Commit 6c027889 authored by Jozsef Kadlecsik's avatar Jozsef Kadlecsik Committed by Patrick McHardy

netfilter: ipset: hash:ip set type support

The module implements the hash:ip type support in four flavours:
for IPv4 or IPv6, both without and with timeout support.

All the hash types are based on the "array hash" or ahash structure
and functions as a good compromise between minimal memory footprint
and speed. The hashing uses arrays to resolve clashes. The hash table
is resized (doubled) when searching becomes too long. Resizing can be
triggered by userspace add commands only and those are serialized by
the nfnl mutex. During resizing the set is read-locked, so the only
possible concurrent operations are the kernel side readers. Those are
protected by RCU locking.

Because of the four flavours and the other hash types, the functions
are implemented in general forms in the ip_set_ahash.h header file
and the real functions are generated before compiling by macro expansion.
Thus the dereferencing of low-level functions and void pointer arguments
could be avoided: the low-level functions are inlined, the function
arguments are pointers of type-specific structures.
Signed-off-by: default avatarJozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Signed-off-by: default avatarPatrick McHardy <kaber@trash.net>
parent 54326190
#ifndef _IP_SET_AHASH_H
#define _IP_SET_AHASH_H
#include <linux/rcupdate.h>
#include <linux/jhash.h>
#include <linux/netfilter/ipset/ip_set_timeout.h>
/* Hashing which uses arrays to resolve clashing. The hash table is resized
* (doubled) when searching becomes too long.
* Internally jhash is used with the assumption that the size of the
* stored data is a multiple of sizeof(u32). If storage supports timeout,
* the timeout field must be the last one in the data structure - that field
* is ignored when computing the hash key.
*
* Readers and resizing
*
* Resizing can be triggered by userspace command only, and those
* are serialized by the nfnl mutex. During resizing the set is
* read-locked, so the only possible concurrent operations are
* the kernel side readers. Those must be protected by proper RCU locking.
*/
/* Number of elements to store in an initial array block */
#define AHASH_INIT_SIZE 4
/* Max number of elements to store in an array block */
#define AHASH_MAX_SIZE (3*4)
/* A hash bucket */
struct hbucket {
void *value; /* the array of the values */
u8 size; /* size of the array */
u8 pos; /* position of the first free entry */
};
/* The hash table: the table size stored here in order to make resizing easy */
struct htable {
u8 htable_bits; /* size of hash table == 2^htable_bits */
struct hbucket bucket[0]; /* hashtable buckets */
};
#define hbucket(h, i) &((h)->bucket[i])
/* Book-keeping of the prefixes added to the set */
struct ip_set_hash_nets {
u8 cidr; /* the different cidr values in the set */
u32 nets; /* number of elements per cidr */
};
/* The generic ip_set hash structure */
struct ip_set_hash {
struct htable *table; /* the hash table */
u32 maxelem; /* max elements in the hash */
u32 elements; /* current element (vs timeout) */
u32 initval; /* random jhash init value */
u32 timeout; /* timeout value, if enabled */
struct timer_list gc; /* garbage collection when timeout enabled */
#ifdef IP_SET_HASH_WITH_NETMASK
u8 netmask; /* netmask value for subnets to store */
#endif
#ifdef IP_SET_HASH_WITH_NETS
struct ip_set_hash_nets nets[0]; /* book-keeping of prefixes */
#endif
};
/* Compute htable_bits from the user input parameter hashsize */
static u8
htable_bits(u32 hashsize)
{
/* Assume that hashsize == 2^htable_bits */
u8 bits = fls(hashsize - 1);
if (jhash_size(bits) != hashsize)
/* Round up to the first 2^n value */
bits = fls(hashsize);
return bits;
}
#ifdef IP_SET_HASH_WITH_NETS
#define SET_HOST_MASK(family) (family == AF_INET ? 32 : 128)
/* Network cidr size book keeping when the hash stores different
* sized networks */
static void
add_cidr(struct ip_set_hash *h, u8 cidr, u8 host_mask)
{
u8 i;
++h->nets[cidr-1].nets;
pr_debug("add_cidr added %u: %u\n", cidr, h->nets[cidr-1].nets);
if (h->nets[cidr-1].nets > 1)
return;
/* New cidr size */
for (i = 0; i < host_mask && h->nets[i].cidr; i++) {
/* Add in increasing prefix order, so larger cidr first */
if (h->nets[i].cidr < cidr)
swap(h->nets[i].cidr, cidr);
}
if (i < host_mask)
h->nets[i].cidr = cidr;
}
static void
del_cidr(struct ip_set_hash *h, u8 cidr, u8 host_mask)
{
u8 i;
--h->nets[cidr-1].nets;
pr_debug("del_cidr deleted %u: %u\n", cidr, h->nets[cidr-1].nets);
if (h->nets[cidr-1].nets != 0)
return;
/* All entries with this cidr size deleted, so cleanup h->cidr[] */
for (i = 0; i < host_mask - 1 && h->nets[i].cidr; i++) {
if (h->nets[i].cidr == cidr)
h->nets[i].cidr = cidr = h->nets[i+1].cidr;
}
h->nets[i - 1].cidr = 0;
}
#endif
/* Destroy the hashtable part of the set */
static void
ahash_destroy(struct htable *t)
{
struct hbucket *n;
u32 i;
for (i = 0; i < jhash_size(t->htable_bits); i++) {
n = hbucket(t, i);
if (n->size)
/* FIXME: use slab cache */
kfree(n->value);
}
ip_set_free(t);
}
/* Calculate the actual memory size of the set data */
static size_t
ahash_memsize(const struct ip_set_hash *h, size_t dsize, u8 host_mask)
{
u32 i;
struct htable *t = h->table;
size_t memsize = sizeof(*h)
+ sizeof(*t)
#ifdef IP_SET_HASH_WITH_NETS
+ sizeof(struct ip_set_hash_nets) * host_mask
#endif
+ jhash_size(t->htable_bits) * sizeof(struct hbucket);
for (i = 0; i < jhash_size(t->htable_bits); i++)
memsize += t->bucket[i].size * dsize;
return memsize;
}
/* Flush a hash type of set: destroy all elements */
static void
ip_set_hash_flush(struct ip_set *set)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
struct hbucket *n;
u32 i;
for (i = 0; i < jhash_size(t->htable_bits); i++) {
n = hbucket(t, i);
if (n->size) {
n->size = n->pos = 0;
/* FIXME: use slab cache */
kfree(n->value);
}
}
#ifdef IP_SET_HASH_WITH_NETS
memset(h->nets, 0, sizeof(struct ip_set_hash_nets)
* SET_HOST_MASK(set->family));
#endif
h->elements = 0;
}
/* Destroy a hash type of set */
static void
ip_set_hash_destroy(struct ip_set *set)
{
struct ip_set_hash *h = set->data;
if (with_timeout(h->timeout))
del_timer_sync(&h->gc);
ahash_destroy(h->table);
kfree(h);
set->data = NULL;
}
#define HKEY(data, initval, htable_bits) \
(jhash2((u32 *)(data), sizeof(struct type_pf_elem)/sizeof(u32), initval) \
& jhash_mask(htable_bits))
#endif /* _IP_SET_AHASH_H */
#define CONCAT(a, b, c) a##b##c
#define TOKEN(a, b, c) CONCAT(a, b, c)
/* Type/family dependent function prototypes */
#define type_pf_data_equal TOKEN(TYPE, PF, _data_equal)
#define type_pf_data_isnull TOKEN(TYPE, PF, _data_isnull)
#define type_pf_data_copy TOKEN(TYPE, PF, _data_copy)
#define type_pf_data_zero_out TOKEN(TYPE, PF, _data_zero_out)
#define type_pf_data_netmask TOKEN(TYPE, PF, _data_netmask)
#define type_pf_data_list TOKEN(TYPE, PF, _data_list)
#define type_pf_data_tlist TOKEN(TYPE, PF, _data_tlist)
#define type_pf_elem TOKEN(TYPE, PF, _elem)
#define type_pf_telem TOKEN(TYPE, PF, _telem)
#define type_pf_data_timeout TOKEN(TYPE, PF, _data_timeout)
#define type_pf_data_expired TOKEN(TYPE, PF, _data_expired)
#define type_pf_data_timeout_set TOKEN(TYPE, PF, _data_timeout_set)
#define type_pf_elem_add TOKEN(TYPE, PF, _elem_add)
#define type_pf_add TOKEN(TYPE, PF, _add)
#define type_pf_del TOKEN(TYPE, PF, _del)
#define type_pf_test_cidrs TOKEN(TYPE, PF, _test_cidrs)
#define type_pf_test TOKEN(TYPE, PF, _test)
#define type_pf_elem_tadd TOKEN(TYPE, PF, _elem_tadd)
#define type_pf_del_telem TOKEN(TYPE, PF, _ahash_del_telem)
#define type_pf_expire TOKEN(TYPE, PF, _expire)
#define type_pf_tadd TOKEN(TYPE, PF, _tadd)
#define type_pf_tdel TOKEN(TYPE, PF, _tdel)
#define type_pf_ttest_cidrs TOKEN(TYPE, PF, _ahash_ttest_cidrs)
#define type_pf_ttest TOKEN(TYPE, PF, _ahash_ttest)
#define type_pf_resize TOKEN(TYPE, PF, _resize)
#define type_pf_tresize TOKEN(TYPE, PF, _tresize)
#define type_pf_flush ip_set_hash_flush
#define type_pf_destroy ip_set_hash_destroy
#define type_pf_head TOKEN(TYPE, PF, _head)
#define type_pf_list TOKEN(TYPE, PF, _list)
#define type_pf_tlist TOKEN(TYPE, PF, _tlist)
#define type_pf_same_set TOKEN(TYPE, PF, _same_set)
#define type_pf_kadt TOKEN(TYPE, PF, _kadt)
#define type_pf_uadt TOKEN(TYPE, PF, _uadt)
#define type_pf_gc TOKEN(TYPE, PF, _gc)
#define type_pf_gc_init TOKEN(TYPE, PF, _gc_init)
#define type_pf_variant TOKEN(TYPE, PF, _variant)
#define type_pf_tvariant TOKEN(TYPE, PF, _tvariant)
/* Flavour without timeout */
/* Get the ith element from the array block n */
#define ahash_data(n, i) \
((struct type_pf_elem *)((n)->value) + (i))
/* Add an element to the hash table when resizing the set:
* we spare the maintenance of the internal counters. */
static int
type_pf_elem_add(struct hbucket *n, const struct type_pf_elem *value)
{
if (n->pos >= n->size) {
void *tmp;
if (n->size >= AHASH_MAX_SIZE)
/* Trigger rehashing */
return -EAGAIN;
tmp = kzalloc((n->size + AHASH_INIT_SIZE)
* sizeof(struct type_pf_elem),
GFP_ATOMIC);
if (!tmp)
return -ENOMEM;
if (n->size) {
memcpy(tmp, n->value,
sizeof(struct type_pf_elem) * n->size);
kfree(n->value);
}
n->value = tmp;
n->size += AHASH_INIT_SIZE;
}
type_pf_data_copy(ahash_data(n, n->pos++), value);
return 0;
}
/* Resize a hash: create a new hash table with doubling the hashsize
* and inserting the elements to it. Repeat until we succeed or
* fail due to memory pressures. */
static int
type_pf_resize(struct ip_set *set, bool retried)
{
struct ip_set_hash *h = set->data;
struct htable *t, *orig = h->table;
u8 htable_bits = orig->htable_bits;
const struct type_pf_elem *data;
struct hbucket *n, *m;
u32 i, j;
int ret;
retry:
ret = 0;
htable_bits++;
pr_debug("attempt to resize set %s from %u to %u, t %p\n",
set->name, orig->htable_bits, htable_bits, orig);
if (!htable_bits)
/* In case we have plenty of memory :-) */
return -IPSET_ERR_HASH_FULL;
t = ip_set_alloc(sizeof(*t)
+ jhash_size(htable_bits) * sizeof(struct hbucket));
if (!t)
return -ENOMEM;
t->htable_bits = htable_bits;
read_lock_bh(&set->lock);
for (i = 0; i < jhash_size(orig->htable_bits); i++) {
n = hbucket(orig, i);
for (j = 0; j < n->pos; j++) {
data = ahash_data(n, j);
m = hbucket(t, HKEY(data, h->initval, htable_bits));
ret = type_pf_elem_add(m, data);
if (ret < 0) {
read_unlock_bh(&set->lock);
ahash_destroy(t);
if (ret == -EAGAIN)
goto retry;
return ret;
}
}
}
rcu_assign_pointer(h->table, t);
read_unlock_bh(&set->lock);
/* Give time to other readers of the set */
synchronize_rcu_bh();
pr_debug("set %s resized from %u (%p) to %u (%p)\n", set->name,
orig->htable_bits, orig, t->htable_bits, t);
ahash_destroy(orig);
return 0;
}
/* Add an element to a hash and update the internal counters when succeeded,
* otherwise report the proper error code. */
static int
type_pf_add(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t;
const struct type_pf_elem *d = value;
struct hbucket *n;
int i, ret = 0;
u32 key;
if (h->elements >= h->maxelem)
return -IPSET_ERR_HASH_FULL;
rcu_read_lock_bh();
t = rcu_dereference_bh(h->table);
key = HKEY(value, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++)
if (type_pf_data_equal(ahash_data(n, i), d)) {
ret = -IPSET_ERR_EXIST;
goto out;
}
ret = type_pf_elem_add(n, value);
if (ret != 0)
goto out;
#ifdef IP_SET_HASH_WITH_NETS
add_cidr(h, d->cidr, HOST_MASK);
#endif
h->elements++;
out:
rcu_read_unlock_bh();
return ret;
}
/* Delete an element from the hash: swap it with the last element
* and free up space if possible.
*/
static int
type_pf_del(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
const struct type_pf_elem *d = value;
struct hbucket *n;
int i;
struct type_pf_elem *data;
u32 key;
key = HKEY(value, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_data(n, i);
if (!type_pf_data_equal(data, d))
continue;
if (i != n->pos - 1)
/* Not last one */
type_pf_data_copy(data, ahash_data(n, n->pos - 1));
n->pos--;
h->elements--;
#ifdef IP_SET_HASH_WITH_NETS
del_cidr(h, d->cidr, HOST_MASK);
#endif
if (n->pos + AHASH_INIT_SIZE < n->size) {
void *tmp = kzalloc((n->size - AHASH_INIT_SIZE)
* sizeof(struct type_pf_elem),
GFP_ATOMIC);
if (!tmp)
return 0;
n->size -= AHASH_INIT_SIZE;
memcpy(tmp, n->value,
n->size * sizeof(struct type_pf_elem));
kfree(n->value);
n->value = tmp;
}
return 0;
}
return -IPSET_ERR_EXIST;
}
#ifdef IP_SET_HASH_WITH_NETS
/* Special test function which takes into account the different network
* sizes added to the set */
static int
type_pf_test_cidrs(struct ip_set *set, struct type_pf_elem *d, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
struct hbucket *n;
const struct type_pf_elem *data;
int i, j = 0;
u32 key;
u8 host_mask = SET_HOST_MASK(set->family);
pr_debug("test by nets\n");
for (; j < host_mask && h->nets[j].cidr; j++) {
type_pf_data_netmask(d, h->nets[j].cidr);
key = HKEY(d, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_data(n, i);
if (type_pf_data_equal(data, d))
return 1;
}
}
return 0;
}
#endif
/* Test whether the element is added to the set */
static int
type_pf_test(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
struct type_pf_elem *d = value;
struct hbucket *n;
const struct type_pf_elem *data;
int i;
u32 key;
#ifdef IP_SET_HASH_WITH_NETS
/* If we test an IP address and not a network address,
* try all possible network sizes */
if (d->cidr == SET_HOST_MASK(set->family))
return type_pf_test_cidrs(set, d, timeout);
#endif
key = HKEY(d, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_data(n, i);
if (type_pf_data_equal(data, d))
return 1;
}
return 0;
}
/* Reply a HEADER request: fill out the header part of the set */
static int
type_pf_head(struct ip_set *set, struct sk_buff *skb)
{
const struct ip_set_hash *h = set->data;
struct nlattr *nested;
size_t memsize;
read_lock_bh(&set->lock);
memsize = ahash_memsize(h, with_timeout(h->timeout)
? sizeof(struct type_pf_telem)
: sizeof(struct type_pf_elem),
set->family == AF_INET ? 32 : 128);
read_unlock_bh(&set->lock);
nested = ipset_nest_start(skb, IPSET_ATTR_DATA);
if (!nested)
goto nla_put_failure;
NLA_PUT_NET32(skb, IPSET_ATTR_HASHSIZE,
htonl(jhash_size(h->table->htable_bits)));
NLA_PUT_NET32(skb, IPSET_ATTR_MAXELEM, htonl(h->maxelem));
#ifdef IP_SET_HASH_WITH_NETMASK
if (h->netmask != HOST_MASK)
NLA_PUT_U8(skb, IPSET_ATTR_NETMASK, h->netmask);
#endif
NLA_PUT_NET32(skb, IPSET_ATTR_REFERENCES,
htonl(atomic_read(&set->ref) - 1));
NLA_PUT_NET32(skb, IPSET_ATTR_MEMSIZE, htonl(memsize));
if (with_timeout(h->timeout))
NLA_PUT_NET32(skb, IPSET_ATTR_TIMEOUT, htonl(h->timeout));
ipset_nest_end(skb, nested);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
/* Reply a LIST/SAVE request: dump the elements of the specified set */
static int
type_pf_list(const struct ip_set *set,
struct sk_buff *skb, struct netlink_callback *cb)
{
const struct ip_set_hash *h = set->data;
const struct htable *t = h->table;
struct nlattr *atd, *nested;
const struct hbucket *n;
const struct type_pf_elem *data;
u32 first = cb->args[2];
/* We assume that one hash bucket fills into one page */
void *incomplete;
int i;
atd = ipset_nest_start(skb, IPSET_ATTR_ADT);
if (!atd)
return -EMSGSIZE;
pr_debug("list hash set %s\n", set->name);
for (; cb->args[2] < jhash_size(t->htable_bits); cb->args[2]++) {
incomplete = skb_tail_pointer(skb);
n = hbucket(t, cb->args[2]);
pr_debug("cb->args[2]: %lu, t %p n %p\n", cb->args[2], t, n);
for (i = 0; i < n->pos; i++) {
data = ahash_data(n, i);
pr_debug("list hash %lu hbucket %p i %u, data %p\n",
cb->args[2], n, i, data);
nested = ipset_nest_start(skb, IPSET_ATTR_DATA);
if (!nested) {
if (cb->args[2] == first) {
nla_nest_cancel(skb, atd);
return -EMSGSIZE;
} else
goto nla_put_failure;
}
if (type_pf_data_list(skb, data))
goto nla_put_failure;
ipset_nest_end(skb, nested);
}
}
ipset_nest_end(skb, atd);
/* Set listing finished */
cb->args[2] = 0;
return 0;
nla_put_failure:
nlmsg_trim(skb, incomplete);
ipset_nest_end(skb, atd);
if (unlikely(first == cb->args[2])) {
pr_warning("Can't list set %s: one bucket does not fit into "
"a message. Please report it!\n", set->name);
cb->args[2] = 0;
return -EMSGSIZE;
}
return 0;
}
static int
type_pf_kadt(struct ip_set *set, const struct sk_buff * skb,
enum ipset_adt adt, u8 pf, u8 dim, u8 flags);
static int
type_pf_uadt(struct ip_set *set, struct nlattr *tb[],
enum ipset_adt adt, u32 *lineno, u32 flags);
static const struct ip_set_type_variant type_pf_variant = {
.kadt = type_pf_kadt,
.uadt = type_pf_uadt,
.adt = {
[IPSET_ADD] = type_pf_add,
[IPSET_DEL] = type_pf_del,
[IPSET_TEST] = type_pf_test,
},
.destroy = type_pf_destroy,
.flush = type_pf_flush,
.head = type_pf_head,
.list = type_pf_list,
.resize = type_pf_resize,
.same_set = type_pf_same_set,
};
/* Flavour with timeout support */
#define ahash_tdata(n, i) \
(struct type_pf_elem *)((struct type_pf_telem *)((n)->value) + (i))
static inline u32
type_pf_data_timeout(const struct type_pf_elem *data)
{
const struct type_pf_telem *tdata =
(const struct type_pf_telem *) data;
return tdata->timeout;
}
static inline bool
type_pf_data_expired(const struct type_pf_elem *data)
{
const struct type_pf_telem *tdata =
(const struct type_pf_telem *) data;
return ip_set_timeout_expired(tdata->timeout);
}
static inline void
type_pf_data_timeout_set(struct type_pf_elem *data, u32 timeout)
{
struct type_pf_telem *tdata = (struct type_pf_telem *) data;
tdata->timeout = ip_set_timeout_set(timeout);
}
static int
type_pf_elem_tadd(struct hbucket *n, const struct type_pf_elem *value,
u32 timeout)
{
struct type_pf_elem *data;
if (n->pos >= n->size) {
void *tmp;
if (n->size >= AHASH_MAX_SIZE)
/* Trigger rehashing */
return -EAGAIN;
tmp = kzalloc((n->size + AHASH_INIT_SIZE)
* sizeof(struct type_pf_telem),
GFP_ATOMIC);
if (!tmp)
return -ENOMEM;
if (n->size) {
memcpy(tmp, n->value,
sizeof(struct type_pf_telem) * n->size);
kfree(n->value);
}
n->value = tmp;
n->size += AHASH_INIT_SIZE;
}
data = ahash_tdata(n, n->pos++);
type_pf_data_copy(data, value);
type_pf_data_timeout_set(data, timeout);
return 0;
}
/* Delete expired elements from the hashtable */
static void
type_pf_expire(struct ip_set_hash *h)
{
struct htable *t = h->table;
struct hbucket *n;
struct type_pf_elem *data;
u32 i;
int j;
for (i = 0; i < jhash_size(t->htable_bits); i++) {
n = hbucket(t, i);
for (j = 0; j < n->pos; j++) {
data = ahash_tdata(n, j);
if (type_pf_data_expired(data)) {
pr_debug("expired %u/%u\n", i, j);
#ifdef IP_SET_HASH_WITH_NETS
del_cidr(h, data->cidr, HOST_MASK);
#endif
if (j != n->pos - 1)
/* Not last one */
type_pf_data_copy(data,
ahash_tdata(n, n->pos - 1));
n->pos--;
h->elements--;
}
}
if (n->pos + AHASH_INIT_SIZE < n->size) {
void *tmp = kzalloc((n->size - AHASH_INIT_SIZE)
* sizeof(struct type_pf_telem),
GFP_ATOMIC);
if (!tmp)
/* Still try to delete expired elements */
continue;
n->size -= AHASH_INIT_SIZE;
memcpy(tmp, n->value,
n->size * sizeof(struct type_pf_telem));
kfree(n->value);
n->value = tmp;
}
}
}
static int
type_pf_tresize(struct ip_set *set, bool retried)
{
struct ip_set_hash *h = set->data;
struct htable *t, *orig = h->table;
u8 htable_bits = orig->htable_bits;
const struct type_pf_elem *data;
struct hbucket *n, *m;
u32 i, j;
int ret;
/* Try to cleanup once */
if (!retried) {
i = h->elements;
write_lock_bh(&set->lock);
type_pf_expire(set->data);
write_unlock_bh(&set->lock);
if (h->elements < i)
return 0;
}
retry:
ret = 0;
htable_bits++;
if (!htable_bits)
/* In case we have plenty of memory :-) */
return -IPSET_ERR_HASH_FULL;
t = ip_set_alloc(sizeof(*t)
+ jhash_size(htable_bits) * sizeof(struct hbucket));
if (!t)
return -ENOMEM;
t->htable_bits = htable_bits;
read_lock_bh(&set->lock);
for (i = 0; i < jhash_size(orig->htable_bits); i++) {
n = hbucket(orig, i);
for (j = 0; j < n->pos; j++) {
data = ahash_tdata(n, j);
m = hbucket(t, HKEY(data, h->initval, htable_bits));
ret = type_pf_elem_tadd(m, data,
type_pf_data_timeout(data));
if (ret < 0) {
read_unlock_bh(&set->lock);
ahash_destroy(t);
if (ret == -EAGAIN)
goto retry;
return ret;
}
}
}
rcu_assign_pointer(h->table, t);
read_unlock_bh(&set->lock);
/* Give time to other readers of the set */
synchronize_rcu_bh();
ahash_destroy(orig);
return 0;
}
static int
type_pf_tadd(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
const struct type_pf_elem *d = value;
struct hbucket *n;
struct type_pf_elem *data;
int ret = 0, i, j = AHASH_MAX_SIZE + 1;
u32 key;
if (h->elements >= h->maxelem)
/* FIXME: when set is full, we slow down here */
type_pf_expire(h);
if (h->elements >= h->maxelem)
return -IPSET_ERR_HASH_FULL;
rcu_read_lock_bh();
t = rcu_dereference_bh(h->table);
key = HKEY(d, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_tdata(n, i);
if (type_pf_data_equal(data, d)) {
if (type_pf_data_expired(data))
j = i;
else {
ret = -IPSET_ERR_EXIST;
goto out;
}
} else if (j == AHASH_MAX_SIZE + 1 &&
type_pf_data_expired(data))
j = i;
}
if (j != AHASH_MAX_SIZE + 1) {
data = ahash_tdata(n, j);
#ifdef IP_SET_HASH_WITH_NETS
del_cidr(h, data->cidr, HOST_MASK);
add_cidr(h, d->cidr, HOST_MASK);
#endif
type_pf_data_copy(data, d);
type_pf_data_timeout_set(data, timeout);
goto out;
}
ret = type_pf_elem_tadd(n, d, timeout);
if (ret != 0)
goto out;
#ifdef IP_SET_HASH_WITH_NETS
add_cidr(h, d->cidr, HOST_MASK);
#endif
h->elements++;
out:
rcu_read_unlock_bh();
return ret;
}
static int
type_pf_tdel(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
const struct type_pf_elem *d = value;
struct hbucket *n;
int i, ret = 0;
struct type_pf_elem *data;
u32 key;
key = HKEY(value, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_tdata(n, i);
if (!type_pf_data_equal(data, d))
continue;
if (type_pf_data_expired(data))
ret = -IPSET_ERR_EXIST;
if (i != n->pos - 1)
/* Not last one */
type_pf_data_copy(data, ahash_tdata(n, n->pos - 1));
n->pos--;
h->elements--;
#ifdef IP_SET_HASH_WITH_NETS
del_cidr(h, d->cidr, HOST_MASK);
#endif
if (n->pos + AHASH_INIT_SIZE < n->size) {
void *tmp = kzalloc((n->size - AHASH_INIT_SIZE)
* sizeof(struct type_pf_telem),
GFP_ATOMIC);
if (!tmp)
return 0;
n->size -= AHASH_INIT_SIZE;
memcpy(tmp, n->value,
n->size * sizeof(struct type_pf_telem));
kfree(n->value);
n->value = tmp;
}
return 0;
}
return -IPSET_ERR_EXIST;
}
#ifdef IP_SET_HASH_WITH_NETS
static int
type_pf_ttest_cidrs(struct ip_set *set, struct type_pf_elem *d, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
struct type_pf_elem *data;
struct hbucket *n;
int i, j = 0;
u32 key;
u8 host_mask = SET_HOST_MASK(set->family);
for (; j < host_mask && h->nets[j].cidr; j++) {
type_pf_data_netmask(d, h->nets[j].cidr);
key = HKEY(d, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_tdata(n, i);
if (type_pf_data_equal(data, d))
return !type_pf_data_expired(data);
}
}
return 0;
}
#endif
static int
type_pf_ttest(struct ip_set *set, void *value, u32 timeout)
{
struct ip_set_hash *h = set->data;
struct htable *t = h->table;
struct type_pf_elem *data, *d = value;
struct hbucket *n;
int i;
u32 key;
#ifdef IP_SET_HASH_WITH_NETS
if (d->cidr == SET_HOST_MASK(set->family))
return type_pf_ttest_cidrs(set, d, timeout);
#endif
key = HKEY(d, h->initval, t->htable_bits);
n = hbucket(t, key);
for (i = 0; i < n->pos; i++) {
data = ahash_tdata(n, i);
if (type_pf_data_equal(data, d))
return !type_pf_data_expired(data);
}
return 0;
}
static int
type_pf_tlist(const struct ip_set *set,
struct sk_buff *skb, struct netlink_callback *cb)
{
const struct ip_set_hash *h = set->data;
const struct htable *t = h->table;
struct nlattr *atd, *nested;
const struct hbucket *n;
const struct type_pf_elem *data;
u32 first = cb->args[2];
/* We assume that one hash bucket fills into one page */
void *incomplete;
int i;
atd = ipset_nest_start(skb, IPSET_ATTR_ADT);
if (!atd)
return -EMSGSIZE;
for (; cb->args[2] < jhash_size(t->htable_bits); cb->args[2]++) {
incomplete = skb_tail_pointer(skb);
n = hbucket(t, cb->args[2]);
for (i = 0; i < n->pos; i++) {
data = ahash_tdata(n, i);
pr_debug("list %p %u\n", n, i);
if (type_pf_data_expired(data))
continue;
pr_debug("do list %p %u\n", n, i);
nested = ipset_nest_start(skb, IPSET_ATTR_DATA);
if (!nested) {
if (cb->args[2] == first) {
nla_nest_cancel(skb, atd);
return -EMSGSIZE;
} else
goto nla_put_failure;
}
if (type_pf_data_tlist(skb, data))
goto nla_put_failure;
ipset_nest_end(skb, nested);
}
}
ipset_nest_end(skb, atd);
/* Set listing finished */
cb->args[2] = 0;
return 0;
nla_put_failure:
nlmsg_trim(skb, incomplete);
ipset_nest_end(skb, atd);
if (unlikely(first == cb->args[2])) {
pr_warning("Can't list set %s: one bucket does not fit into "
"a message. Please report it!\n", set->name);
cb->args[2] = 0;
return -EMSGSIZE;
}
return 0;
}
static const struct ip_set_type_variant type_pf_tvariant = {
.kadt = type_pf_kadt,
.uadt = type_pf_uadt,
.adt = {
[IPSET_ADD] = type_pf_tadd,
[IPSET_DEL] = type_pf_tdel,
[IPSET_TEST] = type_pf_ttest,
},
.destroy = type_pf_destroy,
.flush = type_pf_flush,
.head = type_pf_head,
.list = type_pf_tlist,
.resize = type_pf_tresize,
.same_set = type_pf_same_set,
};
static void
type_pf_gc(unsigned long ul_set)
{
struct ip_set *set = (struct ip_set *) ul_set;
struct ip_set_hash *h = set->data;
pr_debug("called\n");
write_lock_bh(&set->lock);
type_pf_expire(h);
write_unlock_bh(&set->lock);
h->gc.expires = jiffies + IPSET_GC_PERIOD(h->timeout) * HZ;
add_timer(&h->gc);
}
static void
type_pf_gc_init(struct ip_set *set)
{
struct ip_set_hash *h = set->data;
init_timer(&h->gc);
h->gc.data = (unsigned long) set;
h->gc.function = type_pf_gc;
h->gc.expires = jiffies + IPSET_GC_PERIOD(h->timeout) * HZ;
add_timer(&h->gc);
pr_debug("gc initialized, run in every %u\n",
IPSET_GC_PERIOD(h->timeout));
}
#undef type_pf_data_equal
#undef type_pf_data_isnull
#undef type_pf_data_copy
#undef type_pf_data_zero_out
#undef type_pf_data_list
#undef type_pf_data_tlist
#undef type_pf_elem
#undef type_pf_telem
#undef type_pf_data_timeout
#undef type_pf_data_expired
#undef type_pf_data_netmask
#undef type_pf_data_timeout_set
#undef type_pf_elem_add
#undef type_pf_add
#undef type_pf_del
#undef type_pf_test_cidrs
#undef type_pf_test
#undef type_pf_elem_tadd
#undef type_pf_expire
#undef type_pf_tadd
#undef type_pf_tdel
#undef type_pf_ttest_cidrs
#undef type_pf_ttest
#undef type_pf_resize
#undef type_pf_tresize
#undef type_pf_flush
#undef type_pf_destroy
#undef type_pf_head
#undef type_pf_list
#undef type_pf_tlist
#undef type_pf_same_set
#undef type_pf_kadt
#undef type_pf_uadt
#undef type_pf_gc
#undef type_pf_gc_init
#undef type_pf_variant
#undef type_pf_tvariant
#ifndef __IP_SET_HASH_H
#define __IP_SET_HASH_H
/* Hash type specific error codes */
enum {
/* Hash is full */
IPSET_ERR_HASH_FULL = IPSET_ERR_TYPE_SPECIFIC,
/* Null-valued element */
IPSET_ERR_HASH_ELEM,
/* Invalid protocol */
IPSET_ERR_INVALID_PROTO,
/* Protocol missing but must be specified */
IPSET_ERR_MISSING_PROTO,
};
#ifdef __KERNEL__
#define IPSET_DEFAULT_HASHSIZE 1024
#define IPSET_MIMINAL_HASHSIZE 64
#define IPSET_DEFAULT_MAXELEM 65536
#define IPSET_DEFAULT_PROBES 4
#define IPSET_DEFAULT_RESIZE 100
#endif /* __KERNEL__ */
#endif /* __IP_SET_HASH_H */
......@@ -50,4 +50,14 @@ config IP_SET_BITMAP_PORT
To compile it as a module, choose M here. If unsure, say N.
config IP_SET_HASH_IP
tristate "hash:ip set support"
depends on IP_SET
help
This option adds the hash:ip set type support, by which one
can store arbitrary IPv4 or IPv6 addresses (or network addresses)
in a set.
To compile it as a module, choose M here. If unsure, say N.
endif # IP_SET
......@@ -11,3 +11,6 @@ obj-$(CONFIG_IP_SET) += ip_set.o
obj-$(CONFIG_IP_SET_BITMAP_IP) += ip_set_bitmap_ip.o
obj-$(CONFIG_IP_SET_BITMAP_IPMAC) += ip_set_bitmap_ipmac.o
obj-$(CONFIG_IP_SET_BITMAP_PORT) += ip_set_bitmap_port.o
# hash types
obj-$(CONFIG_IP_SET_HASH_IP) += ip_set_hash_ip.o
/* Copyright (C) 2003-2011 Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Kernel module implementing an IP set type: the hash:ip type */
#include <linux/jhash.h>
#include <linux/module.h>
#include <linux/ip.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/uaccess.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/random.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/netlink.h>
#include <net/tcp.h>
#include <linux/netfilter.h>
#include <linux/netfilter/ipset/pfxlen.h>
#include <linux/netfilter/ipset/ip_set.h>
#include <linux/netfilter/ipset/ip_set_timeout.h>
#include <linux/netfilter/ipset/ip_set_hash.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>");
MODULE_DESCRIPTION("hash:ip type of IP sets");
MODULE_ALIAS("ip_set_hash:ip");
/* Type specific function prefix */
#define TYPE hash_ip
static bool
hash_ip_same_set(const struct ip_set *a, const struct ip_set *b);
#define hash_ip4_same_set hash_ip_same_set
#define hash_ip6_same_set hash_ip_same_set
/* The type variant functions: IPv4 */
/* Member elements without timeout */
struct hash_ip4_elem {
__be32 ip;
};
/* Member elements with timeout support */
struct hash_ip4_telem {
__be32 ip;
unsigned long timeout;
};
static inline bool
hash_ip4_data_equal(const struct hash_ip4_elem *ip1,
const struct hash_ip4_elem *ip2)
{
return ip1->ip == ip2->ip;
}
static inline bool
hash_ip4_data_isnull(const struct hash_ip4_elem *elem)
{
return elem->ip == 0;
}
static inline void
hash_ip4_data_copy(struct hash_ip4_elem *dst, const struct hash_ip4_elem *src)
{
dst->ip = src->ip;
}
/* Zero valued IP addresses cannot be stored */
static inline void
hash_ip4_data_zero_out(struct hash_ip4_elem *elem)
{
elem->ip = 0;
}
static inline bool
hash_ip4_data_list(struct sk_buff *skb, const struct hash_ip4_elem *data)
{
NLA_PUT_IPADDR4(skb, IPSET_ATTR_IP, data->ip);
return 0;
nla_put_failure:
return 1;
}
static bool
hash_ip4_data_tlist(struct sk_buff *skb, const struct hash_ip4_elem *data)
{
const struct hash_ip4_telem *tdata =
(const struct hash_ip4_telem *)data;
NLA_PUT_IPADDR4(skb, IPSET_ATTR_IP, tdata->ip);
NLA_PUT_NET32(skb, IPSET_ATTR_TIMEOUT,
htonl(ip_set_timeout_get(tdata->timeout)));
return 0;
nla_put_failure:
return 1;
}
#define IP_SET_HASH_WITH_NETMASK
#define PF 4
#define HOST_MASK 32
#include <linux/netfilter/ipset/ip_set_ahash.h>
static int
hash_ip4_kadt(struct ip_set *set, const struct sk_buff *skb,
enum ipset_adt adt, u8 pf, u8 dim, u8 flags)
{
const struct ip_set_hash *h = set->data;
ipset_adtfn adtfn = set->variant->adt[adt];
__be32 ip;
ip4addrptr(skb, flags & IPSET_DIM_ONE_SRC, &ip);
ip &= ip_set_netmask(h->netmask);
if (ip == 0)
return -EINVAL;
return adtfn(set, &ip, h->timeout);
}
static int
hash_ip4_uadt(struct ip_set *set, struct nlattr *tb[],
enum ipset_adt adt, u32 *lineno, u32 flags)
{
const struct ip_set_hash *h = set->data;
ipset_adtfn adtfn = set->variant->adt[adt];
u32 ip, ip_to, hosts, timeout = h->timeout;
__be32 nip;
int ret = 0;
if (unlikely(!tb[IPSET_ATTR_IP] ||
!ip_set_optattr_netorder(tb, IPSET_ATTR_TIMEOUT)))
return -IPSET_ERR_PROTOCOL;
if (tb[IPSET_ATTR_LINENO])
*lineno = nla_get_u32(tb[IPSET_ATTR_LINENO]);
ret = ip_set_get_hostipaddr4(tb[IPSET_ATTR_IP], &ip);
if (ret)
return ret;
ip &= ip_set_hostmask(h->netmask);
if (tb[IPSET_ATTR_TIMEOUT]) {
if (!with_timeout(h->timeout))
return -IPSET_ERR_TIMEOUT;
timeout = ip_set_timeout_uget(tb[IPSET_ATTR_TIMEOUT]);
}
if (adt == IPSET_TEST) {
nip = htonl(ip);
if (nip == 0)
return -IPSET_ERR_HASH_ELEM;
return adtfn(set, &nip, timeout);
}
if (tb[IPSET_ATTR_IP_TO]) {
ret = ip_set_get_hostipaddr4(tb[IPSET_ATTR_IP_TO], &ip_to);
if (ret)
return ret;
if (ip > ip_to)
swap(ip, ip_to);
} else if (tb[IPSET_ATTR_CIDR]) {
u8 cidr = nla_get_u8(tb[IPSET_ATTR_CIDR]);
if (cidr > 32)
return -IPSET_ERR_INVALID_CIDR;
ip &= ip_set_hostmask(cidr);
ip_to = ip | ~ip_set_hostmask(cidr);
} else
ip_to = ip;
hosts = h->netmask == 32 ? 1 : 2 << (32 - h->netmask - 1);
for (; !before(ip_to, ip); ip += hosts) {
nip = htonl(ip);
if (nip == 0)
return -IPSET_ERR_HASH_ELEM;
ret = adtfn(set, &nip, timeout);
if (ret && !ip_set_eexist(ret, flags))
return ret;
else
ret = 0;
}
return ret;
}
static bool
hash_ip_same_set(const struct ip_set *a, const struct ip_set *b)
{
const struct ip_set_hash *x = a->data;
const struct ip_set_hash *y = b->data;
/* Resizing changes htable_bits, so we ignore it */
return x->maxelem == y->maxelem &&
x->timeout == y->timeout &&
x->netmask == y->netmask;
}
/* The type variant functions: IPv6 */
struct hash_ip6_elem {
union nf_inet_addr ip;
};
struct hash_ip6_telem {
union nf_inet_addr ip;
unsigned long timeout;
};
static inline bool
hash_ip6_data_equal(const struct hash_ip6_elem *ip1,
const struct hash_ip6_elem *ip2)
{
return ipv6_addr_cmp(&ip1->ip.in6, &ip2->ip.in6) == 0;
}
static inline bool
hash_ip6_data_isnull(const struct hash_ip6_elem *elem)
{
return ipv6_addr_any(&elem->ip.in6);
}
static inline void
hash_ip6_data_copy(struct hash_ip6_elem *dst, const struct hash_ip6_elem *src)
{
ipv6_addr_copy(&dst->ip.in6, &src->ip.in6);
}
static inline void
hash_ip6_data_zero_out(struct hash_ip6_elem *elem)
{
ipv6_addr_set(&elem->ip.in6, 0, 0, 0, 0);
}
static inline void
ip6_netmask(union nf_inet_addr *ip, u8 prefix)
{
ip->ip6[0] &= ip_set_netmask6(prefix)[0];
ip->ip6[1] &= ip_set_netmask6(prefix)[1];
ip->ip6[2] &= ip_set_netmask6(prefix)[2];
ip->ip6[3] &= ip_set_netmask6(prefix)[3];
}
static bool
hash_ip6_data_list(struct sk_buff *skb, const struct hash_ip6_elem *data)
{
NLA_PUT_IPADDR6(skb, IPSET_ATTR_IP, &data->ip);
return 0;
nla_put_failure:
return 1;
}
static bool
hash_ip6_data_tlist(struct sk_buff *skb, const struct hash_ip6_elem *data)
{
const struct hash_ip6_telem *e =
(const struct hash_ip6_telem *)data;
NLA_PUT_IPADDR6(skb, IPSET_ATTR_IP, &e->ip);
NLA_PUT_NET32(skb, IPSET_ATTR_TIMEOUT,
htonl(ip_set_timeout_get(e->timeout)));
return 0;
nla_put_failure:
return 1;
}
#undef PF
#undef HOST_MASK
#define PF 6
#define HOST_MASK 128
#include <linux/netfilter/ipset/ip_set_ahash.h>
static int
hash_ip6_kadt(struct ip_set *set, const struct sk_buff *skb,
enum ipset_adt adt, u8 pf, u8 dim, u8 flags)
{
const struct ip_set_hash *h = set->data;
ipset_adtfn adtfn = set->variant->adt[adt];
union nf_inet_addr ip;
ip6addrptr(skb, flags & IPSET_DIM_ONE_SRC, &ip.in6);
ip6_netmask(&ip, h->netmask);
if (ipv6_addr_any(&ip.in6))
return -EINVAL;
return adtfn(set, &ip, h->timeout);
}
static const struct nla_policy hash_ip6_adt_policy[IPSET_ATTR_ADT_MAX + 1] = {
[IPSET_ATTR_IP] = { .type = NLA_NESTED },
[IPSET_ATTR_TIMEOUT] = { .type = NLA_U32 },
[IPSET_ATTR_LINENO] = { .type = NLA_U32 },
};
static int
hash_ip6_uadt(struct ip_set *set, struct nlattr *tb[],
enum ipset_adt adt, u32 *lineno, u32 flags)
{
const struct ip_set_hash *h = set->data;
ipset_adtfn adtfn = set->variant->adt[adt];
union nf_inet_addr ip;
u32 timeout = h->timeout;
int ret;
if (unlikely(!tb[IPSET_ATTR_IP] ||
!ip_set_optattr_netorder(tb, IPSET_ATTR_TIMEOUT) ||
tb[IPSET_ATTR_IP_TO] ||
tb[IPSET_ATTR_CIDR]))
return -IPSET_ERR_PROTOCOL;
if (tb[IPSET_ATTR_LINENO])
*lineno = nla_get_u32(tb[IPSET_ATTR_LINENO]);
ret = ip_set_get_ipaddr6(tb[IPSET_ATTR_IP], &ip);
if (ret)
return ret;
ip6_netmask(&ip, h->netmask);
if (ipv6_addr_any(&ip.in6))
return -IPSET_ERR_HASH_ELEM;
if (tb[IPSET_ATTR_TIMEOUT]) {
if (!with_timeout(h->timeout))
return -IPSET_ERR_TIMEOUT;
timeout = ip_set_timeout_uget(tb[IPSET_ATTR_TIMEOUT]);
}
ret = adtfn(set, &ip, timeout);
return ip_set_eexist(ret, flags) ? 0 : ret;
}
/* Create hash:ip type of sets */
static int
hash_ip_create(struct ip_set *set, struct nlattr *tb[], u32 flags)
{
u32 hashsize = IPSET_DEFAULT_HASHSIZE, maxelem = IPSET_DEFAULT_MAXELEM;
u8 netmask, hbits;
struct ip_set_hash *h;
if (!(set->family == AF_INET || set->family == AF_INET6))
return -IPSET_ERR_INVALID_FAMILY;
netmask = set->family == AF_INET ? 32 : 128;
pr_debug("Create set %s with family %s\n",
set->name, set->family == AF_INET ? "inet" : "inet6");
if (unlikely(!ip_set_optattr_netorder(tb, IPSET_ATTR_HASHSIZE) ||
!ip_set_optattr_netorder(tb, IPSET_ATTR_MAXELEM) ||
!ip_set_optattr_netorder(tb, IPSET_ATTR_TIMEOUT)))
return -IPSET_ERR_PROTOCOL;
if (tb[IPSET_ATTR_HASHSIZE]) {
hashsize = ip_set_get_h32(tb[IPSET_ATTR_HASHSIZE]);
if (hashsize < IPSET_MIMINAL_HASHSIZE)
hashsize = IPSET_MIMINAL_HASHSIZE;
}
if (tb[IPSET_ATTR_MAXELEM])
maxelem = ip_set_get_h32(tb[IPSET_ATTR_MAXELEM]);
if (tb[IPSET_ATTR_NETMASK]) {
netmask = nla_get_u8(tb[IPSET_ATTR_NETMASK]);
if ((set->family == AF_INET && netmask > 32) ||
(set->family == AF_INET6 && netmask > 128) ||
netmask == 0)
return -IPSET_ERR_INVALID_NETMASK;
}
h = kzalloc(sizeof(*h), GFP_KERNEL);
if (!h)
return -ENOMEM;
h->maxelem = maxelem;
h->netmask = netmask;
get_random_bytes(&h->initval, sizeof(h->initval));
h->timeout = IPSET_NO_TIMEOUT;
hbits = htable_bits(hashsize);
h->table = ip_set_alloc(
sizeof(struct htable)
+ jhash_size(hbits) * sizeof(struct hbucket));
if (!h->table) {
kfree(h);
return -ENOMEM;
}
h->table->htable_bits = hbits;
set->data = h;
if (tb[IPSET_ATTR_TIMEOUT]) {
h->timeout = ip_set_timeout_uget(tb[IPSET_ATTR_TIMEOUT]);
set->variant = set->family == AF_INET
? &hash_ip4_tvariant : &hash_ip6_tvariant;
if (set->family == AF_INET)
hash_ip4_gc_init(set);
else
hash_ip6_gc_init(set);
} else {
set->variant = set->family == AF_INET
? &hash_ip4_variant : &hash_ip6_variant;
}
pr_debug("create %s hashsize %u (%u) maxelem %u: %p(%p)\n",
set->name, jhash_size(h->table->htable_bits),
h->table->htable_bits, h->maxelem, set->data, h->table);
return 0;
}
static struct ip_set_type hash_ip_type __read_mostly = {
.name = "hash:ip",
.protocol = IPSET_PROTOCOL,
.features = IPSET_TYPE_IP,
.dimension = IPSET_DIM_ONE,
.family = AF_UNSPEC,
.revision = 0,
.create = hash_ip_create,
.create_policy = {
[IPSET_ATTR_HASHSIZE] = { .type = NLA_U32 },
[IPSET_ATTR_MAXELEM] = { .type = NLA_U32 },
[IPSET_ATTR_PROBES] = { .type = NLA_U8 },
[IPSET_ATTR_RESIZE] = { .type = NLA_U8 },
[IPSET_ATTR_TIMEOUT] = { .type = NLA_U32 },
[IPSET_ATTR_NETMASK] = { .type = NLA_U8 },
},
.adt_policy = {
[IPSET_ATTR_IP] = { .type = NLA_NESTED },
[IPSET_ATTR_IP_TO] = { .type = NLA_NESTED },
[IPSET_ATTR_CIDR] = { .type = NLA_U8 },
[IPSET_ATTR_TIMEOUT] = { .type = NLA_U32 },
[IPSET_ATTR_LINENO] = { .type = NLA_U32 },
},
.me = THIS_MODULE,
};
static int __init
hash_ip_init(void)
{
return ip_set_type_register(&hash_ip_type);
}
static void __exit
hash_ip_fini(void)
{
ip_set_type_unregister(&hash_ip_type);
}
module_init(hash_ip_init);
module_exit(hash_ip_fini);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment