
/* Initialize control registers. */
if ((ret = lan_saa9730_control_init(lp)))
goto out_free_consistent;
/* Load CAM registers. */
if ((ret = lan_saa9730_cam_load(lp)))
goto out_free_consistent;
/* Initialize DMA context registers. */
if ((ret = lan_saa9730_dma_init(lp)))
goto out_free_consistent;
spin_lock_init(&lp->lock);
dev->open = lan_saa9730_open;
dev->hard_start_xmit = lan_saa9730_start_xmit;
dev->stop = lan_saa9730_close;
dev->set_multicast_list = lan_saa9730_set_multicast;
dev->tx_timeout = lan_saa9730_tx_timeout;
dev->watchdog_timeo = (HZ >> 1);
dev->dma = 0;
ret = register_netdev (dev);
if (ret)
goto out_free_consistent;
return 0;
out_free_consistent:
lan_saa9730_free_buffers(pdev, lp);
out_iounmap:
iounmap(lp->evm_saa9730_regs);
out_iounmap_lan:
iounmap(lp->lan_saa9730_regs);
out:
return ret;
}
static int __devinit saa9730_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
unsigned long pci_ioaddr;
int err;
if (lan_saa9730_debug > 1)
printk("saa9730.c: PCI bios is present, checking for devices...\n");
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR "Cannot enable PCI device, aborting.\n");
goto out;
}
err = pci_request_regions(pdev, DRV_MODULE_NAME);
if (err) {
printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n");
goto out_disable_pdev;
}
pci_irq_line = pdev->irq;
/* LAN base address in located at BAR 1. */
pci_ioaddr = pci_resource_start(pdev, 1);
pci_set_master(pdev);
printk("Found SAA9730 (PCI) at %lx, irq %d.\n",
pci_ioaddr, pci_irq_line);
dev = alloc_etherdev(sizeof(struct lan_saa9730_private));
if (!dev)
goto out_disable_pdev;
err = lan_saa9730_init(dev, pdev, pci_ioaddr, pci_irq_line);
if (err) {
printk("LAN init failed");
goto out_free_netdev;
}
pci_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
return 0;
out_free_netdev:
free_netdev(dev);
out_disable_pdev:
pci_disable_device(pdev);
out:
pci_set_drvdata(pdev, NULL);
return err;
}
static struct pci_driver saa9730_driver = {
.name = DRV_MODULE_NAME,
.id_table = saa9730_pci_tbl,
.probe = saa9730_init_one,
.remove = __devexit_p(saa9730_remove_one),
};
static int __init saa9730_init(void)
{
return pci_register_driver(&saa9730_driver);
}
static void __exit saa9730_cleanup(void)
{
pci_unregister_driver(&saa9730_driver);
}
module_init(saa9730_init);
module_exit(saa9730_cleanup);
MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
MODULE_DESCRIPTION("Philips SAA9730 ethernet driver");
MODULE_LICENSE("GPL");
/*
* Copyright (C) 2000, 2005 MIPS Technologies, Inc. All rights reserved.
* Authors: Carsten Langgaard <carstenl@mips.com>
* Maciej W. Rozycki <macro@mips.com>
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*
* SAA9730 ethernet driver description.
*
*/
#ifndef _SAA9730_H
#define _SAA9730_H
/* Number of 6-byte entries in the CAM. */
#define LAN_SAA9730_CAM_ENTRIES 10
#define LAN_SAA9730_CAM_DWORDS ((LAN_SAA9730_CAM_ENTRIES*6)/4)
/* TX and RX packet size: fixed to 2048 bytes, according to HW requirements. */
#define LAN_SAA9730_PACKET_SIZE 2048
/*
* Number of TX buffers = number of RX buffers = 2, which is fixed according
* to HW requirements.
*/
#define LAN_SAA9730_BUFFERS 2
/* Number of RX packets per RX buffer. */
#define LAN_SAA9730_RCV_Q_SIZE 15
/* Number of TX packets per TX buffer. */
#define LAN_SAA9730_TXM_Q_SIZE 15
/*
* We get an interrupt for each LAN_SAA9730_DEFAULT_RCV_Q_INT_THRESHOLD
* packets received.
* If however we receive less than LAN_SAA9730_DEFAULT_RCV_Q_INT_THRESHOLD
* packets, the hardware can timeout after a certain time and still tell
* us packets have arrived.
* The timeout value in unit of 32 PCI clocks (33Mhz).
* The value 200 approximates 0.0002 seconds.
*/
#define LAN_SAA9730_RCV_Q_INT_THRESHOLD 1
#define LAN_SAA9730_DEFAULT_TIME_OUT_CNT 10
#define RXSF_NDIS 0
#define RXSF_READY 2
#define RXSF_HWDONE 3
#define TXSF_EMPTY 0
#define TXSF_READY 2
#define TXSF_HWDONE 3
#define LANEND_LITTLE 0
#define LANEND_BIG_2143 1
#define LANEND_BIG_4321 2
#define LANMB_ANY 0
#define LANMB_8 1
#define LANMB_32 2
#define LANMB_64 3
#define MACCM_AUTOMATIC 0
#define MACCM_10MB 1
#define MACCM_MII 2
/*
* PHY definitions for Basic registers of QS6612 (used on MIPS ATLAS board)
*/
#define PHY_CONTROL 0x0
#define PHY_STATUS 0x1
#define PHY_STATUS_LINK_UP 0x4
#define PHY_CONTROL_RESET 0x8000
#define PHY_CONTROL_AUTO_NEG 0x1000
#define PHY_CONTROL_RESTART_AUTO_NEG 0x0200
#define PHY_ADDRESS 0x0
/* PK_COUNT register. */
#define PK_COUNT_TX_A_SHF 24
#define PK_COUNT_TX_A_MSK (0xff << PK_COUNT_TX_A_SHF)
#define PK_COUNT_TX_B_SHF 16
#define PK_COUNT_TX_B_MSK (0xff << PK_COUNT_TX_B_SHF)
#define PK_COUNT_RX_A_SHF 8
#define PK_COUNT_RX_A_MSK (0xff << PK_COUNT_RX_A_SHF)
#define PK_COUNT_RX_B_SHF 0
#define PK_COUNT_RX_B_MSK (0xff << PK_COUNT_RX_B_SHF)
/* OK2USE register. */
#define OK2USE_TX_A 0x8
#define OK2USE_TX_B 0x4
#define OK2USE_RX_A 0x2
#define OK2USE_RX_B 0x1
/* LAN DMA CONTROL register. */
#define DMA_CTL_BLK_INT 0x80000000
#define DMA_CTL_MAX_XFER_SHF 18
#define DMA_CTL_MAX_XFER_MSK (0x3 << LAN_DMA_CTL_MAX_XFER_SHF)
#define DMA_CTL_ENDIAN_SHF 16
#define DMA_CTL_ENDIAN_MSK (0x3 << LAN_DMA_CTL_ENDIAN_SHF)
#define DMA_CTL_RX_INT_COUNT_SHF 8
#define DMA_CTL_RX_INT_COUNT_MSK (0xff << LAN_DMA_CTL_RX_INT_COUNT_SHF)
#define DMA_CTL_EN_TX_DMA 0x00000080
#define DMA_CTL_EN_RX_DMA 0x00000040
#define DMA_CTL_RX_INT_BUFFUL_EN 0x00000020
#define DMA_CTL_RX_INT_TO_EN 0x00000010
#define DMA_CTL_RX_INT_EN 0x00000008
#define DMA_CTL_TX_INT_EN 0x00000004
#define DMA_CTL_MAC_TX_INT_EN 0x00000002
#define DMA_CTL_MAC_RX_INT_EN 0x00000001
/* DMA STATUS register. */
#define DMA_STATUS_BAD_ADDR_SHF 16
#define DMA_STATUS_BAD_ADDR_MSK (0xf << DMA_STATUS_BAD_ADDR_SHF)
#define DMA_STATUS_RX_PKTS_RECEIVED_SHF 8
#define DMA_STATUS_RX_PKTS_RECEIVED_MSK (0xff << DMA_STATUS_RX_PKTS_RECEIVED_SHF)
#define DMA_STATUS_TX_EN_SYNC 0x00000080
#define DMA_STATUS_RX_BUF_A_FUL 0x00000040
#define DMA_STATUS_RX_BUF_B_FUL 0x00000020
#define DMA_STATUS_RX_TO_INT 0x00000010
#define DMA_STATUS_RX_INT 0x00000008
#define DMA_STATUS_TX_INT 0x00000004
#define DMA_STATUS_MAC_TX_INT 0x00000002
#define DMA_STATUS_MAC_RX_INT 0x00000001
/* DMA TEST/PANIC SWITHES register. */
#define DMA_TEST_LOOPBACK 0x01000000
#define DMA_TEST_SW_RESET 0x00000001
/* MAC CONTROL register. */
#define MAC_CONTROL_EN_MISS_ROLL 0x00002000
#define MAC_CONTROL_MISS_ROLL 0x00000400
#define MAC_CONTROL_LOOP10 0x00000080
#define MAC_CONTROL_CONN_SHF 5
#define MAC_CONTROL_CONN_MSK (0x3 << MAC_CONTROL_CONN_SHF)
#define MAC_CONTROL_MAC_LOOP 0x00000010
#define MAC_CONTROL_FULL_DUP 0x00000008
#define MAC_CONTROL_RESET 0x00000004
#define MAC_CONTROL_HALT_IMM 0x00000002
#define MAC_CONTROL_HALT_REQ 0x00000001
/* CAM CONTROL register. */
#define CAM_CONTROL_COMP_EN 0x00000010
#define CAM_CONTROL_NEG_CAM 0x00000008
#define CAM_CONTROL_BROAD_ACC 0x00000004
#define CAM_CONTROL_GROUP_ACC 0x00000002
#define CAM_CONTROL_STATION_ACC 0x00000001
/* TRANSMIT CONTROL register. */
#define TX_CTL_EN_COMP 0x00004000
#define TX_CTL_EN_TX_PAR 0x00002000
#define TX_CTL_EN_LATE_COLL 0x00001000
#define TX_CTL_EN_EX_COLL 0x00000800
#define TX_CTL_EN_L_CARR 0x00000400
#define TX_CTL_EN_EX_DEFER 0x00000200
#define TX_CTL_EN_UNDER 0x00000100
#define TX_CTL_MII10 0x00000080
#define TX_CTL_SD_PAUSE 0x00000040
#define TX_CTL_NO_EX_DEF0 0x00000020
#define TX_CTL_F_BACK 0x00000010
#define TX_CTL_NO_CRC 0x00000008
#define TX_CTL_NO_PAD 0x00000004
#define TX_CTL_TX_HALT 0x00000002
#define TX_CTL_TX_EN 0x00000001
/* TRANSMIT STATUS register. */
#define TX_STATUS_SQ_ERR 0x00010000
#define TX_STATUS_TX_HALTED 0x00008000
#define TX_STATUS_COMP 0x00004000
#define TX_STATUS_TX_PAR 0x00002000
#define TX_STATUS_LATE_COLL 0x00001000
#define TX_STATUS_TX10_STAT 0x00000800
#define TX_STATUS_L_CARR 0x00000400
#define TX_STATUS_EX_DEFER 0x00000200
#define TX_STATUS_UNDER 0x00000100
#define TX_STATUS_IN_TX 0x00000080
#define TX_STATUS_PAUSED 0x00000040
#define TX_STATUS_TX_DEFERRED 0x00000020
#define TX_STATUS_EX_COLL 0x00000010
#define TX_STATUS_TX_COLL_SHF 0
#define TX_STATUS_TX_COLL_MSK (0xf << TX_STATUS_TX_COLL_SHF)
/* RECEIVE CONTROL register. */
#define RX_CTL_EN_GOOD 0x00004000
#define RX_CTL_EN_RX_PAR 0x00002000
#define RX_CTL_EN_LONG_ERR 0x00000800
#define RX_CTL_EN_OVER 0x00000400
#define RX_CTL_EN_CRC_ERR 0x00000200
#define RX_CTL_EN_ALIGN 0x00000100
#define RX_CTL_IGNORE_CRC 0x00000040
#define RX_CTL_PASS_CTL 0x00000020
#define RX_CTL_STRIP_CRC 0x00000010
#define RX_CTL_SHORT_EN 0x00000008
#define RX_CTL_LONG_EN 0x00000004
#define RX_CTL_RX_HALT 0x00000002
#define RX_CTL_RX_EN 0x00000001
/* RECEIVE STATUS register. */
#define RX_STATUS_RX_HALTED 0x00008000
#define RX_STATUS_GOOD 0x00004000
#define RX_STATUS_RX_PAR 0x00002000
#define RX_STATUS_LONG_ERR 0x00000800
#define RX_STATUS_OVERFLOW 0x00000400
#define RX_STATUS_CRC_ERR 0x00000200
#define RX_STATUS_ALIGN_ERR 0x00000100
#define RX_STATUS_RX10_STAT 0x00000080
#define RX_STATUS_INT_RX 0x00000040
#define RX_STATUS_CTL_RECD 0x00000020
/* MD_CA register. */
#define MD_CA_PRE_SUP 0x00001000
#define MD_CA_BUSY 0x00000800
#define MD_CA_WR 0x00000400
#define MD_CA_PHY_SHF 5
#define MD_CA_PHY_MSK (0x1f << MD_CA_PHY_SHF)
#define MD_CA_ADDR_SHF 0
#define MD_CA_ADDR_MSK (0x1f << MD_CA_ADDR_SHF)
/* Tx Status/Control. */
#define TX_STAT_CTL_OWNER_SHF 30
#define TX_STAT_CTL_OWNER_MSK (0x3 << TX_STAT_CTL_OWNER_SHF)
#define TX_STAT_CTL_FRAME_SHF 27
#define TX_STAT_CTL_FRAME_MSK (0x7 << TX_STAT_CTL_FRAME_SHF)
#define TX_STAT_CTL_STATUS_SHF 11
#define TX_STAT_CTL_STATUS_MSK (0x1ffff << TX_STAT_CTL_STATUS_SHF)
#define TX_STAT_CTL_LENGTH_SHF 0
#define TX_STAT_CTL_LENGTH_MSK (0x7ff << TX_STAT_CTL_LENGTH_SHF)
#define TX_STAT_CTL_ERROR_MSK ((TX_STATUS_SQ_ERR | \
TX_STATUS_TX_HALTED | \
TX_STATUS_TX_PAR | \
TX_STATUS_LATE_COLL | \
TX_STATUS_L_CARR | \
TX_STATUS_EX_DEFER | \
TX_STATUS_UNDER | \
TX_STATUS_PAUSED | \
TX_STATUS_TX_DEFERRED | \
TX_STATUS_EX_COLL | \
TX_STATUS_TX_COLL_MSK) \
<< TX_STAT_CTL_STATUS_SHF)
#define TX_STAT_CTL_INT_AFTER_TX 0x4
/* Rx Status/Control. */
#define RX_STAT_CTL_OWNER_SHF 30
#define RX_STAT_CTL_OWNER_MSK (0x3 << RX_STAT_CTL_OWNER_SHF)
#define RX_STAT_CTL_STATUS_SHF 11
#define RX_STAT_CTL_STATUS_MSK (0xffff << RX_STAT_CTL_STATUS_SHF)
#define RX_STAT_CTL_LENGTH_SHF 0
#define RX_STAT_CTL_LENGTH_MSK (0x7ff << RX_STAT_CTL_LENGTH_SHF)
/* The SAA9730 (LAN) controller register map, as seen via the PCI-bus. */
#define SAA9730_LAN_REGS_ADDR 0x20400
#define SAA9730_LAN_REGS_SIZE 0x00400
struct lan_saa9730_regmap {
volatile unsigned int TxBuffA; /* 0x20400 */
volatile unsigned int TxBuffB; /* 0x20404 */
volatile unsigned int RxBuffA; /* 0x20408 */
volatile unsigned int RxBuffB; /* 0x2040c */
volatile unsigned int PacketCount; /* 0x20410 */
volatile unsigned int Ok2Use; /* 0x20414 */
volatile unsigned int LanDmaCtl; /* 0x20418 */
volatile unsigned int Timeout; /* 0x2041c */
volatile unsigned int DmaStatus; /* 0x20420 */
volatile unsigned int DmaTest; /* 0x20424 */
volatile unsigned char filler20428[0x20430 - 0x20428];
volatile unsigned int PauseCount; /* 0x20430 */
volatile unsigned int RemotePauseCount; /* 0x20434 */
volatile unsigned char filler20438[0x20440 - 0x20438];
volatile unsigned int MacCtl; /* 0x20440 */
volatile unsigned int CamCtl; /* 0x20444 */
volatile unsigned int TxCtl; /* 0x20448 */
volatile unsigned int TxStatus; /* 0x2044c */
volatile unsigned int RxCtl; /* 0x20450 */
volatile unsigned int RxStatus; /* 0x20454 */
volatile unsigned int StationMgmtData; /* 0x20458 */
volatile unsigned int StationMgmtCtl; /* 0x2045c */
volatile unsigned int CamAddress; /* 0x20460 */
volatile unsigned int CamData; /* 0x20464 */
volatile unsigned int CamEnable; /* 0x20468 */
volatile unsigned char filler2046c[0x20500 - 0x2046c];
volatile unsigned int DebugPCIMasterAddr; /* 0x20500 */
volatile unsigned int DebugLanTxStateMachine; /* 0x20504 */
volatile unsigned int DebugLanRxStateMachine; /* 0x20508 */
volatile unsigned int DebugLanTxFifoPointers; /* 0x2050c */
volatile unsigned int DebugLanRxFifoPointers; /* 0x20510 */
volatile unsigned int DebugLanCtlStateMachine; /* 0x20514 */
};
typedef volatile struct lan_saa9730_regmap t_lan_saa9730_regmap;
/* EVM interrupt control registers. */
#define EVM_LAN_INT 0x00010000
#define EVM_MASTER_EN 0x00000001
/* The SAA9730 (EVM) controller register map, as seen via the PCI-bus. */
#define SAA9730_EVM_REGS_ADDR 0x02000
#define SAA9730_EVM_REGS_SIZE 0x00400
struct evm_saa9730_regmap {
volatile unsigned int InterruptStatus1; /* 0x2000 */
volatile unsigned int InterruptEnable1; /* 0x2004 */
volatile unsigned int InterruptMonitor1; /* 0x2008 */
volatile unsigned int Counter; /* 0x200c */
volatile unsigned int CounterThreshold; /* 0x2010 */
volatile unsigned int CounterControl; /* 0x2014 */
volatile unsigned int GpioControl1; /* 0x2018 */
volatile unsigned int InterruptStatus2; /* 0x201c */
volatile unsigned int InterruptEnable2; /* 0x2020 */
volatile unsigned int InterruptMonitor2; /* 0x2024 */
volatile unsigned int GpioControl2; /* 0x2028 */
volatile unsigned int InterruptBlock1; /* 0x202c */
volatile unsigned int InterruptBlock2; /* 0x2030 */
};
typedef volatile struct evm_saa9730_regmap t_evm_saa9730_regmap;
struct lan_saa9730_private {
/*
* Rx/Tx packet buffers.
* The Rx and Tx packets must be PACKET_SIZE aligned.
*/
void *buffer_start;
unsigned int buffer_size;
/*
* DMA address of beginning of this object, returned
* by pci_alloc_consistent().
*/
dma_addr_t dma_addr;
/* Pointer to the associated pci device structure */
struct pci_dev *pci_dev;
/* Pointer for the SAA9730 LAN controller register set. */
t_lan_saa9730_regmap *lan_saa9730_regs;
/* Pointer to the SAA9730 EVM register. */
t_evm_saa9730_regmap *evm_saa9730_regs;
/* Rcv buffer Index. */
unsigned char NextRcvPacketIndex;
/* Next buffer index. */
unsigned char NextRcvBufferIndex;
/* Index of next packet to use in that buffer. */
unsigned char NextTxmPacketIndex;
/* Next buffer index. */
unsigned char NextTxmBufferIndex;
/* Index of first pending packet ready to send. */
unsigned char PendingTxmPacketIndex;
/* Pending buffer index. */
unsigned char PendingTxmBufferIndex;
unsigned char DmaRcvPackets;
unsigned char DmaTxmPackets;
void *TxmBuffer[LAN_SAA9730_BUFFERS][LAN_SAA9730_TXM_Q_SIZE];
void *RcvBuffer[LAN_SAA9730_BUFFERS][LAN_SAA9730_RCV_Q_SIZE];
unsigned int TxBufferFree[LAN_SAA9730_BUFFERS];
unsigned char PhysicalAddress[LAN_SAA9730_CAM_ENTRIES][6];
spinlock_t lock;
};
#endif /* _SAA9730_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment